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HARD LEFSCHETZ PROPERTIES AND DISTRIBUTION OF SPECTRA IN

SINGULARITY THEORY AND EHRHART THEORY

ANTOINE DOUAI

Abstract. Motivated by the distribution of spectra in singularity theory and combinatorics,
we study a hard Lefschetz property for Laurent polynomials and for polytopes and we give

combinatorial criteria for this property to be true. We also discuss applications to a conjecture

of Katzarkov-Kontsevich-Pantev.

1. Introduction

Let P be a lattice polytope in Rn (the convex hull of a finite set in N := Zn). Define, for
a positive integer `, LP (`) := Card((`P ) ∩ N). Then LP is a polynomial in ` of degree n, the
Ehrhart polynomial of P and

(1) 1 +
∑
m≥1

LP (m)zm =
δ0 + δ1z + . . .+ δnz

n

(1− z)n+1

where the δj ’s are nonnegative integers. The vector δP = (δ0, . . . , δn) is called the δ-vector of the
polytope P . The first result in the study of the distribution of the δ-vector is probably Hibi’s
symmetry property δi = δn−i for i = 1, . . . , n, which is actually a characterization of reflexive
polytopes [11]. The second one concerns the unimodality of the δ-vector of a reflexive polytope:
taking into account the previous symmetry property, one could expect δ0 ≤ δ1 ≤ . . . ≤ δ[n/2]

and δ[n/2] ≥ δ[n/2]+1 ≥ . . . ≥ δn. This is indeed what happens in dimension less than or equal
to five [10], but this unimodality may fail in dimension greater than or equal to six, see for
instance [20, Example 3.4], [15], [16]. On the other hand, singularity theory meets Ehrhart
theory by the means of the δ-vector: the spectrum at infinity of a tame Laurent polynomial
determines the δ-vector of its Newton polytope and both coincide if the latter is reflexive [5].
This interplay encourages us also to study the unimodality (and more generally, the distribution)
of the spectrum at infinity of a regular function.

Classically, unimodality can be seen as a combinatorial application of the hard Lefschetz
theorem (see [19] for instance where it is shown that the Poincaré polynomial of a smooth
complex projective variety is unimodal) and we are naturally led to study a hard Lefschetz
property for regular functions (singularity side) and for polytopes (Ehrhart theory side). On
the singularity side, the hard Lefschetz property for a Laurent polynomial f is provided by
the multiplication by f on a graded Jacobi ring. The hard Lefschetz property for a simplicial
polytope P is provided by the hard Lefschetz property for the orbifold cohomology of the orbifold
associated with P by the work of Borisov, Chen and Smith [2]. Both are related by a mirror
theorem. This is detailed in Section 3, where we also give a combinatorial criterion for these
hard Lefschetz properties to be satisfied: let P be a full dimensional, simplicial, lattice polytope
in Rn containing the origin as an interior point and let ΣP be the fan over the proper faces of

2010 Mathematics Subject Classification. 52B20, 32S40, 14J33.
Key words and phrases. toric varieties, hard Lefschetz properties, spectrum of regular functions and polytopes,

mirror theorem, orbifold cohomology, distribution of spectral numbers.

http://dx.doi.org/10.5427/jsing.2021.23g


HARD LEFSCHETZ PROPERTIES AND DISTRIBUTION OF SPECTRA 117

P . For an n-dimensional cone σ ∈ ΣP , let Box(σ) be the set of v ∈ N such that v =
∑
ρi⊆σ qibi

for some 0 ≤ qi < 1, where ρi denotes the ray generated by the vertex bi of P . We have the
following generalization of [8, Proposition 4.1] (see Proposition 3.8):

Theorem 1.1. The polytope P satisfies the hard Lefschetz property if and only if

[ν(v)] = (dimσ(v)− 1)/2 if ν(v) /∈ N

and

ν(v) = dimσ(v)/2 if ν(v) ∈ N
for all v ∈ ∪σ Box(σ) (the union is taken over all the n-dimensional cones of ΣP ), where σ(v)
denotes the smallest cone of ΣP containing v and ν is the Newton function of P .

