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MORIN SINGULARITIES OF COLLECTIONS OF ONE-FORMS AND
VECTOR FIELDS

CAMILA M. RUIZ

ABSTRACT. Inspired by the properties of a collection of n gradient vector fields V f1,...,Vfn
from a Morin map f = (f1,...,fn) : M - R™, with dim M > n, we introduce the notion of
Morin singularities in the context of collections of one-forms and collections of vector fields. We
also study the singularities of generic one-forms which are related to specific collections (Morin
collections) and we generalize a result of T. Fukuda on Euler characteristic ([5, Theorem 1])
for the case of collections of one-forms and vector fields.

1. INTRODUCTION

Morin maps are those which admit only Morin singularities. It is well known that these
singularities are stable, and conversely, that corank one stable map-germs are Morin singularities.
Thereby, Morin singularities are fundamental and frequently arise as singularities of maps from
one manifold to another, as observed by K. Saji in [15]. These singularities have been studied
by many authors in different contexts as [9, 1, 5, 12, 13|, and more recently |7, 18, 21, 6, 3, 8,
2, 15, 16, 14, 11]. In particular, J.M. Eliagberg [4], J.R. Quine [10], T. Fukuda [5], O. Saeki [12]
and N. Dutertre and T. Fukui [3] investigate relations between the topology of a manifold and
the topology of the critical locus of maps with Morin singularities.

In this work, we introduce the notion of Morin singularities in the context of collections of one-
forms that are not necessarily differential (Definition 2.26) and collections of vector fields that
are not necessarily gradient (Definition 2.28). Our main result (Theorem 4.13) is a generalization
of Fukuda’s Theorem on Euler characteristic [5, Theorem 1] for the case of Morin collections of
smooth one-forms: we show that if w = {w; }1<i<n is @ Morin collection (Definition 2.26) defined
on an m-dimensional compact manifold M then

(M) = kix(Ak(w)) mod 2,

where x(M) denotes the Euler characteristic of M and Ag(w) is the set given by the Ag-type
singular points of w.

Our original inspiration was provided by the following properties of a collection {V f1, ...,V f.}
of n gradient vector fields from a Morin map f = (f1,..., fn)-

Let f: M™ — R" be a smooth Morin map defined on an m-dimensional Riemannian manifold
M, with m > n. The singular points of f = (f1,..., fn) are the points x € M where the rank of the
derivative df (x) is equal to n— 1. By taking the gradient of each coordinate function f1,..., fn,
we obtain a “singular collection” of n vector fields {V f1,...,V f,} defined on M whose singular
locus ¥ is given by

Y ={xeM|rank(Vfi(x),...,Vfu(z)) =n-1}.
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For any k =1,...,n, it is known that the sets Ay (f) and Ag(f), given by the Ag-type singular
points of f and its topological closure, respectively, are (n—k)-dimensional smooth submanifolds
of M satisfying

() £ = AP
(1) Ax(f) = EJkAi(f)%
(i7) For eachg €y,

~ ’I’L_k7 lfl‘EAk(f)a
rankdf|m($) = { n-k-1, ifz EAkT(f);

(see [5], [9], [12] for Morin singularities). By item (iii), the intersection of the vector space

spanned by Vfi(z),...,Vfn(2) and the normal vector space to Ai(f) at z is a vector subspace
whose dimension is given by

dim((vfl(x),...,an(l"))”NwAk‘(f)):{ :,_17 iiim

Then, (Vfi(z),...,Vfu(x)) and Ny Ag(f) intersect transversally at z if and only if z € Ag(f).
Otherwise, if z € Agy1(f) and {21(x), ..., zn—k-1(2)} is a basis of a vector subspace complemen-
tary to (Vf1(x),...,Vfu(2))n N AL (f) in (Vf1(x),...,Vfa(z)) then

0, if ze Ak+1(f)7
1, ifxe Ak+2(f)

dim({z1(2), ..., 2n--1(2)) " Ny A1 (f)) = {

Therefore (z1(x),...,2n-k-1(x)) and N,Ak.1(f) intersect transversally at x if and only if
x € Apy1(f), and Agyi-type singular points of f can be distinguished from Ag,2(f) by this
transversality or, equivalently, by the dimension of such intersection. We will follow this idea to
define Morin singularities of collections.

This paper is organized as follows. In Section 2, we consider a non-degenerate collection of
smooth one-forms w = {w; }1<i<n (Definition 2.2) defined on a smooth m-dimensional manifold
M, with m > n. Then, we define the Ag-type singularities of w, for k = 1,...,n, in order to
decompose the singular set ¥!(w) of w into disjoint submanifolds according to the type of each
singular point. To do that, we give an inductive definition of the singular subsets X¥(w) and
Ap(w), in which we take successive transversality conditions (Definitions 2.3, 2.9, 2.10, 2.11,
2.18, 2.19, 2.25 and Remark 2.14). In particular, if the required transversality conditions hold,
we show that the singular subsets Ay (w) and ¥¥(w) = Ap(w) are (n - k)-dimensional smooth
submanifolds of M (Lemmas 2.4, 2.12, 2.20 and Theorem 2.22) such that A(w) = UispAi(f)
(Remark 2.24). Furthermore, in Proposition 2.23 (a) and Lemma 4.5 we provide equations that
define the singular sets ¥ (w) locally.

We will say that w = {w; }1<i<n is @ Morin collection of one-forms (Definition 2.26) if it admits
only Morin Ag-type singular points, for k =1,...,n (see Remark 2.27).

The definition of Morin singularities for collections of n one-forms can be analogously adapted
to collections of n vector fields as follows. When considering a smooth manifold M, differential
one-forms are naturally dual to vector fields, more specifically, if we fix a Riemannian metric on
M then there exists an isomorphism between the tangent and cotangent bundles of M, such that
vector fields and one-forms can be identified. To illustrate this notion, we give some examples
of Morin collections of vector fields in the end of Section 2.

We remark that in the maximal case, that is, when we have a Morin collection of m vector
fields defined on an m-dimensional manifold, our definition of Aj-type singularities is equivalent
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to that Ag-type singularities presented by Saji et al. [17].

Let L e RP™ ! be a straight line in R™ and let 7y, : R™ — L be the orthogonal projection to L.
In [5], T. Fukuda applied Morse theory and well known properties of the singular sets Ay (f) of a
Morin map f: M — R"” to study critical points of mappings 7y o f : M — L and their restrictions
to singular sets 77, o f|4, (s) and 7z, o f|m. Similarly, in Sections 3 and 4, we investigate the
zeros of a generic one-form

am=i%wu>

associated to a Morin collection of n smooth one-forms w = {w; }1<i<n. We verify that ¢, §|Ak(w)

and f‘
(AR (@) .
associated to Morin maps f.
More precisely, let a = (a1,...,a,) € R" ~ {0} and let w = {w;}1<i<n be a Morin collection
of smooth one-forms on M, in Section 3 we prove that the zero set of £(z) = Y1, a;w;(z) is
contained in $!(w) (Lemma 3.1) and, for almost every a € R"\ {0}, the zero set of §|Ek( ) does not

have properties that are similar to that of generic orthogonal projections 7y, o f(z)

intercept ¥F*2 (w), for k=0,...,n-2 (Lemmas 3.6 and 3.7). Moreover, we present necessary and
sufficient conditions for a zero of QEMI( ) to be a zero of €|):k'( ) for k=0,...,n-1 (Lemmas 3.2

and 3.3). In Section 4, we prove that generically the one-form £(z) and its restrictions E‘Ek_( )
and flAkw) admit only non-degenerate zeros (Lemmas 4.6, 4.7, 4.8 and 4.12). In Lemmas 4.9,

4.10 and 4.11, we give conditions for a non-degenerate zero of 5\Ek+1( ) to be a non-degenerate

zero of f‘zk(w) ,for k=0,...,n-1.
As a consequence of these results, we end the paper with Theorem 4.13 whose proof uses the
classical Poincaré-Hopf Theorem for one-forms.

2. MORIN SINGULARITIES OF COLLECTIONS OF ONE-FORMS

Let 0 < n < m be integer numbers and let M be an m-dimensional smooth manifold with
cotangent space at x € M denoted by T, M. We define the “n-cotangent bundle” of M by

T*M" ={(z,01,---,n) | TeM; @;eTiM,i=1,...,n},

which is an m(n+1)-dimensional smooth manifold locally diffeomorphic to U x M, ,(R), where
U cR™ is an open set and M,, ,(R) denotes the set of real matrices of size m x n.

Lemma 2.1. Let T*M™" ! c T*M" be defined by
T*Mn1n71 = {(x7(p1a .. awn) eT"M" | rank((pla . 790n) =n- 1} :
Then T* M™" ! is smooth a submanifold of T*M™ of dimension n(m +1) - 1.

Proof. Let M~} (R) be the smooth submanifold of My, »,(R) of codimension m-n+1 consisting of
the matrices with rank equal to n—1. The set T* M™"~! is locally diffeomorphic to U x M;%~} (R),
where U ¢ R™ is an open subset. Thus, 7% M™"! is a smooth submanifold of T* M™ of dimension
n(m+1)-1. O

Let w = {w; }1<i<n be a collection of n smooth one-forms on M, we will consider the smooth
map w: M — T*M" defined by

w(z) = (z,w1(2),...,wn()).

Definition 2.2. We say that w = {w;}i<i<n @S a non-degenerate collection if the map
w:M - T*M" as above satisfies the following conditions:
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(a) whT*M™" L in T*M",
(b) w—l(T*Mn,Sn—Q) — @}
where T* M™<""2 = {(z,¢1,...,¢n) e T*M™ | rank(py1,...,pn) <n-2}.

Notice that this definition implies that if w = {w; }1<i<n is a non-degenerate collection on M,
then for each x € M the rank of wy(z),...,w,(x) is either equal to n or equal to n — 1.

Definition 2.3. Let w = {w; }1<i<n be a non-degenerate collection on M. We define the singular
set of the collection w as the set ©*(w) of points x € M where the rank of w is not mazimal, that
18

Y(w) = {z e M | rank(wi(x),...,wn(z)) =n-1}.

Lemma 2.4. Let w = {w; }1<i<n be a non-degenerate collection on M. Then ¥ (w) is either the
empty set or an (n —1)-dimensional smooth submanifold of M.

Proof. Notice that !(w) = w ™ (T*M™" 1) and that w 4 T*M™" L. Thus, if ¥!(w) # @ then
¥!(w) is a smooth submanifold of M of codimension m —n + 1 and the result follows. O

Let w = {w;}1<i<n be a non-degenerate collection of smooth one-forms defined on an m-
dimensional smooth manifold M. If w satisfies some transversality conditions, we will define
the Ag-type singularities of w, for k = 1,...,n, in order to decompose the singular set %!(w)
into disjoint submanifolds according to the type of each singular point. Firstly, we define the
Aj-type singular points in $'(w). We will denote by ¥?(w) the subset of ©!(w) given by all
singular points of w that are not A;-type. For each k =2,...,n, we repeat this process defining
the Ay-type singular points in ¥*(w) and denoting by ¥**1(w) the subset of X*(w) given by all
singular points of w that are not Ag-type. To do that, we present in this section an inductive
definition of Ag-type Morin singularities of w.

Remark 2.5. Let S c¢ M be a smooth submanifold of M. We will adopt the following notation
Ny S ={ e T; M[y(T5S) = 0}.
Definition 2.6. Let w = {w;}1<i<n be a non-degenerate collection on M. Given
(z,90) = (@, 015+, Pn1),
we define the sets
T M = {(2,0) | 2 € SH(w); 01, a1 € T, M}

and
NG M™ = {(z,0) € TEM™ | rank(o1,. .. pn-1) =n -1,
dim({p1,..., pn-1) N NS XN (w)) =1},

where (p1,...,0n-1) denotes the subspace of T M spanned by {©1,...,0n-1}-
Lemma 2.7. T M™ ! is a smooth manifold of dimension m(n—1)+n-1.

