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ON THE DEFORMATION OF THE EXCEPTIONAL UNIMODAL
SINGULARITIES

NAOHIKO KASUYA AND ATSUHIDE MORI

ABSTRACT. Ebeling and Takahashi considered the deformation of an isolated surface singu-
larity f(z,y,z) —taxyz (t € C) for any invertible polynomial f in three variables. In particular,
they deformed each of the 14 exceptional unimodal singularities into a cusp singularity. How-
ever, their proof is purely algebraic and requires a detailed knowledge of normal forms. In
this article, instead of algebraic treatment of the singularity, we observe the critical points of
the squared distance function restricted to the singular complex surface in C3. We show that
only one additional critical point emerges via the deformation if and only if f is one of the 14
exceptional unimodal singularities. Moreover, we can determine the approximate location of
the critical point when the parameter ¢ is a small positive number. This would be helpful to
describe the change of the topology of the complex surface by means of the Morse theory.

1. INTRODUCTION

V. I. Arnol’d defined the notion of modality of a function-germ and classified all the hypersur-
face singularities of modality equal or smaller than 2 (see [1]). The singularities of modality 1 are
called unimodal singularities, which are listed below. Throughout this paper, (z,y, z) denotes
the coordinates on C? unless otherwise stated.

(1) Simple elliptic singularities (parabolic singularities)

FEe : 2 +9° + 2% +axyz, a® + 27 £0,
Er: 2+ y* + 24 +azyz, a* —64 40,
Fg: 2?4+ + 25 + azyz, a® — 432 £0.

(2) Cusp singularities (hyperbolic singularities)
b 4 1 1 1
Togr: 2P +y? + 2" +axyz, a #0, 5+6+;<1.
(3) 14 exceptional singularities
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Eio: 2?2+ + 2"+ ayz®, Eiz: 2® + vy 4+ y2° + a2’
Eiy: 2 + 9% + y2* + ay2b,

Zii: 2?2 +y° +y2® +aytz,  Zig: 2?4 27 + y2t 4 ay?2d,
Zig: 2® +ay® +y2 +ay’z,

Wig: 25 + 92 + y22 + ax®2%, Wisg: 2® + xy® + y2* + a2b,
Qlozx —|—y —l—yz +axy, Qll:x3+xy3+yz2+ay5,
Qua: 2 + 2% + yz3 + axz?,

Sii:at +xy? +y2? +axdy,  Sie: 2ty +yPz+ 2Px + azd,
Ura: o + 2% + y22 + ax®(y* + yz + 22).

On the other hand, there is an important class of polynomials, called quasihomogeneous
polynomials. A complex polynomial f(z1,..., 2,) is called quasihomogeneous with weight system
(Wi, ..., wy,d) € ZEY if

Tz A2 = M f (2, 2)

for A € C*. We note that simple singularities (modality 0) and simple elliptic singularities are
quasihomogeneous, while cusp singularities are not. The exceptional unimodal singularities are
quasihomogeneous only when a = 0. Now, we focus on a special class of quasihomogeneous
polynomials.

Definition 1.1 (Invertible polynomials). A quasihomogeneous polynomial f(z1,...,z,) is said
to be invertible if the following conditions are satisfied:

(1) the number of monomials in the polynomial f(z1,...,2,) is n, namely,

n n
flz1,..,20) = Zai H z;F
i=1  j=1
for some a; € C* and nonnegative integers F;; for 7,5 =1,...,n;
(2) the matrix E = (E;;) is invertible over Q;
(3) f(21,...,2n) and f%(21,...,2,) have singularities only at the origin of C" which are

isolated, where f'(z1,...,zy,) is defined by

n

ft(zl,..., Z H

i=1

The terminology “invertible polynomial” was introduced by Kreuzer [3].

In this paper, we only consider invertible polynomials in three variables. They are classified
as follows up to rescaling the variables.

Proposition 1.2 ([1], see also [2]). An invertible polynomial f(x,y,z) in three variables is
reduced to one of the following five types by a complex rescaling of the variables;

fwan (@ y,2) =2 +y?+2" 2<p<q <),
f2(pqv")(95 y,2) =aP +y?T+yz" (2<p,q,r),
2)=aP 4+ 2yl +y" (2<p,2<q<r),
=2’ +axy? +yz" (2<p,q,r),
=aPy+ylz+2z (1<p<q<r).

