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ON THE DEFORMATION OF THE EXCEPTIONAL UNIMODAL

SINGULARITIES

NAOHIKO KASUYA AND ATSUHIDE MORI

Abstract. Ebeling and Takahashi considered the deformation of an isolated surface singu-
larity f(x, y, z)− txyz (t ∈ C) for any invertible polynomial f in three variables. In particular,

they deformed each of the 14 exceptional unimodal singularities into a cusp singularity. How-

ever, their proof is purely algebraic and requires a detailed knowledge of normal forms. In
this article, instead of algebraic treatment of the singularity, we observe the critical points of

the squared distance function restricted to the singular complex surface in C3. We show that
only one additional critical point emerges via the deformation if and only if f is one of the 14

exceptional unimodal singularities. Moreover, we can determine the approximate location of

the critical point when the parameter t is a small positive number. This would be helpful to
describe the change of the topology of the complex surface by means of the Morse theory.

1. Introduction

V. I. Arnol’d defined the notion of modality of a function-germ and classified all the hypersur-
face singularities of modality equal or smaller than 2 (see [1]). The singularities of modality 1 are
called unimodal singularities, which are listed below. Throughout this paper, (x, y, z) denotes
the coordinates on C3 unless otherwise stated.

(1) Simple elliptic singularities (parabolic singularities)

Ẽ6 : x3 + y3 + z3 + axyz, a3 + 27 6= 0,

Ẽ7 : x2 + y4 + z4 + axyz, a4 − 64 6= 0,

Ẽ8 : x2 + y3 + z6 + axyz, a6 − 432 6= 0.

(2) Cusp singularities (hyperbolic singularities)

Tpqr : xp + yq + zr + axyz, a 6= 0,
1

p
+

1

q
+

1

r
< 1.

(3) 14 exceptional singularities

2010 Mathematics Subject Classification. 32S25, 58K60, 58K05.
Key words and phrases. exceptional unimodal singularities, cusp singularities, deformations of singularities,

critical points, Morse theory.

http://dx.doi.org/10.5427/jsing.2021.23a


2 N. KASUYA AND A. MORI

E12 : x2 + y3 + z7 + ayz5, E13 : x2 + y3 + yz5 + az8,

E14 : x3 + y2 + yz4 + ayz6,

Z11 : x2 + y5 + yz3 + ay4z, Z12 : x2 + zy3 + yz4 + ay2z3,

Z13 : x2 + xy3 + yz3 + ay5z,

W12 : x5 + y2 + yz2 + ax3z2, W13 : x2 + xy2 + yz4 + az6,

Q10 : x3 + y4 + yz2 + axy3, Q11 : x3 + xy3 + yz2 + ay5,

Q12 : x3 + zy2 + yz3 + axz4,

S11 : x4 + xy2 + yz2 + ax3y, S12 : x2y + y2z + z3x+ az5,

U12 : x4 + zy2 + yz2 + ax2(y2 + yz + z2).

On the other hand, there is an important class of polynomials, called quasihomogeneous
polynomials. A complex polynomial f(z1, . . . , zn) is called quasihomogeneous with weight system
(w1, . . . , wn, d) ∈ Zn+1

>0 if

f(λw1z1, . . . , λ
wnzn) = λdf(z1, . . . , zn)

for λ ∈ C∗. We note that simple singularities (modality 0) and simple elliptic singularities are
quasihomogeneous, while cusp singularities are not. The exceptional unimodal singularities are
quasihomogeneous only when a = 0. Now, we focus on a special class of quasihomogeneous
polynomials.

Definition 1.1 (Invertible polynomials). A quasihomogeneous polynomial f(z1, . . . , zn) is said
to be invertible if the following conditions are satisfied:

(1) the number of monomials in the polynomial f(z1, . . . , zn) is n, namely,

f(z1, . . . , zn) =

n∑
i=1

ai

n∏
j=1

zj
Eij

for some ai ∈ C∗ and nonnegative integers Eij for i, j = 1, . . . , n;
(2) the matrix E = (Eij) is invertible over Q;
(3) f(z1, . . . , zn) and f t(z1, . . . , zn) have singularities only at the origin of Cn which are

isolated, where f t(z1, . . . , zn) is defined by

f t(z1, . . . , zn) =

n∑
i=1

ai

n∏
j=1

zj
Eji .

The terminology “invertible polynomial” was introduced by Kreuzer [3].

In this paper, we only consider invertible polynomials in three variables. They are classified
as follows up to rescaling the variables.