When applied to a reduced simplex ∆, this criterion reduces to an arithmetic condition on its
weight, see Proposition 4.1 (the weight of a simplex ∆ := conv(v0, . . . , vn) is the tuple (q0, . . . , qn),
arranged by increasing order, where qi := |det(v0, . . . , v̂i, . . . , vn)| and the simplex ∆ is reduced
if gcd(q0, . . . , qn) = 1, see Section 4.1 for details). In particular (see Corollary 4.4), if moreover
∆ is reflexive, that is if qi divides µ := q0 + . . .+ qn for i = 0, . . . , n, we get:

Proposition 1.2. Assume that the reduced and reflexive simplex ∆ of weight (q0, . . . , qn) satisfies
the hard Lefschetz property. Then,

(2)
2µ

qn
= n+ 1 +m(qn)

where m(qn) denotes the multiplicity of qn in the ordered tuple (q0, . . . , qn).

For instance, it is readily seen that (2) fails for the three dimensional reflexive and reduced
simplex ∆ of weight (1, 1, 1, 3): this simplex does not satisfy the hard Lefschetz property. Actu-
ally, we have a stronger statement (a necessary and sufficient condition, see Corollary 4.3) and
it follows from our computations that the hard Lefschetz properties are not common at all (and
this answers a question in [8, Section 4]): for instance, we check that the hard Lefschetz property
is true for 2 out the 14 three dimensional (resp. 5 out the 147 four dimensional) reduced and
reflexive simplices described in [4].

This has an interpretation in Hodge theory: it has been noticed in [17] that a Laurent poly-
nomial f satisfies the hard Lefschetz property if and only if the mixed Hodge structure produced
by the Laplace transform of its Gauss-Manin system is of Hodge-Tate type. This sheds light
on a conjecture of Katzarkov-Kontsevich-Pantev [12, Conjecture 3.6] for Laurent polynomials
whose Newton polytopes are reduced and reflexive simplices, see Proposition 4.7.

Last, and this was after all our starting point, the hard Lefschetz properties studied in this
paper are related with the unimodality of the spectrum at infinity of a regular function. This is
discussed in Section 5.

These notes were motivated by Sabbah’s paper [17], in which the ”smooth” case is considered.

2. Spectra

In this section, we recall some results from [5]. Let N be the lattice Zn and let P ⊂ NR
be a full dimensional lattice polytope containing the origin as an interior point. We assume
throughout this paper that P is simplicial.

Let ΣP be the (simplicial) fan in NR obtained by taking the cones over the proper faces of P
and let XΣP

be the complete, projective, toric variety of the fan ΣP . The Newton function of
P is the function ν : NR → R which takes the value 1 at the vertices of P and which is linear
on each cone of ΣP . The Milnor number of P is µP := n! vol(P ) where the volume vol(P ) is
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normalized such that the volume of the cube is equal to 1. We define the Newton spectrum of P
by

(3) SpecP (z) := (1− z)n
∑
v∈N

zν(v).

Let f(u) =
∑
m∈Zn amu

m be a Laurent polynomial defined on (C∗)n. The Newton polytope
P of f is the convex hull of supp f := {m ∈ Zn, am 6= 0} in Rn. We assume in this text that f
is convenient (its Newton polytope contains the origin as an interior point) and nondegenerate
in the sense of Kouchnirenko [13]. Let Af := B/L where B := C[u1, u

−1
1 , . . . , un, u

−1
n ] and

L := (u1
∂f
∂u1

, . . . , un
∂f
∂un

) is the ideal generated by the partial derivative u1
∂f
∂u1

, . . . , un
∂f
∂un

of f .
We define an increasing filtration N• on B, indexed by Q, by setting

NαB := {g ∈ B, supp(g) ∈ ν−1(]−∞;α])}
where ν is the Newton function of the Newton polytope P of f and supp(g) = {m ∈ Nn, am 6= 0}
if g =

∑
m∈Nn amu

m ∈ B. By projection, the Newton filtration N• on B induces the Newton
filtration N• on Af and the spectrum at infinity of f is given by

(4) Specf (z) =
∑
α∈Q

dimC(grNα Af )zα.