,(pg,m)
(Pyqsm

&
jﬁ
\./\./\./\_/

) (z,
y(z,y, 2
) (

(p,q,m)\ T Y, Z
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The 14 exceptional singularities are represented by some invertible polynomials. Indeed, when
a = 0, they are the germs of the surface singularities

Ei2: fi 237 =0, FEi3:fo235 =0, FEua:foi324 =0,

Zi1: fa253) =0, Zia: f3234 =0, Ziz: fi233 =0,

Wizt fo522) =0, Wizt fi224) =0,

Qo f2,342) =0, Qu1: fi332 =0, Qi2: f33323 =0,
10 fa22 =0, Si2:f50223 =0, Ul2: f3uz22 =0,

at the origin of C3.
Using this description, Ebeling and Takahashi [2] constructed a deformation of each excep-
tional singularity into a cusp singularity. Concretely, they showed the following theorem.

Theorem 1.3 ([2]). Let f(z,y,2) be an invertible polynomial. Through the normal form of
Proposition 1.2, we associate to f the tuple of integers I'y = (v1,7v2,73) as follows:

Ly g = (05 @, r),

Ly par) = (0, ¢, p(r—1)),

L3 (pgr) = (0. p(g—1), p(r—1)),

Ly J(pygr) = =(p, p(r—1), gr —r+1),
(

Ls (pary =(@r—q+1, rp—r+1, pg—p+1).

(1) If % + % + ,713 > 1, then, by a suitable polynomial change of coordinates, the polynomial
f(z,y,z) — zyz can be transformed to a polynomial of the following form:

y1—1 . v2—1 . v3—1
" F oy 4+ 27— ryz + Z a;x' + Z by’ + Z k2" +c.
i=1 j=1 k=1

(2) If ﬂ% + 7—12 + ’v% =1, then the polynomial f(x,y,z) — zyz can be written as
xn +y72 _i_Z’YS +(11'yZ

for some a # 0 after a suitable holomorphic transformation of coordinates.
(3) If % + 712 + %3 < 1, then the polynomial f(x,y,z) — zyz can be written as

oy 4+ 27+ axyz
for some a # 0 after a suitable holomorphic transformation of coordinates.

Definition 1.4 (Gabrielov numbers). The numbers (v1,72,73) in Theorem 1.3 are called the
Gabrielov numbers of f.

In the third case of Theorem 1.3, the 1-parameter family of polynomials

{f(2,y,2) = teyz},cc
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is a deformation of the singularity of f into a cusp singularity. In particular, it gives a deformation
of each exceptional singularity into a cusp singularity, since the Gabrielov numbers

F17(2,3,7) = (27 3a 7)) FQ,(Z,S,S) = (25 37 8)7 F2,(3,2,4) = (37 2a 9))
) I‘l47(2,3,3) = (27 4a 7))

( ) ( )
( ) ( )

Ly 342 = (3,4,3), Tyu@s2 =3,3,5), 323 =(3,3,6),
( ) ( )

1—‘4,(4,2 2) — 474a3 ) FB,(Z,Q,B) = 55473 ) F37(4,2,2) = (474a4)
satisfy the inequality
1 1 1
—+ —+—<1
Y1 Y2 8

The aim of this paper is to understand these deformations from the topological view point.
However, it is hard to analyze the topological change of the complex surface from their arguments
since they are purely algebraic. Instead, we consider the following critical point problem and
understand the topological change by using the Morse theory.

We set p(z,y,2) = /|z|*> + [y|? + [2]? and
S ={(z,y,2) € C*| f(z,y,2) — twyz = 0}

for a complex number ¢, and take the restriction p?|s, of the squared distance function p? to the
singular complex surface ;. We consider the critical point problem of the function p?|s,. When
t = 0, the function has no critical point except the origin since f is an invertible polynomial.
On the other hand, when t # 0, the function must have additional critical points since f and
f — txyz define singularities of different types with respect to Arnold’s classification. Namely,
the deformation by Ebeling and Takahashi must be understood as a phenomenon that a critical
point splits into plural ones.

As the main theorem of this article (Theorem 2.2), we show that for any nonzero complex
number ¢, the function p?|s, has only one critical point except the origin if and only if f is any of
the 14 exceptional unimodal singularities. Moreover, we can determine the approximate location
of the critical point when the parameter ¢ is a small positive number (Remark 2.4). This would
be helpful to describe the change of the topology of the complex surface by means of the Morse
theory.