Proposition 1.2 ([1], see also [2]). An invertible polynomial f(x, y, z) in three variables is
reduced to one of the following five types by a complex rescaling of the variables;

f1,(p,q,r)(x, y, z) = xp + yq + zr (2 ≤ p ≤ q ≤ r),
f2,(p,q,r)(x, y, z) = xp + yq + yzr (2 ≤ p, q, r),
f3,(p,q,r)(x, y, z) = xp + zyq + yzr (2 ≤ p, 2 ≤ q ≤ r),
f4,(p,q,r)(x, y, z) = xp + xyq + yzr (2 ≤ p, q, r),
f5,(p,q,r)(x, y, z) = xpy + yqz + zrx (1 ≤ p ≤ q ≤ r).
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The 14 exceptional singularities are represented by some invertible polynomials. Indeed, when
a = 0, they are the germs of the surface singularities

E12 : f1,(2,3,7) = 0, E13 : f2,(2,3,5) = 0, E14 : f2,(3,2,4) = 0,

Z11 : f2,(2,5,3) = 0, Z12 : f3,(2,3,4) = 0, Z13 : f4,(2,3,3) = 0,

W12 : f2,(5,2,2) = 0, W13 : f4,(2,2,4) = 0,

Q10 : f2,(3,4,2) = 0, Q11 : f4,(3,3,2) = 0, Q12 : f3,(3,2,3) = 0,

S11 : f4,(4,2,2) = 0, S12 : f5,(2,2,3) = 0, U12 : f3,(4,2,2) = 0,

at the origin of C3.
Using this description, Ebeling and Takahashi [2] constructed a deformation of each excep-

tional singularity into a cusp singularity. Concretely, they showed the following theorem.

Theorem 1.3 ([2]). Let f(x, y, z) be an invertible polynomial. Through the normal form of
Proposition 1.2, we associate to f the tuple of integers Γf = (γ1, γ2, γ3) as follows:

Γ1,(p,q,r) = (p, q, r),

Γ2,(p,q,r) = (p, q, p(r − 1)),

Γ3,(p,q,r) = (p, p(q − 1), p(r − 1)),

Γ4,(p,q,r) = (p, p(r − 1), qr − r + 1),

Γ5,(p,q,r) = (qr − q + 1, rp− r + 1, pq − p+ 1).

(1) If 1
γ1

+ 1
γ2

+ 1
γ3
> 1, then, by a suitable polynomial change of coordinates, the polynomial

f(x, y, z)− xyz can be transformed to a polynomial of the following form:

xγ1 + yγ2 + zγ3 − xyz +

γ1−1∑
i=1

aix
i +

γ2−1∑
j=1

bjy
j +

γ3−1∑
k=1

ckz
k + c.

(2) If 1
γ1

+ 1
γ2

+ 1
γ3

= 1, then the polynomial f(x, y, z)− xyz can be written as

xγ1 + yγ2 + zγ3 + axyz

for some a 6= 0 after a suitable holomorphic transformation of coordinates.
(3) If 1

γ1
+ 1

γ2
+ 1

γ3
< 1, then the polynomial f(x, y, z)− xyz can be written as

xγ1 + yγ2 + zγ3 + axyz

for some a 6= 0 after a suitable holomorphic transformation of coordinates.

Definition 1.4 (Gabrielov numbers). The numbers (γ1, γ2, γ3) in Theorem 1.3 are called the
Gabrielov numbers of f .

In the third case of Theorem 1.3, the 1-parameter family of polynomials

{f(x, y, z)− txyz}t∈C
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is a deformation of the singularity of f into a cusp singularity. In particular, it gives a deformation
of each exceptional singularity into a cusp singularity, since the Gabrielov numbers

Γ1,(2,3,7) = (2, 3, 7), Γ2,(2,3,5) = (2, 3, 8), Γ2,(3,2,4) = (3, 2, 9),

Γ2,(2,5,3) = (2, 5, 4), Γ3,(2,3,4) = (2, 4, 6), Γ4,(2,3,3) = (2, 4, 7),

Γ2,(5,2,2) = (5, 2, 5), Γ4,(2,2,4) = (2, 6, 5),

Γ2,(3,4,2) = (3, 4, 3), Γ4,(3,3,2) = (3, 3, 5), Γ3,(3,2,3) = (3, 3, 6),

Γ4,(4,2,2) = (4, 4, 3), Γ5,(2,2,3) = (5, 4, 3), Γ3,(4,2,2) = (4, 4, 4)

satisfy the inequality
1

γ1
+

1

γ2
+

1

γ3
< 1.