Proof. For a non-degenerate collection w, we know that X! (w) is an (n - 1)-dimensional smooth
submanifold of M. Then, for each (z,¢) € T, M "1 there exists an open subset V ¢ R™™! such
that 7y, M"! is locally diffeomorphic to V' x M,, ,,-1(R) near (z, ) and the result follows. [

Lemma 2.8. NglM”’1 s a smooth hypersurface of TglM"’l, that is, a smooth submanifold of
dimension m(n—1) +n - 2.
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Proof. Since w is non-degenerate, it follows from Lemma 2.4 that X! (w) is a smooth submanifold
of codimension m —mn +1 of M. Then, for each p € £!(w) there exist an open neighborhood U of
p in M and smooth functions Fi,..., F,,_nt1 : U = R such that

UNS (w)={zeld | Fi(z)=...= Fppi1(z) =0}
with rank(dFy (z),...,dFyn_ni1(2)) =m-n+1, for each z ed n X! (w), and
NySH(w) = (dFy(p), - - - dFmns1(p))-
If (5, ) = (0, B1s - o> Pno1) € N& M™ ! then
rank (1, ..., Pu-1,dF1(p), ..., dFpni1(p)) =m -1,
since by the definition of Ny, M"™!, rank(p1,...,Pn-1) =n -1 and
dim((@1, ..., @n-1) NN SN (w)) = 1.

In this way,
det(dFl(p)v A dFm—n+1(p)7 Sbh cet 9571—1) = O
and fixing the notation @; = (@},..., @) for i =1,...,n -1, we can assume that the minor
aFl aFm—nJrl ~1 ~1
s (p) 02, () & P2
aFl ame.—nJrl ~m—1 ~m—1
T (p) o (p) &Y Pn’a
does not vanish and consequently, that
6F1 aij—n+1 1 1
921 () 011 () ¢ Pn-2
(1) : : oo %0
8F1 8}7‘1'7'7,—n+1 m—1 m—1
Fr— () o (z) Pnss

for all (z, ¢) € (' (w)nU)xV, where V ¢ R™("~1 is an open neighborhood of ¢. Thus, Ny, M"~!
can be locally given by

MY = {(2,0) €U XV | Fy=...= Fpyps1 = A =0},
where A(x,p) = det(dFy(z),...,dFm-ns1(x),01,...,9n-1). Let B(x,¢) be the square matrix
of order m whose columus are given by the coefficients of the one-forms dFy (), ..., dFp_n+1(x),
P11y -0 Pn-1t
B(z,p) = ( dFy(x) - dFp_ps1(x) @1 - Pt )

By Laplace expansion along the last column of B(z,¢), we have
Az, ) = 3 @1 cof (¢, B),
i=1
where cof (¢!_;, B) denotes the cofactor of ! _; in the matrix B(z,¢). Thus

0A i : ot 4 . Ocof(¢!_1,B)
— f (3 B n + (1 n ?
890;7_1 (:Ea 90) ; co (@n—l? )890?_1 Prn-1 580?_1
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and since cof(¢!,_;, B) does not depend on the variable ¢ ;, we have

deot(¢l,,, B)

=0, fori=1,...,m.
ey
Then,
0A (1)
7m($, QO) =cof(¢,-1,B) # 0,
agpn—l

and the derivative of A(z, ) with respect to ¢, denoted by d,A(z, ), does not vanish. This
implies that the matrix

: § O@m-n+1)x(n-1)
= d.'cFm—n+1('T) :
dFm_n+1(x) ettt eee e ' ee tee see see see ees
dA(z, P dyA(x,
dA(z, o) (z,0) oAz, )

has rank m —n + 2, where O(y,—p+1)x(n-1) denotes a null matrix. Hence,
rank(dFy(z),...,dFy,_ns1(x),dA(z,9)) =m-n+2,
for each (z,¢) € N& M™ (U x V). Therefore, Ny, M™ ! is a smooth submanifold of T3, M™!

of dimension m+m(n-1)-(m-n+2)=m(n-1)+n-2. O

Let w = {w; }1<i<n be a non-degenerate collection on M and (w1 (x),...,w,(x)) the subspace
of T} M spanned by {w;(x),...,w,(x)}. Then for each p € B (w), dim{w; (p),...,w,(p)) =n-1,
and there exist an open neighborhood U, of p in M and a collection {1,...,Q,_1} of n -1
smooth one-forms on U, such that {Q(z),...,Q,_1(x)} is a basis of (w1 (x),...,w,(z)) for each
z €U, NS (w). Let Q" : U, n X! (w) » T M™ ! be the map given by

Q'(z) = (2, (x),..., 1 (2));
we define:
Definition 2.9. We say that collection w = {w; }1<i<n Satisfies the “condition I” if for each
pe X (w) there exist an open neighborhood Uy, of p in M and a map Q' : U, n T (w) - T, M™!
as defined above, such that on U, the following properties hold:
(a) QY § Ny M in TE M1,
(b) (Ql)—l(]\/v;:1 Mn—1,22) — ®7
where
Ni M 122 = {(2,0) € T3 M | rank(1, ..., on_1) = n=1,dim({¢1, ..., on_1)NNIZH(w)) > 2}.
Notice that if w satisfies the condition I, then for each x € S (w) NU,,
dim((Q(2),..., Q1 (2)) N NI ZH(W))
is either equal to 0 or equal to 1. We will prove in Proposition 2.23 that this dimension and the
condition I; do not depend on the choice of the basis {Q1,...,Q,-1}.

Definition 2.10. Let w = {w;}1<i<n be a non-degenerate collection that satisfies the condition
I,. Given pe XY (w), consider an open neighborhood U, of pin M and a map

O (z) = (2, (2),..., Q1 (2))
as in Definition 2.9. We define the sets Ay(w) and X%(w) as follows:
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(a) We say that x €U, belongs to Ay (w) if z € B (w) and
dim((Qy(z),..., Q1 (2)) n NEH(w)) = 0.
(b) We say that x €U, belongs to $?(w) if x € B! (w) \ A1 (w), that is, if x € B (w) and
dim((Q1(2),..., Q1 (2)) n NZH(w)) = 1.
Then, for each p € X1 (w) we may write
Ar(w) nUy = {z e XM (w) nUp, | dim((Q1(2),...,Q-1(2)) " N EH(w)) = 0};
Y2 (w)nU, = {z e X (w) nUy, | dim((Q1(2),...,2-1(2)) " N EH(w)) = 1};
and we have
Ai(w)= U (Aiw)nlhy) and Z*(w)= U (Z*(w)nly).
pext(w) pest(w)
Definition 2.11. Let w = {w;}i1<i<n be a non-degenerate collection on M that satisfies the

condition I,. We say that x € M is an Ai-type Morin singularity of w if x € A1 (w).

Lemma 2.12. Let w = {w; }1<i<n be a non-degenerate collection on M that satisfies the condition
I. Then ¥?(w) c Y (w) and X%(w) is either the empty set or an (n — 2)-dimensional smooth
submanifold of M.

Proof. Notice that, locally, £?(w) = (') (Ng&, M™ ') and Q' § Njy M™ ! Thus, if $?(w) #+ @
then ¥?(w) is a smooth submanifold of 3! (w) of codimension 1 and the result follows. O

Lemma 2.13. Let w = {w; }1<i<n be a non-degenerate collection on M that satisfies the condition
I,. For each p e X (w),

peX*(w) < dim((wi(p), ..., wa(p)) N Ny TH(w)) = 1.
Proof. Given p € £!(w), we can consider a neighborhood U, of p in M and a map

Q'(z) = (2,2 (2),..., U1 (2)),
as in Definition 2.9, such that (Q1(p),...,Qn-1(p)) = (w1(p), ..., wn(p)). By Definition 2.10 (b),
p € ¥*(w) if and only if dim((Q1(p), ..., n-1(p)) " N;E!(w)) = 1. Thus, p € X*(w) if and only
if dim({w1(p), ..., wn(p)) " N;E (w)) = 1. O

Remark 2.14. The following results are used in the formulation of an inductive definition of
Ayg-type Morin singularities of w = {w; }1<i<n, for k=2,...,n.

Let 3 <k <n be an integer number and w = {w; }1<i<n @ non-degenerate collection on M with
singular set X' (w). Let us suppose that, for everyi=2,..., k-1, X(w) is a smooth submanifold
of M such that:

(a) Y(w)c X (w)c...c X (w);
(b) X¥(w) is the empty set or an (n —i)-dimensional smooth submanifold of M ;
(¢) For each p e X1 (w), we have

peX(w) < dim({wi(p),...,wn(p)) N N;Eifl(w)) =i-1.

Notice that in Lemmas 2.12 and 2.13 we have already proved that if w = {w; }1<i<n satisfies the
condition Iy, then the above hypothesis holds for k = 3, that is, ¥*(w) is a smooth submanifold of
M satisfying (a), (b) and (¢). Now, we assume that this hypothesis holds for everyi=2,... k-1,
with k > 3, and we will prove that it also holds for i = k if w = {w; }1<i<n Satisfies the “condition
I—17 that will be given in Definition 2.18.



MORIN SINGULARITIES OF COLLECTIONS OF ONE-FORMS AND VECTOR FIELDS 285

Definition 2.15. Let r=n—-k+1 and (z,9) = (x,¢1,...,p,), we define the sets
T;’“—lMT = {(l‘7<)0) | T € Zk_l(w);@h <o Pr € T;M}

and
New i M" = {(z,0) € T3 M" | rank(e1,...,¢r) =1,

dim({p1,...,0.) N N EFH(w)) =1},
where (¢1,...,¢r) denotes the subspace of Ty M spanned by {p1,...,¢r}.

Lemma 2.16. T

w1 M is a smooth manifold of dimension mr +r.

Proof. Analogously to the proof of Lemma 2.7. O

Lemma 2.17. Ng,.,M" is a smooth hypersurface of Ts,.., M", that is, a smooth submanifold
of dimension mr+r—1.

Proof. Analogously to the proof of Lemma 2.8. O
By hypothesis, for each p € ¥¥7!(w), we have that
dim({w1(p); - -, wn(p)) N Ny =2 (w)) = k-2

and dim(ws (), . ..,wn(p)) = n—1. Then, there exist an open neighborhood U, of p in M and a col-
lection {€,...,8Q,} of r = n—k+1 smooth one-forms on U, such that {Q;(z),...,Q,.(x)} is a basis
of a vector subspace complementary to {w;(z),...,w,(z)) N NS 2(w) in (wi(z),...,w.(z))
for each z € Uy, N 2*"(w). That is, for each x € U, N 2*!(w) we have that

(Q1(x),...,Q-())® (((.ul(a:)7 cswp(x))n N;Eka(w))
is equal to (w1 (z),...,wn(z)). Let Q"1 : U, n S (w) > T, . M" be the map given by
QFL(z) = (2, Q1 (2),..., 0 (2)),
we define:

Definition 2.18. We say that collection w = {w; }1<i<n satisfies the “condition I_17, if for each
p e P 1 (w) there exist an open neighborhood U, of pin M and a map

O Uy n SN (W) - T M
as defined above, such that on U, the following properties hold:

(a) QLA NS M in TS M";
(0) (QF1) (N M) = ;

where
S M7 = {(2,0) € T, M7 | rank(er, .- 0,) =y dim({r, .., 0) 0 NZSFT () 2 2),
Notice that if w satisfies the condition I;_y, then for each x € ¥¥~1(w) nU,,
dim((Q(z),...,Q2(z)) n NI EF1(w))

is either equal to 0 or equal to 1. We will prove in Proposition 2.23 that this dimension and the
condition Ij_; do not depend on the choice of the basis {Q,...,Q,}.

