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NEW SINGULARITY INVARIANTS: THE SHEAF β•X .

DANIEL BARLET

Abstract. The graded coherent sheaf α•
X constructed in [3] for any reduced complex space

X is stable by exterior product but not by the de Rham differential. We construct here

a new graded coherent sheaf β•
X containing α•

X and stable both by exterior product and

by the de Rham differential. It is the unique minimal such sheaf inside the sheaf L•
X of

meromorphic forms on X which become holomorphic on any desingularization of X, which has

these properties and this sub-sheaf is coherent.

We show that it has again the “pull-back property” for holomorphic maps f : X → Y
between reduced complex spaces such that f−1(SY ) has empty interior in X. Moreover, this

graded coherent sheaf β•
X comes with a natural coherent exhaustive filtration which is also

compatible with the pull-back by such holomorphic maps. We show on some simple examples

that these sheaves and their natural filtrations are new invariants on singular complex spaces.

1. Introduction

1.1. New singularity invariants. In the article [3] (see also the erratum [4]) we introduce
on a reduced complex space X the coherent graded sheaf α•X of locally bounded meromorphic
forms on X. They are characterized by the fact that they satisfy locally an integral dependence
relation over the symmetric algebra of the sheaf of usual holomorphic forms modulo torsion.
Then the normalized Nash blow-up makes them holomorphic. But the story is not as simple as
in the case of functions (the standard normalization of a reduced complex space). First because

the normalized Nash blow-up ν : X̃ → X is not a finite map in general and the sheaf α•
X̃

is

in general bigger than the sheaf of holomorphic forms on X̃ modulo torsion. To show that the
iteration of this process stops, and when this is the case that it gives a desingularization of X,
is still an open problem.

But there is another fact which comes into the picture: the new holomorphic forms on X̃
coming from sections of the sheaf α•X have holomorphic differentials. But on X it is not true
that the differential of a locally bounded meromorphic form is still locally bounded. This remark
is the initial point of the present paper.

We construct on any reduced complex space X a graded sheaf β•X containing the graded sheaf
α•X , stable by exterior product (as the sheaf α•X is), stable by the de Rham differential, and as
small as possible.

We show that there is an unique minimal such sheaf inside the sheaf L•X of meromorphic
forms on X which become holomorphic on any desingularization of X and that this sub-sheaf

is coherent. Then we show that the pull-back map f̂ : f∗(α•Y )→ α•X defined in [3] (see also the
erratum [4]) for any holomorphic map f : X → Y between reduced complex spaces such that
f−1(SY ) has empty interior in X (where SY is the singular set in Y ) extends to the sheaf β•.
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The construction of this sheaf β•X highlights the existence of a natural finite filtration inside
the sheaf β•X by coherent sub-sheaves, the first one being α•X and the last one being β•X . Then
we prove that this (graded) filtration is coherent and also compatible with the pull-back by any
holomorphic map f : Y → X as above. Then the graded sheaf β•X with its graded filtration
defines new singularity invariants, the first one being the graded sheaf α•X .

We conclude the article with some simple examples of computation of these new singularity
invariants.

1.2. Reminder of the sheaf α•X .
Notations. For a reduced complex space X we denote by Ω•X the graded sheaf of holomorphic
(Kähler) differential forms on X, L•X the graded sheaf of meromorphic forms on X which are
holomorphic on any desingularization of X and ω•X the sheaf of ∂̄−closed currents on X of type
(•, 0) modulo its torsion sub-sheaf. Of course these sheaves coincide on the smooth part of X
and satisfy on X the graded inclusions

Ω•X
/
torsion ⊂ L•X ⊂ ω•X .

Recall that the graded sheaf α•X constructed in [3] is the integral closure in the sheaf ω•X
of the sheaf Ω•X

/
torsion. This means that the germ of a section σ of the sheaf ωpX at a point

x of the reduced complex space X is in αpX,x if and only if there exists a monic homogeneous

polynomial P with coefficients in the symmetric algebra S•(ΩpX,x) of the OX,x−module ΩpX,x
such that the germ P (σ) vanishes on the smooth part of X near x.

The following properties of these graded sheaves α•X are proved in [3] and see [4] for ii).

i) The sheaf α•X is a graded coherent sub-sheaf of L•X . So it has no torsion.
ii) For any holomorphic map f : X → Y between reduced complex spaces such that f−1(SY )

has empty interior in X (where SY is the singular set in Y ) there exists a natural graded
pull-back map

f̂∗ : f∗(α•Y )→ α•X
which is compatible with the usual pull-back of holomorphic differential forms. Moreover
if g : Y → Z is a holomorphic map between reduced complex spaces such that g−1(SZ)
has empty interior in Y and such that f−1(g−1(SZ)) has empty interior in X we have

f̂∗ ◦ ĝ∗ = f̂ ◦ g
∗
.

iii) For any germ σ ∈ αpX,x we may find finitely may germs ωj ∈ ΩpX,x, j ∈ [1, N ] and finitely

many germs at x of C∞ functions on X \ SX which are bounded near x such that we have

σ =
∑N
j=1 ρj .ωj on X \ SX near x.

2. Definition of β•X and the pull-back property

2.1. Construction of the sheaf β•X . Let X be a reduced complex space and denote by α•X
the graded sheaf on X introduced in [3] (see the reminder in the previous paragraph).

