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HOMOTOPICAL CANCELLATION THEORY FOR

GUTIERREZ-SOTOMAYOR SINGULAR FLOWS

D.V.S. LIMA, S. A. RAMINELLI, AND K. A. DE REZENDE

Abstract. In this article, we present a dynamical homotopical cancellation theory for Gutierrez-
Sotomayor singular flows ϕ, GS-flows, on singular surfaces M . This theory generalizes the

classical theory of Morse complexes of smooth dynamical systems together with the corre-

sponding cancellation theory for non-degenerate singularities. This is accomplished by defining
a GS-chain complex for (M,ϕ) and computing its spectral sequence (Er, dr). As r increases,

algebraic cancellations occur, causing modules in Er to become trivial. The main theorems
herein relate these algebraic cancellations within the spectral sequence to a family {Mr, ϕr}
of GS-flows ϕr on singular surfaces Mr, all of which have the same homotopy type as M .

The surprising element in these results is that the dynamical homotopical cancellation of GS-
singularities of the flows ϕr are in consonance with the algebraic cancellation of the modules

in Er of its associated spectral sequence. Also, the convergence of the spectral sequence cor-

responds to a GS-flow ϕr̄ on Mr̄, for some r̄, with the property that ϕr̄ admits no further
dynamical homotopical cancellation of GS-singularities.

1. Introduction

The qualitative study of vector fields on smooth manifolds Mn via algebraic and differential
topological tools has its origin in the foundational work of Poincaré and subsequently major
contributions were made by Morse, Peixoto and Smale. For a historical overview see [19]. For
more references see [16–18].

If X is a Morse-Smale vector field on Mn with no periodic orbits, then any hyperbolic rest
point p of index k can be written in standard form, on a neighborhood of p with local coordinates
(x1, . . . , xn), such that

X = −
k∑
i=1

xi
∂

∂xi
+

n∑
i=k+1

xi
∂

∂xi
.

A Morse Smale flow ϕX with hyperbolic singularities and no periodic orbits is generated by X.

Smale proves a local cancellation theorem for hyperbolic singularities of consecutive indices,
p and q, on Mn, where n > 5 or n = 2. Roughly speaking, whenever the algebraic intersection
number of p and q is ±1, this pair of singularities is cancelled, in a neighborhood U , and produces
a flow ϕ′ which coincides with ϕX outside of U and ϕ′ restricted to U is topologically equivalent
to a tubular flow. See [12].

In [2, 3], global cancellation theorems were obtained for Morse-Smale flows with no periodic
orbits on smooth manifolds Mn, n > 5 and n = 2, by considering a spectral sequence analysis of
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the associated Morse chain complex. Our objective in this work is to explore these techniques
in a new context, namely Gutierrez-Sotomayor singular flows.

In [9], Gutierrez and Sotomayor presented cone (C), Whitney (W), double crossing (D) and
triple crossing (T ) singularities, which they called simple, for Ck vector fields tangent to a 2-
dimensional compact subset M of Rk, as well as, their characterization and genericity theorems
for C1-structurally stable vector fields.

For the first time, in [15], the flows associated to these vector fields, with no periodic orbits
or limit cycles, were studied using Conley index theory and named Gutierrez-Sotomayor flows,
GS-flows for short. Also regular hyperbolic (R), as well as, C, W, D and T singularities are
referred to as GS-singularities in [15]. Furthermore, the Conley index of each GS-singularity was
computed. The existence of Lyapunov functions for GS-flows was established and a GS-handle
theory was introduced in order to construct isolating blocks for each GS-singularity.

In this work, we take this analysis a step further, by analyzing global GS-flows on singular
closed surfaces. Our goal is to investigate the connections of flow lines of GS-flows under a
spectral sequence analysis of a chain complex associated to it. This method was successful
in [2, 3, 10] in order to obtain cancellation theorems in smooth settings, for gradient flows of
Morse functions, as well as, for circle-valued Morse functions.

However, it is a great challenge to adapt the smooth theory to the singular setting, more
specifically for GS-flows. One wishes to maintain the principles that undergird the former setting
in the latter. In order for the theory to retain its basic structure and be a valid generalization, the
definitions and postulates of the singular setting must encompass the definitions and postulates
of the smooth setting. Hence, one must face the problem of defining intersection numbers in the
absence of differentiability, as well as, defining a chain complex generated by GS-singularities.

Furthermore, a generalized notion of cancellation must be presented for GS-singularities. This
will be captured by defining a dynamical homotopical cancellation which is a generalization of
the classical notion of cancellation in the smooth case as Figure 1 suggests. In a classical
cancellation, the manifold before and after the cancellation are always homeomorphic. In a
homotopical cancellation, the singular manifold before and after the cancellation are of the
same homotopy type and may not be homeomorphic. Roughly, the idea behind a dynamical
homotopical cancellation is to consider a set of three singularities x, x′ and y and the flow
lines u, u′ joining them in a neighborhood U which, through a homotopy will be taken to a
neighborhood Ū containing a GS-singularity x′. The regions U and Ū are of the same homotopy
type and this homotopy respects the number of singular regions (droplets and folds) that exist
in U .

z1 z2

y

z1

Cancellation
of y and z2

z1 z2

y2

y1
Cancellation
of y2 and z2 y1

z1

Homotopical Homotopical

y2 and z̄1

are cone singularities

Figure 1. Dynamical homotopical cancellations on a smooth (left) and on a
singular (right) manifold.