The aim of this paper is to understand these deformations from the topological view point.
However, it is hard to analyze the topological change of the complex surface from their arguments
since they are purely algebraic. Instead, we consider the following critical point problem and
understand the topological change by using the Morse theory.

We set ρ(x, y, z) =
√
|x|2 + |y|2 + |z|2 and

Σt = {(x, y, z) ∈ C3 | f(x, y, z)− txyz = 0}
for a complex number t, and take the restriction ρ2|Σt

of the squared distance function ρ2 to the
singular complex surface Σt. We consider the critical point problem of the function ρ2|Σt . When
t = 0, the function has no critical point except the origin since f is an invertible polynomial.
On the other hand, when t 6= 0, the function must have additional critical points since f and
f − txyz define singularities of different types with respect to Arnold’s classification. Namely,
the deformation by Ebeling and Takahashi must be understood as a phenomenon that a critical
point splits into plural ones.

As the main theorem of this article (Theorem 2.2), we show that for any nonzero complex
number t, the function ρ2|Σt has only one critical point except the origin if and only if f is any of
the 14 exceptional unimodal singularities. Moreover, we can determine the approximate location
of the critical point when the parameter t is a small positive number (Remark 2.4). This would
be helpful to describe the change of the topology of the complex surface by means of the Morse
theory.

2. The critical point problem

In this section, we prove Theorem 2.2, the main theorem of this article. In order to do so, we
need the following proposition. Let (z1, . . . , zn) be the coordinates on Cn and

ρ =
√
|z1|2 + · · ·+ |zn|2.

Proposition 2.1. Let g be a polynomial in n complex variables z1, . . . , zn and Σ be the com-
plex hypersurface defined by g(z1, . . . , zn) = 0. A point (z1, . . . , zn) on Σ is a critical point of
the restricted squared distance function ρ2|Σ if and only if the gradient vector of g is linearly
dependent with the vector (z̄1, . . . , z̄n).

We apply this to the case where g = f(x, y, z)− txyz. Then, a point (x, y, z) ∈ Σt satisfying
xyz 6= 0 is a critical point of ρ2|Σt if and only if

x∂xf − txyz
|x|2

=
y∂yf − txyz
|y|2

=
z∂zf − txyz
|z|2

.

Using these equations, we can show the following main theorem.
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Theorem 2.2. Let f be an invertible polynomial in three variables. Then, for any nonzero
complex number t, the function ρ2|Σt

has only one critical point except the origin if and only if
f is any of the fourteen exceptional unimodal singularities.

Proof. We set θ1 = arg x, θ2 = arg y, θ3 = arg z, and

∆1(p, q, r) = pqr − pq − qr − rp,
∆2(p, q, r) = (p− 1)(q − 1)(r − 1)− q − r + 1,

∆3(p, q, r) = (p− 1)(q − 1)(r − 1)− q − r + 2,

∆4(p, q, r) = (p− 1)(q − 1)(r − 1)− q,
∆5(p, q, r) = (p− 1)(q − 1)(r − 1)− 1.

By a complex rescaling of the variables, the invertible polynomial f can be written in the form
of Proposition 1.2. Then, in the 1-parameter family

f(x, y, z)− txyz,

the parameter t absorbs the rescaling constant. Thus, we may assume that f is originally written
as f = fk,(p,q,r) (k = 1, 2, 3, 4, 5). Moreover, we assume that the parameter t is a positive real
number. It is easily checked in the following argument that this assumption does not change the
number of critical points. Now, we prove the five cases each by each.

(I). f = xp + yq + zr (p ≤ q ≤ r).
In this case, a critical point (x, y, z) must satisfy

pxp − txyz
|x|2

=
qyq − txyz
|y|2

=
rzr − txyz
|z|2

,

and we denote the value of these fractions by l. Then, we obtain

xp =
1

p
(l|x|2 + txyz), yq =

1

q
(l|y|2 + txyz), zr =

1

r
(l|z|2 + txyz).

These three equations and the defining equation of Σt imply(
|x|2

p
+
|y|2

q
+
|z|2

r

)
l −
(

1− 1

p
− 1

q
− 1

r

)
txyz = 0

⇐⇒ l =
pqr − pq − qr − rp

qr|x|2 + rp|y|2 + pq|z|2
txyz.

Substituting this to the above three equations, we have

xp =
(qr − q − r)|x|2 + r|y|2 + q|z|2

qr|x|2 + rp|y|2 + pq|z|2
txyz,

yq =
r|x|2 + (rp− r − p)|y|2 + p|z|2

qr|x|2 + rp|y|2 + pq|z|2
txyz,

zr =
q|x|2 + p|y|2 + (pq − p− q)|z|2

qr|x|2 + rp|y|2 + pq|z|2
txyz.