Lemma 2.1.1. The sheaf α•X is stable by exterior product.

Proof. Recall that, by definition, the sheaf α•X is a sub-sheaf of the sheaf ω•X and the following
characterization is proved in [3] Th. 3.0.2 (see property iii) in the previous paragraph) : a
section σ on the open set U ⊂ X of the sheaf ω•X is a section on U of α•X if it may be written
locally on U as σ =

∑
j∈J ρj .ωj where ωj are holomorphic forms on U and ρj are C∞ functions

on the complement of the singular set S in U which are bounded near S. Is it clear that the
exterior product of two such sections on U of α•X can be written in the same way locally on U
and then define a current on U which is ∂̄−closed on U \ S. So to conclude the lemma, it is
enough to prove that this current admits a ∂̄−closed extension to U . In fact, as the sheaf α•X
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is a sub-sheaf of the sheaf L•X obtained by the direct image of the sheaf Ω•
X̃

where τ : X̃ → X
is any desingularisation of X and as this sheaf L•X is stable by exterior product, the conclusion
follows from the inclusion L•X ⊂ ω•X . �

We remark that the sheaf α•X is a graded Ω•X−module but is not stable in general by the
de Rham differential. For instance in

X := {(x, y, z) ∈ C3 / x.y = z2},

the differential form dx∧dy/z = −d
(
z.dx/x−z.dy/y) is not in α2

X but the form z.dx/x−z.dy/y
is a section of α1

X (see [3] or Paragraph 3.2 below).

A construction. Define α•X [0] := α•X and for any integer p ≥ 0 and any integer q ≥ 0 define

(1) αqX [p+ 1] :=

q∑
r=0

(
αrX [p] ∧ αq−rX [p]

)
+

q−1∑
r=0

(
αrX [p] ∧ d

(
αq−r−1X [p]

))
⊂ LqX .

Recall that the sheaf L•X is stable by exterior products and by the de Rham differential.

Proposition 2.1.2. We have the following properties:

(1) For each integer p the sheaf α•X [p] is stable by exterior product with Ω•X
/
torsion. More-

over for each pair of integers p, q we have α0
X .α

q
X [p] = αqX [p] (the equality comes from

the fact that 1 ∈ α0
X).

(2) For each pair of integers p, q the sheaf αqX [p] is OX−coherent sub-sheaf of LqX . So the
sheaf αqX [p] is torsion free.

(3) For each pair of integers p, q the sub-sheaf αqX [p] is contained in αqX [p+ 1].

(4) For each pair of integers p, q and q′ we have αqX [p] ∧ αq
′

X [p] ⊂ αq+q
′

X [p+ 1].

(5) For each pair of integers p, q and r we have αrX [p] ∧ d
(
αqX [p]

)
⊂ αq+r+1

X [p+ 1].

In particular d
(
αqX [p]

)
⊂ αq+1

X [p+ 1].

Proof. Property (1) is an obvious consequence of the definition of these sheaves by an induction
on p.

As LqX is a coherent sheaf on X which is torsion free, to prove (2) it is enough to prove that
αqX [p+ 1] is a finite type OX−module. We shall prove this by an induction on p ≥ 0.

So assume the coherence of the sheaf αqX [p] for each q. Then we want to prove that αqX [p+ 1]
is finitely generated. Let (gj,r) be a finite set of generators of the sheaf αrX [p]. Then we shall
show that the elements gi,r ∧ gj,q−r and gi,r ∧ dgj,q−r−1 for all choices of i, j and r ≤ q, generate
αqX [p + 1]. The only point which is not obvious is the fact that for any sections u ∈ αrX [p] and

v ∈ αq−r−1X [p] the wedge product u∧dv is in the sheaf generated by our “candidates” generators.
But then write

u =
∑
i

ai.gi,r and v =
∑
j

bj .gj,q−r−1

where ai and bj are holomorphic functions. Then

dv =
∑
j

dbj ∧ gj,q−r−1 +
∑
j

bj .dgj,q−r−1.

So in the wedge products u ∧ dv the terms are linear combinations of our candidates generators
excepted those like ai.gi,r∧dbj ∧gj,q−r−1. This point is solved by Condition (1) which is already
proved. Points (3), (4), and (5) are obvious. �
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Now we remark that the sequence of coherent sub-sheaves α•X [p] of the coherent sheaf L•X is
increasing. So it is locally stationary on X.

Definition 2.1.3. Define the coherent sub-sheaf β•X as the union of the increasing sequence of
coherent sub-sheaves α•X [p], p ≥ 0 of the coherent sheaf L•X .

Corollary 2.1.4. The graded sub-sheaf β•X of the graded coherent differential sheaf L•X is co-
herent, stable by exterior product and by the de Rham differential.

Proof. The assertion is local, so we may assume that β•X = α•X [p] ∀p ≥ p0. Then the corollary
is a consequence of Properties (4) and (5) above. �

Theorem 2.1.5. For any holomorphic map f : X → Y between reduced complex spaces such
that f−1(S(Y )) has empty interior in X, there exists an unique pull-back

f̂∗ : f∗(β•Y )→ β•X

which is compatible with the pull-back of the L•−sheaves (and so with the pull-back of the
α•−sheaves ; see [4]) and which is graded of degree 0 and compatible with the exterior prod-
uct and the de Rham differential.