2. THE CRITICAL POINT PROBLEM

In this section, we prove Theorem 2.2, the main theorem of this article. In order to do so, we

need the following proposition. Let (z1,...,2,) be the coordinates on C"™ and
p= Iz 4+ [z
Proposition 2.1. Let g be a polynomial in n complex variables z1,...,z, and % be the com-

plex hypersurface defined by g(z1,...,2,) = 0. A point (z1,...,2,) on X is a critical point of
the restricted squared distance function p?|s if and only if the gradient vector of g is linearly
dependent with the vector (Z1,...,Z2y,).

We apply this to the case where g = f(x,y, 2) — tzyz. Then, a point (x,y, z) € X; satisfying
zyz # 0 is a critical point of p?|y, if and only if
20 f —txyz  yO,f —tryz  20.f —tayz
|| lyl? 2>

Using these equations, we can show the following main theorem.
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Theorem 2.2. Let f be an invertible polynomial in three variables. Then, for any nonzero
complex number t, the function p*|s, has only one critical point except the origin if and only if
f is any of the fourteen exceptional unimodal singularities.

Proof. We set 6, = argx, 65 = argy, 03 = arg z, and

Ai(p,q,r) = pgqr —pq —qr —rp,

Do(pyg,r)=(-D(@—-(r—-1)—qg—r+1,
As(pg,r)=(@-D@-r—-1)—qg—r+2,
As(p,q,r)=(p—D(g—1)(r—1) —q,
As(p.gr)=(@—-1(@—1)(r—1)—

By a complex rescaling of the variables, the invertible polynomial f can be written in the form
of Proposition 1.2. Then, in the 1-parameter family

f({I?7 Y, Z) - twyz7

the parameter ¢ absorbs the rescaling constant. Thus, we may assume that f is originally written
as [ = fu,(par) (k= 1,2,3,4,5). Moreover, we assume that the parameter ¢ is a positive real
number. It is easily checked in the following argument that this assumption does not change the
number of critical points. Now, we prove the five cases each by each.

D). f=aP+yl+z" (p<q=<r).
In this case, a critical point (x,y, z) must satisfy

px? —tryz  qy? —txyz  rz" —txyz

N 7 FT

and we denote the value of these fractions by [. Then, we obtain
1 2 1 2 r_ 1 2
P = ;(l|x\ + tzyz), yi = g(l|y| +txyz), 2" = ;(l|z\ + tryz).
These three equations and the defining equation of 3; imply

2 2 2 1 1 1
<|:U|+|y|+|z|>l_<1 ______ )tmyz:()
p q r p q T

pgqr —pq —qr —Trp
— = tryz.
qr|z|> + rply* + pq|z|?

Substituting this to the above three equations, we have
= (@ —a— )l 4y +qlz?
q?"\ﬂffl2 +rplyl? +pglzl?
(1) yo = " (;p—r—Q)ly\ +§| Ly,
griel® 4 rplyl® +pqlz?
- dlzl? +plyP? + (pa —p — 9|2
qrlz|* + rplyl* + palz|?

b

Comparing the arguments of both sides of each equation, it follows

(p—1)01 =03 —03=—01 + (¢ —1)02 — 03
=—0, -0+ (r—1)605=0 (mod 2m).
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In other words, the vector

p—1 -1 -1 6,
-1 ¢—-1 -1 0y
-1 -1 r—1 03

is an element of the lattice 2wZ3. The determinant of the coefficient matrix is
1 1 1
Ai(p,q,7) =pgr —pq —qr —rp = <1 ****** ) pqr.

This implies that if the simultaneous equations (1) have m positive real solutions, then
they have mA; complex solutions. In particular, there are only positive real solutions if
and only if (p,q,7) = (2,3,7). Now we put

(qr —q—7)|z]* +rlyl* + qlz]?

