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ABSTRACT. In this work we prove a Brunella–Khanedani–Suwa variational type residue theorem for cur-
rents invariant by holomorphic foliations. As a consequence, we provide conditions for the accumulation of
the leaves to the intersection of the singular set of a holomorphic foliation with the support of an invariant
current.

1. INTRODUCTION

In [20] B. Khanedani and T. Suwa introduced an index for singular holomorphic foliations on com-
plex compact surfaces called the Variational index. In [22] D. Lehmann and T. Suwa generalized the
variational index for higher dimensional holomorphic foliations. In particular, they showed that if V is
an m-dimensional complex subvariety invariant by a holomorphic foliation F of dimension k ≥ 1 on an
n-dimensional complex compact manifold X , then

cm−k+1
1 (det(NF ∗)) · [V ] = (−1)m−k+1

∑
λ

Rescm−k+1
1

(F ;Sλ),

where Sλ is a connected component of S(F , V ) := (Sing(F ) ∩ V ) ∪ Sing(V ) (here Sing(F ) and
Sing(V ) denotes the singular set of F and V respectively), [V ] is the integration current of V and NF ∗

is the conormal sheaf of F . In the case such that X is a complex surface and S(F , V ) is an isolated set,
then for each p ∈ S(F , V )

−Resc1(F ; p) = Var(F , V, p),

where Var(F , V, p) denotes the Variational index of F along V at p as defined by Khanedani and Suwa
in [20].

M. Brunella in [1] studied the Khanedani–Suwa variational index and its relations with GSV and
Camacho–Sad indices. See also [25, II, Proposition 1.2.1].

In [25] M. McQuillan, in his proof of the Green-Griffiths conjecture (for a projective surface X with
c21(X) > c2(X) ), showed that if X is a complex surface of general type and F is a holomorphic
foliation on X , then F has no entire leaf which is Zariski dense. See [14, 26, 18, 15] for more details
about the Green-Griffiths conjecture and generalizations. M. Brunella in [2] provided an alternative proof
of McQuillan’s result by showing that the following non-positivity result holds: if [Tf ] is the Ahlfors
current associated to a Zariski dense entire curve f : C→ X which is tangent to F , then

c1(NF ∗) · [Tf ] =
∑

p∈Sing(F)∩Supp(Tf )

1

2πi
[Tf ](χUpd(φpβp)) ≤ 0,
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where χUp denotes the characteristc function of a neighborhood Up of p ∈ Sing(F ) ∩ Supp(Tf ), see
section 3 for more details.

To continue we consider a singular holomorphic foliation F , of dimension k ≥ 1, on a compact
complex manifold X of dimension at least two. We recall that a positive closed current T in X is
invariant by F if T|F ≡ 0, that is, T (η) = 0 for every test form η vanishing along the leaves of F , so
that T (η) depends only on the restriction of η to the leaves.

In [3] M. Brunella proved a more general variational index type Theorem for positive closed currents
of bidimension (1, 1) which are invariant by one-dimensional holomorphic foliations, with isolated sin-
gularities, on compact complex manifolds. More precisely, he showed that if T is an invariant positive
closed current of bidimension (1, 1), then

c1(det(NF ∗)) · [T ] =
∑

p∈Sing(F)∩Supp(T )

1

2πi
[T ](χUpd(φpβp)).

Compare this formula with the so called asymptotic Chern class of a foliation on complex surfaces intro-
duced in [7]. Moreover, Brunella showed in the same work that a generic one-dimensional holomorphic
foliation on complex projective spaces has no invariant measure. In [19, Corollary 1.2] L. Kaufmann
showed that there is no diffuse foliated cycle directed by embedded Lipschitz laminations of dimension
k ≥ n/2 on Pn.

We denote the class of a closed current T of bidimension (p, p) in the cohomology groupHn−p,n−p(X)

by [T ]. In order to provide a generalization of the above results, we define the residue of F relative to T
along a connected component of the singular set of F , (see Def. 3.1 in Sect. 3.). In this work we prove
the following result.

