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ZARISKI INVARIANT FOR NON-ISOLATED SEPARATRICES THROUGH

JACOBIAN CURVES OF PSEUDO-CUSPIDAL DICRITICAL FOLIATIONS

OZIEL GÓMEZ-MARTÍNEZ

Abstract. In this work, we consider a sequence π of blowing-up morphisms in (C2, 0) corre-
sponding to the reduction of singularities of an (n,m)-cuspidal branch and we consider as well

the family Fπ of pseudo-cuspidal dicritical foliations, which consists of those dicritical folia-

tions that have exactly one dicritical component in the last divisor of π. This family contains
the family of (n,m)-cuspidal dicritical foliations that we denote by FCπ ; these foliations are

given by a vector field with non-degenerate linear part. We prove that the Zariski invariant

of every pair of non-isolated separatrices of any foliation in Fπ that has polar transversality
with FCπ , coincides.

1. Introduction

Throughout this paper we consider dicritical foliations in (C2, 0). We focus our attention on
those that we call pseudo-cuspidal dicritical foliations and we study the first analytic invariant of
their non-isolated branches. We recall that a plane analytic curve in (C2, 0) is defined as the zero
locus of an analytic function f ∈ C {x, y}. It is known that f can be factored into a product of a
finite number of irreducible power series. Each irreducible factor defines a so-called branch of a
plane curve. The set of branches with the same topological type is known as the equisingularity
class of a given branch. Recall that a separatrix is a leaf of the foliation which admits an analytic
extension to the singular point, i.e., in a neighborhood of the singular point the leaf is the locus
of zeros of a convergent power series. It is known by Camacho-Sad’s theorem, that for every
singular holomorphic foliation of (C2, 0) there exists at least one separatrix (see [9],[28]). Hence,
a singular holomorphic foliation can be seen as the implicit equation of its separatrices. For
non-dicritical foliations the equisingular type of their invariant branches is finite, since there
are only a finite number of invariant analytic branches having the singular point in its closure.
When the foliation is dicritical there exists an infinite number of separatrices; however as a
direct consequence of Seidenberg’s Theorem about reduction of singularities of foliations (see
[31]), we obtain the same situation as in the case of non-dicritical foliations, that is to say, the
equisingular type of the non-isolated separatrices is finite. The notion of non-isolated branch of
a singular holomorphic foliation was firstly introduced in [8] (see also [12]).

The aim of the present work is to study the non-isolated separatrices which are precisely those
contained in a dicritical component. For this purpose, the tangency order between a smooth
curve and a singular foliation at the origin is introduced. This tangency order can be considered
as a “measure” of how close the smooth curve is for being a separatrix of the foliation. Given two
foliations F and G of (C2, 0) the polar or Jacobian curve is the tangency locus between the two
foliations. This geometrical locus appears naturally in the present work; it has been the subject
of study since the 19th century and has been intensively studied for the last 40 years (see [2],

1991 Mathematics Subject Classification. 14H15, 14H20, 32S05, 32S15, 32S65, 34M35.
Key words and phrases. Dicritical foliations, non-isolated separatrices, analytic invariants of plane branches,

polar curves.

http://dx.doi.org/10.5427/jsing.2021.23m


ZARISKI INVARIANT FOR NON-ISOLATED SEPARATRICES 237

[13], [15], [24], [26], [27], [29], among others). It can be shown (see [23]) that the tangency order
at the origin between a smooth curve L and a holomorphic non-singular foliation is equal to the
multiplicity of intersection between the smooth curve and the polar or Jacobian curve between
the foliation and the foliation given by the differential of the function defining the curve L.

An (n,m)-cuspidal dicritical foliation on (C2, 0) is any foliation analytically equivalent to the
one given by nxdy − mydx = 0, where 1 < n < m and g.c.d.(n,m) = 1. An (n,m) pseudo-
cuspidal dicritical foliation on (C2, 0) is any foliation G that has exactly one dicritical component
that appears after a sequence of blowing-up morphism determined by the equisingularity type
(n,m). By simplicity throughout this work we call these foliations pseudo-cuspidal dicritical
foliations.

In 1965 O. Zariski proved (see [22], [35], [36]) that if the branch C is not analytically equivalent
to the cusp given by the parameterization ϕ(t) = (tn, tm), then the branch admits a Puiseux
series parameterization,

ϕ(t) =

tn, tm + tλ +
∑
j>λ

ajt
j

 .

The value λ is an analytic invariant of the branch and it is known as the Zariski invariant of the
branch C. In the case where the branch C is analytically equivalent to a branch parametrized by
ϕ(t) = (tn, tm), the Zariski invariant is defined as λ =∞.

Let π be the sequence of blowing-up morphisms in (C2, 0) corresponding to the reduction
of singularities of an (n,m)-cuspidal branch, let us denote by Fπ the family of (n,m) pseudo-
cuspidal foliations and by FCπ ⊂ Fπ the cuspidal ones. Let F be a pseudo-cuspidal dicritical
foliation. We say that F has polar transversality with the family of cuspidal dicritical foliations
FCπ if and only if for every G ∈ FCπ the strict transform of the polar or Jacobian curve J (F ,G)
does not intersect the dicritical component Edic; this irreducible component of the exceptional
divisor D = π−1(0) is the irreducible component that appears at the last blowing-up morphism of
the sequence π. We denote by F?π the subfamily of foliations F ∈ Fπ having polar transversality
with the family FCπ . The main result in this paper is the following.

Theorem 4.3. Let F be a pseudo-cuspidal dicritical foliation that has the polar transversality
property with FCπ , F ∈ F?π. Then all the non-isolated separatrices of F have coinciding Zariski
invariants.

Remark 1.1. Example 4.7 given in Section 4 shows that not all the non-isolated separatrices
of a pseudo-dicritical cuspidal foliation have the same Zariski invariant.

The previous theorem shows that for every element F ∈ F?π the Zariski invariant of the
non-isolated branches of F is fixed.

Finally, we rely on the results given in [30], to present an explicit family of foliations having
the property of polar transversality with the family FCπ .

Historical Context. The development of the theory of holomorphic foliations goes back to the
works of J. C. Bouquet, C. Briot and H. Poincaré at the end of the 19th century and beginning
of the 20th century.

The existence of a separatrix for a singular holomorphic foliation of (C2, 0) is a result given by
C. Camacho and P. Sad. in [9] (see also [10] and [28]). As a consequence of this result, singular
curves appear naturally in the study of singular holomorphic foliations.

The autor is supported by a fellowship given by Conacyt and the research projects Papiit Dgapa UNAM
IN106217, IN110520, and Conacyt CB-2013-219722.
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The topological study of singular curves was initiated at the beginning of the twentieth cen-
tury, however Newton in 1676 had already begun with the study of singular curves from an
“analytic” point of view, namely, Newton shows that there is always a formal parameterization
of a singular curve. It was until 1850 that Puiseux showed that the power series is convergent.
From the parameterization it is possible to introduce the characteristic and the Puiseux pairs
of a branch which are invariants to the equisingularity class of the branch. Two germs of curves
C,D in (C2, 0) are said to be equisingular or that they have the same topological type if there
exists a homeomorphism germ of the ambient space mapping the curve C to the curve D. The
earlier results about the equisingularity of plane curves were obtained in the late 1920’s and early
1930’s. These topological classification contributions were developed mainly by K. Brauner [3],
E. Kähler [25], O. Zariski [34] and W. Burau [7].

The analytic classification of plane branches was started by Oscar Zariski in the 1960’s. The
objects of study are the germs of irreducible singular curves known as branches, belonging to
the same equisingularity class. The moduli problem of a plane branch consists in the description
of the quotient space of the equisingularity class of a branch under the analytic equivalence
relation. This problem was formally established by O. Zariski in 1973 (see [36]).

In 1965, S. Ebey (see [18]) gave a complete description of the moduli space for the equisin-
gularity class (5, 9) and introduced some ideas that were later developed by O. Zariski in an
attempt to solve the problem. Later, in 1966, O. Zariski in [35] gave a characterization of the
irreducible singular curves that are analytically equivalent to the curve given by the equation
yn − xm = 0; it was given in terms of the set of Kähler differential values. Moreover, in this
work the first analytic invariant of plane branches was introduced; this invariant is now known
as the Zariski invariant. However, the moduli problem for plane branches remained open for
approximately 40 years. In that period many works were carried out to try to give a solution
to the problem (see for example [4], [17], [21] and [30]). Finally in 2011, A. Hefez and M.E.
Hernandes in [22] gave a complete solution to the moduli problem of plane branches. Recently
a paper was published by M.E. Hernandes and M.E. Rodrigues (see [19]), in which the analytic
classification problem of curves with several branches was studied and solved, following the ideas
developed by O. Zariski in [22] and [36].

As we previously mentioned, the existence of separatrices of singular holomorphic foliations
naturally relates the theory of singular holomorphic foliations and the theory of singular curves.
Some of the results for singular curves have an equivalent result in the context of singular holo-
morphic foliations in (C2, 0). The resolution of singularities for singular holomorphic foliations in
(C2, 0), is an analogous of the result of resolution of singularities of analytic curves. It states that
singularities of singular holomorphic foliations can be transformed under a sequence of blowing-
up morphisms into “simpler” singularities. This result was established by A. Seidenberg in 1968,
see [31]. It is natural to ask what the relation between the resolution of singularities of the
separatrices and the resolution of singularities of the foliation is. In [8] C. Camacho, L. Neto
and P. Sad solved this question and proved that the desingularization of a singular holomorphic
foliation and the desingularization of its separatrices is the same in the case where the foliation
is non-dicritical and it has no saddle-node singularities. Such foliations are known as generalized
curves. In the same work the notion of an isolated separatrix was introduced (see also [12] and
[16]); these separatrices are those that belong to a dicritical component of the foliation after a
resolution of singularities.

Structure of the work and acknowledgements. In Section 2 we introduce the pseudo-
cuspidal dicritical foliations and, in particular, the cuspidal dicritical ones. We show that the
Zariski invariant of a plane branch of the equisingularity class (n,m) can be obtained in terms
of the tangency order between the branch and a cuspidal dicritical foliation (see Theorem 2.22).
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An explicit relation between the tangency order of a branch of a fixed pseudo-cuspidal dicritical
foliation and one cuspidal foliation in terms of its corresponding polar or Jacobian curve is given
in Theorem 3.8; for this purpose we use the divisorial valuation associated to one irreducible
component of the sequence of blowing-up morphism π. In Section 4 we prove Theorem 4.3 and
we give an explicit family of pseudo-cupidal foliations having the property of polar transversality
with the family of cuspidal dicritical foliations (see Theorem 4.13).

I wish to thank Professors Laura Ortiz Bobadilla, Felipe Cano, Xavier Gómez-Mont and
Miguel Fernández Duque for valuable discussions and suggestions to my work. I would like to
express my deepest acknowledgements to the referee for the valuable comments and suggestions.

2. Pseudo-Cuspidal Dicritical Foliations

Let F be a germ of a holomorphic foliation in (C2, 0) defined by a holomorphic vector field

v = Q(x, y)
∂

∂x
− P (x, y)

∂

∂y
,

with P,Q ∈ C {x, y}, or by the zero locus of its induced Pfaffian 1-form

ω = P (x, y)dx+Q(x, y)dy.

The foliation F has an isolated singularity at the origin if P (0, 0) = Q(0, 0) = 0, and either
P (x, y) 6= 0 or Q(x, y) 6= 0 for (x, y) 6= (0, 0) in a neighborhood of (0, 0); at such points it is said
that F is regular. Throughout this work we always assume that we have isolated singularities.

Definition 2.1. The multiplicity of a singular holomorphic foliation F at the origin in (C2, 0)
is defined as

(1) m0(F) := min {ord0(P (x, y)), ord0(Q(x, y))} .

Definition 2.2. Let F be a germ of a holomorphic foliation in (C2, 0) with isolated singularity
and let p be a regular point of F . By the Rectification Theorem of Differential Equations it
is known that, locally, in a neighborhood of p, the solutions can be seen as level sets of the
coordinate function x. To each local level set corresponds a local solution of the differential
equation and the phase curve thus defined is called a leaf of the foliation.

Definition 2.3. Let F be a germ of a holomorphic foliation in (C2, 0) with isolated singularity
defined by a holomorphic vector field v. We say that a germ of branch C is a separatrix of the
foliation F if C = L ∪ {0}, where L is a leaf of the foliation. In terms of the induced Pfaffian
form ω the following equation holds

(2) ω ∧ df = fη,

where η is a holomorphic 2-form and {f = 0} is a reduced equation (free of squares) of C.

Definition 2.4. Let F be a germ of a holomorphic foliation in (C2, 0) with isolated singularity.
We say that 0 is a non-dicritical singularity of the foliation if F has, at most, a finite number of
invariant curves having the singular point in its closure. Otherwise, we say that 0 is a dicritical
singularity ; correspondingly, F is said to be a non-dicritical or a dicritical foliation.

Remark 2.5. If F is a non-dicritical foliation, then each irreducible component of the excep-
tional divisor D = π−1(0), where π : (M,D)→ (C2, 0) is the well known morphism of resolution
of singularities, is an invariant curve of the strict transform of F . Otherwise, if F is a dicritical
foliation, there exists at least one component of D that is transverse at every point to F except
for a finite number of points (singular or tangency points). Such a component will be called
dicritical component.
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Definition 2.6. We say that C is an isolated separatrix for the holomorphic foliation F with
isolated singularity in (C2, 0) if C does not intersect any dicritical component of F . Otherwise,
we say that C is a non-isolated separatrix.

Recall that the blowing-up morphism of one point p ∈M , where M is a complex manifold of
dimension 2, can be described by two standard coordinates charts given by,

π1 : Ũ ⊂ M̃ → U ⊂M
(x1, y1) 7→ π1(x1, y1) = (x1, x1y1),

π1 : Ṽ ⊂ M̃ → U ⊂M
(x̃1, ỹ1) 7→ π1(x̃1, ỹ1) = (x̃1ỹ1, ỹ1),

where Ũ , Ṽ are open sets such that M̃ = Ũ ∪ Ṽ and U is an open neighboorhod of p. We say that
(x1, y1) = (0, 0) is the origin in the first coordinate chart and (x̃1, ỹ1) = (0, 0) is the origin in the
second coordinate chart. Let π : (M,D)→ (C2, 0) be a finite sequence of blowing-up morphisms,

we denote by D := π−1(0) the exceptional divisor. Let us recall that D =
k
∪
i=1
Ei, where Ei is a

rational smooth curve Ei = P for all i. Given a point p ∈ D, we denote by ep(D) the number
of irreducible components of D passing through p, thus ep(D) ∈ {1, 2}. Let π:(M,D)→ (C2, 0)
be a finite sequence of blowing-up morphisms, that is, π = π1 ◦ π2 ◦ · · · ◦ πs, determined by the
Euclidean algorithm of the pair (n,m), 1 < n < m, g.c.d(n,m) = 1. The transformation π is
determined by the algorithm as follows:

m = α0n+ r0, 1 ≤ r0 ≤ n− 1

n = α1r0 + r1, 0 ≤ r1 ≤ r0 − 1

r0 = α2r1 + r2, 0 ≤ r2 ≤ r1 − 1

...

rk−1 = αk+1rk + 1,

rk = αk+2, where αk+2 = rk.