(1)

Comparing the arguments of both sides of each equation, it follows

(p− 1)θ1 − θ2 − θ3 ≡ −θ1 + (q − 1)θ2 − θ3

≡ −θ1 − θ2 + (r − 1)θ3 ≡ 0 (mod 2π).
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In other words, the vectorp− 1 −1 −1
−1 q − 1 −1
−1 −1 r − 1

θ1

θ2

θ3


is an element of the lattice 2πZ3. The determinant of the coefficient matrix is

∆1(p, q, r) = pqr − pq − qr − rp =

(
1− 1

p
− 1

q
− 1

r

)
pqr.

This implies that if the simultaneous equations (1) have m positive real solutions, then
they have m∆1 complex solutions. In particular, there are only positive real solutions if
and only if (p, q, r) = (2, 3, 7). Now we put

α(x, y, z) =
(qr − q − r)|x|2 + r|y|2 + q|z|2

qr|x|2 + rp|y|2 + pq|z|2
,

β(x, y, z) =
r|x|2 + (rp− r − p)|y|2 + p|z|2

qr|x|2 + rp|y|2 + pq|z|2
,

γ(x, y, z) =
q|x|2 + p|y|2 + (pq − p− q)|z|2

qr|x|2 + rp|y|2 + pq|z|2
.

Then the simultaneous equations (1) are equivalent to

x∆1 = αqr−q−rβrγqtqr,

y∆1 = αrβrp−r−pγptrp,

z∆1 = αqβpγpq−p−qtpq.

Moreover, the functions α, β and γ satisfy

α+ β + γ = 1,

1

p
< α < 1− 1

q
− 1

r
,

1

q
< β < 1− 1

p
− 1

r
,

1

r
< γ < 1− 1

p
− 1

q
.

In the following, we only focus on the case where (p, q, r) = (2, 3, 7) and prove that
m = 1. In this case, the equations

x = α11β7γ3t21,

y = α7β5γ2t14,

z = α3β2γt6

give a biholomorphism between the complex surfaces {α+ β + γ = 1} ∩ (C∗)3 and
Σt ∩ (C∗)3. Hence, the critical point problem can be written by α, β, γ as

2α− 1

α22β14γ6t42
=

3β − 1

α14β10γ4t28
=

7γ − 1

α6β4γ2t12
, α+ β + γ = 1.

Thus, a critical point is nothing but a fixed point of the map

T : {α+ β + γ = 1} ∩ (R>0)3 → {α+ β + γ = 1} ∩ (R>0)3
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given by

T (α, β, γ) =


1

2
+

1

42
· 21x2

21x2 + 14y2 + 6z2

1

3
+

1

42
· 14y2

21x2 + 14y2 + 6z2

1

7
+

1

42
· 6z2

21x2 + 14y2 + 6z2

 ,

where x = α11β7γ3t21, y = α7β5γ2t14, and z = α3β2γt6. As is proved later in Proposi-
tion 2.3, T is a contraction on the closed set{

α+ β + γ = 1,
1

2
≤ α ≤ 11

21
,

1

3
≤ β ≤ 5

14
,

1

7
≤ γ ≤ 1

6

}
,

and hence, it has only one fixed point by the Banach fixed point theorem. Therefore,
the simultaneous equations have only one solution except the origin.

(II). f = xp + yq + yzr.
A critical point (x, y, z) must satisfy

pxp − txyz
|x|2

=
qyq + yzr − txyz

|y|2
=
ryzr − txyz
|z|2

,

and we denote the value of these fractions by l. Then,

l =
pqr − p(q − 1)− qr − rp

qr|x|2 + rp|y|2 + p(q − 1)|z|2
txyz,

and we obtain the simultaneous equations

xp =
(q − 1)(r − 1)|x|2 + r|y|2 + (q − 1)|z|2

qr|x|2 + rp|y|2 + p(q − 1)|z|2
txyz,

yq =
(r − 1)|x|2 + (rp− r − p)|y|2 + |z|2

qr|x|2 + rp|y|2 + p(q − 1)|z|2
txyz,

yzr =
q|x|2 + p|y|2 + (pq − p− q)|z|2

qr|x|2 + rp|y|2 + p(q − 1)|z|2
txyz.