Theorem 1.1. Let F be a holomorphic foliation of dimension k ≥ 1, on a compact complex manifold
X , of dimension n, with dim(Sing(F )) ≤ k − 1. Write

⋃
λ

Zλ ⊂ Sing(F ), a decomposition of the

components of dimension k− 1 into connected components and let Uλ be a regular neighborhood of Zλ.
For p ≥ k, if T is a positive closed current of bidimension (p, p) invariant by F , then

cp−k+1
1 (det(NF ∗)) · [T ] =

∑
Zλ⊂Supp(T )∩Sing(F)

Res(F , T, Zλ).

A compact non-empty subsetM ⊂ X is said to be a minimal set for F if the following properties
are satisfied

(i) M is invariant by F ;
(ii) M∩ Sing(F ) = ∅;

(iii) M is minimal with respect to these properties.

The problem of existence of minimal sets for codimension one holomorphic foliations on Pn was
considered by Camacho–Lins Neto–Sad in [7]. To our knowledge, this problem remains open for n = 2.
If F is a codimension one holomorphic foliation on Pn, with n ≥ 3, Lins Neto [23] proved that F has
no minimal sets.

M. Brunella stated in [4] the following conjecture:

Conjecture. Let X be a compact connected complex manifold of dimension n ≥ 3, and let F be a
codimension one holomorphic foliation onX such thatNF is ample. Then every leaf of F accumulates
to Sing(F ).
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In [5], M. Brunella and C. Perrone proved the above Conjecture for codimension-one holomorphic
foliations on projective manifolds with cyclic Picard group. In [9] the natural conjecture has been stated:

Conjecture (Generalized Brunella’s conjecture). Let X be a compact connected complex manifold of
dimension n ≥ 3, and let F be a holomorphic foliation of codimension r < n on X such that det(NF )

is ample. Then every leaf of F accumulates to Sing(F ), provided n ≥ 2r + 1.

The main result in [9] suggests that the property of accumulation of the leaves of a foliation F to its
singular set (or nonexistence of minimal sets of F ) depends on the existence of strongly q-convex spaces
which contains the singularities of F . In [7] was proved that there is no invariant measure with support
on a nontrivial minimal set of a foliation on P2. We observe that in Pn we have that det(NF ) is ample
for every foliation F . The following Corollary 1.2 generalize the result in [7, Theorem 2].

Corollary 1.2. Let F be a holomorphic foliation, of dimension k ≥ 1, on a projective manifold X such
that dim(Sing(F )) ≤ k − 1 and det(NF ) is ample. Suppose that hn−p,n−p(X) = 1, for some p ≥ k.
If T is a positive closed current of bidimension (p, p) invariant by F , then Supp(T ) ∩ Sing(F ) 6= ∅. In
particular, there is no invariant positive closed current of bidimension (p, p) with support on a nontrivial
minimal set of F .

Compare Corollary 1.2 with [19, Corollary 5.5]. Since hn−p,n−p(Pn) = 1, this result holds for
foliations on Pn, in particular if V ⊂ Pn is an F -invariant complex subvariety, then V ∩ Sing(F ) 6= ∅.
This is the Esteves–Kleiman result [17, Proposition 3.4, pp. 12].

We can also apply Theorem 1.1 to Ahlfors’ currents associated to f : Ck → X , a holomorphic map
of generic maximal rank, which is a leaf of the foliation F . To see this fix a Kähler form ω on X . On
Ck we take the homogeneous metric form

ω0 := ddc ln |z|2,

and denote by
σ = dc ln |z|2 ∧ ωk−1

0

the Poincaré form. Consider η ∈ A1,1(X) and for any r > 0 define

Tf,r(η) =

∫ r

0

dt

t

∫
Bt

f∗η ∧ ωk−1
0 ,

where Bt ⊂ Ck is the ball of radius t. Then we consider the positive currents Φr ∈ A1,1(X)′ defined by

Φr(η) :=
Tf,r(η)

Tf,r(ω)
.