Let {p0, p1, ..., ps−1} be the collection of points corresponding to each blowing-up morphism,
where p0 = 0 ∈ C2. Every point pi satisfies the following properties,

(i) pi ∈ Ei = π−1
i (pi−1) for all i ∈

{
1, 2, ...,

k+2∑
j=0

αj

}
.

(ii) epi(E
i) = 1 for i ∈ {1, 2, ..., α0} where Ei = E1 ∪ E2 ∪ · · · ∪ Ei; and pi is not the origin of

the second chart for all i ∈ {1, 2, ..., α0}.

(iii) epi(E
i) = 2 for every i ∈

{
α0 + 1, α0 + 2, ...,

k+2∑
j=0

αj

}
, that is, pi is a corner point.

(iv) The point pi is the origin of the first coordinate chart for all i in the set
l∑

j=0

αj ,

l∑
j=0

αj + 1, · · · ,
l+1∑
j=0

αj


if l is odd and pi is the origin of the second chart for every i in the set

l∑
j=0

αj ,

l∑
j=0

αj + 1, · · · ,
l+1∑
j=0

αj


if l is even.

The collection of points {p0, p1, p2, ..., ps−1} satisfiying the conditions (i)-(iv) will be called the
centers of the blowing-up morphisms or, simply, centers.
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Definition 2.7. Let L be a smooth plane curve in (C2, 0). We say that L has π maximal-
contact if the collection of centers p0, p1, ..., pα0

lies inside of the set of infinitely near points of
L, {p0, p1, ..., pα0

} ⊂ {Infinitely near points of L}.

Lemma 2.8. Let π : (M,D)→ (C2, 0) be a finite sequence of blowing-up morphisms determined
by the Euclidean algorithm of the pair (n,m), with D = π−1(0). Then, there exists a coordinate
system (x, y) of (C2, 0) such that {y = 0} has π maximal-contact.

Proof. Let p0, p1, p2, ..., pα0
be the respective centers of blowing-up morphisms

πi : (Mi, π
−1
i (pi−1))→ (Mi−1, pi−1)

for i = 1, 2, ..., α0. By hypothesis epi(E
i) = 1 for i = 1, 2, ..., α0. Since p1 is not the origin of

the second chart, the blowing-up morphism π1 is given in local coordinates x1, y1 at p1 by the
equation π1(x1, y1) = (x1, x1(y1 + c1)), c1 ∈ C. The blowing-up morphism π2 is given, in local
coordinates x2, y2 at p2, by one of the following equations

(3) T1,c2(x2, y2) = (x2, x2(y2 + c2)) or T2(x2, y2) = (x2y2, y2).

If we have T1,c2 , then the divisor E2 at p2 is locally given by E2 = {x2 = 0}. If we have T2, then
E2 = {x2y2 = 0} at p2, but ep2(E2) = 1 hence we have only the T1,c2 case. Recursively using
the same argument, in every point pi for i = 1, 2, ..., α0 we obtain coefficients c1, c2, ..., cα0

. At
the point pα0 we have the local coordinates (xα0 , yα0) and we look at the blowing-up morphism
in the coordinates given by the equation T1,cα0

(xα0
, yα0

) = (xα0
, xα0

(yα0
+ cα0

)). We consider

the curve given by L′ = {yα0
+ cα0

= 0}. Projecting this curve to the point p0, we obtain the

curve given by L =

{
y +

α0∑
j=1

cjx
j = 0

}
. Now if we consider the following change of coordinates

given by x̃ = x and ỹ = y +
α0∑
j=1

cjx
j , we get the assertion of Lemma 2.8.

Throughout the present work we assume that the system of coordinates of (C2, 0) is adapted
to π.

Remark 2.9. Note that if the system of coordinates (x, y) of (C2, 0) is adapted to π, then π
is the resolution of singularities of the branch given by yn − xm = 0. If C is a branch of the
equisingularity class (n,m) which is desingularized by π, then it is possible to show that its
parameterization, up to reparameterization, is given by ϕ(t) = (tn, ϕ2(t)) with ϕ2(t) ∈ C{t} and
ord0ϕ2(t) = m.

Let us introduce the family Fπ of pseudo-cuspidal dicritical foliations.

Definition 2.10. (Pseudo-Cuspidal Dicritical Foliations) Let F be a holomorphic dicritical
foliation with isolated singularity in (C2, 0), let π be the finite sequence of blowing-up morphisms
induced by the pair (n,m) and let D = π−1(0). We say that F belongs to the family of pseudo-
cuspidal dicritical foliations Fπ if and only if the following assertions take place:

(i) The induced foliation π∗F has a unique dicritical component Edic. This dicritical com-
ponent is the irreducible component of the exceptional divisor D that appears after the
last blowing-up morphism of the sequence π, and there are not singular points or tangency
points of π∗F in this component;

(ii) F has, at least, two invariant smooth curves, L0, L∞, such that L0 has π maximal-contact,
and L∞ has transverse intersection with L0.

We now introduce the notion of cuspidal dicritical foliations FCπ , which is a subfamily of
pseudo-cuspidal ones.
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Definition 2.11. (Cuspidal Dicritical Foliations) Let G be a dicritical foliation in Fπ. We say
that G belongs to the family of (n,m)-cuspidal dicritical foliations or simply cuspidal dicritical
foliations FCπ if there exists a vector field v defining the foliation G such that its Jacobian matrix
D(0,0) v has two different eigenvalues λ1, λ2 ∈ C, with λ1 · λ2 6= 0 and l1

l2
= n

m ∈ Q>0.

Lemma 2.12. Let G ∈ FCπ be an (n,m)-cuspidal dicritical foliation. For every (n,m)-cuspidal
dicritical foliation G there exists a suitable change of coordinates and a generator ωG of G such
that in the aforementioned coordinates it has the form

(4) ωG = (my + h1(x, y))dx− (nx+ cy + h2(x, y))dy g.c.d.(n,m) = 1,

where c ∈ C, hi(x, y) is a convergent series for i = 1, 2 and,

ord0(hi) ≥ 2 and ordx(h1(x, 0)) ≥
⌊m
n

⌋
+ 1.

Proof. Let G be an (n,m)-cuspidal dicritical foliation G ∈ FCπ . There exists a vector field v
defining the foliation G such that its Jacobian matrix D(0,0) v has two different eigenvalues

λ1, λ2 ∈ C, with λ1 · λ2 6= 0 and λ
λ2

= n
m . So, by Poincaré’s Linearization Theorem (see

[11]), the foliation is analytically equivalent to the foliation induced by the linear vector field
v0 = nx ∂

∂x +my ∂
∂y or, equivalently, by the 1-form ω0 = mydx−nxdy. Since the coordinates are

adapted to π, by conjugation of the linear part we have that the foliation is generated by

v̂ = (nx+ cy + h2(x, y))
∂

∂x
+ (my + h1(x, y))

∂

∂y
,

with ordhi ≥ 2 for i = 1, 2 and ordxh1(x, 0) ≥ bmn c+ 1. �

Remark 2.13. Let G be an (n,m)-cuspidal dicritical foliation. From the definition we know that
there exists a vector field v generating the foliation G, whose linear part has two eingenvalues
λ1, λ2 6= 0, such that λ1

λ2
= n

m . Since λ1

λ2
= n

m ∈ R>0 the eigenvalues are non-resonant. Moreover,
the eigenvalues belong to the Poincaré domain, so it is follows from the Poincaré Linearization
Theorem (see [23]) that G is analytically equivalent to the foliation G0 which is generated by the
vector field v0 = nx ∂

∂x +m ∂
∂y or equivalently, by the 1-form ω0 = mydx− nxdy.

In order to preserve that the system of coordinates is adapted to π, the allowed change of
coordinates are of the form

(5) H(x, y) = (x+ cy +H1(x, y), y +H2(x, y)),

with c ∈ C, ord0(Hi) ≥ 2, i = 1, 2 and ord0H2(x, 0) ≥ bmn c+ 1.

2.1. The Zariski invariant and the Cuspidal Dicritical Foliations. The principal goal of
this section is to recover the Zariski invariant of a plane branch C in terms of the tangency order
between C and a cuspidal dicritical foliation G. In [35] it was proved that if a plane branch C of
the equisingularity class (n,m) is not analytically equivalent to the plane branch given by the
parameterization ϕ(t) = (tn, tm), then C admits a parameterization of the following form

(6) ϕ(t) =

tn, tm + tλ +
∑
j>λ

ajt
j

 ,

where λ is known as the Zariski invariant. We now recall some known facts about the analytic
classification of plane branches.

Given any two plane branches, C,D, we say that C and D are analytically equivalent if there
exists a germ of a biholomorphism H such that H(C) = D. The analytic classification of plane
branches can be given in terms of the A-equivalence of its parameterization.
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Definition 2.14. Let C and D be plane branches and let ϕ,ψ be their respective parame-
terizations. We say that ϕ is A-equivalent to ψ if there exists a germ of a biholomorphism
H : (C2, 0)→ (C2, 0) and an automorphism τ : (C, 0)→ (C, 0) such that the following equation
takes place

(7) ϕ = H ◦ ψ ◦ τ−1.

Lemma 2.15. Let C and D be plane branches and let ϕ,ψ be their respective parameterizations.
Then the branches C and D are analytically equivalent if and only if ϕ and ψ are A-equivalent.

The proof of the previous lemma can be found in [6]. We recall the definition of the tangency
order between a plane branch C and a foliation F at the origin. (see [13]).

Definition 2.16. Let F be a singular holomorphic foliation with an isolated singularity in
(C2, 0). Let C be a plane branch that is not a separatrix of F and let ϕ be its parameterization.
We define the tangency order of the branch C with F at 0, Tan0(C,F), as

(8) Tan0(C,F) = ordtϕ
∗ωF ,

where {ωF = 0} is a local equation for F .

We stress that Definition 2.16 does not depend of the parameterization of the branch. Namely,
two different parameterizations of a given branch are related under an automorphism.

Remark 2.17. In the case where a plane branch C is a separatrix of F we say that
Tan0(C,F) =∞, because the pull-back of the generator ωF by the parameterization is 0.

Moreover, the tangency order has the following behavior under blowing-up morphisms.

Proposition 2.18. Let F be a singular holomorphic foliation in (C2, 0), let C be a plane branch
that is not separatrix of F , let π1 : (M1, E1)→ (C2, 0) be the blowing-up morphism of the origin
and let E1 = π−1

1 (0) be the exceptional divisor. Then the following equalities take place:

(i) Tanp0(C,F) = mp0(F)mp0(C) + Tanp1(C(1),F (1)), when the divisor E1 is not dicritical;

(ii) Tanp0(C,F) = (mp0(F) + 1) mp0(C) + Tanp1(C(1),F (1)), when the divisor E1 is dicritical,

where p0 = 0, p1 = E1 ∩ C(1) and F (1), C(1) are the strict transforms of F , C by the morphism
π1.

Proof. Let C be a plane branch and let F be the foliation induced by {ωF = 0}. Without loss

of generality we assume that C is parametrized by ϕ(t) =
(
tn,
∑
j≥n

ajt
j
)

where n = mp0(C). The

strict transform of C by π1 is C(1) and it is parametrized by ϕ(1) = π−1
1 ◦ ϕ. Then we have that

(9) (ϕ(1))∗ω
(1)
F = (π−1

1 ◦ ϕ)∗
π∗1ωF
xr1

.

The following cases must be analyzed:

(i) E1 = π−1
1 (0) is non-dicritical. In this case r = mp0(F), and substituting in (9) we have

that

(ϕ(1))∗ω
(1)
F = (π−1

1 ◦ ϕ)∗
π∗1ωF

x
mp0

(ωF )
1

=
ϕ∗ωF

tn(mp0
(ωF ))

.

This last equation implies that

ordt(ϕ
(1))∗ω

(1)
F = ordtϕ

∗ωF − n (mp0(F)) ,

or equivalently,

ordtϕ
∗ωF = ordt(ϕ

(1))∗ω
(1)
F + mp0(C) (mp0(F)) .
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This proves the non-dicritical case.
(ii) E1 = π−1

1 (0) is dicritical for F . In this case r = mp0(F) + 1 and with the same arguments
as above we have that

ordtϕ
∗ωF = ordt(ϕ

(1))∗ω
(1)
F + mp0(C) (mp0(F) + 1) .

This last equality finishes the proof.

Definition 2.19. Let C be a plane branch of the equisingularity class (n,m). We say that C
is (n,m)-quasihomogenous if it is analytically equivalent to the quasihomogenous cusp given by
{yn − xm = 0}.

The following proposition characterizes the (n,m)-quasihomogeneous branch C of the equi-
singularity class (n,m) in terms of the cuspidal dicritical foliations.

Proposition 2.20. Let C be a plane branch of the equisingularity class (n,m). The following
statements are equivalent

(i) C is (n,m)-quasihomogeneous,
(ii) There exists G ∈ FCπ such that Tan0(C,G) =∞

Proof. Let us suppose that C is analytically equivalent to the cusp {yn − xm = 0}. By
Lemma 2.15 there exists a germ of a biholomorphism H : (C2, 0) → (C2, 0) and an automor-
phism τ : (C, 0) → (C, 0) such that if ϕ is the parameterization of C and ψ(t) = (tn, tm), then
ψ = H ◦ ϕ ◦ τ−1. Let G be the foliation generated by ωG = H∗ω0, where ω0 = nxdy −mydx.
Then

Tan0(C,G) = ordtϕ
∗ωG = ordt(τ)∗ψ∗(H−1)∗ωG = ordtτ

∗ψ∗ω0.

Since ordtψ
∗ω0 =∞, then Tan0(C,G) =∞.