In order for these homotopies to be well defined, we will consider a larger class of GS-
singularities which include n-sheet cone, Whitney, double and triple attractors and repellers.
For simplicity, henceforth, we will continue to refer to these as GS-singularities for GS-flows.
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Since these more general GS-flows have not been previously considered in the literature, these
fundamental concepts have to be established herein in order to get the theory off the ground.
This in itself is already quite a formidable endeavor, since the GS-singularities comprise a large
class of different singularity types, which must be dealt with in a case by case analysis.

The main contribution of this work is that, with the introduction of a generalization of these
concepts, several homotopical cancellation theorems for GS-flows are proven. In our opinion,
what is most striking in these theorems, is that the dynamical homotopical cancellations within
the flow occur in consonance with the algebraic cancellations of the unfolding, i.e., with the
turning of the pages, of the associated spectral sequence. In order to appreciate the beauty of
these results, we finalize this paper with three examples from the realms of flows with cone,
Whitney and double crossing singularities. See Section 6.

This paper is organized as follows. Section 2 is an introduction to GS-vector fields and
their associated flows. In order to define a Gutierrez-Sotomayor chain complex, we need to
establish a regularization process of GS-singularities, referred to as its Morsification, which is
presented in Section 3. In Section 4, we make use of the Morsification process to introduce
GS-intersection numbers and hence obtain a differential for a chain complex generated by the
GS-singularities, which we refer to as a GS-chain complex. Next, we prove local dynamical
homotopical cancellation theorems for GS-singularities in Section 5. Moreover, in Section 6,
we generalize the theory developed in [2, 3] to obtain global homotopical cancellation theorems
for flows on singular surfaces with R, C, D, W or T singularities. This is accomplished by
associating the algebraic cancellations that occur in a spectral sequence of a filtered GS-chain
complex of a GS-flow with the dynamical homotopical cancellations that occur within the flow.
The flow chart in Figure 2 provides an overview of the development of the results, and helps to
understand the interrelationships among the sections.

GS-flow on M
Sec. 2

Dynamical homotopical
cancellation     Sec. 5

GS chain complex
Sec. 3 and 4

GS boundary
operator

sequence (Er,dr)
Spectral

of the modules Er
Algebraic cancellation

Dynamical homotopical
cancellation in M

Sec. 6SSSA
RCA

Figure 2. Flow chart: an overview of the development of the results herein.

2. Gutierrez-Sotomayor Flows

2.1. Gutierrez-Sotomayor Vector Fields. In [9], Gutierrez and Sotomayor presented a char-
acterization for manifolds with singularities where the degeneracy is restricted in order to admit
only those that appear in a stable manner. This means that the regularity conditions in the
definition of the smooth surfaces in R3, given in terms of implicit functions and immersions,
are broken stably, giving rise to cone, Whitney’s umbrella, double crossing and triple crossing
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singularities. The authors refer to these singularities as simple.1 Hence, in [9] cite the follow-
ing definition of a two-dimensional manifold with simple singularities is given in terms of local
charts.

Definition 2.1. A subset M ⊂ Rl is called a two-dimensional manifold with simple sin-
gularities if for every point p ∈M there are a neighbourhood Vp of p in M and a local chart, a
C∞-diffeomorphism Ψ : Vp → G such that Ψ(p) = 0, where G is one of the following subsets of
R3:
R = {(x, y, z); z = 0}, plane;
C = {(x, y, z); z2 − y2 − x2 = 0}, cone;
W = {(x, y, z); zx2 − y2 = 0}, Whitney’s umbrella2;
D = {(x, y, z);xy = 0}, double crossing;
T = {(x, y, z);xyz = 0}, triple crossing.

We denote by M(G) the set of points p ∈M such that Ψ(p) = 0 for a local chart Ψ : Vp → G,
where G = R, C, D, W or T . Thus M(R) is a smooth two-dimensional manifold called the
regular part of M , M(D) is a one-dimensional smooth manifold, while M(C), M(W) and
M(T ) are discrete sets. Also, the set M endowed with the partition {M(G),G} is a stratified
set in the sense of Thom.

A vector field X of class Cr on Rl is said to be tangent to a manifold M ⊂ Rl with simple
singularities if it is tangent to the smooth submanifolds M(G), for all G. The space of such
vector fields is denoted by Xr(M) and it is endowed with the Cr-compact open topology.