Both spectra are related: if f is a convenient and nondegenerate Laurent polynomial with Newton
polytope P , we have Specf (z) = SpecP (z), see [5, Corollary 2.2].

We are interested in the distribution of Specf (z) and SpecP (z) and it will be useful to decide
when these spectra are polynomials. Recall that a lattice polytope P is reflexive if it contains
the origin as an interior point and if its polar polytope P ◦ := {y ∈MR, 〈y, x〉 ≤ 1 for all x ∈ P}
is a lattice polytope.

Proposition 2.1. [5, Proposition 5.1] The following are equivalent:

(1) SpecP (z) is a polynomial,
(2) P is reflexive,
(3) SpecP (z) = δ0 + δ1z + . . .+ δnz

n where (δ0, . . . , δn) is the δ-vector of P . �

On the singularity side, we get (and we will refer to this case as the reflexive case):

Corollary 2.2. Let f be a convenient and nondegenerate Laurent polynomial. Then its spectrum
at infinity Specf (z) is a polynomial if and only if its Newton polytope P is reflexive. �

3. The hard Lefschetz property for Laurent polynomials and polytopes

Let f be a convenient and nondegenerate Laurent polynomial defined on (C∗)n. The multi-
plication by f induces maps

[f ] : grNα Af −→ grNα+1Af
for α ∈ Q. The following definition can already be found in [17]:

Definition 3.1. Let f be a convenient and nondegenerate Laurent polynomial on (C∗)n. We
will say that f satisfies the hard Lefschetz property (HL) if the multiplication by f induces
isomorphisms

(5) [f ]n−1−2k : grNα+kAf
∼=−→ grNα+n−1−kAf

for 0 ≤ k ≤ [(n− 1)/2] and α ∈]0, 1[ and

(6) [f ]n−2k : grNk Af
∼=−→ grNn−kAf

for 0 ≤ k ≤ [n/2].
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Let now P be a simplicial full-dimensional lattice polytope in Rn containing the origin as an
interior point. We will denote by V(P ) := {b1, . . . , br} the set of its vertices. Let

• X be the Deligne-Mumford stack associated with the stacky fan Σ := (Zn,ΣP ,V(P ))
by [2, Section 3],

• IX =
∐
`∈F X` be the decomposition into connected components of the inertia orbifold

of X , see [1, Section 4.1],
• H2α

orb(X ,C) := ⊕`∈FH2(α−age(X`))(X`,C) be the orbifold cohomology groups of X , where
age(X`) the age of the sector X`, see [1, Definition 4.8],

• fP be the Laurent polynomial on (C∗)n defined by fP (u) :=
∑
b∈V(P ) u

b.

See [2, Proposition 4.7] for a toric description of the sectors X`. The following wonderful result
is due to [2], with a little help from [13] (the orbifold cohomology is equipped with the orbifold
cup-product).

Proposition 3.2. [2] There is an isomorphism of Q-graded rings

ϕ : H2∗
orb(X ,C)

∼=−→ grN∗ AfP .

Proof. Notice first that fP is convenient (because P contains the origin as an interior point) and
nondegenerate (thanks to the simpliciality assumption) with respect to its Newton polytope P .
By [13, Théorème 4.1], the map ∂ : C[u, u−1]n → C[u, u−1] defined by

∂(b1, . . . , bn) = b1u1
∂f

∂u1
+ . . .+ bnun

∂f

∂un

is strict with respect to the Newton filtration. Hence, and by the definition of the Newton
filtration, the graded ring grN∗ AfP is nothing but the ”Stanley-Reisner presentation” of X given
by the right hand side of [2, Theorem 1.1] and the result follows from loc. cit. �

It should be emphasized that Proposition 3.2 provides an isomorphism of rings, and this really
depends on the special form of fP , from which we also get ϕ−1([fP ]) ∈ H2(X0,C) where X0

denotes the untwisted sector.
The cohomology H∗(X`,C) of the twisted sector X` is a H∗(X0,C)-module under the orb-

ifold cup-product, and this module structure is basically given by the standard cup-product on
H∗(X`,C), see for instance [8, Proposition 3.2], [2, Proof of Theorem 1.1]. For ω ∈ H2(X0,C),
we will denote by Lω the operator given by multiplication by ω in the orbifold cohomology ring.
We have the following counterpart of Definition 3.1:

Definition 3.3. We will say that P satisfies the hard Lefschetz property (HL) if there exists
ω ∈ H2(X0,C) such that the orbifold cup-product by ω induces isomorphisms

(7) Ln−1−2k
ω : H

2(α+k)
orb (X ,C)

∼=−→ H
2(α+n−1−k)
orb (X ,C)

for 0 ≤ k ≤ [(n− 1)/2] and α ∈]0, 1[ and

(8) Ln−2k
ω : H2k

orb(X ,C)
∼=−→ H

2(n−k)
orb (X ,C)

for 0 ≤ k ≤ [n/2].

We will mainly consider the case when P is a (reduced) simplex, see Section 4.1 below. The
corresponding orbifold is a weighted projective space P(w). We have dimH2(X0,C) = 1 and
this vector space is generated by the Chern class ω := c1(OP(w)(1)) (see [14, Proposition 3.6 and
Remark 3.7 ] for the definition of OP(w)(1) and its restrictions to the various sectors). The action
of Lω is then computed using Corollary 3.18 of loc. cit. On the singularity side, the theory for
fP is developed in [7].
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We now give criteria for this hard Lefschetz property to be true. Let P be a simplicial full
dimensional lattice polytope in Rn containing the origin as an interior point and let X as above.
For ` ∈ F , we put `−1 := I(`) where I is the involution on F induced by the involution on the
inertia orbifold IX =

∐
`∈F X` defined in [1, (4.3)]. We will denote by [x] the integral part of x.

First, we have the following generalization of a result of Fernandez [8]:

Theorem 3.4. The polytope P satisfies (HL) if and only if

(9) [age(X`)] = [age(X`−1)]

for all ` ∈ F .

Proof. In what follows, we put i` := age(X`). Assume first that P satisfies the hard Lefschetz
property (7). Let α ∈]0, 1[. Because the orbifold cup-product by ω ∈ H2(X0,C) preserves the
cohomology of each sector X`, we get the isomorphisms

(10) Ln−1−2k
ω : H2(α+k−i`)(X`,C)

∼=−→ H2(α+n−1−k−i`)(X`,C).

for ` ∈ F and k ≤ [(n − 1)/2]. Since (10) is relevant only if α − i` ∈ Z, we may assume that
α = i` − [i`].

By [1, Lemma 4.6], we have n` := dimX` = n− i`− i`−1 and it follows that the isomorphisms
(10) are equivalent to

Ln−1−2k
ω : H2(k−[i`])(X`,C)

∼=−→ H2(n`−1−k+i`+i`−1−[i`])(X`,C).

Because i` + i`−1 ∈ Z and i` /∈ Z, we have i` + i`−1 = [i`] + [i`−1 ] + 1 and we finally get the
isomorphisms

(11) Ln−1−2k
ω : H2(k−[i`])(X`,C)

∼=−→ H2(n`−k+[i`−1 ])(X`,C).

Since i` + i`−1 ≤ n, we may assume that [i`] ≤ [(n − 1)/2] and we can put k = [i`] in (11) in
order to get the isomorphism

H0(X`,C)
∼=−→ H2(n`−[i`]+[i`−1 ])(X`,C).

It follows that [i`−1 ]− [i`] ≤ 0. In particular, we have also [i`−1 ] ≤ [(n−1)/2] and, by symmetry,
we get [i`] − [i`−1 ] ≤ 0. This shows that [i`] = [i`−1 ] if P satisfies the hard Lefschetz property
(7). The result is shown similarly if P satisfies the hard Lefschetz property (8).

We get the converse going backward, applying the hard Lefschetz theorem for the cohomology
of X`, see for instance [3, Theorem 12.5.8 and (12.5.2)] where ω is the cohomology class of an
ample divisor (by [2, Proposition 4.7], its restrictions to the twisted sectors are also ample
because a strictly convex function descends to a a strictly convex function on the quotient fan,
see for instance [9, p. 12]). �

Remark 3.5. Theorem 3.4 has been suggested by [8]. If P is reflexive, the ages are integers and
P satisfies (HL) if and only if age(X`) = age(X`−1). This result is already stated in loc. cit.