Let us suppose now that there exists a cuspidal dicritical foliation G ∈ FCπ such that
Tan0(C,G) =∞. We know that there exists a biholomorphism H : (C2, 0)→ (C2, 0), H(x, y) =
(H1(x, y), H2(x, y)) such that foliation G is analytically equivalent to the foliation given by the
equation {ω0 = 0}, where ω0 = nxdy − mydx, that is, H∗ω0 = ωG , with {ωG = 0} gener-
ating G. Let H1(x, y) = x + cy + h1(x, y) with c ∈ C and ord0h1(x, y) ≥ 2, we consider
ρ := ϕ∗H1(x, y) = H1 ◦ ϕ(t). We can choose τ : (C, 0) → (C, 0) an automorphism such that
τn := ρ, and consider the composition ψ = H ◦ ϕ ◦ τ−1. Then,

ordtψ
∗ω0 = ordt(H ◦ ϕ ◦ τ−1)∗ω0 = ordt(τ

−1)∗ϕ∗H∗ω0 = ordtϕ
∗ωG = Tan0(C,G).

Since Tan0(C,G) = ∞, this last equation implies that ψ(t) = (tn, tm) up to parameteriza-
tion. Thus, C is analytically equivalent to {yn − xm = 0} and we have finished the proof of the
statement.

A straightforward consequence of the previous proposition is the following

Corollary 2.21. Let C be a plane branch of the equisingularity class (n,m). If C is not an-
alytically equivalent to {yn − xm = 0} then for all (n,m)-cuspidal dicritical foliations G ∈ FCπ ,
Tan0(C,G) <∞.

As we stressed before, the Zariski invariant is an invariant for the analytic classification of
plane branches. In [36] (see also [22]) it was shown that if C is a branch that is not analytically
equivalent to {yn − xm = 0} then it admits a Puiseux parameterization of the following type

(10) ϕ(t) =

tn, tm + tλ +
∑
j>λ

ajt
j

 ,
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with λ satisfying the following two conditions,

(11) λ 6∈ S and λ+ n−m 6∈ mZ>0,

where S represents the semigroup of the branch C. Recall that given a plane branch C the
equisingularity class of C, which consists of all the plane branches with the same topological
type, is completely determined by the corresponding semigroup. Given a plane branch C we
define the intersection multiplicity of C with another analytic curve D, that is, D = {g = 0},
with g ∈ C{x, y} as

ι0 = dim
C{x, y}
〈f, g〉

,

where 〈f, g〉 is the ideal generated by f and g, C = {f = 0}. The semigroup of the plane branch
C is by definition the set of the intersection multiplicities between all the plane curves and the
plane branch C, that is

S = {ι0(C,D) : C 6= D,D = {g = 0}, g ∈ C{x, y}}.

In the case of plane branches of the equisingularity class (n,m) the semigroup is the set generated
by the numbers n,m over Z≥0. That is,

(12) S = {αn+ βm : α, β ∈ Z≥0} .

Let C be a plane branch of the equisingularity class (n,m) and G? a cuspidal dicritical foliation
G? ∈ Fcπ. We say that Tan0(C,G?) is maximal if for every cuspidal dicritical foliation G ∈ FCπ we
have

Tan0(C,G) ≤ Tan0(C,G?).
The main result of this section is the following.

Theorem 2.22. Let C be a plane branch of the equisingularity class (n,m) such that C is not
(n,m)-quasihomogeneous, and let G ∈ FCπ be a cuspidal dicritical foliation. Then the following
statements are equivalent

(i) The tangency order Tan0(C,G) is finite and maximal;
(ii) The tangency order satisfies

(13) Tan0(C,G) + 1− n 6∈ S and Tan0(C,G) + 1−m 6∈ mZ>0;

(iii) The value

(14) λ = Tan0(C,G) + 1− n

is the Zariski invariant of C.

Remark 2.23. Note that by Remark 2.9 if we consider a branch C of the equisingularity class
(n,m) then, up to reparameterization, it is possible to assume that the parameterization is given

by ϕ(t) =

(
tn, tm +

∑
j>m

ajt
j

)
. Moreover, if we consider a cuspidal dicritical foliation G ∈ FCπ

with a generator ωG as in Lemma 2.12 then, after straightforward computations we have that
ordtϕ

∗ωG + 1− n > m or ordtϕ
∗ωG + 1− n = ln, with l ≥ bmn c+ 1.

The following lemma characterizes the maximality of the tangency order of a given branch
C (in the equisingularity class (n,m)) with the cuspidal dicritical foliations, in terms of the
semigroup of the branch C.
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Lemma 2.24. Let C be a plane branch in the equisingularity class (n,m) such that C is not
(n,m)-quasihomogeneous. If there exists an (n,m)-cuspidal dicritical foliation G ∈ FCπ such that
Tan0(C,G) is maximal, then

(13) Tan0(C,G) + 1− n 6∈ S and Tan0(C,G) + 1−m 6∈ mZ>0.

Proof. Let us suppose that there exists a cuspidal dicritical foliation G ∈ FCπ such that the order of
tangency of C with G is finite and maximal. Let ωG = (my + h1(x, y)) dx−(nx+ ky + h2(x, y)) dy
be a generator of the foliation G, where ord0(hi(x, y)) ≥ 2 for i = 1, 2. We will prove that
assuming Tan0(C,G)+1−n ∈ S, leads to a contradiction. Namely, under such assumption there
exist α, β ∈ Z≥0 such that

(15) Tan0(C,G) + 1− n = αn+ βm;

that is, ϕ∗ωG =
(
at(α+1)n+βm−1 + · · ·

)
dt, where the multiple dots denote higher order terms

than (α+ 1)n+βm− 1. Note by Remark 2.23 that if β = 0 then α ≥ 2 and if α = 0 then β ≥ 2.
Let us consider the change of coordinates H(x, y) = (x, y+cxαyβ) = (x̃, ỹ). We claim that there

exists c ∈ C∗ such that Tan0(C, G̃) > Tan0(C,G), G̃ is the foliation given by {H∗ω̃G = 0} where
ω̃G is the expresion of ωG in the coordinates (x̃, ỹ),

ω̃G = (mỹ + h1(x̃, ỹ)) dx̃− (nx̃+ kỹ + h2(x̃, ỹ)) dỹ.

Namely,

H∗ω̃G =
(
m(y + cxαyβ) + h1(x, y + cxαyβ)

)
dx

−
((
nx+ k(y + cxαyβ)

)
d(y + cxαyβ) +

(
h2(x, y + cxαyβ)

)
d(y + cxαyβ)

)
= ωG +mcxαyβdx+ (cxαyβ

∂h1

∂y
+ · · · )dx+

(
cxαyβ

∂h2

∂y
+ · · ·

)
dy

−
(
nx+ ky + kcxαyβ + h2(x, y + cxαyβ)

) (
cαxα−1yβdx+ cβxαyβ−1dy

)
= ωG + (mc− ncα)xαyβdx− ncβxα+1yβ−1dy +

(
cxαyβ

∂h2

∂y
+ · · ·

)
dy

+ (cxαyβ
∂h1

∂y
+ · · · )dx−

(
ky + kcxαyβ + h2(x, y + cxαyβ)

)
cβxαyβ−1dy

−
(
k
(
y + cxαyβ

)
+ h2(x, y + cxαyβ)

) (
cαxα−1yβ

)
dx.

Note that H∗ω̃G is given in the coordinates (x, y) which are adapted to π and we are considering
the parameterization of C in these coordinates. Since the parameterization is

ϕ(t) =

tn, tm +
∑
j>m

ajt
j


then, after straightforward computations, we have that

(16) ϕ∗H∗ω̃G =
(
at(α+1)n+βm−1 + (mnc− cn2α− nmβc)t(α+1)n+βm−1 · · ·

)
dt.

Recall that our goal is to show that there exists a constant c ∈ C∗ such that
Tan0(C, G̃) > Tan0(C,G). So, if we want to eliminate the monomial of degree (α+ 1)n+ βm− 1
we need to find c such that a− cn2α− nmβc+mnc = 0; equivalently,

(17)
a

n
= c(nα+m(β − 1)).

Equation (17) has one solution if and only if nα+m(β− 1) 6= 0. Since in Equation (15) we have
several possibilities for α and β we analyze, thus, the following three possible cases:



ZARISKI INVARIANT FOR NON-ISOLATED SEPARATRICES 247

(i) For β > 1, nα+m(β − 1) 6= 0 and equation (17) may be solved.
(ii) For β = 1, if we suppose that nα = 0, then this implies that α = 0 and hence

Tan0(C,G) + 1− n = m.

By Remark 2.23 we have that Tan0(C,G) + 1 − n > m or Tan0(C,G) + 1 − n = ln with
l ≥ bmn c+ 1. This implies that this case does not happen.

(iii) For β = 0, if we suppose that nα+m(β − 1) = 0, then this implies that nα = m but this
is impossible because g.c.d(n,m) = 1; so, if β = 0 we have that nα−m 6= 0 and again the
equation (17) may be solved.

Therefore, equation (17) has always a solution c 6= 0. This finally implies that

Tan0(C, G̃) > Tan0(C,G)

but this is a contradiction since by hypothesis Tan0(C,G) is maximal.
In a similar way as above, if we suppose that Tan0(C,G) + 1−m ∈ mZ>0, then there exists

β̃ ∈ Z≥0 such that

Tan0(C,G) + 1−m = β̃m.

Hence, Tan0(C,G) = (β̃ + 1)m− 1. We consider the following change of coordinates

Ĥ(x, y) = (x+ ĉyβ̃ , y) = (x̂, ŷ).

We claim that there exists ĉ ∈ C∗ such that Tan0(C, Ĝ) > Tan0(C,G) where Ĝ is the foliation

generated by
{
Ĥ∗ω̂G = 0

}
and ω̂G is the expresion of ωG in the coordinates (x̂, ŷ). Following

the same reasoning and analogous computations as above we get that it is always possible to
find ĉ 6= 0 such that Tan0(C, Ĝ) > Tan0(C,G), but this again leds to a contradiction. The proof
of the lemma is finished.

The following lemma shows the invariance of the tangency order under biholomorphisms. This
invariance is a well known property.

Lemma 2.25. Let C,D be plane branches and let ϕ and ψ be their respective parameterizations.
Let F be a foliation locally generated by the equation ωF = 0. Let us suppose that C and D are
analytically equivalent and consider the foliation G generated by the equation

{
(H−1)∗ωF = 0

}
,

where H is a biholomorphism of (C2, 0) such that H(C) = D. Then

(18) Tan0(C,F) = Tan0(D,G)

With these lemmas we proceed to prove the theorem.

Proof of Theorem 2.22. First note that Corollary 2.21 implies Tan0(C,G) < ∞ for all cuspidal
dicritical foliation G ∈ FCπ . The implication i) out of ii), is given by Lemma 2.24.

Now we prove that the assumption of the statement ii) implies iii). Let G ∈ FC be a cuspidal
dicritical foliation such that Tan0(C,G) + 1− n /∈ S and Tan0(C,G) + 1−m 6∈ mZ>0. We know
that there exist H : (C2, 0)→ (C2, 0) such that ωG = H∗ω0. We denote by G0 the foliation locally
generated by ω0 = nxdy −mydx = 0 and let ψ0 = H ◦ ϕ ◦ τ−1, where τ is the automorphism
introduced in the proof of Proposition 2.20 and C0 is the curve whose parameterization is given
by ψ0. Hence, by Lemma 2.25 we have that

Tan0(C,G) + 1− n = Tan0(C0,G0) + 1− n.

Therefore, Tan0(C0,G0) + 1− n /∈ S and

Tan0(C0,G0) + 1− n+ n−m = Tan0(C0,G0) + 1−m /∈ mZ>0.
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Note that if we consider a parameterization of the branch of the form

ϕ(t) =

tn, tm +
∑
j>m

ajt
j

 ,

then if ϕ is A-equivalent to ψ under a suitable change of coordinates H, then, up to repa-

rameterization, ψ(t) =

(
tn, tm +

∑
j>m

ãjt
j

)
. Hence up to reparameterization we have that

ψ0(t) =

(
tn, tm +

∑
j>m

ãjt
j

)
. This implies that ordτψ

∗
0(ω0) + 1 − n satisfies the conditions

given in (11); it is, thus, the Zariski invariant.
Now we prove that the assumption of the statement iii) implies i). Let G be a cuspidal dicritical

foliation, such that Tan0(C,G) − n + 1 is the Zariski invariant of C, where G is given by {ωG =

0}. Let G̃ be another cuspidal dicritical foliation, we will prove that Tan0(C, G̃) ≤ Tan0(C,G).
Let ψ0 = H ◦ ϕ ◦ τ−1 be a parameterization A-equivalent to ϕ, with H : (C2, 0) → (C2, 0),
such that ωG = H∗ω0 and τ as in the proof of Proposition 2.20. We denote by C0 the curve
whose parameterization is given by ψ0. Then, we have that ordtψ

∗
0ω0 = ordtϕ

∗ωG . Thus,

ordtψ
∗
0ω0 − n+ 1 is the Zariski invariant of C. Moreover, since the cuspidal dicritical foliation G̃

is analytically equivalent to G0, there exists H̃ : (C2, 0)→ (C2, 0) biholomorphism,

H̃(x, y) = (H̃1(x, y), H̃2(x, y)),

such that ωG̃ = H̃∗ω0. Following the same ideas given in Proposition 2.20, let τ̃ : (C, 0)→ (C, 0)

be the automorphism such that τ̃n = H̃1 ◦ ϕ(t) and let ψ̃0 := H̃ ◦ ϕ ◦ τ̃−1. Note that ψ̃0 is a

parameterization A-equivalent to ϕ and this implies that ψ̃0 is A-equivalent to ψ0.

(C2, 0) (C2, 0) (C2, 0)

(C, 0) (C, 0) (C, 0)

H H̃

ϕ

τ

ψ0 ψ̃0
ϕ

τ̃

Let us compute ordtϕ
∗ωG̃ ,

ordtϕ
∗ωG̃ = ordtτ̃

∗ψ̃∗0(H̃−1)∗ωG̃ = ordtτ̃
∗ψ̃∗0ω0 = ordtψ̃

∗
0ω0

Since ordtψ
∗ω0−n+1 is the Zariski invariant of C, then ordtψ̃

∗
0ω0−n+1 ≤ ordtψ

∗
0(ω0)−n+1 or,

equivalently, ordtψ̃
∗
0ω0 ≤ ordtψ

∗
0ω0. Hence Tan0(C, G̃) ≤ Tan0(C,G). This proves Theorem 2.22.