Definition 2.19. Let w = {w; }1<i<n be a non-degenerate collection that satisfies the condition
Ii_1. Given p e X Y(w), consider an open neighborhood U, of pin M and a map

Q" (@) = (2, (@), .., 2 (2))
as in Definition 2.18. We define the sets Ay_1(w) and *(w) as follows:
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(a) We say that x €U, belongs to Ap—1(w) if v € T 1 (w) and
dim((Qy(z),..., 2 (z)) n NI 1(w)) =
(b) We say that x €U, belongs to 2F(w) if x € B 1(w) N Ajp_1(w), that is, if v € 21 (w) and
dim((Q (z),...,Q-(2)) " NI EFH(w)) = 1.
Then, for each p € 2*1(w) we may write
A1 (W) nUp = {z e SFHw) nl, | dim((Q1(x),..., 2 (2)) n NZF(w)) = 0);
YE(W)nUy, = {z e 2P w)nl, | dim((Q(x),..., 2 (2)) n N ZFY(w)) = 1};
and we have

A= U (Aea)nthy) and Fw)= U (ZF(w)nis,).

peXk-1(w) peXk-1(w)

Lemma 2.20. Under the hypothesis of Remark 2.14, let w = {w;}1<i<n be a non-degenerate
collection on M that satisfies the condition Ij_y. Then YF(w) ¢ XY (w) and ¥ (w) is either
the empty set or an (n - k)-dimensional smooth submanifold of M.

Proof. Analogously to the proof of Lemma 2.12. O

Lemma 2.21. Under the hypothesis of Remark 2.14, let w = {w;}1<i<n be a non-degenerate
collection on M that satisfies the condition Ij,_1. For each p e X¥1(w),

peEF (W) = dim({wi(p).. - wa(p)) NN T (W) =

Proof. We have that ¥¥!(w) c ¥¥72(w) and for each p e £+ 1(w):
(i) N;y¥F2(w)c NyEF!(w) (see Remark 2.5);
(ii) dim({w1(p),...,wn(p)) N NFE*2(w)) =k -2;
(i47) There exist an open neighborhood U, of p in M and a collection {Q4(z),...,Q.(x)} of
7 = n—k+1 smooth one-forms on U, such that, for each z € U,nS 1 (w), (w1 (z),...,wn (7))
is equal to

(Ql(x)w : aQr(x” ® ((wl(x)v ce awn(x» mN;Ekiz(w)) .

For clearer notations, let us denote

(@(2)) = {wi(@),...,wa(@)) and (271(2)) = ((2),..., 2 (2)).

Then,
peXF(w) (D%fi:s:‘lg) dim ((©2**(p)) n N;Ek’l(w)) =1
WL dim ((@(p)) 0 NS (W) - dim ((0(p)) 0 N B2 (w)) = 1
© dim (@) 0 NS W) - (k-2) = 1
< dim ((@(p)) "Ny T (w)) = k- 1.

d

According to Lemmas 2.20 and 2.21, if the hypothesis of Remark 2.14 holds for every
i=2,...,k-1and w = {w;}1<i<n satisfies the condition Ij_;, then this hypothesis will hold
for i =2,...,k. In other words, we can state the following result.

Theorem 2.22. Let w = {w;}1<icn be a non-degenerate collection on M. If w satisfies the
conditions I, for j=1,...,n~-1, then for every k=1,...,n we have that

(a) ZF(w)c Tkt (w)c...c ¥ (w) c B (w);
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(b) Z*(w) is the empty set or an (n - k)-dimensional smooth submanifold of M ;
(c) Let k> 1. For each p e ¢ 1(w),

pe X (w) o dim((wi(p),...,wn(p)) N N;Ek’l(w)) =k-1.

The following proposition shows that Definitions 2.9, 2.10, 2.18 and 2.19 do not depend
on the choice of the bases {Q1(z),...,Q,-1(z)} and {Q1(x),...,Q-(z)}. The first part (a)
provides equations that define the submanifolds ¥ (w) locally. We use these local equations to
demonstrate part (b). The proof can be found in Appendix A.

Proposition 2.23.

(a) Let p € ©*Y(w). There are an open neighborhood U of p in M and smooth functions
Fi:U->R,i=1,...,m-r, such that

UNSF W) ={zeld|F(z)=...= Fpn_.(z)=0}
with rank(dFy(z),...,dFy,_(2)) = m -7 for x € U n S*Y(w), and there is a collection
{Q1(x),...,9-(x)} of r smooth one-forms defined on U which is a basis of a vector subspace

complementary to (0(x)) n N:¥$k2(w) in (0(x)) for each x e U n FH(w). Let
Ak(ﬂ?) = det(th . ,dFm_7-, Ql, ey QT)(J?)

Then w satisfies the condition I_1 on U if and only if the following properties hold for each
reld nXFH(w):
(i) dim(Q(x),...,Q(2)) " NS (W) =0 or1;

(i) if dim(Q(2),...,Q.(2)) " N E1(w) =1 (or equivalently Ay (x) =0), then
rank(dFy(z),...,dF,—(z),dAk(z)) =m -7+ 1.
In this case, ©*(w) can be locally defined as
UnSF(w)={zeld|Fi(z)=...= Fp_(z) = Ap(x) = 0}.

(b) The definitions of X' (w), X¥(w) and Ap_1(w) do not depend on the choice of the basis
{Q,..., g1}, for every k=2,... n.

Remark 2.24. It is not difficult to see that, for everyk =1,...,n, ¥¥(w) is a closed submanifold
of M such that
n
YR (w) = Ap(w) uEF (W) = | Ai(w).
i=k
Furthermore, Aj(w) = XF(w) \ S Y (w). Then, the singular sets Ax(w) are (n - k)-dimensional
submanifolds of M such that Ag(w) = ¥ (w).

Finally, based on the previous considerations, we define:

Definition 2.25. Let w = {w;}i1<i<n be a non-degenerate collection on M that satisfies the
condition I;, for j=1,...,n—-1. For each k € {1,...,n}, we say that x € M is an Ay-type Morin
singularity of w if x € Ax(w).

Definition 2.26. Let w = {w;}1<i<n be a collection of m smooth one-forms on M, with
0<n<m. We call w a Morin collection if w is non-degenerate and it satisfies the condition I,
forj=1,...,n-1.

Remark 2.27. By Definition 2.26, if w = {w; }1<i<n 18 a Morin collection then w admits only
Ap-type singular points for k=1,... n.
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As we mentioned in Section 1, fixed a Riemannian metric on M, we can consider vector fields
instead of one-forms and define the notion of Morin collection of n vector fields analogously to
the definition of Morin collection of n one-forms:

Definition 2.28. Let V = {V;}1<i<n be a collection of n smooth vector fields on M, with
0<n<m. Wecall V a Morin collection if V' is non-degenerate and it satisfies the condition I,
forj=1,...,n-1.

Next, we present some examples of Morin collections of vector fields.

Example 2.29. Let f: M™ — R"™ be a smooth Morin map defined on an m-dimensional Rie-
mannian manifold M, with m >n. The collection of n vector fields V(x) = {V f1(z),...,Vfa(x)}
given by the gradients of the coordinate functions of f is, clearly, a Morin collection of vector
fields whose singular points are the same as the singular points of f. That is, Ax(V) = Ax(f),
fork=1,...,n.

Example 2.30. Let a € R be a reqular value of a C? mapping f : R® - R. Suppose that
M = f71(a) and consider V = {Vi,Va} be a collection of 2 vector fields on M, given by

Vl(x) = (_facz (x)vfm (33)70)7
Va(z) (—fas (2),0, fo, ().

Since a is a regular value of f, we have that V f(x) = (fu, (2), fes (), fos () 0, Yo € M. Thus,
rank(Vi(z), Va(x)) is either equal to 2 or equal to 1 . The singular points of V' are the points
x € M where rank(Vy(x), Va(x)) =1, that is,

V) ={z e M| fo, () =0}

and V = {V1,Va} is non-degenerate if and only if rank(V f(z),V fo, (2)) =2 for each z € S (V).
In this case, X1 (V') is a submanifold of M of dimension 1. Let x € X(V') be a singular point
of V, then the space (Vi(x),Va(x)) is spanned by the vector e; = (1,0,0) and x € Ax(V') if and
only if

rank(V f(2), Vfz, (z),e1) <3,

that is, if and only if As = fr, foizs — fos foiz. vanishes at x. Moreover, V satisfies the condition
I, if and only if rank(V f(x),V fz,(x),VA2(z)) =3 for x € Ao(V'). In this case, Az(V) is a
submanifold of M of dimension 0. Therefore, V = {V1,Va} is a Morin collection of 2 vector
fields if and only if rank(V f(x),V fz, () = 2 on the singular set 22 (V) ={x e M | f,,(x) =0}
and det(Vf(x),V fz, (), VA2(2)) 0 on As(V)={xz e M | fz, (z)=0,As(zx) = 0}.

Example 2.31. Let us apply Example 2.30 to the collection of 2 wvector fields V = {V1,V5}
defined on the torus T = f~1(R?), where R? is a reqular value of

fz1,m2,23) = (/23 + 23 —a)? + (21 +22)?,
with a > R. Then, one can verify that 2*(V) = {x € T |2, + x5 = 0}, that is,
YHV) = {(w1, 29, 73) € R? | \/22 + 23 —a)? = R?}
and rank(V f (), V fz, (x)) is equal to

0 200 (\/2d+ 23 —a) 2z3(\/zi+23-a)
rank N NG ’
1 0
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which is 2 for all x € TnXY(V). Moreover,

-4 2 2 _
Ag(x) = x3(\/ x5 + x5 a)7

2 2
T3+ a3

such that

AQ(V) = {$€T|£L'1 + X9 :0;$3 :0},
which is the set given by the points (—a - R,a + R,0), (a+ R,—a - R,0), (-a+ R,a— R,0) and
(a—R,-a+R,0). Itis not difficult to see that rank(V f(x), V fu, (), VA2(x)) = 3,Vz € TnA3(V).
Therefore, the collection V = {V1,Va} given by

(_2372(3:\/27*':3_’1) - 2(1‘1 + lZJQ),?(SCl + 1‘2),0) )
I2+I3
—2z3(v/22+22-a
(23(2+3),072(5B1 + x2)) ,
\Jw3+w?
is a Morin collection of 2 vector fields defined on the torus T which admits singular points of
type Ay and As.

Vl(z)

Va(x)

Example 2.32. Let a € R be a regular value of a C? mapping f : R® - R. Suppose that
M = f*a) and consider Wi and Wo be the orthogonal projections of ex = (0,1,0) and
es = (0,0,1) over T, M given by

_ _ vVf\ Vf.
Wl = €9 <€2a |Vf|) |Vf"
_ _ vi\ Vf
Wo = es—(es [ 2h) oo

Let W = {Wy,Wa} be the collection of 2 wvector fields defined by Wy = |Vf|>?W; and
Wa = |V |2 Wa, that is,

Wy = (_famf;vzv 121 +fz237_fivzfﬂas);

Wy = (_fx1f$37_f$2f$3’fx21+f;c22)'
In this case, W1 and Wy are gradients vector fields, that is, W is a collection of 2 gradient
vector fields. It is not difficult to see that rank(Wiy(x), Wa(x)) is either equal to 2 or equal
to 1, and the singular set of W is SY(W) = {x € M | fi,(x) = 0}. Let x € SY(W) be a
singular point of W, then the space (Wi(xz), Wa(x)) is spanned by the vector (0, frs,—fzs),
such that Ao(W) = {x € M | fo, () =0, fo,2,(x) = 0}. Therefore, W = {W1,Wa} is a Morin
collection of 2 vector fields if and only if rank(V f(z), V fx, (z)) = 2 on the singular set L1(W)
and det(Vf(2),V fu, (2), V fa12, (2)) # 0 on A2(W).