(2)

Thus,
xp

txyz
,
yq

txyz
, and

yzr

txyz
are real positive numbers. Hence, we have

(p− 1)θ1 − θ2 − θ3 ≡ −θ1 + (q − 1)θ2 − θ3

≡ −θ1 + (r − 1)θ3 ≡ 0 (mod 2π),

namely, p− 1 −1 −1
−1 q − 1 −1
−1 0 r − 1

θ1

θ2

θ3

 ∈ 2πZ3.

The determinant of the coefficient matrix is

∆2(p, q, r) = (p− 1)(q − 1)(r − 1)− q − r + 1,

and it is equal to 1 if and only if

(p, q, r) = (2, 3, 5), (3, 2, 4), (2, 5, 3), (5, 2, 2), (3, 4, 2).
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In these cases, x, y and z are all real positive numbers. We put

α(x, y, z) =
(q − 1)(r − 1)|x|2 + r|y|2 + (q − 1)|z|2

qr|x|2 + rp|y|2 + p(q − 1)|z|2
,

β(x, y, z) =
(r − 1)|x|2 + (rp− r − p)|y|2 + |z|2

qr|x|2 + rp|y|2 + p(q − 1)|z|2
,

γ(x, y, z) =
q|x|2 + p|y|2 + (pq − p− q)|z|2

qr|x|2 + rp|y|2 + p(q − 1)|z|2
.

Then, the simultaneous equations (2) are equivalent to

x∆2 = α(q−1)(r−1)βr−1γqtqr,

y∆2 = αrβpr−p−rγptpr,

z∆2 = αq−1βγpq−p−qtp(q−1).

Now, we focus only on the five cases

(p, q, r) = (2, 3, 5), (3, 2, 4), (2, 5, 3), (5, 2, 2), (3, 4, 2).

Then, just as in the case of (I), a critical point corresponds to a fixed point of some map,
which is proved to be a contraction in Proposition 2.3. Therefore, the simultaneous
equations have only one solution except the origin.

(III). f = xp + zyq + yzr (q ≤ r).
A critical point (x, y, z) must satisfy

pxp − txyz
|x|2

=
qzyq + yzr − txyz

|y|2
=
zyq + ryzr − txyz

|z|2
,

and we denote the value of these fractions by l. Then,

l =
pqr − pq − qr − rp+ p+ 1

(qr − 1)|x|2 + p(r − 1)|y|2 + p(q − 1)|z|2
txyz,

and we obtain the simultaneous equations

xp =
(q − 1)(r − 1)|x|2 + (r − 1)|y|2 + (q − 1)|z|2

(qr − 1)|x|2 + p(r − 1)|y|2 + p(q − 1)|z|2
txyz,

zyq =
(r − 1)|x|2 + (rp− r − p)|y|2 + |z|2

(qr − 1)|x|2 + p(r − 1)|y|2 + p(q − 1)|z|2
txyz,

yzr =
(q − 1)|x|2 + |y|2 + (pq − p− q)|z|2

(qr − 1)|x|2 + p(r − 1)|y|2 + p(q − 1)|z|2
txyz.

(3)

Thus,
xp

txyz
,
zyq

txyz
, and

yzr

txyz
are real positive numbers. Hence, we havep− 1 −1 −1

−1 q − 1 0
−1 0 r − 1

θ1

θ2

θ3

 ∈ 2πZ3.

The determinant of the coefficient matrix is

∆3(p, q, r) = (p− 1)(q − 1)(r − 1)− q − r + 2,

and it is equal to 1 if and only if

(p, q, r) = (2, 3, 4), (3, 2, 3), (4, 2, 2).
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In these cases, x, y and z are all real positive numbers. We put

α(x, y, z) =
(q − 1)(r − 1)|x|2 + (r − 1)|y|2 + (q − 1)|z|2

(qr − 1)|x|2 + p(r − 1)|y|2 + p(q − 1)|z|2
,

β(x, y, z) =
(r − 1)|x|2 + (pr − p− r)|y|2 + |z|2

(qr − 1)|x|2 + p(r − 1)|y|2 + p(q − 1)|z|2
,

γ(x, y, z) =
(q − 1)|x|2 + |y|2 + (pq − p− q)|z|2

(qr − 1)|x|2 + p(r − 1)|y|2 + p(q − 1)|z|2
.

Then, the simultaneous equations (3) are equivalent to

x∆3 = α(q−1)(r−1)βr−1γq−1tqr−1,

y∆3 = αr−1βpr−p−rγtp(r−1),

z∆3 = αq−1βγpq−p−qtp(q−1).

Now, we consider only the three cases

(p, q, r) = (2, 3, 4), (3, 2, 3), (4, 2, 2).