Remark 2.26. Let C be a plane branch of the equisingularity class (n,m) and let ϕ be its
parameterization. We can recover the Zariski invariant as follows. We consider the cuspidal
dicritical foliation G0 defined by ω0 = mydx− nxdy. Let us compute Tan0(C,G0). If

Tan0(C,G0)− n+ 1 6∈ S and Tan0(C,G0)−m+ 1 6∈ mZ>0

then by Theorem 2.22 we are finished. If Tan0(C,G0)−n+1 ∈ S or Tan0(C,G0)−m+1 ∈ mZ>0

then we apply one of the change of coordinates given in the proof of the Lemma 2.24 to find a
new cuspidal dicritical foliation G̃ with Tan0(C, G̃) > Tan0(C,G0). If the following two conditions

Tan0(C, G̃)− n+ 1 6∈ S and Tan0(C, G̃)−m+ 1 ∈ m 6∈ Z>0 are satisfied, we stop the process. If

on the contrary Tan0(C, G̃)− n+ 1 ∈ S or Tan0(C, G̃)−m+ 1 ∈ mZ>0, then we apply again the
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change of coordinates given in Lemma 2.24. If the process does not stop, we will eventually find
an (n,m)-cuspidal dicritical foliation Ĝ such that Tan0(C, Ĝ) =∞.

3. Divisorial valuations and the tangency order

The main goal of this work is to show that the Zariski invariant of the non-isolated separatrices
of each foliation F in Fπ that has polar transversality with FCπ , coincides. In this section we
show how to compute the tangency order between a non-isolated separatrix CF of a foliation
F ∈ Fπ and a foliation G ∈ FCπ in terms of the divisorial valuation associated to the dicritical
component.

Remark 3.1. Throughout this section the following notation will be used. As in previous
sections π is the sequence of blowing-up morphisms determined by (n,m). Moreover, σ will
denote another finite sequence of blowing-up morphisms; namely, if we decompose σ as σ = π1◦ρ,
where

π1 : (M1, E1)→ (C2, 0)

is the blowing-up morphism of the origin and ρ : (M,D) → (M1, p1) the rest of the sequence.
Let C be a germ of plane curve of (C2, 0) and let S be a germ of plane curve of (M1, p1). Hence,

(1) C̃ represents the strict transform of C by π.
(2) C(1) represents the strict transform of C by π1.

(3) Ĉ represents the strict transform of C by σ.

(4) S̆ represents the strict transform of S by ρ.

Definition 3.2. Let σ : (M,D) → (C2, 0) be a finite sequence of blowing-up morphisms. We
denote the exceptional divisor by D = σ−1(0). Let E be an irreducible component of D and let
{g = 0} be a local reduced equation of E at a point p ∈ E. The divisorial valuation with respect
to E, that we denote by νσE , is the application given by

νσE : C {x, y} → Z
h 7−→ νσE(h),

where νσE(h) = max
{
k ∈ N : gk|σ∗(h)p

}
and σ∗(h)p is the pull-back of h by σ at the point

p ∈ E.

Let
Ω1

(C2,0) = {ω = a(x, y)dx+ b(x, y)dy : a(x, y), b(x, y) ∈ C{x, y}}
and

Ω2
(C2,0) = {η = a(x, y)dx ∧ dy : a(x, y) ∈ C{x, y}}

the modules of holomorphic 1-forms and holomorphic 2-forms respectively. We define one ap-
plication from Ω1

(C2,0) in the integers numbers Z through π, in analogous way of the divisorial

valuation for series. We call this application infinitesimal divisorial valuation for holomorphic
1-forms.

νσ1,E : Ω1
(C2,0) → Z
ω 7−→ νσ1,E(ω),

where νσ1,E(ω) = max
{
k ∈ N : gk|a1(x̂, ŷ) and gk|b1(x̂, ŷ)

}
, a1(x̂, ŷ), b1(x̂, ŷ) are such that

σ∗ω = a1(x̂, ŷ)dx̂+ b1(x̂, ŷ)dŷ,

x̂, ŷ are coordinates at one point p ∈ E and {g = 0} is a reduced equation of E at the point p.
For the holomorphic 2-forms we define

νσ2,E : Ω2
(C2,0) → Z
η 7−→ νσ2,E(η),
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where νσ2,E(η) = max
{
k ∈ N : gk|a2(x̂, ŷ)

}
with σ∗η = a2(x̂, ŷ)dx̂ ∧ dŷ where x̂ and ŷ are

coordinates at one point p ∈ E and {g = 0} is a reduced equation of E at the point p. We call
this application infinitesimal divisorial valuation for holomorphic 2-forms.

Throughout the present section we denote by νσE the infinitesimal divisorial valuation for
series, 1-forms and 2-forms.

Remark 3.3. Let h ∈ C{x, y}, ω ∈ Ω1
(C2,0) and η ∈ Ω2

(C2,0), then we have that

νσE(hω) = νσE(h) + νσE(ω) and νσE(hη) = νσE(h) + νσE(η).

Example 3.4. Let h be an analytic power series, h ∈ C {x, y}, such that

(19) h(x, y) = hn(x, y) + hn+1(x, y) + hn+2(x, y) + · · · ,
where hi ∈ C [x, y] are homogeneous polynomials of degree i and hn is the first not identically
vanishing polynomial. Let π1 : (M1, E1)→ (C2, 0) be the blowing-up morphism of the origin in
C2, E1 = π−1

1 (0) and let π1(x1, y1) = (x1, x1y1) be a local chart. In this chart we have

π∗(h) = h ◦ π(x1, y1) = hn(x1, x1y1) + hn+1(x1, x1y1) + · · ·
= xn1 (hn(1, y1) + x1hn+1(1, y1 + · · · ) .

Then, we have that νπ1

E1
(h) = n, and it coincides with the multiplicity at the origin of h.

Remark 3.5. If L is a line through the origin of C2 such that the strict transform of L and the
strict transform of the plane curve H given by the zero locus of h, H := {h = 0}, by π1 have no
intersection, then the intersection multiplicity of H and L equals to the divisorial valuation of h
with E1, that is, ι0(H,L) = νπ1

E1
(h) = n.

The previous remark can be generalized to a more general setting. Note that the previous
remark shows that the divisorial valuation associated to the blowing-up morphism of the origin
is like an intersection multiplicity at the origin for a suitable curve L. We will show that this
always happens for divisorial valuations. We denote by EσE the set of equisingular plane branches
B of (C2, 0) such that the strict transform of B by σ is smooth and intersects transversally the
component E at a point p that is not a corner point (this is the definition of curvette, see [33]
page 53). We can decompose σ = π1 ◦ ρ, where π1 : (M1, E1) → (C2, 0) is the blowing-up
morphism of the origin and ρ : (M,D) → (M1, p1) is the rest of the sequence. We denote by
EρE the set of germs of equisingular branches S of (M1, p1) such that the strict transform by ρ
is smooth and intersects transversally the component E in a point p that is not a corner point.
Note that the elements of EρE are the strict transforms by π1 of the elements in EσE . In fact, let
B ∈ EσE , by definition, the strict transform of B by σ is smooth and it intersects transversaly the
component E, then the strict transform of S by π1 belongs to EσE . Moreover, the projection of
every element in EρE belongs to EσE . The following theorem shows that the divisorial valuation
of an element h ∈ C{x, y} can be interpreted as the intersection multiplicity between the locus
zero of h and a suitable element of EσE .

Theorem 3.6. Let σ : (M,D) → (C2, 0) be a finite sequence of blowing-up morphisms and let
E be an irreducible component of D = σ−1(0). Let h ∈ C{x, y} and let H := {h = 0} be the
curve given by the zero locus of h. Then

(20) νE(h) = min {ι0(H,B) : B ∈ EσE} ,
where ι0(H,B) denotes the intersection multiplicity at the origin between the curves H,B (see
section 2).

The proof of Theorem 3.6 can be found in [32] (page 131, Theorem 7.2).
The following lemma will be used in the proof of Theorem 3.8.
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Lemma 3.7. Let σ : (M,D) → (C2, 0) be a finite sequence of blowing-up morphisms, where
D = σ−1(0) is the exceptional divisor and let E be an irreducible component of D. We write
σ = π1 ◦ ρ where π1 : (M1, E1) → (C2, 0) is the blowing-up morphism of the origin and ρ :
(M,D) → (M1, p1) is the rest of the sequence with p1 the origin of the first coordinate chart,
π1(x1, y1) = (x1, x1y1). We have

νσE(x) = νρE(x1) = χ(E),

where χ(E) is the multiplicity at the origin of a curve in EσE, that is, if B ∈ EσE, m0(B) = χ(E).

Proof. Let us compute νσE(x). By Theorem 3.6 we have that

νσE(x) = min {ι0(L∞,B) : B ∈ EσE} ,

where L∞ = {x = 0}. By Noether’s formula (see [14]) we have that

(21) ι0(L∞,B) = m0(L∞)m0(B) + ιp(L(1)
∞ ,B(1));

since L(1)
∞ ∩ B(1) = ∅ then we have from (21) that

(22) ι0(L∞,B) = m0(L∞)m0(B) = m0(B).

Therefore νσE(x) = m0(B). Since νσE(x) = νρE(x1) we have proved Lemma 3.7.

3.1. Tangency order of non-isolated separatrices of Pseudo-Cuspidal Dicritical Foli-
ations and the Cuspidal Dicritical Foliations. As we mentioned in the introduction of this
work, our goal is to show under which conditions a family of pseudo-cuspidal dicritical foliations
has the property that given a foliation in this family, all the non-isolated separatrices of this
foliation have the same Zariski invariant. For this purpose we begin by looking at an auxiliary
foliation (among the cuspidal ones) and the locus of tangencies between such a foliation and a
foliation in the family. This locus of tangencies is known as the Jacobian or polar curve. The
following theorem stresses that the order of tangency of a non-isolated separatrix of the fixed
pseudo-cuspidal dicritical foliation and one cuspidal dicritical foliation is given in terms of its
corresponding Jacobian curve.

Theorem 3.8. Let F be a foliation in Fπ induced by the equation {ωF = 0} and let G be a
foliation in FCπ induced by {ωG = 0}. Let CF and CG be the non-isolated separatrices of F and

G, respectively, and let C̃F and C̃G be their corresponding strict transforms by π. If p is not a
corner point, and p is the intersection point of C̃F and C̃G with the dicritical component Edic,
then

(23) Tan0(CF ,G) = νπEdic(ωF ∧ ωG)− νπEdic(ωF ) + ιp(C̃G , J̃ (F ,G)),

where J̃ (F ,G) is the strict transform of the curve of tangencies (the Jacobian curve) of the
foliations F and G by π, and ιp is the corresponding multiplicity intersection at p.

Before proving the theorem we focus our attention on the polar curves of regular foliations.

Let F and G be holomorphic foliations of (C2, 0). As we mentioned before, the Jacobian or
polar curve between F and G is the locus of tangencies between F and G. If F is given locally
by the equation {ωF = 0} and G is generated by {ωG = 0} the tangency locus between F and
G is the zero locus of the coefficient of the 2-form ωF ∧ ωG . We denote this Jacobian curve by
J (F ,G). Since both foliations are regular, there exist unique invariant curves through the origin
CF and CG for the foliations F and G, respectively. Our aim is to describe the relation among the
tangency order between the invariant curve CF and foliation G and the intersection multiplicity
between the invariant curve CG and the Jacobian curve J (F ,G).
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Given the curve L = {x = 0}, we define the value

νL(ωF ∧ ωG) = max{k ∈ Z≥0 : xk|ωF ∧ ωF}.
The following proposition will be useful in the proof of Theorem 3.8. Namely, the proof of that
theorem will be achieved by induction, and the following proposition is the base step of the
induction.

Proposition 3.9. Let F and G be non-singular foliations of (C2, 0), induced by {ωF = 0} and
{ωG = 0} respectively, such that F and G are transverse to L = {x = 0}. Let CF be the in-
variant curve of F through 0 and let CG be the invariant curve of G through 0. Then, for any
parameterization ϕ of CF , the following equality holds,

(24) ordtϕ
∗ωG = νL(ωF ∧ ωG) + ι0(CG , J̄ (F ,G)),

where J̄ (F ,G) = {hs = 0}, hs satisfies h = xrhs for r = νL(ωF ∧ ωG) and J (F ,G) = {h = 0}
is the Jacobian curve between F and G.

Proof. Let F and G be non-singular foliations transversally intersecting L. Since F and G are
non-singular foliations, there exist f, g ∈ C {x, y} such that F = {df = 0} and G = {dg = 0}.
Up to a coordinate change of variables we may assume that G = {dy = 0} (this change of
coordinates does not modify the transversality of F with L). We write f(x, y) = u(x, y)y+ p(x)
where u(0, 0) 6= 0. Let us compute df ∧ dy

df ∧ dy =

((
∂u

∂x
y + p′(x)

)
dx+

(
∂u

∂y
y + u(x, y)

)
dy

)
∧ dy(25)

= (v(x, y)y + p′(x)) dx ∧ dy = h(x, y)dx ∧ dy,(26)

where v(x, y) = ∂u(x,y)
∂x . We stress that the unique invariant curve of F through 0 is

CF = {f(x, y) = 0}, so a parameterization of C is given by ϕ(t) = (t, ctordxp(x) + · · · ) with
c ∈ C∗. Therefore,

ϕ∗dy = c(ordxp(x))t(ordxp(x)−1) + · · · ,
and ordtϕ

∗dy = ordxp(x) − 1. Let r = νL(ωF ∧ ωG) and hs(x, y) = v(x,y)
xr y + p′(x)

xr . So we have

that ι0(CG , J̄ (F ,G)) = ordxp
′(x)− r = ordxp(x)− 1− r. Thus,

(27) ordtϕ
∗dy = ordxp(x)− 1 = r + ι0

(
CG , J̄ (F ,G)

)
.

Finally,
ordtϕ

∗dy = νL(ωF ∧ ωG) + ι0
(
CG , J̄ (F ,G)

)
.

This proves the proposition.

Lemma 3.10. Let ωF and ωG be 1-forms that generate the foliations F and G respectively
and let σ : (M,D) → (C2, 0) be a finite sequence of blowing-up morphisms of size n. Let
π1 : (M1, E1) → (C2, 0) be the blowing-up morphism of the origin and σ = π1 ◦ ρ. Given E an
irreducible component of D = π−1(0), we have that

νρE(ω
(1)
F ) = νσE(ωF )− χ(E)(m0(ωF ) + δF ),

where ω
(1)
F is the strict transform of ωF by π1 and

δF :=

{
1, if π1 is dicritical for F ,
0, if π1 is non-dicritical for F .