In [9], Gutierrez and Sotomayor characterized a set of structurally stable vector fields Σr(M)
contained in Xr(M). This set contains vector fields with finitely many hyperbolic singularities
(regular, cone, Whitney, double crossing and triple crossing singularities) and periodic orbits,
as well as, singular limit cycles with no saddle connections in the regular part of M and the
additional property that the α and ω-limit sets of a trajectory is either a singularity, a periodic
orbit or a singular cycle.

In this paper, we consider vector fields in Σr(M) with no periodic orbits nor limit cycles.
Hence, we will consider vector fields in Σr(M) having only hyperbolic simple singularities. Lo-
cally some of these singularities are depicted in Figure 3 and by considering the reverse flow, one
obtains the complete set.

2.2. Isolating blocks for GS-singularities. Given a vector field X ∈ Σr(M), we refer to
the associated flow as a Gutierrez-Sotomayor flow ϕX on M , GS-flow for short. We define GS
singularities as the hyperbolic singularities of X: regular, cone, Whitney, double crossing and
triple crossing singularities.

An isolating block for a GS-singularities p of a GS-flow ϕ is an isolating neighborhood
N ⊂ M of p such that the exit set N− = {x ∈ N ;ϕ([0, T ), x) * N, ∀T > 0} is closed. The
existence of isolating blocks for GS-singularities is a consequence of the existence of Lyapunov
functions f in a neighborhood of p. Hence, if f(p) = c, let ε > 0 be such that there are no critical
values in [c− ε, c+ ε], then the connected component of f−1([c− ε, c+ ε]) which contains p, N ,
is an isolating block for p. Also, N− = f−1(c− ε)∩N . It is worth noting that an isolating block
can also be defined for a maximal invariant set of a GS-flow. See [4, 14,15] for more details.

1We draw attention to the fact that the term simple singularities is used in a different context in the classical
theory of singularities, [21].

2Since the axis z < 0 is excluded this is referred to most commonly as a cross cap singularity; we will maintain

the nomenclature in [9] with this understanding.



HOMOTOPICAL CANCELLATION THEORY FOR GUTIERREZ-SOTOMAYOR SINGULAR FLOWS 37

Cone singularities Whitney singularities

Double crossing singularities

Triple crossing singularitiesRegular singularities

Figure 3. Local types of GS-singularities.

The next theorem characterizes the relation between the first Betti number of the boundary
of an isolating block for the singularity p, with the number of boundary components and the
ranks of the homology Conley index. The proof can be found in [14,15].

Theorem 2.1 (Poincaré-Hopf equality). Let (N,N−) be an index pair for a GS-singularity p
and (h0, h1, h2) be the ranks of the homology Conley index of p. Then

(1) (h2 − h1 + h0)− (h2 − h1 + h0)∗ = e+ − B+ − e− + B−,
where ∗ indicates the index of the time-reversed flow, e+ (resp., e−) is the number of entering

(resp., exiting) boundary components of N and B+ =
∑e+

k=1 b
+
k (resp., (B− =

∑e−

k=1 b
−
k ), where

b+k (b−k ) is the first Betti number of the k-th entering (resp., exiting) boundary components of N .

For each type of GS-singularity, we now define its nature which corresponds to the local
behavior of the flow on a chart around the singularity.

Definition 2.2. Let p be a GS-singularity of

(1) regular or cone type, denote its nature by a (resp., r) if p is an attractor (resp., repeller);
by s if p is a saddle.

(2) Whitney type, denote its nature by a (resp., r) if p is an attractor (resp., repeller); ss
(resp., su) if p is a saddle and its stable (resp., unstable) manifold is singular.

(3) double crossing typem denote its nature by a2 (resp., r2) if p is an attractor (resp.,
repeller); sa (resp., sr) if p is a saddle formed by a regular saddle and a regular attractor
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(resp., repeller); sss (resp., ssu) if p is a saddle formed by two regular saddles which are
identified along their stable (resp., unstable) manifolds.

(4) triple crossing type, denote its nature by a3 (resp., r3) if p is an attractor (resp., re-
peller); ssa (resp., ssr) if p is a saddle formed by two regular saddles and a regular
attractor (resp., repeller).

In [14,15], the construction of isolating blocks was undertaken for each GS-singularity accord-
ing to their type C, W, D or T , and their nature according to the table below.