For any holomorphic maps f : X → Y and g : Y → Z between reduced complex spaces, such
that f−1

(
S(Y )∪ g−1(S(Z))

)
has no interior point in X and g−1(S(Z)) has no interior point in

Y we have

f̂ ◦ g
∗
(σ) = f̂∗(ĝ∗(σ)) ∀σ ∈ β•Z .

Moreover, for each integer p ≥ 0 the pull-back f̂∗ induces a pull-back

f̂∗[p] : f∗(α•Y [p])→ α•X [p]

and in the previous situation f̂ ◦ g
∗
[p] = ĝ∗[p] ◦ f̂∗[p] for each p ≥ 0.

So we shall construct in fact a (graded) naturally filtered sheaf (β•X , (α
•
X [p])p∈N) such that

the pull-back constructed in the previous theorem is compatible with these filtrations and with
the composition of suitable holomorphic maps.

In the following we make the convention that α•X [−1] := α•X [0] := α•X .

Proof. Assume that X is an irreducible complex space and that f(X) is not contained in the
singular locus S(Y ) of Y . Note that our hypothesis implies that there exists a dense Zariski
open set X ′′ in X \ S(X) such that the restriction of f to X ′′ takes values in Y \ S(Y ).

Assume also that for some integer p ≥ 0 we have constructed for any q ≤ p a pull-back
morphism

f̂∗[q] : f∗(α•Y [q])→ α•X [q]

with the following properties

1p It induces the usual pull-back of the sheaves of holomorphic forms when it is restricted to the

smooth parts of X and Y . Note that this implies that the restriction of f̂∗[p] to f∗(α•Y [q])

is equal to f̂∗[q] because, by definition, the sections of the sheaves under consideration are
determined by their restrictions to an open dense subset.

2p For s, t in α•Y [p− 1] we have f̂∗[p](s ∧ t) = f̂∗[p− 1](s) ∧ f̂∗[p− 1](t).

3p For any u in α•Y [p− 1] such that du is in α•+1
Y [p]1 we have d(f̂∗[p− 1](u)) = f̂∗[p](du).

1For p ≥ 1 u ∈ α•
X [p− 1] implies du ∈ α•+1

X [p] is automatic; but not for p = 0 with our convention.
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Then we want to construct f̂∗[p+ 1] : f∗(α•N [p+ 1])→ α•M [p+ 1] satisfying again the properties
above for p+ 1.

It is clear that that our inductive hypothesis given by Conditions 1p, 2p and 3p is true for
p = 0 (but 20 is obtained by looking at points in X ′′ and using the absence of torsion).

Now we shall show that if it is satisfied for some p ≥ 0 then it is also satisfied for p+ 1.

Construction of f̂∗[p+ 1]. Let ξ be a section in α•Y [p+ 1]. We may write

ξ =

J∑
j=0

βj ∧ γj +

J∑
j=0

uj ∧ dvj

where βj , γj , uj , vj are sections of the sheaf α•Y [p]. It is clear that our Conditions 1p+1, 2p+1, 3p+1

imply that we must put

f̂∗[p+ 1](ξ) =

J∑
j=0

f̂∗[p](βj) ∧ f̂∗[p](γj) +

J∑
j=0

f̂∗[p](uj) ∧ d(f̂∗[p](vj)).

Now the main point is to prove that if we change the choice of writing ξ in such a way, the value

of f̂∗[p+ 1](ξ) stays the same. In other words, we have to prove that if ξ = 0 is written as above

then we find f̂∗[p+ 1](ξ) = 0.
To prove this is quite simple because it is enough to look on X ′′. On this open dense subset we

have simply taken the usual pull-back of the holomorphic form ξ restricted to the smooth part
of Y by the holomorphic map f ′ : X ′′ → Y \ S(Y ) induced by f . As this pull-back commutes
with exterior product and de Rham differential, its result is independent of the way in which we
have written ξ above. This implies our claim because the sheaf α•X [p+ 1] has no torsion.

To verify Properties 1p+1, 2p+1 and 3p+1 is then obvious because it is enough to check them
on X ′′.

This completes the proof of the existence of pull-back morphisms f̂∗[p] for each p ≥ 0 and
then for the sheaves β•. And it also gives the compatibility of these pull-backs with the exterior
product and the de Rham differential.

The only point which we have to make precise to complete the proof of Theorem 2.1.5 is
the “functorial” aspect of these pull-backs. But this is again an easy consequence of the non-
existence of torsion for the sheaves we consider. �

Proposition 2.1.6. Let X be a reduced complex space. Then for each q ≥ 0 we have βqX = αqX [q].
If X is normal, for q ≥ 1 we have βqX = αqX [q − 1].

Proof. First we remark that, by definition α0
X is the sheaf of locally bounded meromorphic

functions on X (so it is equal to OX if and only if X is normal), and that β0
X = α0

X by
definition.

We remark also that for each p and each q we have α0
X [p] = α0

X and αqX [p]∧α0
X = αqX [p] (see

prop. 2.1.2 above).
Fix an integer q0 ≥ 1 and assume that for any integer q < q0 we have αqX [p − 1] = βqX for

some integer p ≥ 1. This means that αqX [p− 1] = αqX [p] for these q. By definition we have

αq0X [p+ 1] =

q0∑
h=0

αhX [p] ∧ αq0−hX [p] +

q0−1∑
h=0

d(αhX [p]) ∧ αq0−h−1X [p].
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But our assumption allows one to replace p by p− 1 in the right-hand side of the equality above
except for the terms h = q0 in the first sum. So we find

αq0X [p+ 1] ⊂ αq0X [p] ∧ α0
X [p] +

q0−1∑
h=0

αhX [p− 1] ∧ αq0−hX [p− 1] +

q0−1∑
h=0

d(αhX [p− 1]) ∧ αq0−h−1X [p− 1].