Oé(J?,Z/,Z) = ’
qrlz|? + rplyl® + pqlz|?

e+ (rp =7 = p)ly* + plz]?
B(m,y,Z) - 2 2 2
qr|x? + rplyl* + pqlz|

2 2 2

qlzl? +plyl* + (pa —p — q)|z
(@ay,2) = || lyl* + ( )=

qrlz> + rplyl? + pa|2|?
Then the simultaneous equations (1) are equivalent to
A — QAT BT
yAl = " [P TPAPLTP,

SA1 Q1 BPAPI=P=4Pa

Moreover, the functions «, 8 and ~ satisfy

at+pf+y=1,
1 11
S<a<l——-—-,
p q
1 11
<<l
q p o
1 11
S<y<lo=—— -,
r poq

In the following, we only focus on the case where (p,q,r) = (2,3,7) and prove that
m = 1. In this case, the equations

z = allg7,32!
- k)
y = o’ 542114,
z = a®B2yt°
give a biholomorphism between the complex surfaces {a+ 8+~ =1} N (C*)® and
¥; N (C*)3. Hence, the critical point problem can be written by «, 3, v as
20 — 1 36—1 Tv—1
22 L4642 = 11310128 = abpiy2¢12 atft+y=1
Thus, a critical point is nothing but a fixed point of the map

T: {a+B8+7=1}NRx0)* = {a+B+v=1}N(Rs)?
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given by
1 L1 1 2122
242 2122 + 14y + 622
L1 14>
T s M = o

(@B =13+5 21332—1—14%/ 1622
1 + 1
7 2122 + 1442 + 622

where = o' 732!, y = " B85°9%t'4, and z = a3%4t5. As is proved later in Proposi-
tion 2.3, T is a contraction on the closed set

1 1 5 1 1}

1
—1 f<ac< <<
{O"LBJ” g SeSgpn 3PS 5755

and hence, it has only one fixed point by the Banach fixed point theorem. Therefore,
the simultaneous equations have only one solution except the origin.

L f=aP oyt 4yt

A critical point (x,y, z) must satisfy
pxP —tryz  qui +yz" —tryz  ryz" —tzryz

22 lyl? I

and we denote the value of these fractions by . Then,

__pgr—plg=1)—qr—rp
qrlz* + rply> + p(g = 1)[2[?

txyz,

and we obtain the simultaneous equations

(@ =1)(r = Dlzf +rlyl* + (¢ = D2

qr\zlj + rplyl? + p(q *21)\Z|2 ,
g r=D}z[*+ (rp—r—p)ly|° + |2
= 2 2 3 by,
quxl +7"p|y| er(q—l)IZI2
o _ 4z 4 ply + (g —p— )]

qrlz|* + rplyl|* + p(q — 1)|2[?

P =

tryz,

txyz.

zP y? Z"
Thus, , , and are real positive numbers. Hence, we have
tryz txyz tryz
(p—1)01 — 02— 03 =—01+ (¢ —1)02 — 03
=—61+(r—1605=0 (mod 27),
namely,

p—l -1 —1 01
-1 ¢-1 -1 0y | € 2n73.
-1 0 r—1 93

The determinant of the coefficient matrix is
Ao(pgr)=(—-D@-1(r—-1)—qg-r+1,
and it is equal to 1 if and only if
(p,q,7m) =(2,3,5),(3,2,4),(2,5,3),(5,2,2), (3,4, 2).
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In these cases, x, y and z are all real positive numbers. We put

(@ =1 = Dlz* +rlyl* + (¢ — DI=?

alx,y,z) =
(@y,2) P R PR pa [
o g2y — DI+ == p)yf? + |2
e grlz|> + rply|2 + plg — 1|22~
2 2 2
qlx|” +ply|-+ (g —p—q)|z
o) — LBl )le]

arleP + oyl + pla — DI
Then, the simultaneous equations (2) are equivalent to
2Bz = Qla=Dr=1) gr=1 aqar
R N
prACI. aq—lgpypq—p—qtp(q—l).
Now, we focus only on the five cases
(p,q,7m) =(2,3,5),(3,2,4),(2,5,3),(5,2,2), (3,4, 2).

