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Abstract. Let M be a connected compact surface with boundary. A C∞ map M → R2

is admissible if it is non-singular on a neighborhood of the boundary. For a C∞ stable

map f : M → R2, denote by c(f) and n(f), i(f) the number of cusps and nodes, connected

components of the set of singular points respectively. In this paper, we introduce the notion of
admissibly homotopic among C∞ maps M → R2, and we will determine the minimal number

c+ n for each admissibly homotopy class.

1. Introduction

Let M be a connected compact surface with boundary ∂ and P a surface without boundary.
Denote by C∞(M,P ) the set of C∞ maps M → P equipped with the Whitney C∞ topology.
A C∞ map f : M → P is called a C∞ stable map, (or stable map for short), if there exists a
neighborhood N(f) ⊂ C∞(M,P ) of f such that every map g ∈ N(f) is C∞ right-left equivalent1

to f . A C∞ map f : M → P is stable if and only if f has fold, cusp and B2 as its singularities,
and f |(S(f)∪∂)\(C(f)∪B(f)) is an immersion with normal crossings, where C(f) and B(f) denote
the set of cusp points and B2 points of f respectively, see Proposition 2.2 for details.

Note that if a C∞ map f : M → P is stable, then f |∂ : ∂ → P is stable. Note also that a
B2 point is a fold point (or regular point) if we ignore the boundary (resp. we restrict f to
boundary).

A C∞ map f : M → P is called admissible if it is submersive on an open neighborhood of
the boundary. Note that a C∞ stable map f : M → P is admissible if and only if it has no B2

points.
For a C∞ stable map f : M → P , denote by c(f) and n(f), i(f) the numbers of cusps and

nodes, connected components of the set singular points of f respectively.
Denote by Mk a connected compact surface with exactly k boundary components. A con-

nected compact and orientable (or non-orientable) surface of genus g with exactly k boundary
components is denoted by Σg,k (resp. Ng,k). The 2-dimensional sphere and the plane are denoted
by S2 and R2 respectively.

For a C∞ map f : M → P , define the set of singular points of f as

S(f) = {p ∈M | rank dpf < 2}.
We call f(S(f)) the apparent contour (or contour for short) of f and denote it by γ(f). For
a closed surface M , the apparent contour of a stable map M → P (P = R2, S2) relates the
topology of M as classical result of Thom [11] and a formula obtained by Pignoni [9] show.
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1Two maps f , g ∈ C∞(M,P ) are C∞ right-left equivalent if there exist a diffeomorphism Φ: M → M

preserving the boundary and a diffeomorphism ψ : P → P such that f ◦ Φ = ψ ◦ g.
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Pignoni [9] introduced the notion of a minimal contour of a closed surface: The contour γ(f)
of a stable map f : M → R2 is called a minimal contour of M if the number c(f) + n(f) is the
smallest among stable maps g : M → R2 which satisfy i(g) = 1. Then, Demoto [2] introduced
the notion of a minimal contour of a C∞ map f0 : M → P between surfaces and studied that of
a C∞ map S2 → S2: Let f0 : M → P be a C∞ map and f : M → P a C∞ stable map which
is homotopic to f0 and satisfies i(f) = 1. Call γ(f) a minimal contour of f0 if the number
c(f) + n(f) is the smallest among C∞ stable maps g : M → P which are homotopic to f0 and
i(g) = 1. Then, Kamenosono and the author [7] studied minimal contours of C∞ maps M → S2

of closed surfaces M . Apparent contours of stable maps between surfaces were also studied
in [15, 16, 3, 17]. Studying minimal contours of C∞ maps make the very first step toward
classifying generic C∞ maps of surfaces up to right-left equivalence.

In this paper, we study minimal contour of C∞ maps of surfaces with boundary. More
precisely, for a surface M with boundary and a surface P without boundary, we introduce the
notion of admissibly homotopic which is an equivalence relation among admissible C∞ maps
M → P , and admissible minimal contour of an admissible C∞ map M → P . Then, we study
admissible minimal contours of admissible C∞ maps M1 → R2.

This paper is organized as follows. In §2, we prepare some notions and introduce the main-
theorems (Theorems 2.3 and 2.5). In §3, we prepare some notions concerning stable maps
f : Mk → R2 (k ≥ 1) and introduce the formula as an application of formulas obtained by
Pignoni [9] and Imai [6]. In §4, we construct admissible stable maps Σg,1 → R2 (g ≥ 0) and
Ng,1 → R2 (g ≥ 1) which are in the lists of Theorem 2.3 and 2.5 respectively. In §5, we show
the contours of stable maps constructed in § 4 are admissible minimal contours. In §6, we pose
a problem which concerns the apparent contours of stable fold maps f : Mk → R2, where a
stable map f : Mk → R2 of a surface with boundary is called fold map if it has no cups as its
singularities.

Throughout this paper, all surfaces are connected and smooth of class C∞, and all maps are
smooth of class C∞ unless stated otherwise. The symbols r and g ≥ 0 denote integers. For a
topological space X, idX denotes the identity map of X.

2. Main-Theorem

In this section, we introduce some notions and introduce the main-theorems (Theorems 2.3
and 2.5).

Let Mk be a compact and connected surface with exactly k boundary components ∂1∪· · ·∪∂k.
Then, admissible C∞ maps f0, f1 : Mk → R2 are said admissibly homotopic if there exists a C∞

map H : Mk × [0, 1]→ R2 such that Ht = H(·, t) : Mk → R2 is an admissible C∞ map for each
t ∈ [0, 1], and H0 = f0 and H1 = f1.