For the case of 2-forms

νρE(ω
(1)
F ∧ ω

(1)
G ) = νσE(ωF ∧ ωG)− χ(E)(m0(ωF ) + m0(ωG) + δ),
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where ω
(1)
F , ω

(1)
G are the strict transforms of ωF , ωG by π1 respectively and

δ :=


2, if π1 is dicritical for F and G,
1, if π1 is non-dicritical for F but not for G,
0, if π1 is non-dicritical for F neither G,

in both cases χ(E) is the multiplicity at the origin of a curve in EπE, that is, if C ∈ EπE, then
m0(C) = χ(E).

Proof. We consider the decomposition σ = π1◦ρ, with π1 the blowing-up morphism of the origin.
We compute

σ∗ωF = (π1 ◦ ρ)∗ωF = ρ∗π∗1(ωF ) = ρ∗(x
m0(ωF )+δF
1 ω

(1)
F ),

where

δF :=

{
1, if π1 is dicritical for F ,
0, if π1 is non-dicritical for F .

From this equation we have that,

νσE(ωF ) = νρE(x
m0(ωF )+δF
1 ω

(1)
F ) = (m0(ωF ) + δF )νρE(x1) + νρE(ω

(1)
F ).

Since νρE(x1) = χ(E), as a consequence of Lemma 3.7, then,

νσE(ωF ) = νρE(x
m0(ωF )+δF
1 ω

(1)
F ) = (m0(ωF ) + δF )χ(E) + νρE(ω

(1)
F ).

For 2-forms we have,

σ∗(ωF ∧ ωG) = (π1 ◦ ρ)∗(ωF ∧ ωG) = ρ∗π∗1(ωF ∧ ωG) = ρ∗(x
m0(ωF )+m0(ωG)+δ
1 ω

(1)
F ∧ ω

(1)
G ),

this last equation implies that

νσE(ωF ∧ ωG) = νρE(x
m0(ωF )+m0(ωG)+δ
1 ω

(1)
F ∧ ω

(1)
G )

= (m0(ωF ) + m0(ωG) + δ)νσE(x1) + νρE(ω
(1)
F ∧ ω

(1)
G ).

Since νρE(x1) = χ(E), as a consequence of Lemma 3.7, it follows that,

νσE(ωF ∧ ωG) = (m0(ωF ) + m0(ωG) + δ)χ(E) + νσE(ω
(1)
F ∧ ω

(1)
G ).

Note that in the case of π1 : (M,E1)→ (C2, 0) the blowing-up morphism of the origin we have

νπ1

E1
(ωF ∧ ωG) = (m0(ωF ) + m0(ωG) + δ)χ(E) + νπ1

E1
(ω

(1)
F ∧ ω

(1)
G )

Now we proceed to prove Theorem 3.8. First we prove the statement in the case when π is
determined by (n, n+ 1) and after in the general case.

Let us consider π : (M,D) → (C2, 0) a blowing-up morphism described by the Euclidean
algorithm of the pair (n, n + 1), with D = π−1(0). In what follows we prove Theorem 3.8 for
this case.

Lemma 3.11. Let σ : (M,D) → (C2, 0) be a finite sequence of blowing-up morphisms of size
n, where every center of the morphism σ at the point pi ∈ Mi, for i ∈ {0, 1, 2, ..., n− 1}, is
the origin of the second coordinate chart of σi+1 : (Mi+1, σ

−1
i+1(pi)) → (Mi, σ

−1
i (pi)). Let F be

a singular holomorphic foliation such that the last irreducible component of D = σ−1(0) is the
unique dicritical component for F and σ∗F has no tangencies or singularities in this component.
We denote by Edic this irreducible component. Let G be a singular holomorphic foliation which
is generated by a vector field v such that the linear part of v has eigenvalues λ1 = 1 and λ2 = n,
and the component Edic is dicritical for G. Let CF and CG be non-isolated separatrices of F
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and G, respectively, and let ĈF and ĈG be their corresponding strict transforms by σ. If p is the

intersection point of ĈF and ĈG with the dicritical component Edic, then

(28) Tan0(CF ,G) = νσEdic(ωF ∧ ωG)− νσEdic(ωF ) + ιp(ĈG , Ĵ (F ,G)),

where Ĵ (F ,G) is the strict transform of the Jacobian curve of the foliations F and G by σ, and
ιp denotes the intersection multiplicity at p.

Proof. The proof is by induction over n. For n = 1, let

π1 : (M1, E1)→ (C2, 0)

be the blowing-up morphism of the origin, since π∗1F does not have tangencies or singularities
on E1 = π−1

1 (0) = Edic then F is generated by

ωF = (y + · · · ) dx− (x+ · · · ) dy,

where the multiple dots represent higher order terms. Without loss of generality we assume that
G is generated by ωG = ydx− xdy. Let ϕ be a parameterization of CF , by Proposition 2.18 for
the dicritical case, we have

(29) ordtϕ
∗ωG = m0(CF )(m0(ωG) + 1) + ordt(ϕ

(1))∗ω
(1)
G .

By Proposition 3.9, we have that

(30) ordt(ϕ
(1))∗ω

(1)
G = νπ1

Edic
(ω

(1)
F ∧ ω

(1)
G ) + ιp(C(1)

G , J̄ (F (1),G(1))),

where F (1) and G(1) are the foliations generated by ω
(1)
F and ω

(1)
F , J̄ (F (1),G(1)) is the curve

given by the locus zero of {hs = 0} where ω
(1)
F ∧ ω(1)

G = xr1hs, with Edic = {x1 = 0},
r = νπ1

Edic
(ω

(1)
F ∧ ω

(1)
G ) and C(1)

G the strict transform of CG by π1, as in Proposition 3.9.

Substituting (30) in (29) we have,

ordtϕ
∗ωG = m0(CF )(m0(ωG) + 1) + νπ1

Edic
(ω

(1)
F ∧ ω

(1)
G ) + ιp(C(1)

G , J̄ (F (1),G(1)))

= νπ1

Edic
(ωF ∧ ωG)− (m0(ωF ) + 1) + ιp(C(1)

G , J̄ (F (1),G(1))

= νπ1

Edic
(ωF ∧ ωG)− νπ1

Edic
(ωF ) + ιp(C(1)

G , J̄ (F (1),G(1))),

where the second equality is a consequence of Lemma 3.10.
Since the strict transform of the Jacobian curve J (F ,G) by π1 at the point p coincides with

the curve J̄ (F (1),G(1)) at the same point p, then we have,

ordtϕ
∗ωG = νπ1

Edic
(ωF ∧ ωG)− νπ1

Edic
(ωF ) + ιp(C(1)

G ,J (1)(F ,G)).

This proves the assertion for n = 1.
Now we assume that the assertion is true for n and we prove it for n+ 1. The sequence σ can

be decomposed as σ = π1 ◦ ρ, where π1 is the blowing-up morphism of the origin. Let F be the
foliation generated by {ωF = 0} and let G be the one generated by {ωG = 0}. By Lemma 2.18
we have,

(31) ordtϕ
∗ω = m0(CF )m0(ωG) + ordt(ϕ

(1))∗ω
(1)
G .

By the induction hypothesis, we have that

(32) ordt(ϕ
(1))∗ω

(1)
G = νρEdic(ω

(1)
F ∧ ω

(1)
G )− νρEdic(ω

(1)
F ) + ιp(C̆(1)

G , J̆ (F (1),G(1))),

where J̆ (F (1),G(1)) and C̆(1)
F represent the strict transform of the Jacobian curve J (F (1),G(1))

and the curve C(1)
F by ρ at the point p.
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Substituting (32) in (31) we get

ordtϕ
∗ωG = m0(CF )m0(ωG) + νσEdic(ω

(1)
F ∧ ω

(1)
G )− νσEdic(ω

(1)
F )

+ιp(C̆(1)
F , J̆ (F (1),G(1))).

By Lemma 3.10

νπEdic(ωF ∧ ωG) = νσEdic(ω
(1)
F ∧ ω

(1)
G ) + χ(Edic) (m0(ωF ) + m0(ωG)) ,

then

ordtϕ
∗ωG = m0(CF )m0(ωG) + νπEdic(ωF ∧ ωG)− (m0(ωF ) + m0(ωG))χ(Edic)

−νπEdic(ω
(1)
F ) + ιp(C̆(1)

F , J̆ (F (1),G(1)))

= (m0(CF )− χ(Edic)) m0(ωG) + νπEdic(ωF ∧ ωG)−m0(ωF )χ(Edic)

−νπEdic(ω
(1)
F ) + ιp(C̆(1)

F , J̆ (F (1),G(1))).

Since m0(CF ) = χ(Edic), we have

ordtϕ
∗ω = νπEdic(ωF ∧ ωG)− νπEdic(ωF ) + ιp(C̆(1)

F , J̆ (F (1),G(1))).

Since the strict transform of the Jacobian curve J (F ,G) and the curve CG by π coincide with

the curves J̆ (F (1),G(1)), C̆(1) at the point p ∈ Edic then we have,

ordtϕ
∗ωG = νπEdic(ωF ∧ ωG)− νπEdic(ωF ) + ιp(C̃G , J̃ (F ,G)).

This proves Lemma 3.11.

Now we prove Theorem 3.8 for the equisingularity class (n, n+ 1).

Proof. Let π : (M,D)→ (C2, 0) be a blowing-up morphism described by the Euclidean algorithm
of the pair (n, n + 1), with D = π−1(0). We decompose π = π1 ◦ σ, with π1 the blowing-up
morphism of the origin and σ the rest of the sequence. Let F , G be as in Theorem 3.8 and let
CF be a non-isolated separatrix of F and let ϕ be its parameterization. By Proposition 2.18 for
the case when the divisor is non-dicritical we have,

(33) ordtϕ
∗ω = m0(CF )m0(ωG) + ordt(ϕ

(1))∗ω
(1)
G .

By Lemma 3.11 applied to the foliations ω
(1)
F , ω

(1)
G , we have that

ordtϕ
∗ωG = m0(CF )m0(ωG) + νσEdic(ω

(1)
F ∧ ω

(1)
G )− νσEdic(ω

(1)
F )

+ιp(Ĉ(1)
F , Ĵ (F (1),G(1))).

where Ĵ (F (1),G(1)) represents the strict transform of the Jacobian curve of the foliations F (1),
G(1) by σ. By Lemma 3.10,

ordtϕ
∗ωG = m0(ωG) (m0(CF )− χ(Edic)) + νπEdic(ωF ∧ ωG)−m0(ωF )χ(Edic)

−νσEdic(ω
(1)
F ) + ιp(Ĉ(1)

F , Ĵ (F (1),G(1)))

= m0(ωG)(m0(CF )− χ(Edic)) + νπEdic(ωF ∧ ωG)− νπEdic(ωF )

+ιp(Ĉ(1)
F , Ĵ (F (1),G(1))),

Since χ(Edic) = m0(C) with C ∈ EπEdic , this implies the equality,

ordtϕ
∗ωG = νπEdic(ωF ∧ ωG)− νπEdic(ωF ) + ιp(Ĉ(1)

F , Ĵ (F (1),G(1))),
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since the strict transforms of the Jacobian curve J (F ,G) and the curve CF by π at the point p

coincides with the curve Ĵ (F (1),G(1)) and the curve Ĉ(1)
F respectively, then we have

ordtϕ
∗ωG = νπEdic(ωF ∧ ωG)− νπEdic(ωF ) + ιp(C̃F , J̃ (F ,G)).

We proceed to prove Theorem 3.8 in the general case.

Proof of Theorem 3.8. We recall that n,m ∈ N are such that 1 < n < m and g.c.d.(n,m) = 1.
The proof is by induction on the number n+m. The base step is when (n,m) = (2, 3), n+m = 5,
this is a direct consequence of the proof for the case (n, n+ 1).

Let us suppose now that the theorem is true for any pair (n′,m′), 1 < n′ < m′ and
g.c.d(n′,m′) = 1 with n′ + m′ < n + m. We consider the foliations F ∈ Fπ and G ∈ FCπ
and we denote by CF a non-isolated separatrix of F . Let ϕ be a parameterization of CF and
{ωG = 0} be an equation defining foliation G. Again, the sequence π can be decomposed as
π = π1 ◦ σ, where π1 is the blowing-up morphism of the origin. Then, by Proposition 2.18,

(34) ordtϕ
∗ωG = m0(CF )m0(ωG) + ordt(ϕ

(1))∗ω
(1)
G .

The foliation G(1) is induced by
{
ω

(1)
G = 0

}
, that is, it is the strict transform of the foliation G

by π1. This foliation has a unique dicritical component that arises after perfoming the sequence
of blowing-up morphisms described by the pair (n,m− n). If m− n > 1 then, by the induction
assumption, we get

ordtϕ
∗ωG = m0(CF )m0(ωG) + ordt(ϕ

(1))∗ω
(1)
G

= m0(CF )m0(ωG) + νσEdic(ω
(1)
F ∧ ω

(1)
G )− νσEdic(ω

(1)
F )(35)

+ιp(Ĉ(1)
G , Ĵ (F (1),G(1))),

where Ĵ (F (1),G(1)) and Ĉ(1)
G represent the strict transforms of the Jacobian curve of the foliations

F (1),G(1) and the curve C(1)
G by σ, respectively. By Lemma 3.10 for 2-forms we have that,

(36) νπEdic(ωF ∧ ωG) = (m0(ωF ) + m0(ωG))χ(Edic) + νσEdic(ω
(1)
F ∧ ω

(1)
G ).

By substituting (36) in (35) we have

ordtϕ
∗ωG = m0(CF )m0(ωG) + νπEdic(ωF ∧ ωG)− (m0(ωF ) + m0(ωG))χ(Edic)

−νσEdic(ω
(1)
F ) + ιp(Ĉ(1)

G , Ĵ (F (1),G(1)))

= (m0(CF )− χ(Edic)) m0(ωG) + νπEdic(ωF ∧ ωG)−m0(ωF )χ(Edic)

−νσEdic(ω
(1)
F ) + ιp(Ĉ(1)

G , Ĵ (F (1),G(1)))

= (m0(CF )− χ(Edic)) m0(ωG) + νπEdic(ωF ∧ ωG)− νπEdic(ωF )

+ιp(Ĉ(1)
G , Ĵ (F (1),G(1))).