Then, just as in the case of (I), a critical point corresponds to a fixed point of some map,
which is proved to be a contraction in Proposition 2.3. Therefore, the simultaneous
equations have only one solution except the origin.
(). f=aP 4+ 2y?+yz" (¢ <r).
A critical point (z,y, z) must satisfy
pr? —txyz  qzy? +y2" —twyz 2yt +ryz" —tryz
|z[? lyl? |22 ’
and we denote the value of these fractions by I. Then,
pqgr—pqg—qr—rp+p+1
(gr = Dlz> + p(r — Dy|* + plg — 1)|2[?

and we obtain the simultaneous equations

w0 DO =Dl + (0~ DIy (g = DI,

l:

tryz,

(ar — DI+ p(r — DIy +p(q — 1)]2P
5 BN O e D) T
(qr = Dlz|? +p(r = Dlyl* +p(q — ]2~
Yo — (¢ =Dlz[* + [yl* + (pg —p — ) |2 —-—
(gr = D|zl* + p(r — Dyl* + p(g — 1)|2[?
p q T
Thus, tw , tzy , and tyz are real positive numbers. Hence, we have
xyz’ taxyz xyz
p—1 -1 -1 01
-1 ¢g—-1 0 Oy | € 2r7Z3.

10 r—1) \6
The determinant of the coefficient matrix is
As(pgr) = -D(g-D)(r—-1)—g—r+2
and it is equal to 1 if and only if
(p,q,7m) = (2,3,4),(3,2,3),(4,2,2).
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In these cases, x, y and z are all real positive numbers. We put

(=D =Dz + (r = Dyl* + (¢ = D=

ofz,y,2) = (qr — D]z + p(r — D|yZ +p(g — D[22
o =DP+pr—p—r)|yl + 2
B(xayaz) = (qr‘ _ 1)|$|2 _|_p('r — 1)|y|2 —I—p(q - l)lz‘Z’
Y(2,y,2) = (¢ = Dlz|* + [y + (pg — p — q)|2|?
7 (gr — D]z]? +p(r — 1)|y[* +p(g — 1)]2>

Then, the simultaneous equations (3) are equivalent to
288 = qla=Der=1) gr—1a—1yar—1
yAs = Oérflﬂprfpfnytp(rfl),

288 = =1 gypa—p—agp(a—1)

Now, we consider only the three cases
(p,q,7) =(2,3,4),(3,2,3),(4,2,2).

Then, just as in the case of (I), a critical point corresponds to a fixed point of some map,
which is proved to be a contraction in Proposition 2.3. Therefore, the simultaneous
equations have only one solution except the origin.

(V). f=aP +zy? 4+ yz".
A critical point (x,y, z) must satisfy

prP +xy! —txyz  qry?! +y2" —twyz  ry2" —ivyz
|z[? ly[? 22
and we denote the value of these fractions by I. Then,

—D(g—1)(r—-1)—
e [V (G V e R
grlz? + (p = Drlyl® + (pg —p + 12|
and we obtain the simultaneous equations

(=D = Dz + lyl* + (¢ = D=

P = tryz,
arlo+ (p— Urfy+ (g — p 5 DI
g (r=Dxl"+ @r—p-—r)yl* +|7|
(4) Z‘y - 2 2 thyz7
griz]? + (p = Drly? + (pg = p+1)l2|:
r o qzP+ @ —-Dlyl* + (- 1(g—1)
2l = 5 5 Staryz.
grizl> + (p — Drly[* + (pg — p + 1)|2]
P xy? r

Th are real positive numbers. Hence, we have

us, , , an
teyz txyz txyz

p—1 -1 -1 6,
0 g¢g—-1 -1 0y | € 2n73.
-1 0 r—1 93

The determinant of the coefficient matrix is
A4(p,q77") = (p - 1)(q - 1)(7" - 1) —q,
and it is equal to 1 if and only if
(p) q’ /r) = (27 37 3)7 (27 27 4)7 (3) 37 2)7 (4’ 27 2)'
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In these cases, x, y and z are all real positive numbers. We put

(=D =Dz + |yl* + (¢ = D=

a$7y7z - b
(9.2 = Bt o DB + (g —p T D
(=D + (pr —p— )|yl + |22
ﬂ(xvyﬂz)* 2 2 27
qrlz)®> + (p = Drly|? + (pg —p + 1)|2|
2 2 2
qzl*+@-Dyl*+p—1)(qg—1)|z
sy 2) = lz]> + (p— Dyl* + (p— 1)(g — 1)|2]

CogrlzP+ (= Drly + (pg —p+ 1) |22
Then, the simultaneous equations (4) are equivalent to

$A4 — a(qfl)(rfl)ﬂrflryqtqr’

yA“ — aﬁpr—p—r,yp—115(17—1)T7

281 = i1 3y (P Dla—1)ypa—p+1,
Now, we focus only on the four cases
(p7 q, T) = (27 37 3)a (2, 27 4)a (35 37 Q)a (4a 27 2)

Then, just as in the case of (I), a critical point corresponds to a fixed point of some map,
which is proved to be a contraction in Proposition 2.3. Therefore, the simultaneous
equations have only one solution except the origin.