Remark 3.6. Assume that the toric variety XΣP
is smooth: we have XP = XΣP

and equality
(9) holds true since there are no twisted sectors. This matches with [17, Proposition 3.4].

Corollary 3.7. The function fP satisfies (HL) if and only if [age(X`)] = [age(X`−1)] for all
` ∈ F .

Proof. Assume first that fP satisfies (HL). We use Proposition 3.2 and Theorem 3.4 in order
to get the conditions on the ages. Conversely, the equality of the ages shows that the hard
Lefschetz property hold for P (again by Theorem 3.4) and by [2, Lemma 5.1] the preimage of
fP under the mirror isomorphism ϕ of Proposition 3.2 is the cohomology class of the Q-ample
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divisor
∑r
i=1 `

−1
i Di where the positive integer `i is defined by bi = `iai, ai denoting the primitive

lattice generator of the ray ρi of the fan ΣP . �

Fortunately, condition (9) has an easy combinatorial description. Let ΣP = (Zn,ΣP ,V(P ))
be the stacky fan of P . For σ a n-dimensional cone in the fan ΣP , we denote by Box(σ) the set of
the elements v ∈ N such that v =

∑
ρi⊆σ qibi for some 0 ≤ qi < 1 where ρi is the ray generated

by the vertex bi of P . Let Box(ΣP ) be the union of Box(σ) for all n-dimensional cones σ ∈ ΣP .

Proposition 3.8. Condition (9) holds true if and only if

[ν(v)] = (dimσ(v)− 1)/2 if ν(v) /∈ N
and

ν(v) = dimσ(v)/2 if ν(v) ∈ N
for all v ∈ Box(ΣP ), where σ(v) the smallest cone of ΣP containing v and ν is the Newton
function of P .

Proof. By [2, Proposition 4.7], the sectors Xv are parametrized by

v ∈ Box(ΣP ) and dimXv = n− dimσ(v).

Let v ∈ Box(ΣP ). Because dimXv = n− age(Xv)− age(Xv−1), we get

age(Xv) + age(Xv−1) = dimσ(v).

Therefore, [age(Xv)] + [age(Xv−1)] = dimσ(v)− 1 if age(Xv) /∈ N and

[age(Xv)] + [age(Xv−1)] = dimσ(v)

if age(Xv) ∈ N. Because age(Xv) = ν(v) by [2, Remark 5.4], the result follows from Theorem 3.4.
�

This is Theorem 1.1 in the introduction.

4. Application to simplices

We apply the previous results to simplices and we deduce some consequences in Hodge theory.

4.1. Hard Lefschetz property for simplices. In this text, we will say that the polytope
∆ := conv(v0, . . . , vn) is a simplex if its vertices vi belong to the lattice Zn and if it contains the
origin as an interior point. The weight of a simplex ∆ is the tuple Q(∆) = (q0, . . . , qn) where

qi := |det(v0, . . . , v̂i, . . . , vn)|
for i = 0, . . . , n. We will always assume that the tuple Q(∆) = (q0, . . . , qn) is arranged by
increasing order (this can always be achieved by renumbering the vertices) and we will put
µ := q0 + . . . + qn. The simplex ∆ is reduced if gcd(q0, . . . , qn) = 1, see [4]. Up to unimodular
transformations, there exists a unique reduced simplex ∆ of weight (q0, q1, . . . , qn) and an algo-
rithm in order to construct it, and therefore to get f∆, is given in [4, Theorem 3.6] (recall that
f∆ denotes the Laurent polynomial defined by f∆(u) =

∑n
i=0 u

vi on (C∗)n).
By Remark 3.6 we know that the hard Lefschetz property is true if (q0, . . . , qn) = (1, . . . , 1).

We give here a criterion about the remaining cases. Let ∆ be a simplex of weight (q0, . . . , qn)
and

F :=

{
`

qi
| 0 ≤ ` ≤ qi − 1, 0 ≤ i ≤ n

}
.