Example 2.33. Let us apply Example 2.32 to the collection of vector fields W = {Wy, Ws}
defined on the torus T := f~1(R?) of Example 2.31. In this situation, one can verify that X' (W)
is the same singular set as L1(V') in the Example 2.31. Moreover, rank(V f(z),V fz, (z)) = 2
for every x € LY (W). However, since fi, s, (z) =2 for every x € SY(W), W does not admits
singular points of type Ao. That is, W is Morin collection of 2 vector fields on T which admits
only Morin singularities of type A;.

Example 2.34. Let us consider the collections V = {V1,Va} and W = {W1,Ws} from Examples
2.80 and 2.32 defined on the unit sphere M := f~'(1), where f(x1,79,23) = 23 + 23 + x35. We
know that the singular sets of V and W are the same, that is, (V) = LY (W) = {x € M |z, = 0}
and rank(V f(z),V fe, (z)) = 2 for all singular point x. However, Ao(x) = 0,Vz € X1 (V), such
that VAy = 0. On the other hand, fq ., (x) #0,Yx € SY(W), such that Ay(W) = @. Therefore,
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V' is not a Morin collection and W is a Morin collection that admits only Morin singularities of
type A;.

Example 2.35. In the Evample 2.3}, if we consider f(x1,T2,73) = 23 — 2109 + x% then one
can verify that V. and W are both Morin collections of 2 wvector fields that admits only Morin
singularities of type Ai. Let us consider the case where V of Example 2.30 is defined on
M = f71(-1) and f(z1,79,23) = 23 — 1179 + 3. It is easy to see that -1 is a regular value
of f and XY (V) ={x e M|21; — 15 = 0}. That is,

SYV) = {(z1, 20, 23) € R® |23 — 2129 + 23 + 1 = 0; 22, — 25 = 0}
and rank(V f(z),V fz, (z)) is equal to

rank (2x12— z2) __xll 233
which is 2, for all x € M n XY (V). Moreover, Aq(x) =223 and

As(V) = {(z1, 0, 23) e R®|2? — 1m0 + 22 +1=0;22) — 29 = 0;23 = 0}
which is the set given by the points (1,2,0) and (-1,-2,0). We also have that

det(Vf(2),V fz, (), VAs(2))

is equal to
(233‘1 - .IQ) -1 2.233
det 2 -1 0 =4xq
0 0 2

which is equal to +4 for each x € Ay(V'). That is, rank(V f(x),V fz, (x), VA2(z)) = 3, for all
x e M nAy(V). Therefore, the collection V = {V1,Va} given by

‘/1(‘:6) = (I1,2$1—I2,0);

Va(z) = (-223,0,2z1 —23).

is a Morin collection of 2 vector fields defined on M which admits singular points of type A1 and
As.

3. ZEROS OF A GENERIC ONE-FORM &() ASSOCIATED TO A MORIN COLLECTION OF
ONE-FORMS

Let a = (ay,...,a,) € R" ~ {0} and let w = {w;}1<i<n, be a Morin collection of n smooth one-
forms defined on an m-dimensional manifold M. In this section, we will consider the one-form

£(z) = Y a;wi(x) defined on M and we will prove some properties of the zeros of ¢ and its

i=1
restrictions to the singular sets of w. We will consider the notation (@(z)) = (w1(x),...,w,(2)).

Lemma 3.1. If p is a zero of the one-form ¢ then p e X (w) and p is a zero of §|El(w).

Proof. Suppose that £(p) = 0. So rank(wi(p),...,wn(p)) < n -1, since a # 0. However, the

collection w is non-degenerate, thus rank(ws (p), . .., wn(p)) = n-1. That is, p € ©!(w). Moreover,

&(p) = 0 implies that T,M c ker(£{(p)) and since T, (w) c T, M, we conclude that p is a zero

of f|21 =0. (]
@

Lemma 3.2. If pe Apy1(w), then for each k=0,...,n—2, p is a zero of QEIM( ) if and only if

p is a zero 0f§|2k( .
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Proof. Suppose that p € Ap,1(w) and that, locally, we have:
UNSF(W) ={zel|Fi(x)=...= Fppni1(z) =Ag(x) =... = Ag(x) = 0};
UNSEFY W) ={zeld|Fi(x)=...= Fppni1(2) = Do(z) = ... = Ay (2) = 0};
for an open neighborhood U of p in M. 1If p is a zero of the restriction §|Ek(w) then
&(p) € NyEM(w) = (dF1(p), . .., dFpm ns1(p),dAs(p),. .., dA(p)). In particular, £(p) € Ny (w),
therefore p is a zero of §|Zk+1(w).
On the other hand, if p is a zero of ST then £(p) € N;Zk“(w) n{@(p)).
Since p € Ag+1(w), we have that p € X1 (w) \ Zgro(w), thus
dim({@(p)) N Ny 2 (w)) = k;
dim({(Q**1(p)) n Ny B (w)) = 0;
where QF*!(p) represents a smooth basis for a vector subspace complementary to
(@(p)) N N;EF(w) in (@(p)). Since dim(N; X (w)) =m-n+k, dim(Ny L (w)) =m-n+k+1
and N;Ek(w) c N;Ek“(w), we have

dim((@(p)) 1 N5 (@) = dim((@(p)) 0 Ny EH () = k.

Thus, (@(p)) N N;Ek(w) =(w(p))n N;Ek“(w). Therefore, £(p) € N;Ek(w), that is, p is a zero
of f|2k . O
@)

Lemma 3.3. If pe A, (w) then p is a zero of the restriction Elgn- ey

Proof. Analogously to Lemma 3.2, we consider local equations of X" (w):
UnS"(w)={zeld|Fi1(z)=...= Fpons1(z) =Ao(z) =... = A, (z) = 0},
with NX¥"(w) = (dFi(x),...,dFp_ni(x),dAs(2),...,dA(z)). Since Ap(w) = ™ (w), if
pe A,(w) then
dim({@(p)) n N;Z"’l(w)) =n-1.

Thus, (@(p)) ¢ Ny¥" ' (w) and consequently, £(p) € NyX" ' (w). Therefore, p is a zero of
O

\):n—l(w)'
Remark 3.4. If p e X} (w) then rank(wi(p),...,wn(p)) =n -1 and, writing w; = (w}
we can assume that

yee o wi™),
wi(z)  wy(x) o wpg(2)

(2) M(J:) = : : : +0,

Wil (@) wiTl(z) o wpTi(e)

for all x in an open neighborhood U of p in M. In particular, if p € U is a singular point of £
then a, # 0, otherwise, we would have ay = ... = an—1 = a, = 0. We will use this fact in next
results.

n .
Lemma 3.5. Let p € ¥ (w) such that M(p) # 0. Then £(p) = 0 if and only if Y a;w! (p) =0,

i=1
foreveryj=1,...,n-1.

Proof. Tt follows easily from the definition of ¥!(w) and &. O
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Lemma 3.6. Let Z(&) be the zero set of the one-form £. Then for almost every a € R™ {6},
Z(&)n¥?*(w) =@.

Proof. Let U be an open subset of M on which M(z) # 0 and
UNS (W) ={z el |F(z)=...= Fpnii(z) = Ay(z) =0},
with rank(dF;(z),...,dFy_ni1(2),dAs(z)) =m —n+2, for each z € ¥2(w) nU. Let us consider
F:UxR"~ {0} - R™" the mapping defined by
n n
F(x,a) = (Fi(x),..., Fhn+1(z), Ag(x), Z aiwil(x), e Z aiwf_l(x)).
i=1 i=1
By Lemma 3.5, if x € £!(w) then

n n .
Yawi(z) =0« Y aw!(z)=0,Vj=1,...,n-1.
=1 i=1

Thus, if (z,a) € F~1(0) we have that = € Z(¢) n £?(w). Furthermore, the Jacobian matrix of F
at a point (x,a) € F~1(0):

[ dFl(x) -
B (2) T
dAs(x)
: wi(m) wé_l(;p) wé(x)
: Pt (z) e witi (@) wpi(e)

has rank m + 1. That is, 0 is regular value of F and F~*(0) is a submanifold of dimension
n—1. Let 7: F~'(0) = R" « {0} be the projection over R \ {0} given by 7(z,a) = a, by Sard’s
Theorem, a is regular value of 7 for almost every a € R" \ {0}. Therefore, 77! (a) n F~*(0) = @
for almost every a € R™  {0}. However, 7' (a) n F71(0) = {(z,a) eU x {a} : x € Z(£) nT?(w)}.
Thus, Z(¢) n¥?(w) = & for almost every a € R™ \ {0}. O

Lemma 3.7. Let Z(QEMW)) be the zero set of the restriction of the one-form & to ¥ (w), with
k>1. Then for almost every a e R™ ~ {0}, Z(§|Zk( )) NYF*2(w) = @.

Proof. For each k=1,...,n -2, let U be an open subset of M on which

UNSF(w)={zcld|Fi(x)=...= Fpnwu(z) =0},
with rank(dF;(z),...,dEy _n.(x)) =m —n+k, for all z e n¥*(w) and
UNSF2 (W) ={zeU|Fi(z)=...= Fpnigso(z) =0},

with rank(dFy (z),...,dFpm_nikso(z)) =m —n+k+2, for all z e U n 2F*2(w).
By Szafraniec’s characterization (see [19, p. 196]) adapted to one-forms, z is a zero of the
restriction §|Ek( ) if and only if there exists (A1,..., Am_nsk) € R™™** such that

m-n+k

§(x) = Z; AjdE; ().
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Let us write £(x) = (&1(x), ..., &m(2)), where &(x) = iaiwf(x), s=1,...,m, we define
i=1

m-n+k a
Ny(x,a,) =& (x) - Z Aj
j=1

L

axs ((E),

such that §|Zk(u)(x) =0 if and ounly if Ny(x,a,A) =0, forall s=1,...,m.
Let F:U x R™\ {0} x Rm-n*k  R2m-n+k+2 he the mapping defined by

F(xaav)\) = (Fla'"7F77L—n+k+27N17'"7Nm)7

if (z,a,)\) € F~*(0) then z € Z(§)) 0 ¥**2(w) and the Jacobian matrix of F at (z,a,\):

dF1 (.’E)
O(m—n+k+2)x(m+k)
dFm—n+k+2 (.73)
dy Ny (2,0, \)

: Ban me(m—n+k)

| 4N, (2,0, 0)

has rank 2m-n+k+1, where O(p,—n4k+2)x(m+k) 18 @ null matrix, By,x, is a matrix whose columns
vectors are given by the coefficients of the one-forms wq(z),...,w,(x) of the collection w:

()~ w(a)

and C,x(m-n+k) 18 the matrix whose columns vectors are, up to sign, the coefficients of the
derivatives dFy,...,dF,,_,+r With respect to x:

wi(z) - wy(x)
B'mxn: : N

8F1 aFm—nJrk
o5, (z) o5, (z)
me(m—n+k) =
_OR” (z) - _M(x)
0xTm 0xm

Notice that, if (z,a,\) € F71(0) then z € ©**!(w) and, by Lemma 2.21,
dim({@(x)) n N} 2% (w)) = k.
Thus, dim({@(x)) + N¥*(w)) = m - 1. Therefore,
rank[ Bixn me(m—n+k) ] =m-1

and the Jacobian matrix of F at (z,a,\) has rank 2m—n+k+1. That is, F~'(0) has dimension
less or equal to n — 1. Let m : F71(0) - R™ ~ {0} be the projection over R™ \ {0}, that is,
7(z,a,\) = a. By Sard’s Theorem, a is regular value of 7 for almost every a € R*~{0}. Therefore,
7 (a) n F71(0) = @ for almost every a € R™ \ {0}. However,

7 (a) N F7H(0) = {(z,a,\) e U x {a} x R™""*F |z € Z(sz(w)) n2F2 (W)},

Thus, Z(§_, )N ¥#+2(w) = @ for almost every a € R \ {0}. O

k(w)
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4. NON-DEGENERATE ZEROS OF A GENERIC ONE-FORM £(2) ASSOCIATED TO A MORIN
COLLECTION OF ONE-FORMS

In this section we will verify that, generically, the one-form £(x) and its restrictions §|Zk( .
§ A admit only non-degenerate zeros. Furthermore, we will see how these non-degenerate
zeros can be related. Then, we end the paper with our main result (Theorem 4.13).