(V). f=aPy+ylz+2"z (p<q<r).
A critical point (z,y, z) must satisfy

pxPy 4+ 2"x — tryz _ 2Py + qyiz — taeyz _ yiz +rzlr —tryz
|z[? ly[? |22 ’

and we denote the value of these fractions by . Then,

- P—Dg-1)(r-1)—-1 toye
(gr—r+Dlz>+ (pr—p+ Dy +(pg—q+ )27

and we obtain the simultaneous equations

(@ =D = Dz[* + (r = Dy|* + |2

xzPy = tryz,
Y lr D (r—p DI + (g g+ DJP
2 2
(5) yiz = [z + (= 1D)(r = Dy[* + (p = 12| toye
(=7 + DR+ (o —p+ DIyP+ (g — g+ DI 0
I e V P i Ve VU R N oy
(gr—r+ Dzl + (pr —p+ D]yl> + (pg — ¢ + 1)|2|?
P q T
Thus, tsc y , ty i , and tz sc are real positive numbers. Hence, we have
xyz’ txyz xyz
p—1 0 -1 0,
-1 ¢-1 0 0, | € 2n7Z3.
0 -1 r-1 03

The determinant of the coefficient matrix is

As(p,g,r)=(@-1(g—1(r—1) -1,
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and it is equal to 1 if and only if (p,q,r) = (2,2,3). In this case, z, y and z are all real
positive numbers. We put

(=D = Dz[> + (r = Dlyl* + |2

a(z,y,z) = (qr —r+D)]z]2+ (pr —p+ D|yl2 + (pg — g+ 1)|2>°
Blx,y, 2) = 224+ (p—1)(r — D|y|> + (p — 1)|2|? |

(gr —r+1D]z|2+ (pr—p+ D|y|2 + (pg — q + 1)|2|?
Y&, y,2) = (¢ = Dll* +[yl> + (p = D(g = 1|z

(qr —r+ Dzl + (pr—p+ Dyl + (pg — g+ Dlz*
Then, the simultaneous equations (5) are equivalent to

$A5 — a(‘]*l)(rfl)ﬁ,yqfltqr77«+1,
As Oé’!“—lB(l"—l)(’r—1),Ytpr—p-|-17

As _ aﬁp—l,y(p—l)(q—l)tpq—ﬁl.

Now, we assume (p,q,7) = (2,2,3). Then, just as in the case of (I), a critical point
corresponds to a fixed point of some map, which is proved to be a contraction in Propo-
sition 2.3. Therefore, the simultaneous equations have only one solution except the

origin.

Therefore, the function p?|s, has only one critical point except the origin if and only if f is an
exceptional unimodal singularity. (I

Now, we show Proposition 2.3 to complete the proof of Main Theorem.

Proposition 2.3. In the following fourteen cases, each map T: M — M is a contraction.

(1) (p.q.r) = (2,3,7).

1 1
5t 15 2 2 2
o % 412 21z +1144;y + 62 " a171 ﬁ;v;til
TB)=|-+—= y| =1 ™%t ,
2 2 2
~ il% 412 21x% + 1451 + 62 . a3527t6
7R ey 1412 + 622
1 11 1 5 1 1
M {O“LﬁJ” P g SeSgp gSPsp 776}
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(2) (p7 q7 r) = (2737 5)’ (37 274)7 (27 573)7 (5’ 27 2)7 (3’ 47 2)'

1 n 1 qra?
a p o pgr qra? +rpy* +plg — 1)2*
2
T( 3 ) _ 1 1 TpY
y q pgr qra®+rpy?+plg—1)22 |’
¢g=1 1 plg — 1)z
qr - pgr qra?4rpy? +plg —1)22
x ale=D(r=1) gr—1~asqr
y = arﬁpr_p_""ryptpT
2 a1 gypa—p—agpla—1)
1 -1 -1
M={a+B+y=1, L<a<@zDZD
p qr
1 pr—p—r 1 Pg—p—gq
—— <L, - <y<—-——1
plg—1) pr r plg—1) J
(3) (p,q,7m) = (2,3,4),(3,2,3),(4,2,2).
1 n 1 . (qr — 1)a?
p  plgr—1) (gr—1Dz?2+p(r—1)y? +p(qg—1)z2
r—1 1 p(r —1)y?