Let f : Mk → R2 be an admissible C∞ map. Then, for each component ∂j , orient the regular
curve f(∂j) ⊂ R2 so that at each point, the inner of f(Mk) is in the left hand side. Note that
the definition of the orientation for f(∂j) ⊂ R2 is well-defined by virtue of the assumption that
f is admissible. Then, call the rotation number of f(∂j) ⊂ R2 the boundary rotation number of
∂j (or rotaion number of ∂j for short) with respect to f and denote it by W (f ; ∂j). If k = 1,
then call the rotation number of f(∂) ⊂ R2 the boundary rotation number of f and denote it
by W (f). Furthermore, in the case that M = Σg and k = 1, define s(f) = +1 (or −1) if there
exists a neighborhood of N(∂) of ∂ such that f |N(∂) preserves (resp. reverses) the orientation of
N(∂).

Proposition 2.1. (1) Admissible stable maps f0, f1 : Σg,1 → R2 are admissibly homotopic
if and only if W (f0) = W (f1) and s(f0) = s(f1).
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(2) Admissible stable maps f0, f1 : Ng,1 → R2 are admissibly homotopic if and only if
W (f0) = W (f1).

Proof. (1) If f0 and f1 are admissibly homotopic, then s(f0) = s(f1) and regular curves f0(∂)
and f1(∂) are regularly homotopic. It implies that W (f0) = W (f1).

We consider the opposite direction. If W (f0) = W (f1), then regular curves f0(∂) and f1(∂)
with the canonical orientation are regularly homotopic. Thus, there exists a C∞ map

H ′ : ∂ × [0, 1]→ R2

so that H ′(·, 0) = f0|∂ and H ′(·, 1) = f1|∂ . Then, we can extend H ′ to a C∞ map

H ′′ : N(∂)× [0, 1]→ R2

on a neighborhood of ∂ so that H ′′|∂×[0,1] = H ′ and H ′′t = H ′′(·, t) : N(∂)→ R2 is a submersion
for any t ∈ [0, 1]. Note that if s(f0) = s(f1) = +1 (or s(f0) = s(f1) = −1), then H ′′t = H ′′(·, t)
is an immersion which preserves (resp. reverses) orientation of a neighborhood of ∂ for each
t ∈ [0, 1]. On the other hand, we decompose Σg,1 into a simplicial complex. We also decompose
Σg,1 × [0, 1] into a simplicial complex which is compatible with the simplicial decomposition of
Σg,1. We define a map H : Σg,1 × [0, 1]→ R2 by the following manner:

0-simplex: If a 0-simplex σ =< a0 > is in N(∂)× [0, 1] (or Σg,1×{0}, Σg,1×{1}), then we
define H(a0) = H ′′(a0) (resp. H(a0) = f0(a0), H(a0) = f1(a0)). Otherwise, we define
H(a0) = 0 ∈ R2.

1-simplex: If a 1-simplex σ =< a0, a1 > is in N(∂) × [0, 1], (or Σg,1 × {0}, Σg,1 × {1}),
then H|σ is defined by H|σ = H ′′|σ (resp. H|σ = f0|σ, H|σ = f1|σ). Otherwise, we
define H|σ by H(x) = λ0H(a0)+λ1H(a1), where x = λ0a0 +λ1a1 ∈ σ with the property
that λi ∈ R≥0 and λ0 + λ1 = 1.

2-simplex: If a 2-simplex σ =< a0, a1, a2 > is in N(∂)× [0, 1] (or Σg,1 ×{0}, Σg,1 ×{1}),
then H|σ is defined by H|σ = H ′′|σ (resp. H|σ = f0|σ, H|σ = f1|σ). Otherwise, we
define H|σ by H(x) = λ0H(a0)+λ1H(a1)+λ2H(a2), where x = λ0a0 +λ1a1 +λ2a2 ∈ σ
with the property that λi ∈ R≥0 (i = 0, 1, 2), and λ0 + λ1 + λ2 = 1.

3-simplex: If a 3-simplex σ =< a0, a1, a2, a3 > is in N(∂)× [0, 1], then H|σ is defined by
H|σ = H ′′|σ. Otherwise, we define H|σ by

H(x) = λ0H(a0) + λ1H(a1) + λ2H(a2) + λ3H(a3),

where x = λa0 + λ1a1 + λ2a2 + λ3a3 ∈ σ with the property that ai ∈ R, ai > 0
(i = 0, 1, 2, 3), and a0 + a1 + a2 + a3 = 1.

Then, by perturbing H slightly, if necessary, we obtain a desired C∞ map Σg,1 × [0, 1]→ R2.
Namely, f0 and f1 are admissibly homotopic.

(2) The case of C∞ maps Ng,1 → R2 is also proved by similar way of (1). We omit the proof
here. �

C∞ stable maps of compact and connected surfaces with boundary into surfaces without
boundary are characterized by the following way.

Proposition 2.2 (Bluce and Giblin [1]). Let M be a compact and connected surface possibly
with boundary ∂ and P a surface without boundary. A C∞ map f : M → P is C∞ stable if and
only if it satisfies the following conditions.

(1) (Local conditions) In the following, for p ∈ ∂, we use local coordinates (x, y) around p
such that IntM and ∂ correspond to the sets {y > 0} and {y = 0} respectively.
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(1a) For p ∈ IntM , the germ of f at p is right-left equivalent to one of the following:

(x, y) 7→


(x, y), p: regular point,

(x, y2), p: fold point,

(x, y3 + xy), p: cusp point.

(1b) For p ∈ ∂, the germ of f at p is right-left equivalent to one of the following:

(x, y) 7→

{
(x, y) p: regular point of f |N(∂M),

(x, y2 + xy) p: B2 point.