We start with some technical lemmas.

Lemma 4.1. Let A be a square matriz of order m given by:

a1 A1m
A _ a.21 e az'm
Gm1 o Omm

If there exist (A1,..., Am) € R™ N {0} such that Z Ajai;=0,i=1,...,m, then
j=1

Ajcof(ak) — Apcof(a;;) =0, Vi, k=1,...,m.

Lemma 4.2. Let us consider the matrix

wi(@) - wpg(z)  wh(x)
M;(x) =
Wit () - wnti(e) wp N (w)
| wi(z) - wi(2)  wn(2) |

If x is a zero of £ then for € {1,...,.n—1}, je{l,...,n-1,i} and i€ {n,...,m}, we have
an cof(wZ,Mi) =aqy cof(wf“Mi).

Proof. This result is a consequence of Lemma 4.1 applied to the matrix A = M;(x), where
agj :wf(o:), forj=1,...,nand £=1,... ,n-1,4i. It is enough to take (A1,...,A\,) = (a1,...,a,).
O

Lemma 4.3. Let U c R™ be an open set and let H : U x R™ \ {6} - R™ be a smooth mapping
given by H(z,a) = (h1(z,a),...,hpn(x,a)). If
rank(dhy (z,a),...,dhy(z,a)) =m, ¥ (z,a) € H(0)
then rank(d hi(x,a),...,dghm(z,a)) =m for almost every a e R™ ~ {0}.
In the previous section we proved that every zero of & belongs to X! (w). Next, we will show

that, generically, such zeros belong to A;(w) and they are non-degenerate. To do that, we must
find explicit equations that define the manifolds 7* M™" ! and ¥!(w) locally.

Lemma 4.4. Let (p,p) e T*M™" L, it is possible to exhibit, explicitly, functions
m;(x,p) : U->R, i=n,...,m, defined on an open neighborhood u of (p,p) in T*M™, such
that, locally

T*M™" " ={(z,¢) eU | my =...=mpy, =0}

with rank (dmny,, . ..,dm,y,) =m-n+1, for all (z,0) e T*M™" ' nld.
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Proof. Let (p,$) e T*M™" 1 we may assume that

©1 Y3 < Py
m(yp) = 51 31 51 #0
O N 2 |

295

for (z,p) in an open neighborhood U of (p, @) in T*M™. In this situation, T*M™" ' can be

locally defined as

"Mt = {(m,gp) eU|m,=...=m,,-= O}7
where m; := m;(p) is the determinant
YT 93 P P
m; = - - ;o ol i=n,... m.
i) R R ot S
N B I
Let us verify that rank (dm,,...,dm,,) =m-n+1in (T*M™" ') nU.
For clearer notations, consider I = {1,...,n} and I; = {1,...,n—1,i} for each i € {n,...
Then
(3) dm;(p) = Y, cof(h, m;)dyt,

gel Lel,

where cof (<p§, m;) is the cofactor of cp? in the matrix

T S Rk
so’ffl soé‘l so:j:% en !
e " S R

and

¥ ¥ ¢ ¥ ¥ ¥
dgt= |0 0% Opy 0p  Opy O
TN 0l T 0T 09l BT 0L g

is the vector whose coordinate at the position (j - 1)m + £ is equal to 1 and all the others are

zero. In particular, since i € {n,...,m},

di = (0,...,0,0,...,1,...,0) € (R™)* x....x (R™)*

m-n+1 n times

and the m —n + 1 last coordinates of d<p§ are zero for all j #n or £ # . Moreover,

cof (¢!, m;) = m(p) #0, for i=n,...,m.
Thus,
A(my, ..., mpy) cof(gp?,mn) 0
aen,..om) 0 Cof((pil’mm) '
That is, for all (z,¢) € (T*M™" ') N, we have
. im0
novrPn 0 - 1

Therefore, rank(my,, ..., m,,) =m —-n +1 for all (z,p) € (T*M™" 1) nl.
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Lemma 4.5. Let p e X} (w) be a singular point of w, it is possible to exhibit, explicitly, functions
M;(z):U >R, i=mn,...,m, defined on an open neighborhood U of p in M, such that, locally

UNTHw)={zeld | M, (z)=...=M,,(z) =0}
with rank (dM,,(z),...,dM,,(z)) =m-n+1, for all x € 2 (w) nU.

Proof. Let w = {w; }1<i<n be a Morin collection of one-forms and let p € £!(w). By Remark 3.4,
we can consider U an open neighborhood of p in M, where M(z) # 0. Thus, in this neighborhood
the set ©!(w) can be defined as

UnS(w)={zeld | M, =...=M,, =0},
where M; := M, () is the determinant

wi(@)  wi(@) o wpa(z) w(@)
(5) M, (z) =
wi™(z) wii(z) o witi(z) wp(2)
wi(z)  wi(z) o wia(z)  wh(z)
fori=mn,...,m.

Let G(w) = {(z,w1(x),...,ws(z)) | * € M} be the graph of the collection w. For each
z € ¥ (w) nU, we have that G(w) h T*M™" ! at (x,w(z)). Then, the equations that define
G(w) and T* M™" ! locally are independent at (z,w(x)). By similar arguments to that used in
the proof of Lemma 4.4, it follows that the functions M,,(x),..., M,,(z) are independent at x,
that is, for all z € X' (w) nU, rank (dM,,(z), . ..,dM,,(z)) =m -n + 1. O

n

Lemma 4.6. For almost every a € R™ \ {0}, the one-form &(z) = Y aw;(x) admits only non-
i=1

degenerate zeros. Moreover, such zeros belong to A;(w).

Proof. Suppose that p € M is a zero of £&. Then, by Lemmas 3.1 and 3.6, for almost every
a € R"\ {0} we have that p e X' (w) \ ¥?(w), that is, p € A;(w). Assume that M(z) # 0 in an
open neighborhood U of p in M (see Remark 3.4) such that

UnSY(w)={z el :M,(z)=...= M, (z) =0}.
Let us write N
&(x) =) awi(z),s=1,....m
i=1
and let us consider the mapping F : U x R™ x {0} - R™ defined by
F(z,a) = (M, (z),...,M,,(x),& (2),...,&-1(x)).

Its Jacobian matrix at a point (z,a) is given by:

[ d,.M,,(z) : 1
d:cMm(x)
JaCF(;ma): ......... P e e e e e e
La@) W@ el el
| d6i(2) il (@) - il (@) Wil |
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Notice that, by Lemma 3.5, F~*(0) corresponds to the zeros of £ on ¥ (w) niU. Since M(z) # 0
and rank(dM,(z),...,dM,,(z)) = m -n+1 for all z € ¥1(w) nU, then rank(Jac F(z,a)) = m
for all (z,a) € F~1(0). Thus, dim F~1(0) = n.
Let m: F71(0) - R™ \ {0} be the projection 7(z,a) = a, by Sard’s Theorem, almost every
a e R™ ~ {0} is a regular value of 7 and dim(7~'(a) n F~*(0)) = 0. That is, for almost every a,
the zeros of ¢ are isolated in ¥!(w). Let us proof that, moreover, these zeros are non-degenerate.
Since rank(Jac F(x,a)) = m, for all (z,a) € F~1(0), then by Lemma 4.3 we have that

rank(den(p)a ooy g My, (p)v dz&1 (p)v (R dxfnfl(p)) =m,
which happens if and only if rank(B) = m, where B is the matrix

_ dw&n—l(p)
Pl and M, (p)
andsz(p)
whose row vectors we will denote by R;,i=1,...,m (by Remark 3.4, a,, #0).

Let us denote I ={1,...,n} and I; = {1,...,n—-1,i} for each i € {n,...,m}. By Equation (5),
we can write 4 4
dM;(z) = > cof(w)(z), M;)dw,(x)
lel jel;
and by Lemma 4.2,
dM;(p) = ), — cof(w(p), M;)dw;(p).
tel jeI; On
Thus,

ansz(p) z Gy COf(ng(p)aMl)dWZ(p)

lel,jel;

= Z cof (w? (p), M5) [Z azdwi (P)]

jel; Lel

= > cof (w) (), M;) [d.€;(p)]

jEIi
= cof (Wi (p), Mi) [do&i()] + 3 cof (W), (p), M) [du ().
jelin{i}
Notice that, cof(w! (p), M;) = M(p) # 0, for all i = n,...,m. Then, for each i = n,...,m, we
replace the i*" row R; of matrix B by
: S cof(wi (p), M)

—— | Ri — ) cof(w)(p), M;)R;

cof (wj, (p), M) j=1 ’
such that we obtain the matrix of maximal rank:

€ (p)

dwﬁnﬁ(p)
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Therefore, the zeros of £(x) are non-degenerate. O

Lemma 4.7. For almost every a € R™ \ {6}, the one-form §|Ak(w) admits only non-degenerate
zeros, k > 2.

Proof. Suppose that &, (p) = 0. By Proposition 2.23 (a) and Lemma 4.5, we can consider

U an open neighborhood of p in M where M(z) # 0 and on which the respective singular sets
(k=2,...,n) can be locally defined as

UnSF(w)={zeld :M,(z)=...= M, (z) = Ay(z) = ... = Ap(x) = 0},
with rank(dM,,, ...,dM,,,dAs,...,dAy) =m-n+k, Yz e 2F(w) nU.
Analogously to the proof of Lemma 3.7, by Szafraniec’s characterization (see [19, p. 196]),

x is a zero of the restriction §|Ek(w) if and only if there exists (An, ..., Am, B2, .., Bk) € RM*k
such that

m k

&(x) = Z AjdM(z) + Z BedAg(x).

j=n (=2

Let us consider the functions

N, (z,a,\, B) = &(z) - i | M

j

i 0x

and let G :U N {Ag1 = 0} x R™ ~ {0} x Rk o R2m-n+k 1o the mapping given by
G(x,a,)\,ﬁ) = (Mna"'vaaAQa'"7Ak7N1a"'7Nm)'

Analogously to the proof of Lemma 4.6, if (z,a,\, ) € G™1(0) then z € Ag(w) N Z(f‘zk(w)).
On the other hand, if z € Ay (w) then

dim((@(z)) n N2 (w)) =k -1

and dim({@(z)) N N3¥*¥(w)) = k - 1, such that dim({@(x)) + N;¥*(w)) = m. This implies that
the Jacobian matrix of G' has maximal rank at every (z,a,\, ) € G™'(0). Thus dim G*(0) = n.
Let 7 : G™1(0) - R" ~ {0} be the projection m(z,a,\,3) = a, then for almost every

a € R" \ {0}, dim(7~1(a) n G71(0)) = 0 and 7~ '(a) 4 G7*(0). Therefore, the zeros of S
U

are non-degenerate.

k
ORI Y

—2 Oz,

(), s=1,...,m,

Lemma 4.8. For almost every a € R™ ~ {0}, the one-form E‘Al(w) admits only non-degenerate
2€r08.