type nature e−v e+
v weight

D a2 0 1 b+
1 = 3

sa 1 1 b+
1 = b−1 + 2

sa 2 1 b+
1 = b−1 + b−2 + 1

sss 1 1 b+
1 = b−1 + 2

sss 1 2 b−1 = b+
1 + b+

2 − 3
sss 2 1 b+

1 = b−1 + b−2 + 1
sss 2 2 b+

1 + b+
2 = b−1 + b−2 + 2

sss 3 1 b+
1 =b−1 +b−2 +b−3

sss 3 2 b+
1 +b+

2 =b−1 +b−2 +b−3 +1
sss 4 1 b+

1 =b−1 +b−2 +b−3 +b−4 −1
sss 4 2 b+

1 +b+
2 =b−1 +b−2 +b−3 +b−4
Reversed flow

ssu 2 4 b−1 +b−2 =b+
1 +b+

2 +b+
3 +b+

4

ssu 1 4 b−1 =b+
1 +b+

2 +b+
3 +b+

4 −1
ssu 2 3 b−1 +b−2 =b+

1 +b+
2 +b+

3 +1
ssu 1 3 b−1 = b+

1 + b+
2 + b+

3

ssu 2 2 b−1 +b−2 =b+
1 +b+

2 +2
ssu 1 2 b−1 = b+

1 + b+
2 + 1

ssu 2 1 b+
1 = b−1 + b−2 − 3

ssu 1 1 b−1 = b+
1 + 2

sr 1 2 b−1 = b+
1 + b+

2 + 1
sr 1 1 b−1 = b+

1 + 2
r2 1 0 b−1 = 3

type nature e−v e+
v weight

R a 0 1 b+
1 = 1

s 1 1 b−1 = b+
1

s 1 2 b−1 = b+
1 + b+

2 − 1
s 2 1 b+

1 = b−1 + b−2 − 1
r 1 0 b−1 = 1

C a 0 2 b+
1 = b+

2 = 1
s 1 1 b−1 = b+

1

s 2 2 b−1 + b−2 = b+
1 + b+

2

r 2 0 b−1 = b−2 = 1

W a 0 1 b+
1 = 2

ss 1 1 b+
1 = b−1 + 1

ss 2 1 b+
1 = b−1 + b−2

Reversed flow
su 1 2 b−1 = b+

1 + b+
2

su 1 1 b−1 = b+
1 + 1

r 1 0 b−1 = 2

T a3 0 1 b+
1 = 7

ssa 1 1 b+
1 = b−1 + 2

ssa 2 1 b+
1 = b−1 + b−2 + 1
Reversed flow

ssr 1 2 b−1 = b+
1 + b+

2 + 1
ssr 1 1 b−1 = b+

1 + 2
r3 1 0 b−1 = 7

2.3. Super Attractors and Repellers. In this work, we will study homotopical cancellations
within an isolating block containing the maximal invariant set of three GS-singularities, one
saddle and two attractors (resp. repellers), and their connecting orbits. This homotopy produces
a super attractor (resp., super repeller) singularity. See Figure 4.

Let DA ⊆ R2 (DR ⊆ R2) be the unit disc of center p = (0, 0) and X the attracting radial
(resp., repelling) vector field on D with attracting (resp., repelling) singularity p.

Definition 2.3. A generalized GS-singularity p is:

(1) a super attractor (resp., super repeller) of type:
(a) n-sheet cone of attracting (resp. repelling) nature when obtained by identifying the

center points pi of n discs Di, i = 2, ..., n, where Di has defined on it an attracting
(resp., repelling) radial vector field.

(b) n-sheet Whitney of attracting (resp., repelling) nature when obtained by identifying
the center points pi and some radii of the n discs DA

i (resp., DR
i ), i = 1, ..., n,

where DA
i (resp., DR

i ) has defined on it an attracting (resp. repelling) radial vector
field. Moreover, n−2 discs DA

i (resp., DR
i ) have the property that exactly two radii

are identified to raddi of two distinct discs. The remaining discs have the property
that exactly one radius is identified to a radius of another disc. See Figure 5.
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of y2 and z2

z1

y3 y1
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Figure 4. Homotopical cancellation of a saddle cone and an attracting cone
singularities.

(c) n-sheet double crossing of attracting (resp. repelling) nature, n = 2, 3, . . ., when
obtained by identifying the center points pi of n discs DA

i , i = 0, ..., n−1, where each
DA
i (resp., DR

i ) is defined as above. Moreover, we identify exactly one diameter of
each disc Di, i = 1, ..., n− 1 to distinct diameters di of the disc D0, i.e.,

Di ∩Dj \ {p} = ∅, and Di ∩D0 = di, i 6= j, i, j = 1, . . . n− 1.

See Figure 5.
(d) n-sheet triple crossing of attracting (resp., repelling) nature, n = 2k + 1, when

obtained by identifying the center points pi of n discs D0, D
1
i , D

2
i , i = 1, ..., n, where

each disc is defined as above. Moreover, consider the sets of distinct diameters
{d1

0,i, d
2
0,i} in D0, {d1

i , ∂
1
i } in D1

i and {d2
i , ∂

2
i } in D2

i , i = 1, . . . , n. We identify the

diameters ∂1
i and ∂2

i , the diameters d1
i and d1

0,i, and the diameters d2
i and d2

0,i, so

that all of discs D1
i , D

2
i are pairwise disjoint, i.e.,

(D1
i ∪D2

i ) ∩ (D1
j ∪D2

j ) = ∅, i 6= j, j = 1, . . . n.