This gives a family of positive currents of bounded mass from which we can extract a subsequence Φrn
which converges to a current [Tf ] ∈ A1,1(X)′ called an Ahlfors’ current of f , see [18, Claim 2.1].

This construction has been generalized in [6] by Burns–Sibony and [16] by De Thélin. In order to
associate to f : Ck → X positive closed currents of any bidimension (s, s), 1 ≤ s ≤ k (also called
Ahlfors’ currents) certain extra technical conditions are necessary, which we will not consider in this
paper.

We obtain another consequence of Theorem 1.1 as follows:

Corollary 1.3. Let F be a holomorphic foliation, of dimension k ≥ 1, on a projective manifold X such
that dim(Sing(F )) ≤ k− 1 and det(NF ) is ample. Let f : Ck → X be a holomorphic map of generic
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maximal rank which is a leaf of the foliation. Suppose that hn−p,n−p(X) = 1, for some p ≥ k, and that
there exist an Ahlfors’ current of bidimension (p, p) associated to f . Then f(Ck) ∩ Sing(F ) 6= ∅.

Acknowledgments. MC was partially supported by the CNPQ grants number 202374/2018-1,
302075/2015-1, and 400821/2016-8, CAPES and FAPEMIG. A. F-P was partially supported by CNPq
grant number 427388/2016-3 and 302790/2019-5. MS was partially supported by CNPq. The authors
also thank the anonymous referees for giving many suggestions that helped improving the presentation
of the paper.

2. SINGULAR HOLOMORPHIC FOLIATIONS

Let X be a connected compact complex manifold of dimension n. A holomorphic distribution
F of dimension k on X is a nonzero coherent subsheaf TF ( TX of generic rank k such that
TX/TF := NF is torsion free. We have an exact sequence of sheaves

(2.1) 0 −→ TF −→ TX −→ NF −→ 0.

The sheaves TF and NF are called the tangent and the normal sheaves of F , respectively. The
codimension of F is the generic rank of NF which is equal to n− k. The singular locus of F is

(2.2) Sing(F ) = {p ∈ X : (NF )p , is not a free Op −module}.

Condition NF to be torsion free implies codim(Sing(F )) ≥ 2. The sheaf NF ∗ is called the conormal
sheaf of the the distribution F .

Now, by taking the double dual of the (n− k)-th wedge product of the inclusion

NF ∗ −→ Ω1
X

we get a map
(∧n−kNF ∗)∗∗ −→ Ωn−kX .

Since NF and NF ∗ are torsion-free, it follows from [21, Proposition 5.6.10] and [21, Proposition
5.6.12] that (∧n−kNF ∗)∗∗ ' det(NF ∗) ' det(NF )∗. This gives rise to a nonzero twisted holomor-
phic (n − k)-form ω ∈ H0(X,Ωn−kX ⊗ det(NF )∗∗) ' H0(X,Ωn−kX ⊗ det(NF )), which is locally
decomposable outside Sing(F ). To say that ω ∈ H0(X,Ωn−kX ⊗ det(NF )) is locally decomposable
outside Sing(F ) means that, in a neighborhood U of all point p ∈ X \ Sing(F ), ω decomposes as the
wedge product of n− k local 1-forms ω|U = ω1 ∧ · · · ∧ ωn−k.

We say that a codimension n − k distribution F is a foliation if the induced twisted holomorphic
(n− k)-form ω ∈ H0(X,Ωn−kX ⊗ det(NF )) is integrable. To say that it is integrable means that for all
local decomposition ω on p ∈ X \Sing(F ) one has dωj ∧ω = 0 for 1 ≤ j ≤ n−k. In terms of sheaves,
the integrability condition is equivalent to dNF ∗|U ⊂ NF ∗|U ∧ Ω1

U , where U := X \ Sing(F ). By
the exact sequence (2.1) and from [21, Proposition 5.6.9] we have the following adjunction formula

KX = KF ⊗ det(NF )∗,

where KF = det(TF )∗ denotes the canonical bundle of F . For more details on singular holomorphic
distributions and foliations see [10, 13, 17, 27].