We will denote by f1, . . . , fk the elements of F arranged by increasing order and we will put

di := Card{j| qjfi ∈ Z}.
Note that f1 = 0 and d1 = n+ 1.
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Proposition 4.1. Let ∆ be a reduced simplex of weight (q0, . . . , qn) such that qn ≥ 2. Then ∆
satisfies (HL) if and only if

[−µfi +

i−1∑
`=1

d`] =
d1 − di − 1

2
for i ≥ 2

if −µfi +
∑i−1
`=1 d` /∈ Z and

− µfi +

i−1∑
`=1

d` =
d1 − di

2
for i ≥ 2

if −µfi +
∑i−1
`=1 d` ∈ Z.

Proof. According to [6, Section 3.4], the sectors of X∆ are labelled by the set F and the ages

of the sectors Xf` are age(Xf1) = 0 and age(Xfi) =
∑i−1
`=1 d` − µfi if i = 2, . . . , k. By the

proof of Proposition 3.8, (HL) holds if and only if 2[age(Xv)] = n − 1 − dimXv if age(Xv) /∈ N
and 2 age(Xv) = n − dimXv if age(Xv) ∈ N. This gives the remaining assertions because
dimXfi = di − 1 and d1 = n+ 1. �

By Corollary 3.7, the previous proposition can be used in order to test if the Laurent polynomial
f∆ satisfies (HL) or not.

Example 4.2. We give here two basic examples.

(1) Let ∆ be the reduced simplex of weight Q(∆) = (1, 1, 3). Then f1 = 0, f2 = 1/3,
f3 = 2/3, d1 = 3, d2 = 1, d3 = 1 and µ = 5: the simplex ∆ does not satisfy (HL).

(2) Let ∆ be the reduced simplex of weight Q(∆) = (1, 2, 2, 3), for which µ = 8. Then f1 = 0,
f2 = 1/3, f3 = 1/2, f4 = 2/3, d1 = 4, d2 = 1, d3 = 2, d4 = 1: the simplex ∆ satisfies
(HL).

Recall that the reduced simplex ∆ of weight (q0, . . . , qn) is reflexive if and only if qi divides µ
for i = 0, . . . , n, see [4, Proposition 5.1]. We get:

Corollary 4.3. A reduced and reflexive simplex ∆ of weight (q0, . . . , qn) with qn ≥ 2 satisfies
(HL) if and only if

−µfi +

i−1∑
`=1

d` = (d1 − di)/2

for i = 2, . . . , k. �

We are now ready to show Proposition 1.2 in the introduction (most of the time it will be
enough to notice that this necessary condition does not hold in order to show that the hard
Lefschetz condition (HL) fails for ∆).

Corollary 4.4. Assume that the reduced and reflexive simplex ∆ of weight (q0, . . . , qn) satisfies
(HL). Then,

(12)
2µ

qn
= n+ 1 +m(qn)

where m(qn) denotes the multiplicity of qn in the tuple (q0, . . . , qn).

Proof. The assertion follows from Corollary 4.3 because f2 = 1/qn and d2 = m(qn) (recall that
we assume that the tuple (q0, . . . , qn) is arranged by increasing order). �

Example 4.5. Reduced and reflexive simplices are classified up to dimension four in [4]. Using
Corollary 4.3 and Corollary 4.4, we get the following statements:
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• two dimensional reduced and reflexive simplices satisfy the hard Lefschetz property;
• if n = 3, there are 14 reduced and reflexive simplices (up to unimodular transformations)

and the hard Lefschetz property holds only for the simplices with weights (1, 1, 1, 1) and
(1, 1, 2, 2).

• if n = 4, there are 147 reduced and reflexive simplices (up to unimodular transformations)
and the hard Lefschetz property holds only for the simplices ∆ with weights (1, 1, 1, 1, 1),
(1, 1, 1, 1, 2), (1, 1, 2, 2, 2), (1, 2, 3, 3, 3) and (1, 2, 2, 3, 4).

Of course, our results apply to greater dimensions: for instance, it is immediately seen the
reduced and reflexive simplex of weight (1, 1, 1, 1, 1, 1, 3) in R6 does not satisfy the hard Lefschetz
property.