See Figure 5.
(2) a C-type (resp., W,D, T -type) singularity of saddle nature if it is a C-type (resp.,
W,D, T -type) GS-singularity of saddle nature.

Given an n-sheet generalized GS-singularity p, define the singularity type number m(p)
of p as n−1 if p is of C-type or D-type; n if p is ofW-type; k if p is of T -type, where n = 2k+ 1.
Note that a C-type (resp., W,D, T -type) singularity of saddle nature has type number equal to
1. Also, a regular singularity always has type number equal to zero.

p p p

3-sheet cone singularity

of attracting nature

3-sheet Whitney singularity

of attracting nature

3-sheet double crossing

singularity of attracting nature

m(p) = 2 m(p) = 3 m(p) = 2

Figure 5. Examples of super attractor GS-singularities.
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We now define the nature of super attractors and repellers:

Definition 2.4. Let p ∈ M be a super attractor or a super repeller singularity. Denote its
nature by:

• a (resp., r) if p is an attracting (resp., repelling) n-sheet cone or Whitney;
• an (resp., rn) if p is an attracting (resp., repelling) n-sheet double or triple crossing.

Definition 2.5. Denote by M(GS) the set of two-dimensional stratified manifold with generalized
GS-singularities. Given M ∈M(GS), define the set XrGS(M) of generalized GS-vector fields on
M so that for each X ∈ XrGS(M) the following conditions are satisfied:

(1) X has finitely many generalized GS-singularities;
(2) X has no periodic orbits nor limit cycles;
(3) The α and ω- limit set of every trajectory of X is a generalized GS-singularity;
(4) There are no saddle connections in the regular part of M .

The corresponding flow ϕX associated to a GS-vector field X ∈ XrGS(M) is called a gener-
alized Gutierrez-Sotomayor flow on M , generalized GS-flow for short.

Since we are interested in working with vector fields that possess only one type of gener-
alized GS-singularities in addition to regular singularities, we establish the following notation
for subsets of M(GS) and XrGS(M): M(GC) (resp., M(GW), M(GD), M(GT )) denotes the set
of stratified 2-manifolds with generalized GS-singularities of regular and cone (resp., Whitney,
double crossing, triple crossing) types; XGC(M) (resp., XGC(W ), XGC(D), XGC(T )) denotes the
set of all vector fields on M ∈ M(GC) (resp., M(GW), M(GD), M(GT )) which only possess
regular and generalized cone (resp., Whitney, double crossing, triple crossing) singularities.

Hereafter we will refer to generalized GS-flows as GS-flows omitting the term “generalized”.

3. Morsification of Gutierrez-Sotomayor Flows on isolating blocks

Let M ∈ M(GS) be a compact stratified 2-manifold and X ∈ XGS(M) be a GS-vector field
on M , where S = C, W, D or T . Consider the Gutierrez-Sotomayor flow ϕX on M associated to
X. In this section, our goal is to establish a regularization process of the GS-singularities which

will produce a smooth 2-manifold M̃ together with a smooth flow with regular singularities. For
this purpose we must define a set SP(M), the singular part of M , as the union of all non
regular singularities and folds, i.e. the union M(C) ∪M(W) ∪M(D) ∪M(T ). We refer to this
regularization process as the Morsification of GS-singularities.

Definition 3.1. Let M ∈ M(GS) be a compact stratified 2-manifold, X ∈ XGS(M) a GS-
vector field on M and ϕX the GS-flow associated to X. An isolating block (N,ϕX) admits a

Morsification if there exists a quadruple (Ñ , ϕX̃ , h, p) such that

(1) Ñ is a smooth 2-manifold;

(2) ϕ̃ is a smooth flow on Ñ having only hyperbolic regular singularities and no saddle
connections;

(3) h : N → Ñ is a multivalued map such that h restricted to

N�{SP(N) ∪ {x ∈ N | ω(x) = p or α(x) = p,where p is a saddle cone singularity}}

is a homeomorphism;

(4) p : Ñ → N is the projection map and h ◦ p = id|Ñ .

In this case, one says that (N,ϕX) admits a Morsification to (Ñ , ϕX̃), or that (Ñ , ϕX̃) is a
Morsification of (N,ϕ).
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Theorem 3.1. Let M ∈ M(GS) be a singular 2-manifold, X ∈ XGS(M) a GS-vector field on
M and ϕX the GS-flow associated to X, where S = C,W,D or T . Given a GS-singularity p and

an isolating block (N,ϕX) for p, there exists a Morsification (Ñ , ϕX̃), where Ñ is an isolating
block w.r.t. the regularized flow ϕX̃ .

Now we procedure to the proof of Theorem 3.1, which will be done in the following subsections
for each type of singularities.

3.1. Morsification of Cone Singularities. Let p be a cone singularity in M ∈ M(GC) and
N be an isolating block for p with GS-flow ϕX where X ∈ XGC(M). Consider the boundaries
N− and N+ of N which constitute the exit and entering sets of ϕX , respectively. Next it is
shown how to Morsify the GS-flow on N to obtain a regular flow on a smooth isolating block

Ñ . Considering a Morsification of all isolating blocks for singularities of M , one can glue them

together to form a flow on a smooth 2-manifold M̃ .