Since χ(Edic) = m0(C), C ∈ EπE , this implies,

ordtϕ
∗ωG = νπEdic(ωF ∧ ωG)− νπEdic(ωF ) + ιp(Ĉ(1)

G , Ĵ (F (1),G(1))).

Since the strict transform of the Jacobian curve J (F ,G) and the curve CG by π at the point p

coincides with the curves Ĵ (F (1),G(1)), Ĉ(1)
G then we have,

Tan0(CF ,G) = ordtϕ
∗ωG = νπEdic(ωF ∧ ωG)− νπEdic(ωF ) + ιp(C̃G , J̃ (F ,G)).
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The proof of Theorem 3.8 is finished.

4. Analytic Invariants of non-isolated separatrices

In this section we introduce the notion of polar transversality between a foliation F ∈ Fπ
and the family FCπ . The property of polar transversality of a foliation F ∈ Fπ with the family
FCπ is given in terms of the Jacobian curve J (F ,G) between the foliation F and every foliation
G ∈ FCπ . It stresses that the strict transform of the Jacobian curve by π does not intersect the
irreducible component Edic. We show that every non-isolated separatrix of any element F ∈ Fπ
satisfiying the polar transversality property, has coinciding Zariski invariant.

Definition 4.1. We say that F ∈ Fπ has polar transversality with FCπ if and only if for all
G ∈ FCπ the strict transform of the Jacobian curve J (F ,G) does not intersect the irreducible
component Edic.

The family of foliations satisfying the polar transversality property will be denoted by F?π.
The following theorem tells us that the elements of F?π are foliations F ∈ Fπ for which all the
non-isolated separatrices of F have the same Zariski invariant.

Remark 4.2. Note that for every G ∈ FCπ all the non-isolated separatrices of G are (n,m)-
quasihomogeneous and for that reason they have the same Zariski invariant λ =∞.

Theorem 4.3. Let F be a pseudo-cuspidal dicritical foliation that has the polar transversality
property with FCπ , F ∈ F?π. Then all the non-isolated separatrices of F have coinciding Zariski
invariant.

Proof. Let F ∈ F?π. Let CF be a non-isolated separatrix of F and let ϕ be its parameterization.
If there exists G such that ordtϕ

∗ωG =∞, then by Theorem 3.8

∞ = ordtϕ
∗ωG = νπEdic(ωF ∧ ωG)− νπEdic(ωF ).

Since νπEdic(ωF ) < ∞ then we have that νπEdic(ωF ∧ ωG) = ∞, this happens if and only if
ωF ∧ ωG ≡ 0 but this last equation implies that F = G. Since the cuspidal dicritical foliations
do not have the property of polar transversality it implies that the foliation F does not have the
property of polar transversality, but this is a contradiction. Hence we have that for all cuspidal
dicritical foliations G ∈ FCπ , ordtϕ

∗ωG <∞. Let G? ∈ FCπ be such that ordtϕ
∗ωG? is maximal.

By Theorem 3.8
ordtϕ

∗ωG? = νπEdic(ωF ∧ ωG?)− νπEdic(ωF ).

Since ordtϕ
∗ωG? is maximal

νπEdic(ωF ∧ ωG)− νπEdic(ωF ) = ordtϕ
∗ωG ≤ ordtϕ

∗ωG? = νπEdic(ωF ∧ ωG?)− νπEdic(ωF ),

for every G ∈ FCπ . Therefore,

(37) νπEdic(ωF ∧ ωG) ≤ νπEdic(ωF ∧ ωG?) for all G ∈ FCπ .

This implies that νπEdic(ωF ∧ ωG?) is maximal.
Moreover, we know by Theorem 2.22 that the Zariski invariant of CF is

λ = ordtϕ
∗ωG? + 1− n.

Therefore, if C̃F is another non-isolated separatrix and ϕ̃ its parameterization, then by
Theorem 3.8,

ordtϕ̃
∗ωG? = νπEdic(ωF ∧ ωG?)− νπEdic(ωF ).

This value is maximal by (37), hence,

λ = ordtϕ̃
∗ωG̃ + 1− n = νπEdic(ωF ∧ ωG?)− νπEdic(ωF ) + 1− n
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is the Zariski invariant of C̃F . This invariant coincides precisely with the invariant of CF . Hence,
all the non-isolated separatrices have coinciding Zariski invariant. This finishes the proof of
Theorem 4.3.

The following example shows a foliation having the polar transversality property with the
family FCπ .

Example 4.4. Let F be the foliation generated by

ωF =
(
8y3 + 5x3y2 + 2x6y

)
dx−

(
3xy2 + 2x4y + x7

)
dy.

The non-isolated separatrices of the foliation F are the curves given by

Ck = {y3 − kx8 + x3y2 + x6y = 0},

with k ∈ C∗. These curves belong to the equisingularity class (3, 8). Let G0 be the cuspidal
dicritical foliation given by ωG0 = 8ydx− 3xdy and consider the product

ωF ∧ ωG0 =
(
x4y2 + 2x7y

)
dx ∧ dy.

Note that the Jacobian curve is

J (F ,G0) = J1(F ,G0) ∪ J2(F ,G0) ∪ J3(F ,G0),

where J1(F ,G0) = {x = 0}, J2(F ,G0) = {y = 0} and J3(F ,G0) = {y + x3 = 0}. Moreover, the
strict transforms by π of these curves do not intersect the component Edic.

After straightforward computations we have that νπEdic(ωF ∧ ωG0) = 38 and νπEdic(ωF ) = 27.
For fixed k, let Ck be a non-isolated separatix of F . By the formula given in Theorem 3.8, we
have

Tan0(Ck,G0) = νπEdic(ωF ∧ ωG0)− νπEdic(ωF ) + ιp(C̃k, J̃ (F ,G0))

= 38− 27 = 11.

Note that Tan0(Ck,G0) + 1− 3 = 9 ∈ SC , and then 11 is not the Zariski invariant. We consider
now the foliation Gα, induced by ωGα =

(
8y − αx3

)
dx− 3xdy, α ∈ C. We compute

ωF ∧ ωGα =
(
(1− 3α)x4y2 + (2− 2α)x7y − αx10

)
dx ∧ dy

After straightforward computations we get that if 1 − 3α 6= 0 then νπEdic(ωF ∧ ωGα) = 38.

However, if α0 = 1
3 , then 1− 3α0 = 0 and then,

ωF ∧ ωGα0
=

(
4

3
x7y − 1

3
x10

)
dx ∧ dy.

Note that the Jacobian curve is given by

J (F ,Gα0
) = J1(F ,Gα0

) ∪ J2(F ,Gα0
),

where J1(F ,Gα0
) = {x = 0} and J2(F ,Gα0

) = { 4
3y −

1
3x

3 = 0}. Moreover the strict transform
of the Jacobian curve does not intersect the componen Edic. After explicit computations we
have that νπEdic(ωF ∧ ωGα0

) = 39. For fixed k, let Ck be a non-isolated separatrix of F . By the
formula given in Theorem 3.8 we have,

Tan0(Ck,Gα0
) = νπEdic(ωF ∧ ωGα0

)− νπEdic(ωF ) + ιp(C̃Gα0
, J̃ (F ,G0))

= 39− 27 = 12.

Since Tan0(Ck,Gα0
) + 1−3 = 12 + 1−3 = 10 6∈ SC and Tan0(Ck,Gα0

) + 1−3 + 3−8 = 5 6∈ 8Z>0,
from the Theorem 2.22 we have that 10 is the Zariski invariant. After forthright computations
it is possible to show that the foliation F has the polar transversality property.
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The following result gives us a condition under which all the non-isolated separatrices are
(n,m)-quasihomogeneous.

Proposition 4.5. Let F ∈ Fπ be the foliation induced by {ωF = 0}. If there exists G? ∈ FCπ
such that

(38) νπEdic(ωF ∧ ωG?)− νπEdic(ωF ) ≥ m(n− 1),

then all the non-isolated separatrices of F are (n,m)−quasihomogeneous.

Proof. Let CF be a non-isolated separatrix of F and let ϕ be a parameterization of CF . By
Theorem 3.8

ordtϕ
∗ωG = νπEdic(ωF ∧ ωG)− νπEdic(ωF ) + ιp(C̃G , J̃ (F ,G)).

Since, by hypothesis, there exists G? ∈ FCπ such that νπEdic(ωF ∧ ωG?) − νπEdic(ωF ) ≥ m(n − 1),
then we have

ordtϕ
∗ωG? = νπEdic(ωF ∧ ωG?)− νπEdic(ωF ) + ιp(C̃G? , J̃ (F ,G?))

≥ m(n− 1) + ιp(CG̃ , J̃ (F ,G?)) ≥ m(n− 1).

This implies that ordtϕ
∗ωG? + 1− n ≥ m(n− 1) + 1− n = (m− 1)(n− 1). Since the conductor

of the semigroup of the plane branch is c = (m − 1)(n − 1), then CF is analytically equivalent
to the quasihomogeneous branch. Since CF is an arbitrary non-isolated separatrix of F , the
proposition is proved.

Theorem 4.3 shows that if F belongs to the family F?π all the non-isolated separatrices of
F have the same Zariski invariant, however the Zariski invariant does not characterize the
family F?π. Namely, the following example shows the existence of a foliation in Fπ whose non-
isolated separatrices have the same Zariski invariant even though this foliation does not belong
to the subfamily F?π. It is matter of a future study to provide the complete set of invariants
characterizing the foliations having polar transversality with respect to the cuspidal dicritical
foliations.

Example 4.6. Let F be the foliation induced by {ωF = 0} where

ωF = (x6y − 7y6)dx+ (6y5x− x7)dy.

The non-isolated separatrices are given by the equation Ck =
{
y6 − kx7 − x6y = 0

}
, for

k ∈ C∗. For each k ∈ C∗ the branch Ck belongs to the equisingularity class (6, 7). After
some computations we can verify that the Zariski invariant of every Ck is 9. The foliation F
belongs to the family Fπ, however it does not belong to F?π. Namely, let us consider the foliation
Gα induced by the equation {ωGα = 0}, where ωGα = (6x+ αy)dy − 7ydx, with α ∈ C∗. Then,

ωF ∧ ωGα =
[
(x6y − 7y6)dx+ (6y5x− x7)

]
dy ∧ [−(6x+ αy)dy − 7ydx]

=
[
7αy7 + x7y − αx6y2

]
dx ∧ dy.

Note that the Jacobian curve has two branches

J (F ,Gα) = J1(F ,Gα) ∪ J2(F ,Gα),

where J1(F ,Gα) = {y = 0} and J2(F ,Gα) =
{

7αy6 − x7 + αx6y = 0
}

. The strict transform of
J2(F ,Gα) by π intersects the component Edic far from a corner point, for this reason F does
not belong to F?π. Now we recover the Zariski invariant of each non-isolated separatrix using the
formula given in Theorem 3.8. Let Ck be a non-isolated separatrix of F . For each fixed k, there
exists α(k) such that the strict transform of the Jacobian curve J (F ,Gα(k)) by π passes through



260 OZIEL GÓMEZ-MARTÍNEZ

the same point p ∈ Edic that the strict transform of the separatrix CGα(k)
does. After forthright

computations we have that

Tan0(Ck,Gα(k)) = νπEdic(ωF ∧ ωGα(k)
)− νπEdic(ωF ) + ιp(C̃Gα(k)

, J̃ (F ,Gα(k)))

= 61− 48 + 1 = 14.

Hence Tan0(Ck,Gα(k)) + 1− 6 = 14 + 1− 6 = 9 6∈ SC and

Tan0(Ck,Gα(k)) + 1− 7 = 14 + 1− 7 = 8 6∈ 7Z>0.

From Theorem 2.22 it follows that 9 is the Zariski invariant.

The following example shows that there exist foliations for which their non-isolated separa-
trices have not necessarily coincident Zariski invariants.

Example 4.7. We consider the foliation F generated by

ωF =
(
y5 + 2x9y − 2x9y2 − 9x2y4

)
dx+

(
4y3x3 − x10 + 2x10y − 3xy4 − x8y2

)
dy.

The non-isolated separatrices of the foliation are the branches given by

Ck = {y4 − kx9 + (k − 1)x7y + x7y2 = 0},

k ∈ C∗. For every k ∈ C∗ except for k = 1 the Zariski invariant of the non-isolated separatrices
coincides. Now we consider the foliation G0 given for ω0 = 9ydx− 4xdy, we have that

ωF ∧ ωG0 = −xy
(
y4 − x9 + 10x9y − 9x7y2

)
dx ∧ dy.

After straightforward computations we have νπEdic(ωF ∧ ω0) = 61 y νπEd(ωF ) = 48. Note that
the Jacobian curve is J (F ,G0) which is the union of the curves J1 = {x = 0}, J2 = {y = 0}
and J3 = {y4 − x9 + 10x9y − 9x7y2 = 0}. Moreover the strict transfom by π of the curve J3

intersects the dicritical component. Now we compute the Zariski invariant using the formula
given in Theorem 3.8. Let Ck with fixed k 6= 1 be a non-isolated separatix of the foliation F . By
the formula given in Theorem 3.8 we have,

Tan0(Ck,G0) = νπEdic(ωF ∧ ωG0)− νπEdic(ωF ) + ιp(C̃G0
, J̃ (F ,G0))

= 61− 48 = 13.

Then, Tan0(Ck,G0) + 1 − 4 = 10 6∈ SC and Tan0(Ck,G0) + 1 − 4 + 4 − 9 = 14 − 9 = 5 6∈ 9Z>0.
This implies that 10 is the Zariski invariant.

For k = 1, after explicit computations we have that

Tan0(C1,G0) = νπEdic(ωF ∧ ωG0)− νπEdic(ωF ) + ιp(C̃G0
, J̃ (F ,G0))

= 61− 48 + 9 = 22.

Then, Tan0(C1,G0)+1−4 = 23−4 = 19 6∈ SC and Tan0(C1,G0)+1−4+4−9 = 23−9 = 14 6∈ 9Z>0.
Therefore, the Zariski invariant of C1 is 19.

Thus, as we have seen in this example, there exist foliations for which their non-isolated
separatrices have not necessarily coincident Zariski invariants.

Now let us show that the subfamily F?π is not empty. For this sake we rely on some ideas
described in [30].

Let n,m ∈ N, 1 < n < m and g.c.d(n,m) = 1. We define,

(39) PZ :=
{

(i, j) ∈ Z2
≥0 | 0 ≤ i ≤ m− 2, 0 ≤ j ≤ n− 2 and ni+mj > nm

}
.