But αq0X [p] ∧ α0
X [p] = αq0X [p] and then all sheaves in the right-hand side are contained in αq0X [p];

this gives the equality αq0X [p+ 1] = αq0X [p].
Now using that, for each q ≥ 0, αqX is stable by multiplication by elements in α0

X , we obtain

α1
X [1] = α1

X [0] +

I∑
i,j=1

OX .gj .dgi,

where g1, . . . , gI generate the coherent OX−module α0
X . This implies that α1

X [1] is stable by
multiplication by α0

X and this implies the equality

α1
X [2] = α1

X [1] +

I∑
i,j=1

OX .gj .dgi = α1
X [1].

So we have α1
X [1] = β1

X . This allows us to begin our induction on q0 for q0 = 1 with p = 2.
Then by induction on q0 ≥ 1 we conclude that for each q ≥ 1 we have βqX = αqX [q].
In the case where X is normal, we may take I = {1} and g1 = 1 and this shows that

α1
X [0] = β1

X and the induction gives now, if we begin with q0 = 1 and p = 1, the equality
αqX [q − 1] = βqX for each q ≥ 1. �

Remark. This shows that for a normal complex space we always have the equality β1
X = α1

X ,
so the sheaf β•X is “new” only in degrees at least equal to 2 when X is normal.

2.2. A finer filtration. We shall show that there exists another natural filtration for the sheaf
β•X which is finer than the filtration (α•X [p])p≥0 and which is also compatible with the pull-back
by any holomorphic map f : Y → X such that f−1(S(X)) has empty interior in Y . This
filtration gives finer invariants for singular complex spaces.

Definition 2.2.1. Let X be a reduced complex space. We define the increasing filtration α•X〈p〉
of the graded sheaf β•X by induction on p ∈ N with the following conditions

• α•X〈0〉 := α•X
• α•X〈p+ 1〉 := α•X〈p〉+ α•X〈p〉 ∧ dα•X .

in the graded sense. This means explicitly that for each q ≥ 0 we have

αqX〈p+ 1〉 := αqX〈p〉+

q−1∑
r=0

αrX〈p〉 ∧ dα
q−r−1
X .

Proposition 2.2.2. For each pair of integers p and q the sheaf αqX〈p〉 is a coherent sub-sheaf
of the sheaf βqX and we have the following properties for each pair of integers p, p′:

(1) α•X〈p〉 ∧ α•X〈p′〉 ⊂ α•X〈p+ p′〉.
(2) dα•X〈p〉 ⊂ α•X〈p+ 1〉.
(3) αpX〈p〉 = βpX .
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Proof. The coherence of the sheaves αqX〈p〉 is obtained by an induction in a similar way as for
the sheaves αqX [p].

Note that for each p we have α•X〈p〉 ⊂ β•X by an easy induction on p ≥ 0.

We shall prove (1) by induction on p ≥ 0. For p = 0 the inclusion is clear as α•X〈p′〉 is stable
by wedge product on α•X by an obvious induction on p′ ≥ 0. Assume that (1) is true for p (for
each given p′ ≥ 0). Then

α•X〈p+ 1〉 ∧ α•X〈p′〉 = α•X〈p〉 ∧ α•X〈p′〉+ α•X〈p〉 ∧ dα•X ∧ α•X〈p′〉
is a subset of

α•X〈p+ p′〉+ α•X〈p+ p′〉 ∧ dα•X = α•X〈p+ 1 + p′〉
thanks to our induction hypothesis and the anti-commutativity and associativity of the wedge-
product.

We shall also prove (2) by induction on p ≥ 0. The case p = 0 is clear by definition of α•X〈1〉
as 1 ∈ α0

X . So assume that (2) is true for p. Then

dα•X〈p+ 1〉 = dα•X〈p〉+ dα•X〈p〉 ∧ dα•X
dα•X〈p+ 1〉 ⊂ α•X〈p+ 1〉+ α•X〈p+ 1〉 ∧ dα•X = α•X〈p+ 2〉

concluding our induction.
From (1) and (2) we see that γ•X = ∪∞p=0 α

•
X〈p〉 is stable by ∧ and d. So, as β•X is the

smallest graded sub-sheaf of L•X which is stable under ∧ and d and contains α•X , we conclude
that γ•X = β•X . The proof of (3) is then obtained by an easy induction (analogous to the induction
in Lemma 2.2.4 below). �

Remark. It is an easy exercise to show that for each p ≥ 0 we have

α•X〈p〉 ⊂ α•X [p] ⊂ α•X〈2p − 1〉.
So we have βqX = ∪n∈N αqX〈n〉.

The following corollary of Theorem 2.1.5 shows that this finer filtration is also compatible
with the pull-back for the sheaf β•.