(2) (Global conditions) For each q ∈ f(S(f) ∪ ∂), the multi-germ

(f |S(f)∪∂ , f
−1(q) ∩ (S(f) ∪ ∂))

is right-left equivalent to one of the four multi-germs whose images are as depicted in
Figure 1, where blue curves and gray curves represent f(S(f)) and f(∂) respectively:
(1) represent immersion mono-germs (R, 0) 3 t 7→ (t, 0) ∈ (R2, 0) which correspond to
a single fold point or a single boundary point respectively, and (2) represents cusp
mono-germ (R, 0) 3 t 7→ (t2, t3) ∈ (R2, 0) which correspond to a cusp point, (3)
represents B2 multi-germ which corresponds to a single point in ∂∩S(f), (4) represent
normal crossings of two immersion germs, each of which corresponds to a fold point or
a boundary point.

q q q q

q q q

(1) (2) (3)

(4)

Figure 1. The images of multi-germs of f |S(f)∪S(f |∂M )

Let f0 : M1 → P be an admissible C∞ map and f : M1 → P an admissible C∞ stable map
which is admissibly homotopic to f0. Call γ(f) an admissible minimal contour of f0 if the number
c(f) + n(f) is the smallest among stable maps g : M1 → R2 which are admissibly homotopic to
f0 and i(g) = 1. Note that the number of connected components of the set of singular points is
allowed to vary during admissible homotopy.

Theorem 2.3. Let g ≥ 0 be an integer and f : Σg,1 → R2 be a rotation number r admissible
stable map. The contour γ(f) is an admissible minimal contour if and only if the pair (c(f), n(f))
is one of the pairs below:

g = 0:

(c(f), n(f)) =

{
(r + 1, 0) if r ≥ 0,

(−r − 1,−r − 1) if r ≤ −1.
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g = 1:

(c(f), n(f)) =


(r + 3, 0) or (r − 1, 4) if r ≥ 1,

(r + 3, 0) if −2 ≤ r ≤ 0,

(−r − 3,−r − 3) if r ≤ −3,

g = 2:

(c(f), n(f)) =



(r − 3, 6) if r ≥ 3,

(1, 5) if r = 2,

(r + 1, 4) or (r + 5, 0) if −1 ≤ r ≤ 1,

(r + 5, 0) if −4 ≤ r ≤ −2,

(−r − 5,−r − 5) if r ≤ −5,

g ≥ 3:

(c(f), n(f)) =

(r − 2g + 1, 2g + 2) if r ≥ 2g − 1,

(2, 6 + 2k) if r = 9− 2g + 4k, k = 0, . . . , g − 3,

(1, 6 + 2k) if r = 8− 2g + 4k, k = 0, . . . , g − 3,

(0, 6 + 2k) if r = 7− 2g + 4k, k = 0, . . . , g − 3,

(1, 5 + 2k) if r = 6− 2g + 4k, k = 0, . . . , g − 2,

(r + 2g − 3, 4) or (r + 2g + 1, 0) if 3− 2g ≤ r ≤ 5− 2g,

(r + 2g + 1, 0) if −2g ≤ r ≤ 2− 2g,

(−r − 2g − 1,−r − 2g − 1) if r ≤ −1− 2g.

Remark that the number c+n of an admissible minimal contour of a C∞ map f0 : Σg,1 → R2

depend only on the boundary rotation number W (f0). It does not depend on the sign s(f0).

Corollary 2.4. The number c + n of an admissible minimal contour of a rotation number r
admissible stable map Σg,1 → R2 is one of the items below:

c+ n =



r + 3 if r ≥ 2g − 1,

(r + 2g + 5)/2 if 3− 2g ≤ r < 2g − 1 and r ≡ 3− 2g mod 4,

(r + 2g + 6)/2 if 2− 2g ≤ r < 2g − 1 and r ≡ 2− 2g or −2g mod 4,

(r + 2g + 7)/2 if 1− 2g ≤ r < 2g − 1 and r ≡ 1− 2g mod 4,

r + 2g + 1 if −2g ≤ r ≤ 2− 2g,

−2(r + 1 + 2g) if r ≤ −1− 2g.

Theorem 2.5. Let g ≥ 1 be an integer and h : Ng,1 → R2 be a rotation number r admissible
stable map. The contour γ(h) is an admissible minimal contour if and only if the pair (c(h), n(h))
is one of the items below:

(c(h), n(h)) =


(1, |g + r − 4|/2) if r ≥ 2− g and r ≡ g mod 2,

(0, |g + r − 3|/2) if r ≥ 1− g and r 6≡ g mod 2,

(1,−(g + r)/2) if r ≤ −g and r ≡ g mod 2,

(0,−(g + r + 1)/2) if r ≤ −1− g and r 6≡ g mod 2.
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3. Topological formula of apparent contour

In this section, we introduce topological formula of apparent contours of admissible stable
maps M → R2 of surfaces with boundary.

Let us recall some notions introduced by Pignoni [9]. Let Mk be a compact and connected
surface with exactly k boundary components ∂ = ∂1 ∪ · · · ∪ ∂k and f : Mk → R2 an admissible
stable map whose contour is non-empty. Then, for each component ∂j , orient the regular curve
f(∂j) ⊂ R2 so that at each point, the inner of f(Mk) is in the left hand side. Note that
the definition of the orientation for f(∂j) is well-defined by virtue of the assumption that f is
admissible. Let S(f) = S1∪· · ·∪S` be the decomposition of S(f) into the connected components
and set γi = f(Si) (i = 1, . . . , `). Note that γ(f) = γ1 ∪ · · · ∪ γ`. For each γi, denote by Ui the
unbounded component of R2 \ γi. Note that ∂Ui ⊂ γi.

Orient γi so that at each fold point image, the surface is “folded to the left hand side”. More
precisely, for a point y ∈ γi which is not a cusp or a node, choose a normal vector v of γi at y
such that f−1(y′) contains more elements than f−1(y), where y′ is a regular value of f close to
y in the direction of v. Let τ be a tangent vector of γi at y such that the ordered pair (τ, v)
is compatible with the given orientation of R2. It is easy to see that τ gives a well-defined
orientation for γi.

Definition 3.1. A point y ∈ ∂Ui \{cusps, nodes} is said to be positive if the normal orientation
v at y points toward Ui. Otherwise, it is said to be negative.

A component γi is said to be positive if all points of ∂Ui\{cusps, nodes} are positive; otherwise,
γi is said to be negative. The numbers of positive and negative components are denoted by i+

and i− respectively.