Proposition 3.1. Let M ∈M(GC) be a singular 2-manifold, X ∈ XGC(M) a GS-vector field on
M and ϕX the GS-flow associated to X. Given a cone singularity p and an isolating block N

for p, there exists a Morsification (Ñ , ϕX̃) where ∂Ñ = ∂N .

Proof. The proof is done by constructing a quadruple (Ñ , ϕX̃ , h, p) for each type of singularity.

1) Let p be a repelling (resp. attracting) n-sheet cone singularity.

Consider a 2-sphere with n-holes Ñ , with exit set Ñ− = tnj=1Ñ
−
j (resp., entering set

Ñ+ = tnj=1Ñ
+
j ) homeomorphic to N− = tnj=1N

−
j (resp. N+ = tnj=1N

+
j ) and containing a

regular repelling (resp., attracting) singularity p̃ and regular saddle singularities p̃′i,

i = 1,. . . , n − 1. For each j = 1,. . . , n, the components of the exit set N−j , Ñ
−
j (resp., en-

tering sets N+
j , Ñ

+
j ) are homeomorphic to S1. Denote the homeomorphisms which preserve

counterclockwise orientation on the boundary by h−j : N−j → Ñ−j (resp., h+
j : N+

j → Ñ+
j ). Let

ϕX̃ be a flow on Ñ that satisfies the following conditions: for each i, there are two orbits ũ1(p̃, p̃′i)
and ũ2(p̃, p̃′i) such that ω(ũ1) = p̃i

′ = ω(ũ2) and α(ũ1) = p̃ = α(ũ2) (resp., ω(ũ1) = p̃ = ω(ũ2)
and α(ũ1) = p̃i

′ = α(ũ2)). See Figure 6.
For each i = 1,. . . , n − 1, chose points xi, yi where xi ∈ N−i and yi ∈ N−i+1 (resp., xi ∈ N+

i

and yi ∈ N+
i+1). Denote by A = {{xi, yi} | i = 1,. . . , n − 1} the set of these points. Given

x ∈ N \ {p}, there exists x− ∈ N−j (resp., x+ ∈ N+
j ), for some j = 1, . . . , n, where x belongs to

the orbit u(p, x−) (resp., u(x+, p)). Define the multivalued map h : N → Ñ by:

h(u(p, x)) =

{
u(p̃, h−j (x)) (resp., u(h+

j (x), p̃)), if x /∈ A
{u(p̃, p̃′i), u(p̃′i, h

−
j (x))} (resp., {u(h+

j (x), p̃′i), u(p̃′i, p̃)}), if x ∈ A .

Note that h is a multivalued extension of the homeomorphisms h−j (resp., h+
j ), i.e., h|N−j = h−j

(resp., h|N+
j

= h+
j ).

Consider the closed region

Di = {u(p̃, p̃′i), u(p̃′i, h
−
j (x)) | x ∈ A, i = 1, . . . , n− 1, j = 1, . . . , n}

(resp., Di = {u(h+
j (x), p̃′i), u(p̃′i, p̃) | x ∈ A, i = 1, . . . , n− 1, j = 1, . . . , n}).

Define the projection map p : Ñ → N by

p(u(x̃, ỹ)) =


h−1(u(x̃, ỹ)), if u(x̃, ỹ) /∈ Di

u(p, (h−j )−1(ỹ)) (resp., u((h+
j )−1(x̃), p)), if u(x̃, ỹ) ∈ Di, y 6= p̃′i (resp., x 6= p̃′i)

p, if x̃, ỹ ∈ {p̃, p̃′i}
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p p̃

p̃′

N−2 Ñ−2
x x̃

y1 ỹ1

N−2 x
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x̃

x̃2
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p̃′1 p̃′2

N−1

x1

Ñ−1

x̃1

N−1 N−3

x1 y1 y2

Ñ−3Ñ−1

x̃1 ỹ1 ỹ2

Morsification

Morsification

Figure 6. Isolating blocks for repelling cone singularities and their Morsifications.

2) Let p be a saddle cone singularity and N its isolating block.

There are two cases to consider, the first being the case where the boundary of the exit and
entering sets of N are disconnected and the second where they are connected.

2.1) Consider the case where the boundaries N− and N+ of the singular block N are both dis-

connected, i.e. N−i ' S1 and N+
i ' S1, i = 1, 2 The Morsified block Ñ , is a sphere with

4 holes, corresponding to the boundaries Ñ−i ' S1 and Ñ+
i ' S1, i = 1, 2, corresponding

to the connected component of the exit set Ñ− and entering set Ñ+, respectively. See
Figure 7.