Then, just as in the case of (I), a critical point corresponds to a fixed point of some map,
which is proved to be a contraction in Proposition 2.3. Therefore, the simultaneous
equations have only one solution except the origin.

(IV). f = xp + xyq + yzr.
A critical point (x, y, z) must satisfy

pxp + xyq − txyz
|x|2

=
qxyq + yzr − txyz

|y|2
=
ryzr − txyz
|z|2

,

and we denote the value of these fractions by l. Then,

l =
(p− 1)(q − 1)(r − 1)− q

qr|x|2 + (p− 1)r|y|2 + (pq − p+ 1)|z|2
txyz,

and we obtain the simultaneous equations

xp =
(q − 1)(r − 1)|x|2 + |y|2 + (q − 1)|z|2

qr|x|2 + (p− 1)r|y|2 + (pq − p+ 1)|z|2
txyz,

xyq =
(r − 1)|x|2 + (pr − p− r)|y|2 + |z|2

qr|x|2 + (p− 1)r|y|2 + (pq − p+ 1)|z|2
txyz,

yzr =
q|x|2 + (p− 1)|y|2 + (p− 1)(q − 1)|z|2

qr|x|2 + (p− 1)r|y|2 + (pq − p+ 1)|z|2
txyz.

(4)

Thus,
xp

txyz
,
xyq

txyz
, and

yzr

txyz
are real positive numbers. Hence, we havep− 1 −1 −1

0 q − 1 −1
−1 0 r − 1

θ1

θ2

θ3

 ∈ 2πZ3.

The determinant of the coefficient matrix is

∆4(p, q, r) = (p− 1)(q − 1)(r − 1)− q,

and it is equal to 1 if and only if

(p, q, r) = (2, 3, 3), (2, 2, 4), (3, 3, 2), (4, 2, 2).
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In these cases, x, y and z are all real positive numbers. We put

α(x, y, z) =
(q − 1)(r − 1)|x|2 + |y|2 + (q − 1)|z|2

qr|x|2 + (p− 1)r|y|2 + (pq − p+ 1)|z|2
,

β(x, y, z) =
(r − 1)|x|2 + (pr − p− r)|y|2 + |z|2

qr|x|2 + (p− 1)r|y|2 + (pq − p+ 1)|z|2
,

γ(x, y, z) =
q|x|2 + (p− 1)|y|2 + (p− 1)(q − 1)|z|2

qr|x|2 + (p− 1)r|y|2 + (pq − p+ 1)|z|2
.

Then, the simultaneous equations (4) are equivalent to

x∆4 = α(q−1)(r−1)βr−1γqtqr,

y∆4 = αβpr−p−rγp−1t(p−1)r,

z∆4 = αq−1βγ(p−1)(q−1)tpq−p+1.

Now, we focus only on the four cases

(p, q, r) = (2, 3, 3), (2, 2, 4), (3, 3, 2), (4, 2, 2).

Then, just as in the case of (I), a critical point corresponds to a fixed point of some map,
which is proved to be a contraction in Proposition 2.3. Therefore, the simultaneous
equations have only one solution except the origin.

(V). f = xpy + yqz + zrx (p ≤ q ≤ r).
A critical point (x, y, z) must satisfy

pxpy + zrx− txyz
|x|2

=
xpy + qyqz − txyz

|y|2
=
yqz + rzrx− txyz

|z|2
,

and we denote the value of these fractions by l. Then,

l =
(p− 1)(q − 1)(r − 1)− 1

(qr − r + 1)|x|2 + (pr − p+ 1)|y|2 + (pq − q + 1)|z|2
txyz,

and we obtain the simultaneous equations

xpy =
(q − 1)(r − 1)|x|2 + (r − 1)|y|2 + |z|2

(qr − r + 1)|x|2 + (pr − p+ 1)|y|2 + (pq − q + 1)|z|2
txyz,

yqz =
|x|2 + (p− 1)(r − 1)|y|2 + (p− 1)|z|2

(qr − r + 1)|x|2 + (pr − p+ 1)|y|2 + (pq − q + 1)|z|2
txyz,

zrx =
(q − 1)|x|2 + |y|2 + (p− 1)(q − 1)|z|2

(qr − r + 1)|x|2 + (pr − p+ 1)|y|2 + (pq − q + 1)|z|2
txyz.

(5)

Thus,
xpy

txyz
,
yqz

txyz
, and

zrx

txyz
are real positive numbers. Hence, we havep− 1 0 −1

−1 q − 1 0
0 −1 r − 1

θ1

θ2

θ3

 ∈ 2πZ3.