Proof. This proof follows analogously the proof of Lemma 4.7. O

By Lemma 3.2, if p € Ag1(w), then p is a zero of £|):k+l( ) if and only if p is a zero of §|zk( .
The next results state that this relation also holds for non-degenerate zeros.

Lemma 4.9. Let p e A;(w) be a zero of §|_,
only if p is a non-degenerate zero of €.

if and

then p is a non-degenerate zero of 5‘21( )

()’
Proof. Let p € A1(w) be a zero of the restriction 5‘21@) and let U be an open neighborhood of
pin M at which M(z) #0, Vo e and U n Xt (w) = {z et : M, (z) = ... = M,,,(z) = 0}. By
Szafraniec’s characterization ([19, p. 196]), 3/(An, ..., Am) € R™ ™! such that

§(p) + i AidM; (p) = 0.

=N
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Furthermore, p is a non-degenerate zero of §|21(w) if and only if the matrix

[ - 0M,, oM,, ]

L o (p) o5, (p)

Jac (§ + Z )\idMi) (p) :
o OM,, OM,,
Eza Pz
O)
d,M,,(p)
O(m—n+1)

d:M;,(p) |

is non-singular. Since £(p) = 0, then p € £ (w) N and Y7, \;}dM;(p) = 0. Thus,

and writing € = (£1,...,&n) we have that the Matrix (6) is non-singular if and only if the matrix

[ d.a) aa%(p) 8;;1 ;"(p)-
L) G 0) ()
(M
and; M, (p) :
O(m-n+1)
| and: M, (p) ¢ |

is non-singular (by Remark 3.4, a,, # 0). Moreover, by Equation (5) and Lemma 4.2, we can
write

andale(p) =anp Z COf(wi(p)le)dwﬁ(p)
lel jel;

= Z ap cof(LUfL(p), Mi)dwﬁ (p)
Lel jel;

= 3" cof(wi (p), M;) [Zazdwi (p)]

jel; el

=> cof (w! (p), M;) [d.&;(p)]-

jel;
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Let us denote the m first row vectors of Matrix (7) by L;,j =1,...,m, and let us denote the
m —n+ 1 last row vectors of Matrix (7) by R;,i=n,...,m:

oM, oM,
Lj = (dxé-](p)vax(p)av 6]) (p))7
J J

oM; oM, .
Ri = (anaixl(p),...,an%(p)ﬁ).
Then, replacing each row vector R;, i =n,...,m, by R; =Yy, cof (wi,, M;)L;, we obtain

oM,

; oM, :
R;=1|0,... 0,—Zcof(wfl,Mi) ,...,—zcof(wfl,Mi)i
—_——— jel; 81'] jel; aIJ
m times

and the Matrix (7) becomes:

— dzé‘? (p) a;f: (® - a;\;l ;" » |
®) da:§7;1, (p) %I;/f: (p) %lf: (p)
O(m-n+1)xm M{y-ns1)
where Mzm_ml) = —( 77-1”- )ngz, < 18 the matrix given by ‘
(9) mij = Zcof(wﬁ,Mi)%,i,j:n,...,m.

kel;
Next, we will verify that the matrix M’ is non-singular. Since p € A;(w), then
dim((@(p)) n Ny = (w)) =0

and dim((@(p)) ® N; X' (w)) = m. Since M(p) # 0, {w1(p),...,wn-1(p)} is a basis of the space
(0(p)) and, consequently, the matrix

wi(p) - wPlp) W) - wi(p)
o W) W) W) o W)
‘%@) —Sj“ ) %lf ) %ﬂj@)
_a;fj@) gi‘fj@) 8;‘fj(p> ?‘f—:@)_
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has maximal rank. Let us denote the row vectors of Matrix (10) by L},j =1,...,m. Then, for

j=1,...,n~1, we replace L) by
n—1 . n-1 . n-1 .

(11) > cof (wi, M)Lj, = (Z cof (wi, M)wy, ..., Y. Cof(w;,M)wL”).
k=1 k=1 k=1

It is not difficult to verify that

n-1 ) M, l= 73
3 cof(w], M)wg =1 0 4 (=1,...,n-1and ¢+ j;
k=1 —cof(w),,My), L=mn,...,m.
Thus, Matrix (10) becomes
[ M - 0 i —cof(wl,M,) - —cof(wl, M) ]
6 M —cof(wﬁ"l7 M,) - —Cof(w,’;‘.’l, M,,)
(12) oM, oM, oM, oM,
Oxq 0xp_y oz, 0T,
oM,,  OM,, oM, ' OM,,
| 8(51 8xn_1 ’ al‘p 8£Cm )

that still has maximal rank. Now, let us denote the first n -1 row vectors of Matrix (12) by L7,

for j=1,...,n—1, and let us consider the following expression for j =n,...,m,
ML/ - nf OM; 1
’ =1 Owg
(M OM; OM;  OM;
N dz1 T Oxp1 Oxn Oxm
™ . M, =1 oM, n-1 9M .
+ 7Ma J . ..,-M OM; , Z OM; cof(wfb,Mn),..., Z OM; cof(wZ,Mm)
ox1 0Tn-1 fy Ok i1 Oz
n-1 9M ™M . n=1 9M. . ™ ;
:(o,...,o, > oM, cof(wii,Mn)JrMa SRS oM, cof(wg,Mm)JrMa J).
i1 Oz Oxn i1 Oz OTm
Notice that M = cof (w!,, M), for i =n,...,m. Then the expression
=l OM
13 ML/ - Ly
( ) J ];1 axk k

is equal to

(O,...,O, > E?an cof (Wk, M), ..., > oM, cof(wfl,Mm)).

kel, 9%k kel, 9Tk
Thus, by Equation (9), we obtain

nl oM,
;- 5 OV

2 B Ly =(0,...,0,mp .. Mp;)-
=1
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In this way, we replace the row L} in Matrix (12) by (13) for j = n,...,m, and the matrix
obtained

(M - 0 i -cof(w),M,) —cof(wl, M,,) ]
0 - M:-cof(wM,) - —cof(w? ! M,,)
O(n—l) : (—M/)t

also is non-singular. Then, since M # 0, we have that det M’ # 0. Thus, we can conclude that
Matrix (7) is non-singular if and only if Matrix (8) is non-singular, which occurs if and only if

dxgl (p)
det : +0.
dz&m (p)
In other words, p will be a non-degenerate zero of §|Zl(w) if and only if p is a non-degenerate zero
of &. O

Lemma 4.10. Let p € Ag1(w) be a zero of §|Ek+l( . Then, for almost every a € R™ ~ {0}, p is
a non-degenerate zero of E‘Zkﬂ( ) if and only if p is a non-degenerate zero of E‘Ek( .

Proof. Let p € Apy1(w) be a zero of QZRHW and let U be an open neighborhood of p in
M at which M(x) # 0, Vo € U and the singular sets ¥¥(w) (k = 2,...,n) are defined by
UnSFw) ={z el :M,(z) =... = Mp(x) = Ag(z) = ... = Ap(z) = 0}. By Szafraniec’s
characterization ([19, p. 196]), p is a zero of the restriction §yier,, I and only if there exists a
unique ()\na B '7)"”“62’ s 7/Bk+1) € Rm—n+k+1 such that

m k+1
(15) £0) + 3 MM () + Y Bd(p) 0.

Since p is a zero of §|Z ke WO have Bgx+1 = 0. Moreover, also by Szafraniec’s characterization, for
=k k+1, pis a non-degenerate zero of §|E twy if and only if the determinant of the following
matrix does not vanish at p:

COM,  OM, 9Ms  OA, T
T Oz Ox1 Oz1 Ox1

m k
Jacy (g + > NdM + Y /3jdAj) :

i=n =2
 OMy M 9Ax 94
’ OTm 0T OTm Oxm
(16) Jo = P
d:My, :
dzMm :
dz Do : O(m-n+0)
dely

Thus, to prove the lemma it is enough to show that the Matrix Jg,1 is non-singular at p if and
only if the Matrix Ji is non-singular at p.
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Notice that the Jacobian matrix with respect to x

(17) Jac, (§+Z/\dM +Zﬂ]dA )

Jj=2
is a submatrix of both Matrices Ji,1 and Ji, and recall that, for = in an open neighborhood
of p, Agy1 = det(dMy,, ..., dM,,,dAq, ..., dA, Q1 ..., Qp_k), where {Q1(z),...,Qp-r(x)} is a
basis of a vector subspace complementary to (@(z))n N:¥* 1 (w) in (@(z)). That is,
(@(@)) = (Q(2), ..., k(@) @ ([@(2)) 0 N7EF ().

Since, for almost every a, €., (p) # 0 then £(p) € (@(p)) » N; ¥ (w) and there exists

(oo i) € R {0} such that £5) = 3 () + 9(p), for some () & N3SE1(w),
i=1
where p(p) = Z XidM;(p) + kzlﬁjdA i(p). Then, equation (15) can be written as:
nikn m " B k-1 -
(18) ; 1iSi(p) + l; (Ai + Ai)dM;(p) + JZ; (Bj + B;)dA;(p) + BrdAx(p) = 0.
Let us consider the mapping
H(z) = Z 1% () + Z (N + X)dM;(z) + jz: (Bj +B;)dA; () + BrdA(x),

defined on U. The Jacobian matrix of H(x) is given by:

oM, 0A
S w0l 3 e A Yo ot + 2 (8 +5J)dz + Brdo gt
=1 i=n
(19)
A,
S i+ 0 O X 2 Z (55 + B)da o
i=1 i=n a Tm j=2 Ox Tm

To apply Lemma 4.1, fix the notation: A4;(z) = (a1;(z),..., ami(as))7 where

) Qu(x),  i=1,...,n-k;
Ai(2) '_{dMi(x), i=n,...,m;

An—k-%—j—l(x) = dAJ(x)7 .] = 27 e 7ka

) M i1=1,...,n—k; (we can suppose ay % 0, since £(p) # p(p))
@i = N+ X)), i=mn,...,m;

Ap—k+j-1 = (/8] +ﬁ~j)a j: 27 .. '7k; (Bk = O)

In this way, equation (18) can be written as »_ a;4;(p) = 0 which implies that
i=1

> @iaji(p)=0,¥j=1,....m
=1

We also have that

Ak+1 = det (An> . ')Am7An—k+1a . '7An—17A17 . 'aATL—k)
= (—1)5 det (Al, .. 714»,,1)
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where ¢ is either equal to zero or equal to 1, depending on the number of required permutations
between the columns of the matrix A to obtain Ag,1. Thus, by Lemma 4.1,

m

al(—l)EdAk+1 oz1:¢0 (&3] Z cof(aij)daij

ij=1

( aq cof (as1)dagy + Z aj cof(azl)daw)

MS

(20) =1
= Z cof(aﬂ) [Z ozjdaij]
i=1 j=1
= Z cof(ail)[,i
i=1
where £;,i = 1,...,m, denote the rows of the Jacobian matrix (19) at p. If we denote by
L;,i=1,...,m, the row vectors of Jacobian matrix (17) at p, then we can verify that
(21) Y ocof(an)Li=). cof(ai1) L
i=1 i=1
Let us denote the first m row vectors of Matrix Jy41 in (16) by L;,i =1,...,m, and its last

row vector by La,.,. By equations (20) at p and (21), if we replace La,,, by

m
(22) (—1)8041LA]H1 — ZCOf(ail)Li7
i=1
we obtain
. oM, OM;, 0As 0A . 8Ak+1 1
" 0zt Ox1 Ox1 Ox1 =~ Oz
Jac (f + Z )\isz‘ + Z BJdAJ)
i=n j=2
. OM,, OM,, 9As O0AE . OAp+q
" Ozm O0xm Oxm  Orm ~ OTm
(23) dz My, : : 0
deMpm : :0
deAg O(m—n+k) 0
0 : 0 P

Let us show that 411 (p) # 0. We have

0A
Vhe1 = —Zcof an) 5 ad

= —det(dAk+1,A2, .. ,Am)

= —det(dAps1, o, ., Vg, dAs, ... dA, dM,,, ..., dM,,).