By the geometrical condition of the surface Σg,1, we obtain the following lemma.

Lemma 3.2. Let f : Σg,1 → R2 be an admissible stable map whose singular points set consists
of one component. Then, the contour is a negative component.

Definition 3.3. A point y ∈ ∂Ui \ {cusps, nodes} is called an admissible starting point if y is
a positive (or negative) point of a positive (resp. negative) component γi. Note that for each i,
there always exists an admissible starting point on γi.

Definition 3.4. Let y ∈ γi be an admissible starting point and Q ∈ γi a node. Let α : [0, 1]→ γi
be a parameterization consistent with the orientation which is singular only when the image is
a cusp such that α−1(y) = {0, 1}. Then, there are two numbers 0 < t1 < t2 < 1 satisfying
α(t1) = α(t2) = Q.

We say thatQ is positive if the orientation of R2 atQ defined by the ordered pair (α′(t1), α′(t2))
coincides with that of R2 at Q; negative, otherwise.

The number of positive (or negative) nodes on γi is denoted by N+
i (resp. N−i ). The definition

of a positive (or negative) node on γi depends on the choice of an admissible starting point y.
However, it is known that the algebraic number N+

i −N
−
i does not depend on the choice of y,

see [12] for details. Thus, the algebraic number N+ − N− =
∑k
i=1(N+

i − N
−
i ) is well defined.

Note that nodes arising from γi ∩ γj (i 6= j) play no role in the computation.
Then, we have the following formula as an application of the formula of Pignoni [9] and

Imai [6].

Proposition 3.5. For an admissible stable map f : Mk → R2, we have

(3.1) g = ε(Mk)

(N+ −N−) +
c(f)

2
+ (1 + i+ − i−)− 1

2

k∑
j=1

(rj + 1)


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where ε(Mk) is equal to 1 if Mk is orientable or 2 if Mk is non-orientable, and rj denotes the
rotation number of f |∂i .

Proof. To compute the Euler characteristic χ(Mk), apply a result of Levine [8]: For an admissible
stable map f : Mk → R2, we have

χ(Mk) =
∑̀
i=1

τ(γi) +
1

2

k∑
j=1

τ(ej),

where γi and ej denote f(Si) and f(∂j) respectively, and τ(γi) and τ(ej) denote the double
tangent turning number of γi and ej with respect to the canonical orientation respectively. For
an oriented closed curve α, the double tangent turning number τ(α) is defined as the degree of
the map α→ RP 1 assigning to each point on the curve its tangent line. This map is also defined
at cusp points. If α has no cusps, then τ(α) = 2r(α) where r(α) denotes the normal degree of
α. To compute τ(α), apply a result of Quine [10]: For a closed plane curve α, we have

τ(α) = 2η(α) + 2n+ − 2n− + c+ − c−,

where η(α) = ±1 is defined according to the orientation of the curve α, c+ (or c−) denotes
the number of positive (resp. negative) cusps of α, and n+ (or n−) the number of positive
(resp. negative) nodes of α, see [10] for details. Comparing the definitions of the items in the
Quine’s formula with the ones introduced in this paper, we see: (a) the sign of the double points
is the opposite of that defined by Quine; (b) when the contour is endowed with its canonical
orientation, each cusp is negative. Thus,

τ(γi) = 2η(γi) + 2N−i − 2N+
i − ci,

where ci denotes the number of cusps of γi. η(γi) = +1 if and only if γi is negative.

k∑
i=1

τ(γi) = 2i− − 2i+ + 2N− − 2N+ − c(f).

Each f(∂j) is a closed curve with no cusp: τ(f(∂j)) = 2rj . Hence, by applying the formula of
Levine to f , we obtain

(3.2) χ(Mk) = 2i− − 2i+ + 2N− − 2N+ − c(f) +

k∑
j=1

rj .

Then, the result follows immediately. �

Corollary 3.6. Let f : Σg,1 → R2 be an admissible stable map of rotation number r. Then, the
number of cusps of f and the rotation number r never have the same parity.

Lemma 3.7. Let f : Σg,1 → R2 be an admissible stable map. If γ(f) has a node, then it has at
least one negative node.

4. Admissible stable maps M1 → R2

In this section, we construct boundary rotation number r ∈ Z stable maps fr,g : Σg,1 → R2

(g ≥ 0) and hr,g : Ng,1 → R2 (g ≥ 1) whose singular points sets consist of one component and
whose pairs (c, n) are in the lists of Theorems 2.3 and 2.5 respectively. Note that constructing
such stable maps is a part of a proof of Theorem 2.3 (or Theorem 2.5).

Note that in Figures, boundary curves are drawn in gray and the image of boundary curves
are also drawn in gray.
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x

yz

ι′
D2

x

yz

ι

D2

Cross-cap

Figure 2. Modification I: By applying this modification, the rotation number
increase by one.

4.1. Admissible stable maps Σ0,1 → R2. For a boundary rotation number r′ admissible stable
map f ′ : Σg′,1 → R2 whose singular points set consists of i′ components and have c′ cusps and n′

nodes, by applying modifications I (or II, III) defined by Figure 2 (resp. Figures 3, 4), we obtain
a boundary rotation number r admissible stable map f : Σg,1 → R2 whose singular points set
consists of i components and has c cusps and n nodes. Note that a C∞ map Σg,1 → R2 is locally
defined by the projection R3 → R2 into the xz-plane composed with a C∞ map ι′ : D2 → R3 of
the 2-dimensional disc. Figures 2, 3 and 4 represent modifications for a C∞ map ι′ : D2 → R3.
Note that the modified maps ι : D2 → R3 in Figure 2 and 3, 4 have one cross-cap:

(1) Modification I (Figure 2):

(r, g, i, c, n) = (r′ + 1, g′, i′, c′ + 1, n′)

(2) Modification II (Figures 3):

(r, g, i, c, n) = (r′ − 1, g′, i′, c′ + 1, n′ + 1)

(3) Modification III (Figure 4):

(r, g, i, c, n) = (r′ − 2, g′ + 1, i′, c′, n′)

Figure 5 define a rotation number −1 admissible stable map f−1,0 : Σ0,1 → R2 whose triple
(i, c, n) is equal to (1, 0, 0). More precisely, f−1,0 is defined by f−1,0 = πxz ◦ ι.