The determinant of the coefficient matrix is

∆5(p, q, r) = (p− 1)(q − 1)(r − 1)− 1,
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and it is equal to 1 if and only if (p, q, r) = (2, 2, 3). In this case, x, y and z are all real
positive numbers. We put

α(x, y, z) =
(q − 1)(r − 1)|x|2 + (r − 1)|y|2 + |z|2

(qr − r + 1)|x|2 + (pr − p+ 1)|y|2 + (pq − q + 1)|z|2
,

β(x, y, z) =
|x|2 + (p− 1)(r − 1)|y|2 + (p− 1)|z|2

(qr − r + 1)|x|2 + (pr − p+ 1)|y|2 + (pq − q + 1)|z|2
,

γ(x, y, z) =
(q − 1)|x|2 + |y|2 + (p− 1)(q − 1)|z|2

(qr − r + 1)|x|2 + (pr − p+ 1)|y|2 + (pq − q + 1)|z|2
.

Then, the simultaneous equations (5) are equivalent to

x∆5 = α(q−1)(r−1)βγq−1tqr−r+1,

y∆5 = αr−1β(p−1)(r−1)γtpr−p+1,

z∆5 = αβp−1γ(p−1)(q−1)tpq−q+1.

Now, we assume (p, q, r) = (2, 2, 3). Then, just as in the case of (I), a critical point
corresponds to a fixed point of some map, which is proved to be a contraction in Propo-
sition 2.3. Therefore, the simultaneous equations have only one solution except the
origin.

Therefore, the function ρ2|Σt has only one critical point except the origin if and only if f is an
exceptional unimodal singularity. �

Now, we show Proposition 2.3 to complete the proof of Main Theorem.

Proposition 2.3. In the following fourteen cases, each map T : M →M is a contraction.

(1) (p, q, r) = (2, 3, 7).

T (

αβ
γ

) =


1

2
+

1

42
· 21x2

21x2 + 14y2 + 6z2

1

3
+

1

42
· 14y2

21x2 + 14y2 + 6z2

1

7
+

1

42
· 6z2

21x2 + 14y2 + 6z2

 ,

xy
z

 =

α11β7γ3t21

α7β5γ2t14

α3β2γt6

 ,

M =

{
α+ β + γ = 1,

1

2
≤ α ≤ 11

21
,

1

3
≤ β ≤ 5

14
,

1

7
≤ γ ≤ 1

6

}
.
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(2) (p, q, r) = (2, 3, 5), (3, 2, 4), (2, 5, 3), (5, 2, 2), (3, 4, 2).

T (

αβ
γ

) =



1

p
+

1

pqr
· qrx2

qrx2 + rpy2 + p(q − 1)z2

1

q
+

1

pqr
· rpy2

qrx2 + rpy2 + p(q − 1)z2

q − 1

qr
+

1

pqr
· p(q − 1)z2

qrx2 + rpy2 + p(q − 1)z2

 ,

xy
z

 =

α(q−1)(r−1)βr−1γqtqr

αrβpr−p−rγptpr

αq−1βγpq−p−qtp(q−1)

 ,

M ={α+ β + γ = 1,
1

p
≤ α ≤ (q − 1)(r − 1)

qr
,

1

p(q − 1)
≤ β ≤ pr − p− r

pr
,

1

r
≤ γ ≤ pq − p− q

p(q − 1)
}.

(3) (p, q, r) = (2, 3, 4), (3, 2, 3), (4, 2, 2).

T (

αβ
γ

) =



1

p
+

1

p(qr − 1)
· (qr − 1)x2

(qr − 1)x2 + p(r − 1)y2 + p(q − 1)z2

r − 1

qr − 1
+

1

p(qr − 1)
· p(r − 1)y2

(qr − 1)x2 + p(r − 1)y2 + p(q − 1)z2

q − 1

qr − 1
+

1

p(qr − 1)
· p(q − 1)z2

(qr − 1)x2 + p(r − 1)y2 + p(q − 1)z2

 ,

xy
z

 =

α(q−1)(r−1)βr−1γq−1tqr−1

αr−1βpr−p−rγtp(r−1)

αq−1βγpq−p−qtp(q−1)

 ,

M ={α+ β + γ = 1,
1

p
≤ α ≤ (q − 1)(r − 1)

qr − 1
,

1

p(q − 1)
≤ β ≤ pr − p− r

p(r − 1)
,

1

p(r − 1)
≤ γ ≤ pq − p− q

p(q − 1)
}.

(4) (p, q, r) = (2, 3, 3), (2, 2, 4), (3, 3, 2), (4, 2, 2).