Suppose that 541 = 0. Since each one of the sets {Q2(p),...,Qn-r(p)} and
{dAk+1(p)7 dAQ(p)a ceey dAk(p)v dMn(p)v sy de(p)}
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consist of linearly independent vectors, there exists j € {2,...,n—k} such that Q;(p) € N;Zk*l(w).
Suppose that j =n —k, that is,
Qni(p) € NIEF (W) = (dM,,,...,dM,,dAs, ..., dAy, dAg).

Since §|_, ., (p) = 0, we have {(p) € N;Zk”(w). Then,

n—k m k-1
=1

i=n j=2
eNER (w)
n—k-1 n-k el
= Z NzQz = Z ,UzQz —,un,kﬂn,k € N;E * (w)
i=1 i=1

n—-k-1
Thus, Z ;€2 and piy,— 182, are linearly independent vectors in the vector subspace
i=1

(.., Quok) N NFEM (W),
which implies that
dim ((Ql(p)7 e Qi (p)) 0 N;Z’”l(w)) > 2,
Consequently, since (@) = (Q1,...,Qp-k) ® ((w) N N;Zk‘l(w)) we have that
dim ((@(p)) "N E* (w)) 22+ (k-1) =k +1,

which means that p € ¥¥*2(w). But this contradicts the hypothesis that p € Ay, 1(w), since as
we know YF*2(w) = ¥+ (w) \ Apyq (w). Therefore v, (p) # 0, and we conclude that the Matrix
Jk+1 is non-singular at p if and only if the Matrix (23) is non-singular at p, which occurs if and
only if the Matrix Jj is non-singular at the point p.

O

Lemma 4.11. For almost every a € R™ ~ {0}, if p € A,(w) then p is a non-degenerate zero of

f\zn—l(u)'

Proof. We know that if p € A, (w) then §|En71(w)(p) = 0. By Szafraniec’s characterization |20,

p.149-151], p is a non-degenerate zero of 9 ) if and only if the following conditions hold:

n-1(y

(i) A(p) =det(dM,, ...,dM,,,dAs, ...,dA,_1,€)(p) = 0;

(1) det(dM,,...,dM,.,dAs, ..., dAn1,dA)(p) #0.
Condition (i) is clearly satisfied, since §|_
holds.

For each z € ¥""!(w) in an open neighborhood U of p in M, let {Q’(z)} be a smooth basis

for a vector subspace complementary to (@(x)) N NX""2(w) in the vector space (@(z)). Since
&(x) € (w(x)), we have

(p) = 0. Let us verify that condition (i¢) also

n=1(y)

§(x) = M@)9¥ (2) + ¢(2),
where A\(z) € R and ¢(z) € (@(z)) n N3 ¥ 2(w), Vo e n "1 (w).
In particular, if z € A, (w), we know that, for almost every a € R™ \ {0}, §lpn-zcn) (z) # 0 and,
consequently, &(z) ¢ N3 2(w). Thus A(p) # 0. For all z €4 n ¥"(w), we obtain
A(z) = det(dM,,, ..., dM,,,dAs, ..., dA,_1, Q" + ¢)(x)
= A(z)det(dM,, ...,dM,,,dDs, ..., dA,_1, ) (z)
= Ma)An(2),
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with A, (p) =0 and A(p) # 0. Then, we have
(dMﬂ(p)’ R de(p)v dA?(p)’ R dA"—l(p)v dA(p))
= (dMn(p)v ceey de(p)a dAQ(p)v [REN] dAnfl(p)vd(AAn)(p»

(see Lemma A.1). However, d(AA,)(x) = dA(z)A, () + M(z)dA,(x), An(p) =0 and A(p) #0.
Thus,

(dML,(p), ..., dMy(p), dAs(p), ..., dAn 1 (p), dA(p))

= (dMn(p)7 s ?de(p)adA2(p)7 s 7dAn—l(p)7 dAn(p)>
Therefore, det(dM,,(p), ..., dM, (p), dAs(p),...,dAn_1(p),dA(p)) 0. O

Lemma 4.12. For almost every a € R™ {f)}, the one-form f‘zk( ) admits only non-degenerate
zeros, k> 1.

Proof. Suppose that §|Zk(w) (p) = 0. Then, for almost every a € R™ \ {0}, p € Ap(w) U Ag1(w)
since Z(§|Zk(w)) N YF*2(w) = @ by Lemma 3.7 and ¥ (w) = A (w) U Agsr (w) U TF2(w).

If p e Ag(w) then §‘Ak(w)(p) = 0. Since §|Ak(w) admits only non-degenerate zeros and
Ap(w) c ZF(w) is an open subset, we conclude that p is a non-degenerate zero of £|Ek(w).

If pe Agy1(w) and k <n—1 then E‘E,m(w) (p) = 0. In particular, since Ag,1(w) c T (w) is an
open subset then §|Ak+1(w)(p) =0. By Lemmas 4.8 and 4.7, §|Ak+1(w) admits only non-degenerate

zeros, and since Ay, (w) is an open set of X¥*1(w), we conclude that p is a non-degenerate zero
of QEkH( - Therefore, by Lemma 4.10, p is non-degenerate zero of §|Ek( - Finally, if pe A, (w),
by Lemma 4.11, p is a non-degenerate zero of §|Zn71(w).

O

Theorem 4.13. Let w = {w;}1<i<n be a Morin collection of smooth one-forms defined on an
m-dimensional compact manifold M. Then,

X(M) = kix(Ak(w)) mod 2.

Proof. Let us denote by Z () the set of zeros of a one-form ¢ and let us denote by #Z () the
number of elements of this set, whenever Z(¢) is finite. Let

am=i%wu>

be a one-form with a = (a1,...,a,) € R" \ {0} satisfying the generic conditions of the previous
lemmas of Sections 3 and 4.

Since M is compact and the submanifolds ¥*(w) are closed in M, by the Poincaré-Hopf
Theorem for one-forms we obtain

o X(M) = #2(€) mod 2
o Y(Ap(w)) = x(BF(w)) = #Z(f‘zk(w)) mod 2, for k=1,...,n-1;

d X(A'ﬂ(w)) = X(Zn(w)) = #Z(glzn(w)) mOd 2'
By Lemma 3.1, if p € Z(¢) then p € ¥'(w) and §|21(w)(p) = 0. Moreover, by Lemma 3.6,
Z(¢)n¥?(w) =@. Thus pe A;(w). On the other hand, Lemma 3.2 shows that if
pE Z(Slzl(w)) n Al(w),
then p is also a zero of the one-form £. Thus,

#Z(8) =#Z(§),,

" Ai(w)) mod 2.
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By Lemma 3.7, if p € Z(§|Z
k=1,...,n-1, we have
#2 (&g )) = #Z( g, N ARW)) + #Z(, ) N Arsa(w)) mod 2.

By Lemma 3.2, we also have

#2 (&g, N AR (W) = #2(§ i ) N Ake1 (W)

) then p ¢ ¥**2(w). Thus, p € Ap(w) U Apy1(w) and, for

k(w)

and by Lemma 3.3,
$A,(@) = #2(E,, L, 0 An(@)).
Then,
o X(M)=#2(g,, N Ai(w)) mod2;
e Fork=1,...,n-1,
X(Ar(W)) = #2(&, ) N AR(W)) + #Z(E 4, 0 Ak (W) mod 2;

o XA (@) = #2800, 0 An()).

Therefore,

XA+ SAR@) = 22, 0 0)

o BBL(,, N Aw)) ..
+ 2#Z2(§, N An-1(w))

o 22, N An(w)) mod2
= 0 mod 2.

O

As for the definition of Morin collection of n one-forms, the results presented in Sections 3
and 4 of this paper also can be naturally adapted to the context of collections of n vector fields.
In particular, the main theorems that have been used, as the Poincaré-Hopf Theorem and the
Szafraniec’s characterizations, have their respective versions for vector fields.

Finally, we end the paper with a very simple example. Let us verify that Theorem 4.13
indeed holds for the Morin collection of 2 vector fields V' = {V;,V5} presented in the Example
2.31. To do that, it is enough to see that the torus T is a compact manifold with x(7T) = 0.
Moreover, A;(V) =X (V) is given by two circles in R® and A5(V') consists of four points, such
that x(A1(V)) =0 and x(A2(V)) = 4. Therefore,

X(T) = x(A1(V)) + x(A2(V)) mod 2.
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APPENDIX
A. PROOF OF PREPOSITION 2.23

Proof of Proposition 2.23, part (a). Firstly, let us show that if z € U n X*1(w) such that
OF1(z) e N M", then the following conditions are equivalent:

(D) rank (dFy(Z),...,dFpnm-r(Z),dAL(Z)) =m -1+ 1,
(1) Q1§ Ny M7 in TZ, M7 at 7.

Let Q*1(Z) e x V. By the proof of Lemma 2.17, Ng-i M" can be locally given by indepen-
dent equations as follows

N&oaM" = {(z,9) eUxV | Fi=...= Fp_p = A=0},
where A(z, ) = det(dFy(x),...,dFn_(x),01,...,p:)and ¥V c R™" is an open set. Let
G = {(z,n(2),..., %)) | zreUn " (W)}

be the restriction of the graph of (;(z),...,2.(z)) to U N T* 1 (w), G(Q*1) can be locally
given by
G(QF1) = {(33,‘4,0) eT"M" | Fi(z)=...= Fp_r(2) =0;
Q(z)-¢l=0,i=1,...,rand j=1,...,m},
where T*M" denotes the r-cotangent bundle of M, Q;(z) = (Q}(z),...,Q"(z)) and
wi=(pt,..., ™) for i =1,...,r. In particular, the local equations of G(Q2*7!) are clearly inde-
pendent and dim G(Q*1) = r. Let (,¢) be local coordinates in T*M", with = (z1,...,%m)
and
(p: (@%7"'7()0?"780%7"'7@?7"'7@}‘7"'7@?‘”)7

let us consider the derivatives of the local equations of Ng,_, M" and G(2%71) with respect to
(z,). We will denote the derivative with respect to x by d, and the derivative with respect to
¢ by d,, then we have

(24) d(Q(z) - 1) = (e (x) ,~dyl)

fori=1,...,rand j=1,...,m, where dwwg =(0,...,0,1,0,...,0) is the vector whose m(i—1)+;"
entry is equal to 1 and the others are zero. By Lagrange’s rules the determinant

Az, p) =det(dFy(x),...,dFpn—r(2), 01, .., 0r)
can be written as

Az, ) = Y Fr(z)Ni(¢)
T
for I ={iy,...,i,} c{1,...,m}, where
<p§1 <pf}
(25) Ni(p)=| = = %
G

is the minor obtained from the matrix
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taking the lines i4,...,1,, and
8F1 aFm—r
8xk1 (J") ° axkl (./E)
(26) Fr(z)=4% : :
8F1 aFm—r
rr (z) ... 7830#;,,”7,. (z)
dF,,—-(x)) removing the lines

is, up to sign, the minor obtained from the matrix (dFy(x)
km-r} ={1,...,m} \ I. Therefore,

ZI:NI((P)da:FI(m) 5 ZI:FI(J;)

M at the point x e U n £*"}(w) if and only if
S Q0 (x)).

i, that is, {k1,...,

dA(z,¢) = ( deN1(p) ).

i,

Notice that Q1 4 N3, M" in T3, ,
GO h Ny M™ in The M™ at (2,04 (x)

Let 71 be the projection of the cotangent space of T*M" over the cotangent space of

mi Ton (M) — TG o (The MT)
('(/)(J}) 3017"'5907‘) — (Tr(w(l‘)) ¢1a'-'7<)07’)

where 7 denotes the restriction to T, X% (w), that is, (¢ (z)) = (), 1wy By Equation (24)
m (R (2) = ¢])) = (7(da Q] (2)) , ~dypp])

m. We also have that

T M":

Nk-1

rand j=1,...,
1 (dA (2, 0)) = ( w(; Nz(w)szz(a?)) S EN() )

Q,(x)) such that

fori=1,...,

M" at (z,Q1(x),...,

Then G(Qk 1)r{1 Ek 1M ln T;k 1
(2, (z),..., 2% (x)) € Nt M"
if and only if the matrix
[ 7T(daEQ%(x)) ]
(. Q7 (2)) ~Ldr
(27) 7(d Q7 (2))
A(EN @) ¢ D FaNi)
| T T |

has maximal rank at z. By the expression of N;(¢) in (25), we have
(28) doNi(p) = Y cof (@] )dype],

2,J
fori=1,...,7, jel and cof(goz) denoting the cofactor of cpg in the matrix
gozf coph

ir i
301 e QOTT
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m!