Corollary 2.2.3. For any holomorphic map f : X → Y between reduced complex spaces such
that f−1(S(Y )) has empty interior in X, the (graded) pull-back

f̂∗ : f∗(β•Y )→ β•X

is compatible with the graded filtrations α•〈p〉 of the graded sheaves β•.

proof. It is enough to check this compatibility property when X and Y are complex manifolds,
and this case is clear. �

In the case where X is normal we may improve Property (3) in Proposition 2.2.2 above.

Lemma 2.2.4. Assume that X is a normal complex space. Then βqX = αqX〈q − 1〉 for each
q ≥ 1.

Proof. Let us prove this lemma by induction on q ≥ 1. For q = 1 we have

α1
X〈1〉 = α1

X + α0
X .dα

0
X .

But the normality of X gives α0
X = OX , and as α1

X contains Ω1
X

/
torsion we obtain

α1
X〈1〉 = α1

X〈0〉 = α1
X

and Property (3) in Proposition 2.2.2 above implies β1
X = α1

X .
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Assume that the lemma is proved for q ≥ 1. Then

αq+1
X 〈q + 1〉 = αq+1

X 〈q〉+

q∑
r=0

αrX〈q〉 ∧ dα
q−r
X

and for r ∈ [1, q] we have αrX〈q〉 = αrX〈r − 1〉 by our induction hypothesis. So the term

r = 0 in the sum above is OX .dαqX ⊂ αq+1
X 〈q〉 and the term for r ≥ 1 is contained in

αrX〈q − 1〉 ∧ dαq−rX ⊂ αq+1
X 〈q〉; so the sum above is contained in αq+1

X 〈q〉 and this implies the

equality αq+1
X 〈q + 1〉 = αq+1

X 〈q〉. Then Lemma 2.2.5 below allows us to conclude. �

Our next simple lemma may help for computing the sheaf βqX .

Lemma 2.2.5. Assume that for an integer q0 we have αqX〈p + 1〉 = αqX〈p〉 for a given integer
p and for each q ∈ [0, q0]. Then βqX = αqX〈p〉 for each q ∈ [0, q0].

Of course this lemma is useful only when q0 is smaller that p. For instance, if

αpX = ΩpX
/
torsion for p ∈ [0, q − 1],

then this implies αqX〈1〉 = αqX and the lemma implies βqX = αqX .

Proof. By induction on q0 it is clear that we may assume that βqX = αqX〈p〉 for q ∈ [0, q0 − 1],
and it is enough to show that βq0X = αq0X 〈p〉. We have

αq0X 〈p+ 2〉 = αq0X 〈p+ 1〉+

q0−1∑
r=0

αrX〈p+ 1〉 ∧ dαq0−r−1X

= αq0X 〈p〉+

q0−1∑
r=0

αrX〈p〉 ∧ dα
q0−r−1
X = αq0X 〈p+ 1〉,

because αrX〈p+1〉 = αrX〈p〉 for r ∈ [0, q0−1] as βrX = αrX〈p〉. So we obtain that αq0X 〈n〉 = αq0X 〈p〉
for each n ≥ p and then βq0X = αq0X 〈p〉. �

Remark. It is not difficult to see that for each pair of integers p and q the sub-OX−module
αqX〈p〉 of LqX is generated by sections of the type

αq0X ∧ dα
q1
X ∧ · · · ∧ dα

qj
X for j ∈ [0, p],

where q1, . . . , qj ∈ [0, q − 1] and q0 + q1 + · · · + qj + j = q. When X is normal this gives the
equalities

β1
X = α1

X , β2
X = α2

X +OX .dα1
X , β3

X = α3
X + α1

X ∧ dα1
X +OX .dα2

X . . .

2.3. The product theorem.
Notation. Let X and Y be reduced complex spaces. Then if

p1 : X × Y → X and p2 : X × Y → Y

are the projections, for a sheaf F of OX−modules and a sheaf G of OY−modules, we define

F � G := p∗1(F)⊗OX×Y
p∗2(G).
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Theorem 2.3.1. Let X and Y be two reduced complex spaces. Then the sheaves α•X×Y and
β•X×Y are given by the following formulas:

α•X×Y = α•X � α•Y

β•X×Y = β•X � β•Y

as graded sheaves. Moreover we have

(F) α•X×Y 〈p〉 =

p∑
h=0

α•X〈h〉 � α•Y 〈p− h〉

as graded filtrations of the graded sheaf β•X×Y

Proof. The formula for the α−sheaves is an easy exercice using two desingularisations
σ : X̃ → X and τ : Ỹ → Y which are normalizing respectively for the sheaves Ω•X

/
torsion

and Ω•Y
/
torsion, as the product map σ × τ : X̃ × Ỹ → X × Y is a desingularisation of X × Y

which normalizes the sheaf Ω•X×Y .
We shall prove now Formula (F) which implies the formula for the β−sheaves, thanks to the

remark following Proposition 2.2.2.
We make an induction on p ≥ 0. The case p = 0 is already proved, so assume that Formula

(F) is proved for p. Then using the equality

OX×Y .dα•X×Y = OX .dα•X � α•Y + α•X �OY .dα•Y

we obtain:

α•X×Y 〈p+ 1〉 = α•X×Y 〈p〉+ α•X×Y 〈p〉 ∧ dα•X×Y

=

p∑
h=0

α•X〈h〉 � α•Y 〈p− h〉+
( p∑
h=0

α•X〈h〉 � α•Y 〈p− h〉
)
∧ d
(
α•X � α•Y

)
=

p∑
h=0

(
α•X〈h〉+ α•X〈h〉 ∧ dα•X

)
�
(
α•Y 〈p− h〉

)
+

p∑
h=0

(
α•X〈h〉) �

(
α•Y 〈p− h〉+ α•Y 〈p− h〉 ∧ dα•Y

)
=

p∑
h=0

α•X〈h+ 1〉 � α•Y 〈p− h〉+

p∑
h=0

α•X〈h〉 � α•Y 〈p− h+ 1〉

which gives Formula (F) for p+ 1. �

The following trivial corollary will be used in an example below.