2.1. Holomorphic foliations on complex projective spaces. Let ω ∈ H0(Pn,Ωn−kPn (m)) be the twisted
(n− k)-form induced by a holomorphic foliation F of dimension k on Pn.
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Take a generic non-invariant linearly embedded subspace i : L ' Pn−k ↪→ Pn. We have an induced
non-trivial section

i∗ω ∈ H0(L,Ωn−kL (m)) ' H0(Pn−k,OPn−k(k − n− 1 +m)),

since Ωn−kPn−k = OPn−k(k − n− 1) . The degree of F is defined by

deg(F ) := deg(Z(i∗ω)) = k − n− 1 +m.

In particular, ω ∈ H0(Pn,ΩkPn(deg(F ) +n− k+ 1)). That is, det(NF ) = OPn(deg(F ) +n− k+ 1)

is ample.
A holomorphic foliation, of degree d, can be induced by a polynomial (n − k)-form on Cn+1 with

homogeneous coefficients of degree d+ 1, see for instance [12, 13].

3. THE VARIATIONAL RESIDUE AND PROOF OF THEOREM 1.1

From section 2, a holomorphic foliation of dimension k is given by a twisted integrable holomorphic
(n− k)-form ω ∈ H0(X,Ωn−kX ⊗ det(NF )) which is equivalent to giving a family ({Vµ}, {ωµ})µ∈Λ,
where V = {Vµ}µ∈Λ is an open cover of X by Stein open sets, ωµ is an integrable holomorphic (n− k)-
form defined in Vµ and locally decomposable in Vµ \Sing(F ). That is, for each p ∈ Vµ, there is an open
neighborhood Vp ⊂ Vµ of p such that

ωµ|Vp = ωµ1 ∧ · · · ∧ ω
µ
n−k,

where ωµj is a holomorphic 1-form and dωµj ∧ ωµ = 0 for 1 ≤ j ≤ n− k.
The integrability condition tells us that, in Vµ \ Sing(F ), there is a C∞ 1-form αµ satisfying:

(i) dωµ = αµ ∧ ωµ, for all µ ∈ Λ. αµ is not unique, but its restriction to the leaves of F is, pro-
vided ωµ is fixed.

(ii) αµ is of type (1, 0) since ωµ is holomorphic and αµ|F is holomorphic. This last fact follows from:
if we assume that around a regular point the foliation F is generated by ∂/∂zi, i = 1, . . . , k, then
ι∂/∂zi(dωµ) =

(
ι∂/∂ziαµ

)
ωµ. In particular, if k = 1 then αµ|F is closed and dαµ|F = 0.

In the overlapping Vµν we have ωµ = fµνων , with fµν ∈ O∗(Vµν) and the cocycle {fµν}µ,ν∈Λ de-
termines the line bundle det(NF ). Hence

(3.1)
(
αµ − αν −

dfµν
fµν

)
∧ ωµ = 0.

This shows that αµ − αν −
dfµν
fµν

is a C∞ local section of the conormal bundle NF ∗ of the regular

foliation F|X\Sing(F).
By fixing a small neighbourhood U of Sing(F ) and we can regularize each αν on U , i.e. we choose

a smooth (1, 0)-form α̃ν on Vν coinciding with αν outside of Vν ∩ U . More precisely, we can define
α̃ν = ϕναν , where ϕν : U −→ R is a C∞ function satisfying 0 < ϕν ≤ 1 in U \ Sing(F ) and ϕν = 1

in U \ (Vν ∩ U). Then the smooth (1, 0)-forms

γµν =
dfµν
fµν
− α̃ν + α̃µ
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vanish on F outside of U . The cocycle γµν can be trivialized, i.e, γµν = γ̃µ − γ̃ν , where γ̃µ is a smooth
(1, 0)-form on Vµ vanishing on F outside of Vµ ∩ U . Hence, by setting βµ = α̃ν + γ̃ν we get

(3.2) βµ = βν +
dfµν
fµν

, dβµ = dβν in Vµν , dωµ = βµ ∧ ωµ and dβµ ∧ ωµ = 0 outside of Vν ∩ U.