For each i = 1, 2, note that Wu(p)∩N−i is a unique point. Denote this point by x−i and
consider u(p, x−i ) the orbit that connects p and x−i . Similarly, consider x+

i = W s(p)∩N+
i

and u(x+
i , p) the orbit that connects x+

i and p. See Figure 7. Let A = {x−i , x
+
i | i = 1, 2}.

Consider a multivalued map h−i : N−i → Ñ−i , such that h−i (x−i ) = {a−i , b
−
i | ai 6= bi},

h−i (N−i \ {x
−
i }) = Ñ−i \ [a−i , b

−
i ], and h−i restricted to N−i \ {x

−
i } is a homeomorphism

which preserves the counterclockwise orientation on the boundaries. Similarly, con-

sider a multivalued map h+
i : N+

i → Ñ+
i , where h+

i (x+
i ) = {a+

i , b
+
i | a

+
i 6= b+i } and

h+
i (N+

i \ {x
+
i }) = Ñ+

i \ [a+
i , b

+
i ]. Given x ∈ N \ {p} such that x /∈ Wu(p) ∪ W s(p),

there exist x+ ∈ N+
i and x− ∈ N−i such that x belongs to the orbit u(x+, x−). If

x ∈Wu(p)∪W s(p) then x is on the orbit u(x+
i , p) or u(p, x−i ), for some i = 1, 2. Define

the multivalued map h : N → Ñ by

h(u(x, y)) =


u(h+

i (x), h−i (y)), if x, y /∈ A ∪ {p}
u(h+

i (x), p̃) ∪ u(h+
i (x), p̃′), if x ∈ A and x− = p

u(p̃, hi
−(y)) ∪ u(p̃′, h−i (y)), if x = p and y ∈ A

{p̃, p̃′}, if x = p = y

.

Consider ϕij : (a+
i , b

+
i )→ (a−j , b

−
j ) a homeomorphism which preserves the orientation,

where i, j = 1, 2, with i 6= j. Given x̃+ ∈ (a+
1 , b

+
1 ), let ϕ12(x̃+) = x̃− ∈ (a−2 , b

−
2 ).

Consider u(x̃+, x̃−) an orbit that connects x̃+ and x̃−. Analogously, given x̃+ ∈ (a+
2 , b

+
2 ),

let ϕ21(x̃+) = x̃− ∈ (a−1 , b
−
1 ). Consider u(x̃+, x̃−) an orbit that connects x̃+ and x̃−.
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Consider the closed region Dij = ϕij(a
+
i , b

+
i ) ∪ {h(u(x, y)) | x, y ∈ A ∪ {p}}. Define

the projection map p : Ñ → N by

p(u(x̃, ỹ)) =

{
h−1(u(x̃, ỹ)), if u(x̃, ỹ) /∈ Dij

{u(x+
i , p), u(p, x−j )}, if u(x̃, ỹ) ∈ Dij

.

x+1

x−2

N+
1

N−2

Ñ+
1

Ñ−2 a−2 b−2

a+1 b+1

p
p̃

p̃′

x+

x−
x̃−

x̃+

x̃+

x̃−

N+
2

N−1

x+2

x−1

Morsification

Figure 7. Isolating block for a saddle cone singularity and its Morsification.

2.2) Now, consider the case where the block N has connected boundaries N− ' S1 and

N+ ' S1. The Morsified block Ñ is a torus minus 2 disks, i.e, with boundaries Ñ− ' S1

and Ñ+ ' S1, corresponding to the exit set and entering set, respectively. See Figure 8.

Let x−1 , x
−
2 ∈ N− be the points in Wu(p)∩N− and u(p, x−i ) be the orbit that connects

p and x−i , i = 1, 2. Consider x+
1 , x

+
2 ∈ N+ as points in Wu(p) ∩ N+ and u(x+

i , p) the
orbit that connects x+

i , i = 1, 2 and p. See Figure 8. Let A = {x+
i , x

−
i | i = 1, 2}.

Consider the arcs C−1 = (x−1 , x
−
2 ) and C−2 = (x−2 , x

−
1 ) in N− as well as C+

1 = (x+
1 , x

+
2 )

and C+
2 = (x+

2 , x
+
1 ) in N+ with counterclockwise orientation.

Consider a multivalued map h− : N− → Ñ−, where

h−(x−i ) = {a−i , b
−
i }, h−(C−1 ) = (b−1 , a

−
2 ), h−(C−2 ) = (b−2 , a

−
1 ),

and h− restricted to N− \ {x−1 , x
−
2 } is a homeomorphism which preserves the counter-

clockwise orientation on the boundaries. Similarly, consider a multivalued map

h+ : N+ → Ñ+, where h+(x+
i ) = [a+

i , b
+
i ], h−(C+

1 ) = (b+1 , a
+
2 ), h−(C+

2 ) = (b+2 , a
+
1 )

and h+(x+
i ) restricted to N+ \ {x+

1 , x
+
2 } is a homeomorphism that preserves the coun-

terclockwise orientation on boundaries. Given x ∈ N \ {p} and x /∈ Wu(p) ∪W s(p),
there exist x+ ∈ N+

i and x− ∈ N−i such that x belongs to the orbit u(x+, x−). If
x ∈Wu(p) ∪W s(p) then x is in the orbit u(x+

i , p) or u(p, x−i ), for some i = 1, 2. Define

the multivalued map h : N → Ñ by

h(u(x, y)) =


u(h+

i (x), h−i (y)), if x, y /∈ A ∪ {p}
u(h+

i (x), p̃) ∪ u(h+
i (x), p̃′), if x ∈ A and x− = p

u(p̃, hi
−(y)) ∪ u(p̃′, h−i (y)), if x = p and y ∈ A

{p̃, p̃′}, if x = p = y

.