We define as well the set,

(40) ZI := {s ∈ Z≥0 | s+ n 6∈ 〈n,m〉 and s+m 6∈ 〈n,m〉} ,
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where 〈n,m〉 = {ni+mj | i, j ∈ Z≥0} . Let C be a plane branch of the equisingularity class
(n,m) and we assume that C admits a parameterization ϕ

(41) ϕ(t) =
(
tn, tm + aλt

λ +
∑
j>λ

ajt
j
)
,

where aλ 6= 0 with λ satisfying λ 6∈ S and λ + n − m 6∈ mZ>0. If we write λ = m + s then
m+ s 6∈ S. Moreover, λ+ n−m = m+ s+ n−m = n+ s 6∈ mZ>0, hence, n+ s 6∈ S. The set
ZI is, thus, the set of Zariski invariants of the equisingularity class (n,m). The following lemma
is proved in [30], page 26 Lemma 1.3.

Lemma 4.8. There exists a bijection between the sets PZ and ZI.

Moreover, in [30], page 27, Theorem 1.5 (see also [36], page 74, Proposition 2.1) the following
theorem is proved.

Theorem 4.9. Let C be a plane branch of the equisingularity class (n,m) that is not quasiho-
mogeneous and let λ be its Zariski invariant. Then, after an analytic change of coordinates, C
satisfies an equation of the following form

(42) yn − xm + xpyq +
∑

(i,j)∈PZ
ni+mj>nm

aijx
iyj = 0,

where (p, q) ∈ PZ is the point associated to λ through the bijection beetwen PZ and ZI.

Using Lemma 4.8 it is possible to refine the bound given in Proposition 4.5.

Proposition 4.10. Let F ∈ Fπ be the foliation induced by {ωF = 0}. If there exists G? ∈ FCπ
such that

(43) νπEdic(ωF ∧ ωG?)− νπEdic(ωF ) ≥ c− 1,

where c is the conductor of the semigroup, then all the non-isolated separatrices of F are (n,m)-
quasihomogeneous.

Proof. Let CF be a non-isolated separatrix of F and let ϕ be a parameterization of CF . By
Theorem 3.8

ordtϕ
∗ωG = νπEdic(ωF ∧ ωG)− νπEdic(ωF ) + ιp(C̃G , J̃ (F ,G)).

Since, by hypothesis there exists G? ∈ FCπ such that νπEdic(ωF ∧ ωG?) − νπEdic(ωF ) ≥ c − 1, then
we have

ordtϕ
∗ωG? = νπEdic(ωF ∧ ωG̃)− νπEdic(ωF ) + ιp(C̃G? , J̃ (F ,G?))

≥ c− 1 + ιp(CG̃ , J̃ (F ,G?)) ≥ c− 1.

This implies that ordtϕ
∗ωG? + 1 − n ≥ c − 1 + 1 − n = c − n. Since the conductor of the

semigroup of a plane branch in the equisingularity class (n,m) is c = (m − 1)(n − 1), then
c− n = mn− 2n−m+ 1. By Lemma 4.8, the Zariski invariant asociated to the extreme point
(m − 2, n − 2) is λ = n(m − 2) + m(n − 2) − mn + m = mn − 2n + m and this is the last
invariant for the equisingularity class (n,m). Hence the separatrix CF is analytically equivalent
to the quasi-homogeneous branch. Since CF is an arbitrary non-isolated separatrix of F , the
proposition is proved.

If we consider the foliations induced by the equations

(44) F1 =

{
d

(
yn − xpyq

xm

)
= 0

}
and F2 =

{
d

(
yn

xm − xpyq

)
= 0

}
,
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the non-isolated separatrices of the foliations F1 and F2 are given by the branches

Ck,1 = {yn − xpyq − kxm = 0} and Ck,2 = {yn − k(xm − xpyq) = 0} .

According to Theorem 4.9, all the non-isolated separatrices of F1 and F2 have the same Zariski
invariant λ, which is the associated to (p, q) ∈ PZ. Moreover after straightforward computations
it is possible to show that both foliations F1,F2 belong to the family F?π.

The following proposition gives an explicit family of dicritical foliations that belong to Fπ.

Proposition 4.11. Let (p, q) ∈ PZ. Let F1 and F2 be the foliations induced by {ωF1 = 0} and
{ωF2 = 0} respectively, where

ωF1 =
(
a1y

n−q+1 + a2x
py + yA(x, y)

)
dx+

(
b1y

n−qx+ b2x
p+1 + xB(x, y)

)
dy,

with na1 +mb1 = 0, na2 +mb2 6= 0,a2b2 ∈ C \Q and A(x, y), B(x, y) ∈ C{x, y} with order greater
than or equal to p+ 1 and

ωF2
=
(
ã1x

m−py + ã2y
q+1 + yÃ(x, y)

)
dx+

(
b̃1x

m−p+1 + b̃2xy
q + xB̃(x, y))

)
dy,

with mã1 +nb̃1 = 0, mã2 +nb̃2 6= 0, ã2
b̃2
∈ C \Q and Ã(x, y), B̃(x, y) ∈ C{x, y} with order greater

than or equal to max{q + 1,m − p}. Then the foliations F1,F2 belong to Fπ. Moreover both
foliations do not have saddle-node singularities.

Lemma 4.12. Let (p, q) ∈ PZ and let t, l ∈ N∗ with t < m, l < n such that tn − lm = 1, then
p

n−q ≥
t
l .

Proof. First we note that every other solution (t̃, l̃) of the equation nx − my = 1 is given by

t̃ = t + k0m and l̃ = l + k0n for some k0 ∈ Z. Since (p, q) belongs to the set PZ, then
np−m(n− q) > 0. Let s ∈ N∗ such that np−m(n− q) = s. Since s > 0 then the solutions of
the equation nx−my = s are given by x = st + k0m and y = sl + k0n for k0 ∈ Z. Since (p, q)
is a solution then there exists k0 ∈ Z such that p = st+ k0m and n− q = sl + k0n.

If k0 ≥ 1 then p > m and n− q > n but this is a contradiction.
If k0 = 0 then p

n−q = st
sl = t

l and we finish the proof in this case.

Finally, if k0 ∈ Z<0 then

pl − (n− q)t = lst+ k0ml − (lst+ k0nt) = k0 (lm− nt) = −k0s.

Since k0 < 0 then −k0s > 0 and this implies that p
n−q >

t
l . This proves the lemma.

Proof of Proposition 4.11. We need to prove that F1 satisfies the two properties of the family
Fπ (see Definition 2.10). Since the system of coordinates (x, y) is adapted to π, the property ii)
in the definition is satisfied because the curves L0 = {y = 0} and L1 = {x = 0} are invariant for
F1, and are pairwise transverse.

It remains to prove that F1 has one dicritical component that appears in the last blowing-up
morphism of the sequence of blowing-up morphisms given by the Euclidean algorithm of the pair
(n,m). As g.c.d(n,m) = 1, by Bezout’s identity there exist t, l ∈ N∗ such that nt− lm = 1. We
consider t, l ∈ N∗ such that l < n and t < m. After straightforward computations we have that
n− l ≤ m− t and l < t.
We consider the following morphism

π(u, v) = (un−lvl, um−tvt) = (x, y).

Let us compute π∗ωF1
. For this sake, let us denote by α, β, γ, δ the following expressions:

α = (m− t)(n− q+1)+n− l, β = t(n− q+1)+ l, γ = (n− l)(p+1)+m− t, and δ = l(p+1)+ t.
Therefore,
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π∗ωF1
=
(
c1u

α−1vβ + c2u
γ−1vδ + uγ+n−l−1+vδ+l

(
(n− l)Â+ (m− t)B̂

))
du

+
(
d1u

αvβ−1 + d2u
γvδ−1 + uγ+n−lvδ+l−1

(
lÂ+ tB̂

))
dv,

where c1 = a1(n − l) + b1(m − t), c2 = a2(n − l) + b2(m − t), d1 = la1 + tb1, d2 = la2 + tb2,

π∗A = A ◦ π = u(n−l)(p+1)vl(p+1)Â, and π∗B = B ◦ π = u(n−l)(p+1)vl(p+1)B̂. Note that by the
assumption na1 +mb1 = 0 it follows that c1 = −d1.

On the other hand we have that p
n−q >

m
n > m−t

n−1 , this implies that p(n−l)−(m−t)(n−q) > 0,

hence

γ − α = p(n− l)− (m− t)(n− q) > 0.

So, by Lemma 4.12 we have that pl − t(n− q) ≥ 0 and this implies that δ − β ≥ 0. By dividing
by uα−1vβ−1 we have that

ω̃F1
=
(
−d1v + c2u

γ−αvδ−β+1 + uγ−α+n−lvδ−β+l+1
(

(n− l)Â+ (m− t)B̂
))

du

+
(
c1u+ d2u

γ−α+1vδ−β + uγ−α+n−l+1vδ−β+l
(
lÂ+ tB̂

))
dv.

Note that the degree of the monomials uγ−αvδ−β+1, uγ−α+1vδ−β is greater than or equal to 2,
so this point is a dicritical singularity because −c1uv+ c1uv = 0 and we have finished the proof.
The proof for the foliation F2 is analogous.

Under the assumptions, it is possible prove that F1 does not have saddle-node singularities.
Let σ be the sequence of blowing-up morphisms determined by the Euclidean algorithm of the
pair (p, n − q). We will prove that there exists a finite number of singular points of σ∗F1 on
the last irreducible component of σ−1(0), such that each of such points is a simple singularity,
and except for at most one, there are no saddle-node singularities with the possible exception
of one of these points. By Bezout’s identity there exist r, s ∈ N∗ such that rp − s(n − q) = %
where %:=g.c.d(p, n − q). We assume that r ≤ s, in the case that r > s the computations are
analogous. Let us consider the following morphism

σ(u, v) = (urv
n−q
% , usv

p
% ),

and compute the induced form σ∗ωF1
, let us denote by α, β, γ, δ the following expresions:

α = s(n− q + 1) + r − 1, β = n−q
% (p+ 1) + p

% − 1, γ = %+ r and δ = n−q
%

σ∗ωF1 = uαvβ
[(
k1v + k2u

%v + uγvδ+1C1

)
du+

(
l1u+ l2u

ρ+1 + uγ+1vδD1

)
dv
]
,

where

k1 = (ra1 + sb1) , k2 = (ra2 + sb2) , l1 =

(
n− q
ρ

a1 +
p

ρ
b1

)
, l2 =

(
n− q
%

a2 +
p

%
b2

)
,

ur(p+1)v
n−q
% (p+1)A1 = A ◦ σ, ur(p+1)v

n−q
% (p+1)B1 = B ◦ σ,

and C1 = rA1 + sB1, D1 = n−q
ρ A1 + p

ρB1. We denote by ω̂F1
the strict transform of ωF1

by σ.

The singular points for σ∗ωF1
are given by v = 0 and the solutions of the equation(

n− q
%

a1 +
p

%
b1

)
u+

(
n− q
%

a2 +
p

%
b2

)
u%+1 = 0.

Note that u = 0 is a solution of the previous equation. If u 6= 0 then we have

(45) u% = − (n− q)a1 + pb1
(n− q)a2 + pb2

.
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Let ξi, i = 1, 2, ..., % be the solutions of equation (45) and let us consider the change of variables

ui = u− ξi, vi = v,

for each i ∈ {1, 2, ..., %}. We analyze the restriction of the form ω̂F1
to each singular point

zi = (ξi, 0) and we prove, that under the conditions of the Proposition 4.11 the singular points
are simple. Namely, at the point zi = (ξi, 0) the equation (4) takes the form

ω̂F1
|zi = (k1 + k2ξ

%
i ) vidui + (l1 + (%+ 1)l2ξ

%
i )uidvi +

(
vih1 + v

n−q
%

i g1

)
dui

+

(
h2(ui) + v

n−q
% +1

i g2

)
dvi,

where h1(ui) =
ρ∑
j=1

cju
%−j
i ξji , h2(ui) =

ρ∑
j=2

dju
j
i ξ
%−j
i , with cj , dj ∈ C, and

g1 = (ui + ξi)
%+r(rA1(ui + ξi, vi) + sB1(ui + ξi, vi)),

and

g2 = (ui + ξi)
%+r−1

(
n− q
%

A1(ui + ξi, vi) +
p

ρ
B1(ui + ξi, vi)

)
.

Let XF1 be a vector field generating the same foliation at the point zi. Its linear part is given
by

DXF1 |zi =

(
(n− q)a1 + pb1 ζ

0 (ra1 + sb1 + (ra2 + sb2) ξρi )

)
.

Since na1 +mb1 = 0, the quotient λ2

λ1
is,

λ2

λ1
=

sn− rm
np−m(n− q)

− ra2 + sb2
(n− q)a2 + pb2

.

If ra2+sb2
(n−q)a2+pb2

∈ Q, then a2
b2
∈ Q, which is a contradiction to the hypothesis a2

b2
∈ C \ Q. Thus,

ra2+sb2
(n−q)a2+pb2

/∈ Q; and in particular ra2+sb2
(n−q)a2+pb2

6= 0. This implies that λ1

λ2
/∈ Q>0 and this proves

that every point zi = (ξi, 0) for i = 1, 2, ..., % is a simple singularity.
Now we analyze the singular point (u, v) = (0, 0). If we look for a vector field XF1 generating

the same foliation in a neighborhood of the point (u, v) = (0, 0), the linear part is given by

DXF1 |(0,0) =

((
(n−q)
% a1 + p

%b1

)
0

0 − (ra1 + sb1)

)
.

The quotient of the eigenvalues is

λ1

λ2
= −1

%

(
(n− q)a1 + pb1

ra1 + sb1

)
.

Since na1 +mb1 = 0 we have that a1
b1

= −mn and then the quotient is

λ1

λ2
= −1

ρ

(
np+mq −mn

ns− rm

)
.

Since (p, q) ∈ PZ, then np+mq −mn > 0, so the posibility of the quotient λ1

λ2
to be a positive

rational or not, depends on the sign of ns− rm. If ns− rm > 0 then the point (0, 0) is a simple
point and we have finished the proof. If ns− rm < 0 then λ1

λ2
∈ Q>0 and this point leads to the

dicritical component.
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At the origin of the other chart (ũ, ṽ), where ũ = 1
v , the unique singular point is the origin

(ũ, ṽ) = (0, 0). Namely, the equation at that point is given by

ω̂F1
|(0,0) =

(
l1ṽ

%+1 + l2ṽ
)
dũ+ ((l1 − k1) ũṽ% + (l2 − k2) ũ) dṽ

+

(
ũ
n−q
% ṽ

n−q
% −r+1

(
n− q
ρ

A2 +
p

%
B2

))
dũ

+

(
ũ
n−q
% +1ṽ

n−q
% −r

((
n− q
%
− r
)
A2 +

(
p

%
− s
)
B2

))
dṽ.