By the second equality in 3.2, the 2-forms {dβµ} piece together and we have a global C∞ 2-form on X
which we denote by dβ and from

dfµν
fµν

= βν − βµ

we conclude that 2-form 1
2πid(β) represents c1(detN(F )), since {fµν}µ,ν∈Λ is a cocycle of det(NF ).

Therefore, the 2-form 1
2πid(−β) represents c1(detNF ∗).

We shall briefly digress on the geometric meaning of this smooth 2-form 1
2πid(β) (see [8] 6.2.4): the

first equality in 3.2 tells us that the 1-forms {βµ} behave as connection matrices of det(NF ), in Vµ,
for some connection. In this case it is natural to consider the basic connections (in the sense of Bott, see
[11]).

Fix a C∞ decomposition

TX|X\Sing(F) = (NF ⊕ TF )|X\Sing(F),

whereNF and TF are the normal and tangent bundles, respectively, of the regular foliation F|X\Sing(F).
Let Vµ be the domain of a local trivialization of NF and {vµ1 , . . . , v

µ
n−k} be a local frame for NF|Vµ

such that ωµ(vµ1 , . . . , v
µ
n−k) ≡ 1. For a suitable basic connection∇ and ζ any section of TF|Vµ , we have

that
βµ(ζ) = tr(θµ)(ζ)

if, and only if, dωµ = βµ ∧ ωµ, where θµ is the connection matrix in Vµ of ∇ relative to the frame
{vµ1 , . . . , v

µ
n−k}. In particular, the 1-forms {βµ} piece together to give a well defined global form β on

X \Sing(F ). It follows that 1
2πidβ = tr(K∇) = c1(K∇) whereK∇ = {Kµ

∇}µ∈Λ is the curvature form
of∇ and the class 1

2πidβ = c1(NF ) = −c1(detNF ∗).
Before defining the residue let’s recall the concept of tubular neighborhood of an analytic set in our

context (see [24]).
Let F be a singular foliation of dimension k ≥ 1 on X , as above, and consider

Sing(F ) =
⋃
λ

Zλ

a decomposition of its singular locus into connected components. Take a Whitney stratification Sλ of Zλ
and let Wλ be any open set containing Zλ. By the proof of Proposition 7.1 of [24], we can construct a
family of tubular neighborhoods {TSλ,ρSλ}, with |TSλ,ρSλ | ⊂ Wλ, πSλ : |TSλ,ρSλ | −→ Sλ the projec-
tion and ρSλ the tubular (or distance) function, for each stratum Sλ of Sλ, satisfying the commutation
relations which give control data for Sλ: if Sλ and S′λ are strata with Sλ < S′λ then{

πSλ ◦ πS′λ(p) = πSλ(p)

ρSλ ◦ πS′λ(p) = ρSλ(p).

This allows for the construction of an open set Uλ such that Zλ ⊂ Uλ ⊂ Wλ ⊂ X , Uλ is a (real) C0

manifold of dimension 2n with boundary ∂Uλ, which we call a regular neighborhood of Zλ. By shrink-
ing Wλ, we may assume Uλ ∩ Uλ̃ = ∅ for λ 6= λ̃. We call {Uλ}λ∈L a system of regular neighborhoods
of Sing(F ). Also, each Zλ =

∐
i=1,...,m S

i
λ (disjoint union), where the Siλ are the strata of Sλ. Each Siλ
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is a complex manifold and consider the Siλ which have maximum dimension. The union of these strata
is precisely the regular part Z∗λ of Zλ. A volume element υ

Zλ
of Zλ is a volume element of Z∗λ.