T (

αβ
γ

) =



1

p
+

1

pqr
· qrx2

qrx2 + (p− 1)ry2 + (pq − p+ 1)z2

p− 1

pq
+

1

pqr
· (p− 1)ry2

qrx2 + (p− 1)ry2 + (pq − p+ 1)z2

pq − p+ 1

pqr
+

1

pqr
· (pq − p+ 1)z2

qrx2 + (p− 1)ry2 + (pq − p+ 1)z2

 ,

xy
z

 =

 α(q−1)(r−1)βr−1γqtqr

αβpr−p−rγp−1t(p−1)r

αq−1βγ(p−1)(q−1)tpq−p+1

 ,

M ={α+ β + γ = 1,
1

(p− 1)r
≤ α ≤ (q − 1)(r − 1)

qr
,

1

pq − p+ 1
≤ β ≤ pr − p− r

(p− 1)r
,

1

r
≤ γ ≤ (p− 1)(q − 1)

pq − p+ 1
}.
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(5) (p, q, r) = (2, 2, 3).

T (

αβ
γ

) =


4

13
+

1

13
· 4x2

4x2 + 5y2 + 3z2

5

13
+

1

13
· 5y2

4x2 + 5y2 + 3z2

3

13
+

1

13
· 3z2

4x2 + 5y2 + 3z2

 ,

xy
z

 =

 α2βγt4

α2β2γt5

αβγt3

 ,

M =

{
α+ β + γ = 1,

1

3
≤ α ≤ 1

2
,

1

4
≤ β ≤ 1

3
,

1

5
≤ γ ≤ 1

3

}
.

Proof. We only show the case of (1), since the same argument works in the other cases. We
prove that the Lipschitz constant of the map T : M → M is less than 1. In order to do so, we
see T as the composition of the three maps F , G, H given by

F (α, β, γ) = (21α22β14γ6t42, 14α14β10γ4t28, 6α6β4γ2t12),

G(x1, x2, x3) =

(
x1

x1 + x2 + x3
,

x2

x1 + x2 + x3
,

x3

x1 + x2 + x3

)
,

H(y1, y2, y3) =

(
y1 + 21

42
,
y2 + 14

42
,
y3 + 6

42

)
.

We put
X = 21α22β14γ6t42, Y = 14α14β10γ4t28, Z = 6α6β4γ2t12.

Then, the Jacobian JF of F is described as

JF =

X 0 0
0 Y 0
0 0 Z

22 14 6
14 10 4
6 4 2

α−1 0 0
0 β−1 0
0 0 γ−1

 .

Hence, the differential map dF maps the tangent vectors

 1
−1
0

,

 1
0
−1

 to the vectors

X(22α−1 − 14β−1)
Y (14α−1 − 10β−1)
Z(6α−1 − 4β−1)

 ,

X(22α−1 − 6γ−1)
Y (14α−1 − 4γ−1)
Z(6α−1 − 2γ−1)

 ,

respectively. Since
1

2
≤ α ≤ 11

21
,

1

3
≤ β ≤ 5

14
,

1

7
≤ γ ≤ 1

6
, the norms of these vectors are both

less than 8 max{X,Y, Z}. Moreover, the operator norms of the linear maps dG(X,Y,Z) and dH∗

are
1

X + Y + Z
and

1

42
, respectively, and the singular values of the matrix

 1 1
−1 0
0 −1

 are 1

and
√

3. Since
1

42
· 8 max{X,Y, Z}

X + Y + Z
<

4

21
,

the operator norm of the differential map dTp at any point p ∈ M is less than
4

21
. Therefore,

the Lipschitz constant of T is less than 1. �
Remark 2.4. Suppose that the invertible polynomial f is written in the form of Proposition 1.2
and represents one of the fourteen exceptional singularities. In this case, it is remarkable that the
coordinates of the critical point of the function ρ2|Σt

are positive real when the parameter t is any
positive real number. Moreover, Proposition 2.3 shows the approximate location of the critical
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point when the positive parameter t is small. We explain the case where (p, q, r) = (2, 3, 7) as an
example. In this case, if (α0, β0, γ0) is the fixed point of the map T , then the coordinates of the
critical point are (α11

0 β
7
0γ

3
0t

21, α7
0β

5
0γ

2
0t

14, α3
0β

2
0γ0t

6). Since (α0, β0, γ0) is close to ( 1
2 ,

1
3 ,

1
6 ) when

t is a small positive number, the critical point is approximated by( t21

214310
,
t14

2937
,

t6

2433

)
.
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