If we look for a vector field XF1
generating the same foliation in the point (ũ, ṽ) = (0, 0), the

linear part is given by

DXF1
|(0,0) =

(n−q% a2 + p
%b2 − ra2 − sb2

)
0

0 −
(
n−q
% a2 + p

%b2

)
.


The quotient of the eigenvalues is

λ1

λ2
= −1 + ρ

ra2 + sb2

(n− q)a2 + pb2
.

If ra2+sb2
(n−q)a2+pb2

∈ Q then a2
b2
∈ Q, but this is a contradiction since by hypothesis a2

b2
∈ C \ Q;

therefore, λ1

λ2
6∈ Q>0.

The following theorem shows that the family F?π is not empty.

Theorem 4.13. Let (p, q) ∈ PZ. Let F1 and F2 be the foliations induced by {ωF1 = 0} and
{ωF2

= 0} respectively, where

ωF1 =
(
a1y

n−q+1 + a2x
py + yA(x, y)

)
dx+

(
b1y

n−qx+ b2x
p+1 + xB(x, y)

)
dy,

with na1 +mb1 = 0, na2 +mb2 6= 0,a2b2 ∈ C \Q and A(x, y), B(x, y) ∈ C{x, y} with order greater
than or equal to p+ 1 and

ωF2
=
(
ã1x

m−py + ã2y
q+1 + yÃ(x, y)

)
dx+

(
b̃1x

m−p+1 + b̃2xy
q + xB̃(x, y))

)
dy,

with mã1 + nb̃1 = 0, mã2 + nb̃2 6= 0, ã2
b̃2
∈ C \ Q and Ã(x, y), B̃(x, y) ∈ C{x, y} with order

greater than or equal to max{q + 1,m− p}. Then the foliations F1, F2 belong to the subfamily
F?π. Moreover, the Zariski invariant of all the non-isolated invariant branches of both foliations
F1,F2 is the value λ associated to the point (p, q) in the set PZ.

The following lemma gives a procedure to determine the intersection of the polar curve of two
foliations, one in Fπ and the other in FCπ and the corresponding irreducible component of the
divisor, in terms of the Newton polygon of the polar curve.

We recall that, given h ∈ C{x, y}, with h =
∑
hijx

iyj , the support of h is by definition

(46) Supp(h;x, y) :=
{

(i, j) ∈ Z2
≥0 | hij 6= 0

}
.

The Newton polygon of h, that we denote by N (h;x, y), with respect to the coordinates x, y is
by definition the convex hull of the set Supp(h;x, y) + R2

≥0. Given the curve H = {h = 0} the

Newton polygon of H is N (h;x, y).

Lemma 4.14. Let π : (M,D)→ (C2, 0) be a finite sequence of blowing-up morphisms, described
by the Euclidean algorithm of the pair (n,m), with the exceptional divisor D = π−1(0). Let
Edic be the irreducible component of the divisor D = π−1(0) that appears in the last blowing-up
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morphism of the sequence π. Let J (F ,G) be the polar curve between the foliations F and G, for

F ∈ Fπ and G ∈ FCπ . We denote by J̃ (F ,G) the strict transform of J (F ,G) by π. Then the
following statements are equivalent

(i) J̃ (F ,G) ∩ Edic 6= ∅ at a point p that is not a corner point.
(ii) There exists a coordinate system (x, y) adapted to π, such that the Newton polygon of the

Jacobian curve N (J (F ,G);x, y) has exactly one side of slope − n
m .

(iii) For every coordinate systems (x, y) adapted to π, the Newton polygon of the Jacobian curve
N (J (F ,G);x, y) has exactly one side of slope − n

m .

Proof of Lemma 4.14. That iii) implies ii) is immediate.
Now we prove the implication i) if and only if ii). Let (x, y) be a system of coordinates

adapted to π. Let us recall that π is a finite sequence of blowing-up morphisms. We denote by
k the length of the sequence of blowing-up morphisms. Let pi, for i = 0, 1, ..., k, be the center
of πi : (Mi, π

−1
i (pi−1)) → (Mi−1, pi−1), where p0 = (0, 0) is the origin and M0 = (C2, 0). For

each l ∈ {1, 2, ..., k} we consider (xl, yl) a system of coordinates adapted to pl. Note that the
blowing-up morphism πl is given at the point pl by one the following equations

(47) σl,1(xl, yl) = (xl, xlyl), or σl,2(xl, yl) = (xlyl, yl),

and associated with these equations we have two affine transformations Ts : R2 → R2, for
s = 1, 2, given by,

(48) T1(i, j) = (i+ j, j), or T2(i, j) = (i, i+ j).

For every l = 1, 2, ..., k, the Newton polygon Nl(J (l)(F ,G);xl, yl), where J (1)(F ,G) denotes the
strict transform of J (l−1)(F ,G) by πl. Note that this is the convex hull of the set

Ts(Supp(J l−1(F ,G);xl−1, yl−1) + R2
≥0

for l = 1, 2, ..., k, s ∈ {1, 2}, where x0 = x, y0 = y and π0 is the identity. After straightforward
computations we have that the Newton polygon N (J (F ,G);x, y) has a side of slope − n

m if and

only if the Newton polygon Nk−1(J (k−1)(F ,G);xk−1, yk−1) has a side of slope −1.
Let J (F ,G) = {h = 0} be the polar curve between F and G. If we consider the composition

σ = π1 ◦ π2 ◦ · · · ◦ πk−1, then h ◦ σ = xαk−1y
β
k−1h̃(xk−1, yk−1), where h̃(0, yk−1) 6= 0 6= h̃(xk−1, 0).

We write h̃ = h̃r + h̃r+1 + · · · , where h̃i ∈ C[xk−1, yk−1] are homogeneous polynomials of degree

i and h̃r is the first not identically vanishing polynomial and the suspensive dots represent terms
of higher order than r + 2. We write h̃r(xk−1, yk−1) = xγk−1y

δ
k−1g(xk−1, yk−1) where g is a

polynomial of degree r − γ − δ.
Let πk be the blowing-up morphism at the point pk−1, where πk(xk, yk) = (xk, xkyx). The

transform of h̃ by πk is,

π∗k(h̃) = h̃r(xk, xkyk) + h̃r+1(xk, xkyk) + · · · = xrky
δ
kg(1, yk) + xr+1

k p̃r+1 · · ·

= xrk
(
yδkg(1, yk) + xkp̃r+1 + · · ·

)
,

where the multiple dots represent terms of order greater or equal to r + 2. Note that the
exceptional divisor is given by xk = 0, thus except for corner points, we have J̃ (F ,G)∩Edic 6= ∅
if and only if there exists ξ ∈ C∗ such that g(1, ξ) = 0. Let us recall that given a polynomial
q ∈ C [T ], there exists ξ ∈ C such that q(ξ) = 0 if and only if the degree of q is greater than
or equal to 1. We will show that the degree of g is greater than or equal to 1. If the degree
of g is smaller than 1, that is to say, the polynomial g is constant, then the Newton polygon
Nk−1(J (k−1)(F ,G);xk−1, yk−1) consists of one point; this leads a contradiction because then
the Newton polygon N (J (F ,G);x, y) does not have a side whose slope is − n

m . Hence, the
degree of the polynomial g is greater than or equal to 1. Moreover, since the Newton polygon
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Nk−1(J (k−1)(F ,G);xk−1, yk−1) has a side whose slope is −1, then it is possible to find ξ ∈ C∗
such that g(1, ξ) = 0. That i) implies iii) follows from analogous arguments to the previous one.
This finishes the proof of Lemma 4.14.

Proof of Theorem 4.13. Let F1 be the foliation induced by the equation {ωF1
= 0}, where

ωF1
=
(
a1y

n−q+1 + a2x
py + yA(x, y)

)
dx+

(
b1y

n−qx+ b2x
p+1 + xB(x, y)

)
dy,

and let G ∈ FCπ be the foliation induced by the equation {ωG = 0}

ωG = (my + h1(x, y)) dx− (nx+ cy + h2(x, y)) dy.

We compute

ωF1
∧ ωG = h(x, y)dx ∧ dy.

We will show that for every G ∈ FCπ , the Newton polygon of the polar curve J (G,F) = {h = 0}
does not have a side whose slope is − n

m . Thus, by Lemma 4.14, we conclude that F ∈ F?π.
After forthright computations we have that

ωF1
∧ ωG =

[
−kxp+1y + ca1y

n−q+2 +H0(x, y) +H2(x, y) +H1(x, y)
]
dx ∧ dy,

where k = na2 +mb2 6= 0, and

H0(x, y) = xy
(
ca2x

p−1y + nA(x, y) +mB(x, y)
)
,

H1(x, y) = h1(x, y)
(
b1y

n−qx+ b2x
p+1 + xB(x, y)

)
,

H2(x, y) = h2(x, y)
(
a1y

n−q+1 + a2x
py + yA(x, y)

)
.

Now we recall that ord0hi(x, y) ≥ 2 for i = 1, 2 and ordxh1(x, 0) ≥ bmn c+ 1 = α0 + 1. We write
ordxh1(x, 0) = α0 + k, with k ≥ 1. We analyze the Newton polygon N (h;x, y); we need to focus
on four cases. Namely,

(i) Assume that there exists a side ` of the Newton polygon N (h;x, y) whose slope is − n
m ,

and let (α, β), (p+ s, 0) be the initial and final points, respectively, where s = α0 + k + 1.
The equation of this side is given by

y = − β

p+ s− α
x+

β

p+ s− α
(p+ s).

We assume that for x = p+ 1 we have that y ≤ 1. This implies that

(49) − β

p+ s− α
(p+ 1) +

β

p+ s− α
(p+ s) ≤ 1.

Since − β
p+s−α = − n

m , then the equation (49) gives,

− n
m

(p+ 1) +
n

m
(p+ s) ≤ 1

or equivalentely,

n(s− 1) ≤ m.
Moreover, since s ≥ α0 + 2, then s− 1 ≥ α0 + 1. Therefore,

m ≥ n(s− 1) ≥ n(α0 + 1).

We stress that this is a contradiction because m = α0n + r0 with r0 < n. Consequently,
there is no side of the Newton polygon N (h;x, y) with slope − n

m and extreme points (α, β),
(p+ s, 0).
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(ii) Suppose that the Newton polygon N (h;x, y) has a side ` with extreme points (p + 1, 1),
(p+s, 0) and slope − n

m . Then the slope of this side is − 1
s−1 . This implies that − n

m = − 1
s−1 ,

or equivalently, n(s− 1) = m, but this is a contradiction because g.c.d.(n,m) = 1. Hence,
the Newton polygon N (h;x, y) does not have a side whose slope is − n

m and extreme points
(p+ 1, 1), (p+ s, 0).

(iii) Assume that the Newton polygonN (h;x, y) has a side ` with extreme points (α, β), (p+1, 1)

whose slope is − n
m . Then the slope of such side is − β−1

p+1−α . Thus − β−1
p+1−α = − n

m . This

implies that

(50) m(β − 1) = n(p+ 1− α).

Moreover, since g.c.d.(n,m) = 1 then there exists t ∈ Z such that β− 1 = tn. Substituting
this equality in (50) we have

tnm = n(p+ 1− α).

Hence, p = tm+ α− 1. We have now two possible cases
(a) If α = 0 then p = tm − 1. Since t ≥ 1 then p ≥ m − 1, but this is a contradiction

because p ≤ m− 2.
(b) If α ≥ 1 then p ≥ tm. Since t ≥ 1 then p ≥ m, but p ≤ m − 2 and this is a

contradiction.
Therefore there is not a side ofN (h;x, y) with slope− n

m and extreme points (α, β), (p+1, 1).
(iv) Assume that the Newton polygon N (h;x, y) has a side ` whose slope is − n

m with extreme

points (α1, β1) and (α2, β2), α1, α2 < p+1. The slope of this side ` is given by − β1−β2

α2−α1
. By

hypothesis − n
m = − β1−β2

α2−α1
and this implies n(α2−α1) = m(β1−β2). Since g.c.d.(n,m) = 1

this implies that n| (β1 − β2), thus, β2 − β1 = tn for some t ∈ Z+.
Therefore n (α2 − α1) = mtn or equivalently, (α2 − α1) = mt. Moreover, since t ≥ 1,

then (α2 − α1) ≥ m. On the other hand, (α2 − α1) < p+ 1. So

p+ 1 > α2 − α1 ≥ m.

This last equation implies that p > m− 1 but p ≤ m− 2 and this is a contradiction again.
This implies that the Newton polygon N (h;x, y) does not has a side whose slope is − n

m
and extreme points (α1, β1) and (α2, β2) with α1, α2 < p+ 1.

Then after analyzing the cases (i)-(iv) we conclude, by Lemma 4.14, that there do not exist a
Jacobian curve intersecting the component Edic. This shows that F ∈ F?π. This finishes the
proof of Theorem 4.13.
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[2] Barroso, E. G. Un théorème de décomposition pour les polaires génériques d’une courbe plane. Comptes
Rendus de l’Académie des Sciences-Series I-Mathematics (1998), 326(1), 59-62.

DOI: 10.1016/s0764-4442(97)82713-9
[3] Brauner, K. Zur Geometrie der Funktionen zweier komplexer Veränderlicher: II. Das Verhalten der Funktio-

nen in der Umgebung ihrer Verzweigungsstellen; III. Klassifikation der Singularitäten algebroider Kurven;
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France, (1978) 106, 417-446. DOI: 10.24033/bsmf.1880
[18] Ebey, S, The classification of singular points of algebraic curves, Transactions of the American Mathematical

Society 118:454-471, 1965. DOI: 10.1090/s0002-9947-1965-0176983-8

[19] Hernandes, M. E., & Hernandes, M. E. R. The Analytic Classification of Plane Curves. (2020).
arχiv: 2010.04874

[20] Fortuny Ayuso, P. Vector flows and the analytic moduli of singular plane branches, Revista de la Real

Academia de Ciencias Exactas, F́ısicas y Naturales. Serie A. Matemáticas. 113 no. 4, 4107–4118 (2019).
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