By applying modification I inductively to f−1,0, we obtain an admissible stable map

fr,0 : Σ0,1 → R2

whose triple (i, c, n) is equal to (1, r + 1, 0) for each integer r ≥ −1.
By applying modification II inductively to f−1,0, we obtain an admissible stable map

fr,0 : Σ0,1 → R2

whose triple (i, c, n) is equal to (1,−r − 1,−r − 1) for each integer r ≤ −1.

4.2. Admissible stable maps Σ1,1 → R2. For each integer r′ ≤ 2, by applying modification
III to fr′,0, we obtain boundary rotation number r ≤ 0 admissible stable maps fr,1 whose triples
(i, c, n) are one of the items below:

(i, c, n) =

{
(1, r + 3, 0) if −2 ≤ r ≤ 0,

(1,−r − 3,−r − 3) if r ≤ −3.
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More precisely

Figure 3. Modification II: By applying this modification, the rotation number
decrease by one.

D2 Σ1,1

ι′ ι
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Figure 4. Modification III: By applying this modification, the rotation number
decrease by two and the genus of the source surface increase by one.

D2

x
yz

x

z

ι πxz

Figure 5. Admissible stable map D2 → R2 of rotation number −1.

Let us construct stable maps fr,1 (r ≥ 1). Figures 6 and 7 show degree one stable maps
f ′1, f

′
2 : Σ1 → S2 obtained by Kamenosono and the author [7]. Note that the contours of these
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x
yz

x
yz

S2
2

S2
1

S2
1/2

Attach a handle horizontally

t1 t′1 f ′1

Σ1

Figure 6. A degree one stable map f1 : Σg → S2: f ′1 is obtained by the fol-
lowing manner: (1) Define S2

r = {(x, y, z) ∈ R3 | z2 + y2 + z2 = r2} and put
M = S2

1/2 ∪ S
2
1 ∪ S2

2 . Define t1 : M → S2
1 by x 7→ x/|x|. (2) By attaching

two handles vertically between S2
1/2 and S2

1 , S2
1/2 and S2

2 , we obtain a degree

one stable map t′1 : S2 → S2 whose triple is equal to (2, 0, 0). (3) By at-
taching a handle horizontally as the Figure, we obtain a degree one stable map
f ′1 : Σg → S2 whose triple (i, , c, n) is equal to (1, 0, 4).

maps are minimal contours. Stable maps f ′1, f
′
2 : Σ1 → S2 induce rotation number one admissible

stable maps f1
1,1, f

2
1,1Σ1,1 → R2 whose contours are as depicted in right-hand side of Figures 8

and 9 respectively. By applying modification I inductively to f1
1,1 and f2

1,1, we obtain rotation

number r ≥ 1 admissible stable maps f1
r,1, f2

r,1 : Σ1,1 → R2 whose triples (i, c, n) are equal to
(1, r − 1, 4), (1, r + 3, 0) respectively.

4.3. Admissible stable maps Σ2,1 → R2. For each r′ ≤ 0 (or r′ = 1, 2, 3), by applying
modification III to fr′,1 (resp. f1

r′,1, f2
r′,1), we obtain boundary rotation number r ≤ −2 (resp.

r = −1, 0, 1) admissible stable maps fr,2 (resp. f1
−1,2, f1

0,2, f1
1,2, f2

−1,2, f2
0,2, f2

1,2) whose triples
(i, c, n) are one of the items below:

(i, c, n) =


(1, r + 1, 4) or (r + 5, 0) if −1 ≤ r ≤ 1,

(1, r + 5, 0) if −4 ≤ r ≤ −2,

(1,−r − 5,−r − 5) if r ≤ −5.

Let us construct rotation number r ≥ 2 admissible stable maps Σ2,1 → R2.

Proposition 4.1. For each g ≥ 2, there are rotation numbers 2g − 2 and 2g − 1 admissible
stable maps f2g−2,g and f2g−1,g : Σg,1 → R2 whose triples (i, c, n) are equal to (1, 1, 2g + 1) and
(1, 0, 2g + 2) respectively.
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x
yz

Attach a handle horizontally

id2
S f ′2

Σ1

Figure 7. A degree one stable map f ′2 : Σg → S2: f2 is obtained by attaching
a handle horizontally to the source sphere of the identity map on S2.

Σ1 Σ1,1

f1 f1
1,1

Figure 8. Admissible stable map f1
1,1 : Σ1,1 → R2.

Proof. Figures 10 and 11 define boundary rotation number two and three admissible stable maps
f2,2 and f3,2 : Σ2,1 → R2 whose triples (i, c, n) are equal to (1, 1, 5) and (1, 0, 6) respectively. More
precisely, to define f2,2 (or f3,2), we decompose Σ2,1 into three pieces. Then, define inclusions
of each pieces into R3 as depicted in Figure 10 (resp. Figure 11). Note that Σ2,1 is restored
by attaching the three pieces along bold curves and dotted lines which are labeled in Figure 10
(resp. Figure 11). An admissible stable map f2,2 (resp. f3,2) is defined by the projection πxz
composed with the inclusion.

We can construct such admissible stable maps f2g−2,g and f2g−1,g as well as the cases f2,2

and f3,2. �

By applying modification I inductively to f3,2, we obtain a rotation number r admissible
stable map fr,2 : Σ2,1 → R2 whose triple (i, c, n) is equal to (1, r − 3, 6) for each r ≥ 3.
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Σ1 Σ1,1

f2 f2
1,1

Figure 9. Admissible stable map f2
1,1 : Σ1,1 → R2
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E

Figure 10. Admissible stable map Σ2,1 → R2.