Let d = Cppp = we will denote by I4,...,I; the subsets of {1,...,m} containing

ri(m-r)
exactly r elements. By equation (28),

d T . .
ZI:FI(w)dWNz(w) = ;Fu(fﬂ) (Z > cof(@i)dwsoi)

i=1jel,
and,
d r . .
Y Fn (@) Y Y cof(w])dyw)
£=1 i=1jel,
= Fr, (z) ( Z cof(cp{)dwgpg) +...+ Fr,(x) ( Z cof(cpg)dwgog)]
i=1 | jelp jelg
3|2 Ao )eottetriet eoo | 8 Fito)eotemiager
1=1 L \I:1el I:mel
=) Z( D Ff(x))cof(wf)dwfl-
i=1 [ j=1 \I:jel
Thus, fori=1,...,7and j=1,...,m, we can write
(29) > Fi(2)deNi(p) = Y. 8] (2, 9)dp e,
1 .
where

Bl (x,p) = ( > E(sv))cof(so{).

I:jel
We will denote the rows of the Matrix (27) by Rg = (ﬂ(deZ(az)) ,—dwgog), fori=1,...,r and
j=1,...,m, and we denote the last row of the Matrix (27) by Ra. Replacing the row Ra by

Ra+ Y6 (x, )R]
i

fori=1,...,7rand j=1,...,m, we obtain a new matrix
m(ds Q1 ()
: : —Idm,
(30) m(d. 0" (2))
R\ : R}

which has rank equal to the rank of the Matrix (27), where
; i\ (29) =
RX =) Fr(z)dyNi(p) + ), B8] (z,¢)(=dypy]) "= 0
I 4,J

and

Ry =m (ZI: Nl(sﬂ)szI(fC)) + 28] (2, 0)m (4,9 (2))

.7

=7 (; Ni(¢)doFr(x) + 3, B (x, cp)dxﬂg(x)) .

,J
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Notice that for each € U n 2*"1(w), we have QZ(a‘:) = ng In this case, Equation (29) implies
that

561,00 (@) = T 52,0 (2)d:0] () = T Fr(2)da N (27 2).
Thus, at z
R\=m (Z NI(Qk_l(;f))dxFI(i:) + ZFI(a‘c)deI(Qk_l(i:))) =1(dAk(Z))
I T

and the Matrix (30) is equal to

(d, QL (7))
_Idmr
T(dd(z) P 0

Thus, for each z € U n ¥~ (w) such that Q" (z) e Ny, M", QF 1 NS M™ in T, , M" at &
if and only if 7(dAx(Z)) # 0, that is, the restriction of dAg(Z) to TxX* ! (w) is not zero, which
means that dAg(Z) ¢ (dF1(Z),...,dF,—.(T)), or equivalently

rank (dFy(Z),...,dF—(Z),dAk(Z)) =m —-r+ 1.

Now suppose that w satisfies the condition I_; on U. By property (b) of Definition 2.18,
we have that dim(Q;(z),...,Q.(z)) n N¥*1(w) is either equal to 0 or equal to 1 for each
el n XN (w). If dim(Qy (z),...,2.(2)) n N XY (w) = 1, then z e n X*(w) and Ay (z) = 0.
In this case, the transversality given by property (a) of Definition 2.18 implies that

rank (dFy(2),...,dFp—(z),dAk(z)) =m-r+ 1.

On the other hand, we assume that properties (i) and (i) hold for each z e Y n ¥*"}(w). By
property (¢), the property (b) of Definition 2.18 holds on U. If

dim(Q; (z),...,Q.(z)) n N2 (w) =0,

then Q*~1(z) does not intersect N, _, M", thus QF1 4 N M™ in T

Sk-1 Zk_lMT at x. If

dim(Q (z),..., Q- (2)) n NI 2N (w) =1,

then z € U N X*(w) by Definition 2.19 and rank (dFy(x),...,dFy,_.(z),dAx(z)) =m-r+1 by
property (#i). Thus QF-1 ) N;,HMT in Tgk_lMT at x and w satisfies the condition I;,_; on Y.
By the previous arguments and Definition 2.19, if w satisfies the condition I;_; on U then

UnSF(w)={zeld | Fi(z)=...= F,_.(z) = Ap(x) = 0}. O
The following technical lemma will be used in the proof of Proposition 2.23, part (b).

Lemma A.1. Let f; : Vc R - R,i=1,...,s be smooth functions defined on an open subset
of RY. Let M c RY be a manifold locally given by M = {x e V | fi(z) = ... = fs(x) = 0}, with
rank(dfy (z),...,dfs(x)) = s, for allz e MnV. If g,h:V c R" > R are smooth functions such
that g(x) = M(x)h(x), for all x € M NV and some smooth function X:V — R, then:

(1) If M(x) #0 and x € M then g(x) =0 < h(x) =0.

(1) If M(z) #0, x € M and h(zx) =0 then

<df1(x)7 s ,dfs(x),dg(x)) = <df1($), . 7dfs(x)7dh(x))
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Proof of Proposition 2.23, part (b). Firstly, notice that the definition of X! (w) does not depend
on the choice of any basis. Then assume that the definition of ¥?(w) does not depend on the
choice of the basis {Q(x),...,Q—i+1(x)} for every i =2,..., k- 1. As considered in part (a),
for each p € £*71(w), there is an open neighborhood U of p in M such that

UNSYw) ={zeld:Fi(x)=...= Fppn(z) =0},
UNSFYNw)={zeld:Fi(z)=...= Fppn(x) = Ao(x) = ... = A1 (2) = 0},
UNSF(w) ={zeld:Fi(z)=...= Fppnu(z) = As(x) =... = Ap(z) = 0},

with rank(dFy(z),...,dFm_ni1(x),dAs(x),...,dAr_1(2)) =m-n+k-1, for z e U n TF 1 (w)
and rank(dFy (z),...,dEpm_ni1(x),dAs(x),...,dAk(2)) = m-n+k, for x eU nXF(w). Let us
recall that

Ak(l‘) = det(dFl,. . .,dFm_n+1,dA2,. . -7dAk—1aQI; .. .,Qn_k+1)(.’1,‘),

where {Q(x),..., Q—k+1(2)} is a collection of n — k + 1 smooth one-forms defined on ¢ which
is a basis of a vector subspace complementary to (@(z)) n Ny¥*2(w) in (@(z)) for each
reld nXFH(w).

Let us consider {Q (x),... Qe k+1(m)} a collection of n—k+1 smooth one-forms defined on U
such that for each x e U n Zk 1(w) {1 (x),...,Q_ge1(x)} is another basis of a vector subspace
complementary to (@(x))n N ¥*2(w) in (w(m)) Then,

(@(2)) = ((0(2)) N N2 (W) @ (Qu(2), .., Qnopar (2))

and
dim((Q1(z),. .., Ynopr1(z)) " N2 (w))
is either equal to 0 or equal to 1, for x € u n X% 1(w). Moreover,
- n-k+1
M) = Y an(@)Q(z) +¢1(z)
=1
" n-k+1
Qo) = Y an(@)Q(2) +¢2(x)
=1
- n—-k+1
Qnps1 (@) = Y apnors) (@) (@) + onops1(x)
=1

where a;;(z) € R and p; () € (@(x))n N;SF2(w), for j =1,...,n—k+1. We will show that for
each z e nF1(w),
a1 (z) a12(7) a1 (n-ks1) ()
det(A(x)) = : : : #0.
An-k+1)1(T)  An-pr)2(T) A(nokar) (n-ke1) (T)
Suppose that the statement is false, that is, det(A(xz)) = 0. This means that the columns of

matrix A(x) are linearly dependent. So we can suppose without loss of generality that the first
column of A(z) can be written as a linear combination of the others columuns:

n—k+1
(0’11(1')7 ceey a(n—k+1)1(‘r)) = Z )‘S(a’ls(x)a ceey a(n—k+1)8(z))a
s=2

where A; € R, for s=2,...,n—k+ 1. Thus, removing z in the notation, we have
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B n—k+1 B n—k+1 (n—k+1
Q=Y anQ+p1 == ) ( > Asazs)Qzﬂm
=1 =1\ s=2

n—-k+1 n—-k+1
= Z >\s ( Z aZsQZ) + 1
s=2

(=1
then

>
»
fo
»
1]

~ n—-k+1 n—k+1 n—k+1 n—k+1 n—k+1
O - [ A ( > aeng) + gol:| - > ( > agsQe+ @s)
s=2

=1 s=2 =1

n—k+1

- Z AsPs-
s=2

This means that
n—k+1

Z AsQs € (@) n NZEP2(w)) n (.o, Qpgn) = {0},

that is, Qi (z),..., Q- k+1($) are linearly dependent. However, this contradicts the initial as-
sumption that {Ql(ac) -, ks1(2)} is a basis of a vector subspace for each z in U n ! (w).
Therefore, det(A(x)) # 0

Let tA(l’) be the transpose of matrix A(z). For each z € U n ¥*(w), we have
det(*A(z)) = det(A(x)) # 0 and, removing « in the notation,

det(dFl, ey dFm_n+1,dA2, ey dAk_l, Ql, . 7Qn—k+1)

n—k+1 n—k+1
(31> :det(dFl,...,dFm,nJrl,dAQ,...,dAk,l, Z aﬂﬂg,..., Z ag(n_k+1)ﬂg)
0=1 £=1
= det(tA) det(dFl, ceey dFm—nJrl, dAQ, ey dAkfh Ql, ey ank+1)~
Thus, for z €U n Zk Y(w) we have that dim({Qy(z),..., 0 rs1(z)) n NFEF1(w)) is equal to
dlm(( 1(2), . Qg1 (2)) N NFEF (W), In partlcular ifxeldn Zk(w) then Ag(z) =0 and

Ak(x) = det(dFﬁ7 e ,dF7n_n+1,dA2,. . ,dAk_l,Ql,. . -aQn—k+1) =0

such that, by statement (iz) of Lemma A.1,

(dFy (), ..., dFpm_pi1(x),dAs(z),. .. dAk 1 (x),dAg(x))
= (dFy(2),...,dFp_p1(2),dAs(x),. .., dAk_1(z),dA(2)),
which implies that
rank(dFy(z), ..., dFpm_na(x),dAo(x),. .., dA 1 (z),dAg(x))

is equal to m —n + k. Therefore, the condition I—1 and the definition of ¥*(w) do not depend
on the choice of the basis {Q(z),..., A k+1(x)}

Since Ay (w) = XF(w)\ F 1 (w) for k=1,...,n, we conclude that Ay(w) also does not depend
on the choice of the basis. O
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