Corollary 2.3.2. Let X be a reduced complex space. Consider on X×D a Lp+1 form ω∧f(z).dz
where D is a disc in C with coordinate z, f : D → C a holomorphic function on D which is
not identically zero, and where ω is a Lp−form on X. Then ω is a section of αpX if and only if

ω ∧ f(z).dz is a section of αp+1
X×D.
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3. Examples

3.1. The curve X := {x3 = y5} ⊂ C2.

Lemma 3.1.1. On the curve X := {x3 = y5} ⊂ C2 we have

α0
X = β0

X = L0
X = OX ⊕ C .y2/x⊕ C .y4/x2 ⊕ C .y3/x⊕ C .y4/x

ω0
X = L0

X +OX .y/x2

α1
X = Ω1

X ⊕ C .y2.dy/x⊕ C .y3.dy/x.
β1
X = α1

X〈1〉 = L1
X .

L1
X = Ω1

X ⊕ C .y.dy/x⊕ C .y3.dy/x2 ⊕ C .y2.dy/x⊕ C .y3.dy/x.
ω1
X = Ω1

X

/
torsion+OX .dy/x2.

Proof. Let ν : C→ X be the normalization given by

t ∈ C 7→ ν(t) := (t5, t3).

Then L0
X,0 = ν∗(C{t}) and we have

L0
X = OX ⊕ C .ν∗(t)⊕ C .ν∗(t2)⊕ C .ν∗(t4)⊕ C .ν∗(t7)

and the equalities

ν∗(t) = y2/x, ν∗(t
2) = y4/x2, ν∗(t

4) = y3/x, and ν∗(t
7) = y4/x.

The equality α0
X = L0

X is a consequence of the fact that the algebra C{t} is integral over the
sub-algebra C{t5, t3}.

The sheaf ω0
X is contained in (1/x2).OX thanks to Lemma 6.1.1 in [3] using the projection

C2 → C, (x, y) 7→ y which induced a proper finite map π : X → C surjective of degree 3. Then
using the characterization of the sheaf ωpX given in [1] Proposition 1, we see that 1/x 6∈ ω0

X

(and also 1/x2) because Traceπ[dx/x] = 5dy/y 6∈ Ω1
C. But y/x2 belongs to ω0

X because for any
f ∈ OX we have Traceπ[f.y/x2] ∈ OC and Traceπ[f.y.dx/x2] belongs to Ω1

C.
So, as for any reduced complex space X, L•X is a subsheaf of ω•X , we obtain that

ω0
X = L0

X +OX .y/x2.
The sheaf L1

X is, by definition, given by L1
X = ν∗(Ω

1
C).

As Ω1
X contains ν∗(t

2.dt) = dy/3, ν∗(t
4.dt) = dx/5, ν∗(t

5.dt) = y.dy/3, and ν∗(t
n.dt) for each

integer n ≥ 7 because

ν∗(t
7.dt) = y.dx/5, ν∗(t

8.dt) = y2.dy/3, ν∗(t
9.dt) = x.dx/5

and for n ≥ 10 we have ν∗(t
n.dt) = y.ν∗(t

n−3.dt), we conclude, as Ω1
X has no torsion, that

L1
X = Ω1

X ⊕ C .y.dy/x⊕ C .y3.dy/x2 ⊕ C .y2.dy/x⊕ C .y3.dy/x.

As it is clear that ν∗(dt), ν∗(t.dt) are not integral over Ω1
X and that(

y2.dy/x
)2

= 3dx.dy/5
(
y3.dy/x

)2
= 3y2.dx.dy/5

α1
X = Ω1

X ⊕ C .y2.dy/x⊕ C .y3.dy/x.
We know that β0

X = α0
X and that β1

X = α1
X〈1〉 by Proposition 2.1.6. The only “new” contribution

to α1
X〈1〉 comes from the sheaf α0

X .dα
0
X . As ν∗(t) is in α0

X = ν∗(OC), dα0
X contains ν∗(dt) and

so α1
X〈1〉 contains L1

X . Then β1
X = L1

X = ν∗(Ω
1
C).

The equality ω1
X = Ω1

X +OX .dy/x2 is already given by Lemma 6.1.1 in [3]. �
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3.2. The surfaces Sk. Consider the surfaces Sk := {(x, y, z) ∈ C3 / x.y = zk} for k an integer
at least equal to 2.

In the following lemma, we determine the sheaves α•Sk
and β•Sk

. We also correct Lemma 6.2.2
of [3] which is wrong for k ≥ 4.

Lemma 3.2.1. Let m := [k/2] be the integral part of k/2. Then we have

β1
Sk

= α1
Sk

= Ω1
Sk

/
torsion+OSk

.x.dy
/
zm

α2
Sk

= Ω2
Sk

/
torsion+OSk

.
dx ∧ dy
zm−1

β2
Sk

= α2
Sk
〈1〉 = Ω2

Sk

/
torsion+OSk

.
dx ∧ dy
zm

.