4.4. Admissible stable maps Σg,1 → R2 (g ≥ 3). Let us consider the case g = 3. In this case,
we already have admissible stable maps f4,3 and f5,3 whose triples (i, c, n) are equal to (1, 1, 7)
and (1, 0, 8) respectively by Proposition 4.1.

By applying modification III to fr′,2 where 2 ≤ r′ ≤ 5 or r′ ≤ −2 (or f1
r′,2, f2

r′,2 where

−1 ≤ r′ ≤ 1), we obtain boundary rotation number 0 ≤ r ≤ 3 or r ≤ −4 (resp. −3 ≤ r ≤ −1)
admissible stable maps fr,3 (resp. f1

r,3, f2
r,3) whose triples (i, c, n) are one of the items below:

(i, c, n) =



(1, r − 1, 6) if 1 ≤ r ≤ 3,

(1, 1, 5) if r = 0,

(1, r + 3, 4) or (r + 7, 0) if −3 ≤ r ≤ −1,

(1, r + 7, 0) if −6 ≤ r ≤ −4,

(1,−r − 7,−r − 7) if r ≤ −7.

Then, by applying modification I inductively to f5,3, we obtain a boundary rotation number r
admissible stable map fr,3 : Σ3,1 → R2 whose triple (i, c, n) is equal to (1, r−5, 8) for each r ≥ 5.
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Figure 11. Admissible stable map Σ2,1 → R2.
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Figure 12. Modification IV: By applying this modification, the rotation num-
ber increases by two.

Similarly, for each g ≥ 4 and r ≤ 2g − 3, we construct fr,g where 5 − 2g ≤ r ≤ 2g − 3 or
r ≤ 2 − 2g (or f1

r,g, f
2
r,g where 3 − 2g ≤ r ≤ 5 − 2g) by applying modification III to fr′+2,g′−1

(resp. f1
r′+2,g′−1, f2

r′+2,g′−1 where 5 − 2g′ ≤ r′ ≤ 7 − 2g′). Then, by applying modification I
inductively to f2g−1,g, we obtain an admissible stable map fr,g for each r ≥ 2g − 1. Note that
we already have f2g−2,g in Proposition 4.1.

4.5. Admissible stable maps Ng,1 → R2. By applying modification IV (or V, VI) defined
by Figure 12 (resp. Figures 13, 14) for a boundary rotation number r′ admissible stable map
h : Ng′,1 → R2 whose singular points set consists of i′ components and has c′ cusps and n′ nodes,
we obtain a boundary rotation number r admissible stable map h : Ng,1 → R2 whose singular
points set consists of i components and has c cusps and n nodes:

(4) Modification IV

(r, g, i, c, n) = (r′ + 2, g′, i′, c′, n′ + 1)

(5) Modification V

(r, g, i, c, n) = (r′ − 2, g′, i′, c′, n′ + 1)
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Figure 13. Modification V: By applying this modification, the rotation number
increases by two.

x

yz

x

yz

D2 D2

Cross-cap

Figure 14. Modification VI: By applying this modification, the rotation num-
ber decreases by one.

(6) Modification VI

(r, g, i, c, n) = (r′ − 1, g′ + 1, i′, c′, n′)

Note that the modified map ι′ : D2 → R3 have one cross-cap.

Furthermore, by applying modification III to a boundary rotation number r′ admissible stable
map h′ : Ng′,1 → R2, we obtain a boundary rotation number r′ − 2 admissible stable map
h′ : Ng′+2,1 → R2.

Figure 15 defines C∞ maps ιi : N1,1 → R3 (i = −2,−1, 2 and 3). Then, the projection πxz
composed with ι−2, ι−1, ι2 and ι3 define boundary rotation number −2, −1, 2 and 3 admissible
stable maps h−2,1, h−1,1, h2,1 and h3,1 : N1,1 → R2 whose triples (i, c, n) are equal to (1, 0, 0),
(1, 1, 0), (1, 0, 0) and (1, 1, 0) respectively.

By applying modification IV to h−2,1 and h−1,1, we obtain boundary rotation number zero
and one admissible stable maps h0,1 and h1,1 : N1,1 → R2 whose triples (i, c, n) are equal to
(1, 0, 1) and (1, 1, 1) respectively.

By applying modification IV inductively to h2,1 and h3,1, we obtain a boundary rotation
number r ≥ 2 admissible stable map hr,1 : N1,1 → R2 whose triple (i, c, n) is equal to (1, 0, (r −
2)/2) if r ≥ 2 is even, (1, 1, (r − 3)/2) otherwise.

Similarly, by applying modification V inductively to h−2,1 and h−1,1, we obtain a boundary
rotation number r ≤ −1 admissible stable map hr,1 : N1,1 → R2 whose triple (i, c, n) is equal to
(1, 0, (−r − 2)/2) if r ≤ −1 is even, (1, 1, (−r − 1)/2) otherwise.

Thus, we see that for each triple (i, c, n) in the list of Theorem 2.5 (g = 1), there exists an
admissible stable map N1,1 → R2 whose triple (i, c, n) is the triple.

Then, by applying modification III inductively to hr′,1 : N1,1 → R2, we obtain a boundary
rotation number r admissible stable map hr,g : Ng,1 → R2 whose triples (i, c, n) are in the list of
Theorem 2.5 for each odd number g ≥ 1 and each r ∈ Z. Furthermore, by applying modification
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Figure 15. Admissible stable maps N1,1 → R2 of rotation numbers −2,−1, 2
and 3, respectively

VI inductively to hr′,g′ : Ng′,1 → R2 with odd g′ ≥ 1, we obtain hr,g : Ng,1 → R2 whose triples
(i, c, n) are in the list of Theorem 2.5 for each even g ≥ 2 and r ∈ Z.

Thus, we see that for each (i, c, n) in the list of Theorem 2.5, there is a boundary rotation
number r admissible stable map h : Ng,1 → R2 whose triple (i, c, n) is equal to the triple.