Definition 3.1. Let F be a singular foliation of dimension k ≥ 1, as above, and consider⋃
λ

Zλ ⊂ Sing(F )

a decomposition of the components of dimension k − 1 into connected components. For p ≥ k, suppose
T is a positive closed current of bidimension (p, p) which is invariant by F . The residue of F relative
to T along Zλ is

Res(F , T, Zλ) =

(
1

2πi

)p−k+1 T
(
χ
Zλ
d(−β)p−k+1 ∧ υ

Zλ

)
vol(Zλ)

· [Zλ],

where χ
Zλ

denotes the characteristic function, υ
Zλ

is a volume element of Zλ.

Now we are able to prove the
Theorem 1.1. Let F be a holomorphic foliation of dimension k on a complex compact manifold X with
dim(Sing(F )) ≤ k − 1. Write

⋃
λ

Zλ ⊂ Sing(F ), a decomposition of the components of dimension

k − 1 into connected components and let Uλ be a regular neighborhood of Zλ. For p ≥ k, if T is a
positive closed current of bidimension (p, p) invariant by F then,

cp−k+1
1 (det(NF ∗)) · [T ] =

∑
Zλ⊂Supp(T )∩Sing(F)

Res(F , T, Zλ).

Proof. In order to show geometrically that

cp−k+1
1 (det(NF ∗)) · [T ]

localizes at Supp(T ) ∩ Sing(F ) we will use the concept of regular neighborhood.
Let {Uλ}λ∈L be a system of regular neighborhoods of Sing(F ). Since outside Uλ we have that

dβ|F = 0 in X \ Sing(F ) and T is F -invariant, we get

T
(
χ
Zλ
d(−β)p−k+1

)
= 0

in X \ Uλ. By squeezing Uλ via the tubular functions used to construct it, we conclude that

SuppT
(
χ
Zλ
d(−β)p−k+1

)
⊆ Zλ

which gives (
1

2πi

)p−k+1

T
(
χ
Zλ
d(−β)p−k+1

)
= µ

Zλ
[Zλ]

for some µ
Zλ
∈ C. Now, since(

1

2πi

)p−k+1

T
(
χ
Zλ
d(−β)p−k+1 ∧ υ

Zλ

)
= µ

Zλ
[Zλ] (υ

Zλ
),
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[Zλ] (υ
Zλ

) = vol(Zλ) and 1
2πid(−β) represents c1(detNF ∗) we have that

cp−k+1
1 (det(NF ∗)) · [T ] = T

((
1

2πi

)p−k+1

d(−β)p−k+1

)

=
∑

Zλ⊂Supp(T )∩Sing(F)

(
1

2πi

)p−k+1

T
(
χ
Zλ
d(−β)p−k+1

)

=
∑

Zλ⊂Supp(T )∩Sing(F)

Res(F , T, Zλ).

�

Remark. The reason for taking the (p − k + 1)-th power of c1(det(NF ∗)) is because the current
cp−k+1
1 (det(NF ∗)) · [T ] has compact support in the components of dimension k − 1 of the singular set

of the foliation F , i.e, it is a current of bidimension (k − 1, k − 1).

3.1. Proof of Corollaries 1.2 and 1.3. It is enough to prove the Corollary 1.2. The result is a straightfor-
ward consequence of Theorem 1.1. In fact, suppose by contradiction that T is a closed positive current of
bidimension (p, p) invariant by F and that Supp(T )∩Sing(F ) = ∅. Then, it follows from Theorem 1.1
that

cp−k+1
1 (det(NF ∗)) · [T ] = 0.

Since hn−p,n−p(X) = 1 and det(NF ∗) is ample, then [T ] = b · cn−p1 (det(NF )) ∈ Hn−p,n−p(X), for
some b > 0. Therefore, we have

cp−k+1
1 (det(NF ∗)) · [T ] = (−1)p−k+1b · cn−k+1

1 (det(NF )) 6= 0.

This is a contradiction.
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