T((B])= + :
v

qr—1  plgr—1) (gr—1)z2+p(r—1)y* +plg—1)22

)
qg—1 1 plg —1)z?
)

Oé(q—l)(T—I)Br—l,yq—ltqr—l

x
y| = ar—lﬂp?‘—p—r,ytp(r—l)
z a1 gypa—p—agpla—1)

4) (pg,7) =(2,3,3),(2,2,4),(3,3,2),(4,2,2).

1 1 qrx

o p pqr qrz*+(p— 1)€y2 +)(pq2— p+1)22

-1 1 ~1)r

rlsh=| 2214 p—Dry
gl

pg | pgr qrz®+ (p— Lry2 + (pg — p + 1)z2

_|_
gr—1  pgr—1) (qr—1)2? +p(r — 1)y +p(qg—1)z2

pa—p+l L (pg —p+1)z°
pgr par qra® + (p— Lry? + (pq — p+1)22
T ale=Dr=1) gr=1,qar
y| = afPr—P=rp=lgle=1r
z a1 By (P=D(a=1)pg—p+1

L cla=be-n

(p—1)r qr
1 Sﬂgpr—p—T’}g,yg(p—l)(q—l)}.
pg—p+1 p—1r "7 pg—p+1

M={a+p+~v=1,

)
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(5) (pv%r) = (2,2,3).

4,1
A2 2 2
o 153 113 4x? + 252 + 3z r 042252’7t45
P s s s |\ 505 )
Y 3 1 322 z O‘ﬂ'yt
173+B.4x2+5y2+322
1 1 1 1 1 1
M = =1 -< <=, — << =, =<~y -—
{a+6+7 » 3Sasg, 4_6_3, 5_7_3}

Proof. We only show the case of (1), since the same argument works in the other cases. We
prove that the Lipschitz constant of the map 7': M — M is less than 1. In order to do so, we
see T as the composition of the three maps F', G, H given by

F(a, B,7) = (21a?25"4542 1401510945, 605 8%212),
1 Z2 3
G(z1,22,73) = ’
(w1, 72, 73) <x1 + o423 1+ 2o+ 23 T +$2+1‘3)

y1+21 y2+14 y3+6
42 42 7 42 ’

H(y1,y2,y3) = (
We put
X = 210228445442y — 14045104428 7 — 6083442112,
Then, the Jacobian Jr of F' is described as
X 0 0\ /22 14 6\ [a=! O 0

Jre=[0 Y 0 14 10 4 0o Bt 0
0 0 Z 6 4 2 0 0 ~!
1 1
Hence, the differential map dF maps the tangent vectors | —1 ], | 0 | to the vectors
0 -1
X(22a7t —14871) X(22a7t —6y71)
Y(1l4a=t —10871Y) |, | Y(1da™t —4y71) |,
Z(6at —4p71) Z(6a"t —297h)
. . 1 11 1 1
respectively. Since 3 <a< 20’ 3 <p< 7 << 5’ the norms of these vectors are both
less than 8 max{X,Y, Z}. Moreover, the operator norms of the linear maps dG x.y,z) and dH.,
1 1 1 1
are X1 v<Z and 12 respectively, and the singular values of the matrix —01 _01 are 1

and v/3. Since
1 8max{X,Y,Z} 4

42 X+Y+7Z 21’

4
the operator norm of the differential map d7}, at any point p € M is less than o1 Therefore,

the Lipschitz constant of T is less than 1. ([
Remark 2.4. Suppose that the invertible polynomial f is written in the form of Proposition 1.2
and represents one of the fourteen exceptional singularities. In this case, it is remarkable that the
coordinates of the critical point of the function p?|x, are positive real when the parameter ¢ is any
positive real number. Moreover, Proposition 2.3 shows the approximate location of the critical
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point when the positive parameter ¢ is small. We explain the case where (p,q,r) = (2,3,7) as an
example. In this case, if (ag, Bo,70) is the fixed point of the map 7', then the coordinates of the
critical point are (o BiVit™, afBi~Et, o B0t®). Since (v, Bo,70) is close to (3, %, §) when
t is a small positive number, the critical point is approximated by

21 a6
(214310 29377 2433 ) '
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