5. Proof of minimum of c+ n in Theorem 2.3

Let g ∈ Z≥0 and r ∈ Z. To prove Theorem 2.3 we need the following Lemmas.

Lemma 5.1 (M. Yamamoto [14]). Let f : Σg,1 → R2 be a rotation number r admissible stable
map whose singular points set consists of one component. Then, c(f) ≥ |r+1|−2g and c(f) 6≡ r
mod 2.

Lemma 5.2. Let f : Σg,1 → R2 be a rotation number r admissible stable map whose singular
points set consists of one component.

(1) If f has no cusps, then r ≡ 2g − 1 mod 4.
(2) If r ≡ 2g + 1 mod 4, then γ(f) has at least two cusps.

Proof. (1) For such stable map f : Σg,1 → R2, Σg,1 is decomposed into three pieces as

Σg,1 = Σg−t,1 tN(S(f)) t Σt,2, 0 ≤ t ≤ g,

where N(S(f)) denote a tubular neighborhood of S(f). Note that f1; = f |Σg−t,1 and f2 := f |Σt,2

are immersions. Then, by applying a result of Heafliger:

For an immersed surface Mk ⊂ R2, the Euler-Poincare characteristic
χ(Mk) is equal to the normal degree of ∂Mk.

If W (f1) = k, then we have χ(Σg−t,1) = k and χ(Σt,2) = k+ r. This shows that 2g = 1 + r+ 4t.
(2) Put r = 2g + 1 + 4k. Then, formula (3.1) implies the conclusion. �

Let us divide a proof into two cases g = 0 and g ≥ 1.
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5.1. g = 0. Lemma 5.1 shows that the contour γ(fr,0) is an admissible minimal contour for each
r ≥ 0.

Let us consider the case r ≤ −1. Let f : Σ0,1 → R2 be an admissible stable map of rotation
number r whose singular points set consists of one component. Then, Lemma 5.1 implies that
c(f) ≥ −(r + 1). In this case, (3.1) and Lemma 3.2 show that

r + 1

2
= (N+ −N−) +

c(f)

2
.

Then, we have

r + 1

2
= (N+ −N−) +

c(f)

2
≥ (N+ −N−)− r + 1

2
.

This implies that (r + 1) ≥ (N+ − N−). Note that (r + 1) is negative. Thus, we have
N− ≥ −(r + 1). Then,

c(f) + n(f) ≥ c(f)

2
+
r + 1

2
+ 2N− ≥ −2(r + 1).

Thus, for such admissible stable maps, we have c(f) + n(f) ≥ −2(r + 1). This shows that the
contour γ(fr,0) (r ≤ −1) is an admissible minimal contour.

5.2. g ≥ 1. At first, let us consider the case r ≥ 2g − 1. Let f : Σg,1 → R2 be an admissible
stable map of rotation number r whose singular points set consists of one component. Then the
formula (3.1) and Lemma 3.2 show that

(5.1) g +
r + 1

2
= (N+ −N−) +

c(f)

2
.

If γ(f) has no node, then c(f) = 2g+ r+ 1. If γ(f) hsa a node, then Lemma 3.7 and Lemma 5.1
yeild that

c(f) + n(f) ≥ c(f)

2
+ g +

r + 1

2
+ 2N− ≥ r + 3.

This shows that the contour γ(fr,g) (r ≥ 2g − 1) is an admissible minimal contour.
The case −2g ≤ r ≤ 2g is also proved by using Lemmas 5.1, 5.2 and the similarly argument

as the above case.
Then, let us consider the case r ≤ −2g − 1. Let f : Σg,1 → R2 be a rotation number r

admissible stable map whose singular points set consists of one component. The formula (5.1)
and Lemma 5.1 imply

g +
r + 1

2
≥ (N+ −N−) +

−r − 1− 2g

2
.

Thus, we have

2g + r + 1 ≥ (N+ −N−).

Note that 2g + r + 1 is negative. Thus, N− ≥ −(2g + r + 1). Then,

c(f) + n(f) ≥ c(f)

2
+ g +

r + 1

2
+ 2N− ≥ −2(r + 2g + 1).

Therefore, the contour γ(fr,g) (r ≤ −2g − 1) is admissible minimal contour.
It completes the proof of Theorem 2.3.
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6. Proof of minimum of c+ n in Theorem 2.5

Let g ∈ Z≥1 and r ∈ Z. Proposition 3.5 yeilds the following lemma.

Lemma 6.1. Let h : Ng,1 → R2 be a boundary rotation number r admissible stable map whose
singular points set consists of one component. Then, the numbers g+ r and c(h) never have the
same parity. In particular, if g + r is an even number, then h has at least one cusp.

Proof. Let h : Ng,1 → R be a such stable map. Then, formula (3.1) induces the following modulo
two equation

g ≡ c(h)− (r + 1).

It implies the conclusion. �

We divide a proof into two cases g = 1 and g ≥ 2.

6.1. g = 1. Lemma 6.1 shows that the contours γ(hr,1) (r = −2,−1, 2, 3) are admissible minimal
contours.

At first, let us consider the case r ≥ 4. Let h : N1,1 → R2 be a boundary rotation number r
admissible stable map whose singular points set consists of one component.

(i1) i+ = 1. Then, the formula (3.1) implies 2(N+ − N−) + c(h) = r − 2. If γ(h) has no
nodes, then c(h) = r − 2. If γ(h) has a node, then

c(h) + n(h) =
r − 2 + c(h)

2
+ 2N− ≥ r − 2 + c(h)

2
.

This yeilds that if r ≥ 4 is odd (or even), then

c(h) + n(h) ≥ (r − 1)/2

(resp. c(h) + n(h) ≥ (r − 2)/2).
(i2) i− = 1. Then, the formula (3.1) implies 2(N+ − N−) + c(h) = r + 2. If γ(h) has no

nodes, then c(h) = r + 2. If γ(h) has a node, then

c(h) + n(h) =
r + c(h) + 2

2
+ 2N− ≥ r + c(h) + 2

2
.