4.2. Application to Hodge theory. We keep in this section the setting and the notations of
[17]. Let f be a convenient and nondegenerate Laurent polynomial on (C∗)n and let P be its
Newton polytope. It is known that f defines a mixed Hodge structure MHSf := (H,F •H,W•H)
and this mixed Hodge structure is said to be of Hodge-Tate type if

(1) W2i+1H = W2iH for i ∈ Z,
(2) the filtrations F •H and W2• are opposite, that is grpF grW2q H = 0 for p 6= q.

The link with the hard Lefschetz property is given by the following result:

Proposition 4.6. [17, Corollary 2.6] The following are equivalent:

(1) the mixed Hodge structure MHSf is of Hodge-Tate type,
(2) f satisfies the hard Lefschetz property of Definition 3.1. �

On the other hand, when P is reflexive, we will say that f satisfies the KKP conjecture (of
Katzarkov-Kontsevich-Pantev) if dim grpF H = dim grW2p H (see [12, Conjecture 3.6], but also [17,
3.a] and [18]). We keep the notations of Section 4.1.

Proposition 4.7. Let ∆ be a reduced and reflexive simplex in Rn with weight Q(∆) = (q0, . . . , qn),
where qn ≥ 2. The Laurent polynomial f∆ satisfies the KKP conjecture if and only if

i−1∑
`=1

d` − µfi =
d1 − di

2

for i = 2, . . . , k.

Proof. By [17, Lemma 2.4 and Corollary 2.6], f satisfies the KKP conjecture if and only if f
satisfies (HL). Thus, the result follows from Proposition 4.1 and Corollary 4.3. �

If ∆ is a reduced and reflexive simplex in Rn for n = 2, 3, 4, we get from Example 4.5 the Laurent
polynomials f∆ which satisfy the KKP conjecture.

5. Application to the distribution of spectral numbers

We apply the previous results to the study of the distribution of the spectrum at infinity of a
convenient and nondegenerate Laurent polynomial f defined on (C∗)n. Recall that a polynomial
a0 + a1z + . . .+ anz

n is unimodal if there exists an index j such that ai ≤ ai+1 for all i < j and
ai ≥ ai+1 for all i ≥ j.

5.1. Unimodality of the spectrum at infinity: reflexive case. We study in this section
the unimodality of the spectrum at infinity if f satisfies the assumption of Corollary 2.2. So let
us assume that

Specf (z) = 1 + d(1)z + . . .+ d(n− 1)zn−1 + zn
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where d(i) := dimC grNi Af for i = 1, . . . , n−1. The results in this section follow from well-known
in combinatorics. The first one is due to Hibi [10]:

Proposition 5.1. We have 1 ≤ d(1) ≤ d(i) for i ≤ [n/2]. In particular, Specf (z) is unimodal
if n ≤ 5.

Proof. Let P be the Newton polytope of f and let δP (z) = δ0 + δ1z+ . . .+ δnz
n be its δ-vector.

By Corollary 2.2 and [5, Corollary 2.2], P is reflexive and Specf (z) = δ0 + δ1z + . . . + δnz
n.

By [10], we have δ0 ≤ δ1 ≤ δj for 2 ≤ j ≤ [n/2]. The inequalities follow and we use then the
symmetry d(i) = d(n− i) in order to get the unimodality for n ≤ 5. �

Nevertheless, in this situation the spectrum at infinity needs not to be unimodal if n ≥ 6. The
following counter-example is provided by [16]:

Proposition 5.2. Let s ≥ 2, k ≥ 2 be two integers and let n := sk. Let f∆ be the Laurent
polynomial defined by

f∆(u1, . . . , un) := u1 + . . .+ un +
1

u1 . . . un−1usn

on (C∗)n. Then,

(1) f∆ is convenient and nondegenerate,
(2) the Milnor number of f∆ is equal to s(k + 1),
(3) Specf∆

(z) = 1 + z + . . .+ zsk + z(s−1)k + z(s−2)k + . . .+ zk,
(4) the spectrum at infinity of f∆ is unimodal if and only if s = 2,
(5) f∆ satisfies the hard Lefschetz property if and only if s = 2.