Proof. The first assertion is a consequence of the equality α1
M = β1

M for any normal complex
space which is proved in Proposition 2.1.6. The computation of α1

Sk
is an obvious consequence

of Lemma 6.2.3 in [3]. Note that the equalities

x.dy/zm + y.dx/zm = k.zk−m−1.dz and (x.dy/zm).(y.dx/zm) = zk−2m.(dx).(dy)

give the integral dependance relation of x.dy/zm on S•(Ω1
Sk

/
torsion).

Let us now prove the second assertion.

We remark first that we have on Sk the relations

x.dx ∧ dy = k.zk−1.dx ∧ dz y.dx ∧ dy = k.zk−1.dz ∧ dy

and using the equality x.y = zk this implies

dx ∧ dy = k.y.dx ∧ dz/z = −k.x.dy ∧ dz/z.

Dividing by zm−1 this gives(dx ∧ dy
zm−1

)2
= −k2.zk−2m.(dx ∧ dz).(dy ∧ dz) in S2(Ω2

Sk

/
torsion).

This proves that dx ∧ dy/zm−1 is a section of the sheaf α2
Sk

.

We want to prove now that the meromorphic form

dx ∧ dy
zm

= k.y.
dx ∧ dz
zm+1

= −k.x.dy ∧ dz
zm+1

which corresponds to k2.(a.b)k−m.da ∧ db via the quotient map

qk : C2 → Sk (a, b) 7→ (x = ak, y = bk, z = a.b)

is not in α2
Sk

.

As the fiber F0 of the sheaf F := q−1k (Ω2
Sk

/
torsion) at 0 is the C{ak, bk, a.b}−submodule of

C{ak, bk, a.b}.da ∧ db generated by ak.da ∧ db, bk.da ∧ db, (a.b)k−1.da ∧ db, we have to show that
(a.b)k−m−1.da ∧ db is not integral on F0. This an easy consequence of the fact that for q < k/2
there is no positive constant C such that for a > 0 and b > 0 small enough we have the inequality
(a.b)q ≤ C.(ak + bk).

Note that Lemma 6.1.1 in [3] gives us that the sheaf L2
Sk

is equal to

Ω2
Sk

/
torsion+OSk

.dx ∧ dy
/
zk−1,

so the second assertion is proved.
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To prove the last assertion we remark first that the form d(x.dy
/
zm) is in α2

Sk
〈1〉 = β2

Sk
(this

last equality is proved in Lemma 2.2.4 as Sk is normal). But we have on Sk, using the equality
[(k − 1)/2] + [k/2] = k − 1:

y.dx+ x.dy = k.zk−1.dz so

x.dy ∧ dx = k.zk−1.dz ∧ dx and then

dy ∧ dx
zm

= k.y.
dz ∧ dx
zm+1

This gives d(x.dy
/
zm) = (1−m/k).dx ∧ dy

/
zm.

So the inclusion of Ω2
Sk

/
torsion+OSk

.dx∧dy
/
zm in β2

Sk
is proved. The equality α2

Sk
〈1〉 = β2

Sk

easily implies the equality in the previous inclusion, as we have the inclusion α1
Sk
∧ α1

Sk
⊂ α2

Sk

and α0
Sk
.d(α1

Sk
) ⊂ Ω2

Sk

/
torsion+OSk

.dx∧dyzm thanks to the computation above. �

So for k ≥ 4 we have strict inclusions between Ω2
Sk

/
torsion, α2

Sk
, β2
Sk

and L2
Sk

= ω2
Sk

.

3.3. Mk := {x.y = uk.v}. Let m := [k/2] be the integral part of the integer k ≥ 1.

Lemma 3.3.1. The meromorphic 1−form ωm := x.dy/um belongs to α1
Mk

but for k ≥ 2 the

differential dωm is not in α2
Mk

.

Proof. We have

x.dy/um + y.dx/um = d(xy)/um = d(ukv)/um = k.uk−1−mv.du+ uk−m.dv and(
x.dy/um

)
.
(
y.dx/um

)
= x.y.(dx).(dy)/u2m = uk−2m.v.(dx).(dy)

so ωm satisfies the following integral dependance relation on Ω1
M

/
torsion

(2) ω2
m − (k.uk−m−1.v.du+ uk−m.dv).ωm + uk−2m.v.(dx).(dy) = 0.

Now we have

dωm =
dx ∧ dy
um

−m.x.du ∧ dy
um+1

.

But now we restrict this 2−form to the surface Sk := {v = 1}∩Mk which cuts the 1−dimensional
singular set {x = y = u = 0} of Mk only at the point x = y = u = 0 and v = 1, and we find, as
we have on this surface x.dy + y.dx = k.uk−1.du which implies y.dx ∧ dy = k.uk−1.du ∧ dy and
then u.dx ∧ dy = k.x.du ∧ dy,

(dωm)|{v=1} = (1−m/k).dx ∧ dy/um

which is not in α2
Sk

for k ≥ 2 (see Lemma 3.2.1). So dωm is not in α2
Mk

thanks to Theorem 2.1.5.�

Lemma 3.3.2. The 2−form w := ωm ∧ dv belongs to α2
Mk

but dw is not in α3
Mk

for k ≥ 2.