This yields that if r ≥ 4 is odd (or even), then

c(h) + n(h) ≥ (r + 3)/2

(resp. c(h) + n(h) ≥ (r + 2)/2).

(i1) and (i2) show that if r ≥ 4 is odd (or even), then c(h) + n(h) ≥ (r − 1)/2 (resp.
c(h) +n(h) ≥ (r− 2)/2). This implies that the contour γ(hr,1) (r ≥ 4) is an admissible minimal
contour.

Then, let us consider the case r ≤ −3. Let h : N1,1 → R2 be a boundary rotation number r
admissible stable map whose singular points set consists of one component.

(i1) i+ = 1. Then, the formula (3.1) induces 2(N+ − N−) = r − c(h) − 2. Note that
r − c(h)− 2 ≤ 0. Thus, we have N− ≥ −(r − c(h)− 2)/2. Then,

c(h) + n(h) =
r + c(h)− 2

2
+ 2N− ≥ 3c(h)− r + 2

2
.
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Lemma 6.1 yields that if r ≤ −3 is odd (or even), then c(h) + n(h) ≥ (−r + 5)/2 (resp.
c(h) + n(h) ≥ (−r + 2)/2).

(i2) i− = 1. Then, the formula (3.1) induces 2(N+ − N−) = r − c(h) + 2. If γ(h) has no
nodes, then c(h) = r+ 2. If γ(h) has a node, then (N+−N−) = (r− c(h) + 2)/2 ≤ 0. Thus, we
have N− ≥ −(r − c(h) + 2)/2. Then,

c(h) + n(h) =
r − c(h) + 2

2
+ 2N− ≥ 3c(h)− r − 2

2
.

Lemma 6.1 shows that if r ≤ −3 be odd (or even), then c(h) + n(h) ≥ (−r + 1)/2 (resp.
(−r − 2)/2).

(i1) and (i2) show that γ(hr,1) (r ≤ −3) is an admissible minimal contour.
Formula (3.1) implies the following.

Lemma 6.2. Let h : N1,1 → R2 be a boundary rotation number 0 admissible stable map whose
singular points set consists of one component. Then, c(h) + n(h) ≥ 1.

Therefore, γ(h0,1) is an admissible minimal contour.
We can show that γ(h1,1) is minimal as the above case.
Thus, we complete the proof of the Theorem 2.5 for g = 1.

6.2. g ≥ 2. Lemma 6.1 shows that the contours γ(h−g,g) and γ(h−g−1,g) are admissible minimal
contours.

At first, let us consider r ≥ −g + 1. Let h : Ng,1 → R2 be a boundary rotation number r
admissible stable map whose singular points set consists of one component.

(i1) i+ = 1. Then, formula (3.1) shows that 2(N+ − N−) + c = g + r − 3. If γ(h) has no
nodes, then c(h) = g + r − 3. If γ(h) has a node, then

c(h) + n(h) = c(h) +
g + r − c(h)− 3

2
+ 2N− ≥ g + r + c(h)− 3

2
.

Lemma 6.1 shows that if g + r is even (or odd), then c(h) + n(h) ≥ (g + r − 2)/2 (resp.
c(h) + n(h) ≥ (g + r − 3)/2).

(i2) i− = 1. Then, formula (3.1) shows that 2(N+ −N−) + c(h) = g + r + 1. If γ(h) has no
nodes, then c(h) = g + r + 1. If γ(h) has a node, then

c(h) + n(h) = c(h) +
g + r − c(h) + 1

2
+ 2N− ≥ g + r + c(h) + 1

2
.

Lemma 6.1 shows that if g + r is even (or odd), then c(h) + n(h) ≥ (g + r + 2)/2 (resp.
c(h) + n(h) ≥ (g + r + 1)/2).

(i1) and (i2) implies that the conturs γ(hr,g) (r ≥ −g+1) are an admissible minimal contours.
Then, let r ≤ −g − 2. Let h : Ng,1 → R2 be a boundary rotation number r admissible stable

map whose singular points set consists of one component.
(i1) i+ = 1. Formula (3.1) shows that 2(N+ − N−) = g + r − c(h) − 3 ≤ 0. Thus, we have

N− ≥ −(g + r − c(h)− 3)/2, Then,

c(h) + n(h) = c(h) +
g + r − c(h)− 3

2
+ 2N− ≥ −g − r + c(h) + 3

2
.

Lemma 6.1 shows that if g + r is even (or odd), then c(h) + n(h) ≥ (−g − r + 4)/2 (resp.
c(h) + n(h) ≥ (−g − r + 3)/2).
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(i2) i− = 1. Formula (3.1) shows that 2(N+ − N−) = g + r − c(h) + 1 ≤ 0. Thus, we have
N− ≥ −(g + r − c(h) + 1)/2, Then,

c(h) + n(h) = c(h) +
g + r − c(h) + 1

2
+ 2N− ≥ −g − r + 3c(h)− 1

2
.

Lemma 6.1 shows that g + r is even (or odd), then

c(h) + n(h) ≥ (−g − r + 2)/2

(resp. c(h) + n(h) ≥ (−g − r − 1)/2).
(i1) and (i2) implies that γ(hr,g) (r ≥ −g − 2) is an admissible minimal contour.
It completes the proof of Theorem 2.5.

7. Problem

Let M be a compact connected surface with boundary and P a surface without boundary. A
C∞ map f : M → P is called a fold map if f has only fold points as its singularities.

Let f : M → R2 be a boundary rotation number r admissible stable fold map. Then, call the
contour γ(f) an F-(i, n)-minimal contour of boundary rotation number r maps M → R2 if the
pair (i(f), n(f)) is the smallest among rotation number r admissible stable fold maps M → R2

with respect to the lexicographic order.

Problem 7.1. Let M = Σg,1 or Ng,1. Study an F-(i, n)-minimal contour of boundary rotation
number r maps M → R2.
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