Proof. Let ∆ := conv(e1, . . . , en,−
∑n
i=1 qiei) where n := sk, (e1, . . . , en) is the canonical basis

of Rn and (q1, . . . , qn) := (1, . . . , 1, s) where 1 is counted sk−1-times. The simplex ∆ is reduced
and reflexive and is the Newton polytope of f∆. Its weight is (q0, q1, . . . , qn) = (1, . . . , 1, s) where
1 is counted sk-times and µ∆ = s(k+1). The nondegeneracy follows from the fact that the facets
of ∆ are simplices. The assertion on the Milnor number follows from [13]. Using the results
recalled in Section 4.1, we get f1 = 0, f2 = 1/s, . . . , fs = (s−1)/s, d1 = n+ 1, d2 = . . . = ds = 1.
Define β1 := 0 and

βi := d1 + . . .+ di−1 − µfi = k(s− (i− 1))

for i = 2, . . . , s. By [6], the spectrum at infinity of f∆ is given by

β1, β1 + 1, . . . , β1 + d1 − 1, . . . , βk, βk + 1, . . . , βk + dk − 1,

and the formula for Specf∆
(z) follows. The assertion about unimodality is clear and for the last

statement, notice that the necessary and sufficient condition of Corollary 4.3 is s = 2(i− 1) for
i = 2, . . . , s and is satisfied only for s = 2. �

Remark 5.3. Because ∆ is reflexive, Specf∆
(z) is equal to the δ-vector of ∆, see Proposition 2.1.

This formula for the δ-vector of ∆ can already be found in [16].

If n ≥ 6, we have the following positive result:

Proposition 5.4. Let f be a convenient and nondegenerate Laurent polynomial on (C∗)n whose
spectrum at infinity is a polynomial. Assume that f satisfies the hard Lefschetz property of
definition 3.1. Then Specf (z) is unimodal.

Proof. The hard Lefschetz property shows that [f ] : grNi−1Af −→ grNi Af is injective for i ≤ n/2
and surjective for i > n/2. �
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Of course, the converse is not true: by Proposition 5.1, Specf∆
(z) is unimodal for any four

dimensional reduced and reflexive simplex ∆ but we have seen that f∆ does not satisfy the hard
Lefschetz property in general.

5.2. Unimodality of the spectrum at infinity: the general case. We consider now the
general case, that is when the spectrum at infinity of f is not necessarily a polynomial: we write

Specf (z) =
∑
i

d(αi)z
αi

where d(αi) := dimC grNαi
Af and αi ∈ Q, the rational numbers αi being arranged by increasing

order. Using the symmetry property zn Specf (z−1) = Specf (z), one would expect that

(13) d(α1) ≤ d(α2) ≤ . . . ≤ d(α`)

for all α` ≤ n/2. Unfortunately, and unlike Section 5.1, this may fail if n ≤ 5 or if f satisfies
the hard Lefschetz property (HL) (see example 5.6 below). So what gives in this case this hard
Lefschetz property? Let us write Specf (z) =

∑
α∈[0,1[ z

α Specαf (z) where Specαf (z) ∈ Q[z].

Proposition 5.5. Assume that f satisfies the hard Lefschetz property of definition 3.1. Then
the polynomials Specαf (z) are unimodal for α ∈ [0, 1[.

Proof. The hard Lefschetz assumption shows that [f ] : grNα+i−1Af −→ grNα+iAf is injective for
i ≤ (n− 1)/2 and surjective for i > (n− 1)/2 for α ∈]0, 1[. The case α = 0 has been considered
in Proposition 5.4. �

Example 5.6. Let f be the Laurent polynomial defined by f(u1, u2, u3) = u1+u2+u3+1/u2
1u

2
2u

3
3

on (C∗)3. Then Specf (z) = 1 + 2z + z4/3 + z5/3 + 2z2 + z3 and does not satisfy (13). However,

f satisfies (HL) (see Example 4.2). We have Spec0
f (z) = 1 + 2z + 2z2 + z3, Spec

1/3
f (z) = z,

Spec
2/3
f (z) = z and these polynomials are unimodal.
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