Proof. The first assertion is obvious using the previous lemma as α•Mk
is stable by wedge

products and contains Ω•Mk

/
torsion.

To prove the second assertion consider the following holomorphic map

π : Sk × C→Mk, ((x, y, u)), v) 7→ (x.v, y, u, v).

Then π∗(dw) = dx∧dy∧dv/um−m.x.du∧dy∧dv/um+1. Using Corollary 2.3.2 of Theorem 2.3.1
and the fact that we have on Sk × C

π∗(dw) = v.dv ∧
(
(k −m).x.du ∧ dy/um+1

)
we conclude that π∗(dw) is not a section of α3

Sk×C, concluding the proof. �
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Corollary 3.3.3. For k ≥ 4 we have on Mk

Ω1
Mk

/
torsion ⊂ α1

Mk
= β1

Mk
⊂ L1

Mk

Ω2
Mk

/
torsion ⊂ α2

Mk
⊂ β2

Mk
⊂ L2

Mk

Ω3
Mk

/
torsion ⊂ α3

Mk
⊂ β3

Mk
⊂ L3

Mk

where all inclusions are strict.

We leave to the reader the easy proof using the previous computations. �

3.4. Fermat surfaces. In the previous example we use, for instance, the fact that a holomorphic
map f : Sk → X allows us to show that a section of the sheaf L•X is not a section of α•X or β•X .
We shall illustrate now on Fermat surfaces

Fn := {(a, b, z) ∈ C3 / an − bn = zn}
for n ≥ 3, the fact that holomorphic maps f : Fn → Sn help to give some non-trivial2 sections
in α•Fn

and β•Fn
.

Let ζ := exp(2iπ/n) and define for q ∈ [0, n− 1] the holomorphic map

fq : Fn → Sn defined by fq(a, b, z) := (a− ζq.b, ηq, z) where ηq := (an − bn)/(a− ζq.b).
Then, thanks to Lemma 3.2.1 and the pull-back theorem for α• and β• sheaves, we obtain that
for each q ∈ [0, n− 1] with m := [n/2]:

f̂q
∗
(y.dx/zm) = ηq.d(a− ζq.b)/zm = zn−m.

d(a− ζq.b)
(a− ζq.b)

belongs to α1
Fn

f̂q
∗
(dy ∧ dx/zm−1) = dηq ∧ d(a− ζq.b)/zm−1) = n.zn−m.dz ∧ d(a− ζq.b)

(a− ζq.b)
belongs to α2

Fn

f̂q
∗
(dy ∧ dx/zm) = dηq ∧ d(a− ζq.b)/zm) = n.zn−m−1.dz ∧ d(a− ζq.b)

(a− ζq.b)
belongs to β2

Fn
.

We remark that the degrees of homogeneity in (a, b, z) of the forms above are equal to n−m+ 1
or n − m; this will also be the case if n = 2m and if we use the map g : Fn → Sn given by
g(a, b, z) =

(
(a2 − b2), (an − bn)/(a2 − b2), z

)
to pull-back forms.

The following lemma shows that we cannot find all sections in α2
Fn

by this method.

Lemma 3.4.1. For n = 2m ≥ 4 the form (a.b)m.da ∧ db/z2m−1 is a section of α2
F2m

.

For n = 2m+ 1 ≥ 3 the form (a.b)m.da ∧ db/z2m is a section of α2
F2m+1

.

Moreover, for n ≥ 8, these forms are not in the OFn−submodule generated by holomorphic
forms and by the pull-backs of sections of α2

Sn
by the holomorphic maps fq, for q ∈ [0, n − 1],

described above.

Proof. On Fn we have the equalities

an−1.da ∧ db = zn−1.dz ∧ db and

bn−1.da ∧ db = zn−1.dz ∧ da
so we have

(dz ∧ da).(dz ∧ db) =
(a.b)n−1.(da ∧ db)2

z2n−2

2For instance, if n = 4, we shall obtain that d(a2 − b2)∧ d(a2 + b2)/z2 = 8a.b.da∧ db/z2 is in β2
F4

. This form

is homogeneous of degree 2 and even in a, b and z and there is no section in Ω2
F4

with these two properties.
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which implies (
(a.b)m.da ∧ db

z2m−1

)2

= a.b.(dz ∧ da).(dz ∧ db) for n = 2m

and (
(a.b)m.da ∧ db

z2m

)2

= (dz ∧ da).(dz ∧ db) for n = 2m+ 1.

Note that the forms (a.b)m.da∧db
z2m−1 and (a.b)m.da∧db

z2m have degrees of homogeneity 3 and 2 in (a, b, z)
respectively which are strictly smaller than m for n ≥ 8.

To see that these forms are not holomorphic is then a simple exercise using the homogeneity
on Fn (the list of holomorphic 2−forms homogeneous of degree 2 or 3 is quite short!); we leave
it to the reader. �

Remark. For n = 2m the form (a.b)m−1.da ∧ db/zm is also a section of β2
F2m

. To see that

(a.b)m−1.da ∧ db/zm is a section of β2
F2m

consider the map

f : F2m → S2m given by f(a, b, z) = (am − bm, am + bm, z)

and compute the pull back of the form dx ∧ dy/zm which is a section of β2
S2m

.
This shows that we may use more holomorphic maps from Fn to Sn. But as long as they

respect homogeneity, they will not produce the sections given in the previous lemma.
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