Let ϕij : (a+
i , b

+
i )→ (a−j , b

−
j ) be a homeomorphism which preserves orientation, where

i, j = 1, 2, i 6= j. Given x̃+ ∈ (a+
1 , b

+
1 ), let ϕ12(x̃+) = x̃− ∈ (a−2 , b

−
2 ). Let u(x̃+, x̃−) be
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an orbit that connects x̃+ and x̃−.
Analogously, given x̃+ ∈ (a+

2 , b
+
2 ), let ϕ21(x̃+) = x̃− ∈ (a−1 , b

−
1 ). Let u(x̃+, x̃−) be an

orbit that connects x̃+ and x̃−.

Consider the closed region Dij = ϕij(a
+
i , b

+
i ) ∪ {h(u(x, y)) | x, y ∈ A ∪ {p}}. Define

the projection map p : Ñ → N by

p(u(x̃, ỹ)) =

{
h−1(u(x̃, ỹ)), if u(x̃, ỹ) /∈ Dij

{u(x+
i , p), u(p, x−j )}, if u(x̃, ỹ) ∈ Dij

.

p

p̃

p̃′

N+

N− N−

N+

x−2

x−1

x+1

x+2

a−2
b−2

a−1 b−1

a+1
b+1

a+2b+2x+

x−

x̃+

x̃−

x̃+

x̃−

Morsification

Figure 8. Isolating block for a saddle cone singularity and its Morsification.

�

Combinatorially the isolating blocks for cone singularities together with its Morsification can
be seen as the Lyapunov (semi)graphs in Figure 9.
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Figure 9. Morsification of a Lyapunov semigraph with a vertex associated to
a cone singularity.
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3.2. Morsification of Whitney Singularities. Let p be a Whitney singularity in
M ∈ M(GW) and N be an isolating block for p with GS-flow ϕX , where X ∈ XGW(M).
Consider the boundaries N− and N+ of the block N which constitute the exit and entering sets
of ϕX , respectively. Next it is shown how to Morsify the GS-flow on N to obtain a regular flow

on a smooth isolating block Ñ .

Proposition 3.2. Let M ∈M(GW) be a singular 2-manifold, X ∈ XGW(M) a GS-vector field
on M and ϕX the GS-flow associated to X. Given a Whitney singularity p and an isolating

block N for p, there exists a Morsification (Ñ , ϕX̃) such that each orbit of ϕX in SP(M) admits
a duplication of the orbits in N .

Proof. The proof follows by considering each type of singularity and constructing a regular
isolating block with a smooth flow defined on it.

1) Let p be a repelling (resp. attracting) n-sheet Whitney singularity and N its isolating
block.

Consider a regular isolating block Ñ , homeomorphic to D2, containing a regular repelling

(resp. attracting) singularity p̃ with exit set Ñ− (resp. entering set Ñ+) homeomorphic to S1,
as in Figure 10.

Let x−i ∈ N− (resp. x+
i ∈ N+) be points associated to the orbit u(p, x−i ) (resp., u(x+

i , p)) on
SP(N) that connects p and x−i , (resp. p and x+

i ) for i = 1,. . . , n− 1. Define

A = {x−i ; i = 1, . . . , n− 1} (resp., A = {x+
i ; i = 1, . . . , n− 1}).

Consider the arcs C1 = (x1, x1), C1
2 = (x1, x2), C2

2 = (x2, x1), . . . , C1
n−1 = (xn−2, xn−1),

C2
n−1 = (xn−1, xn−2) and Cn = (xn−1, xn−1) in N− (resp., N+) oriented counterclockwise.

Consider a multivalued map h− : N− → Ñ−, where h−(x−i ) = {a−i , b
−
i }, h−(C1) = (a−1 , b

−
1 ),

h−(C1
2 ) = (a−1 , a

−
2 ), h−(C2

2 ) = (b−2 , b
−
1 ), . . . , h−(C1

n−1) = (a−n−2, a
−
n−1), h−(C2

n−1) = (b−n−1, b
−
n−2),

h−(C1
n) = (a−n−1, b

−
n−1), and h− restricted to N− \

⋃n−1
i=1 {x

−
i } is a homeomorphism which pre-

serves the counterclockwise orientation on the boundaries. Similarly, consider a multivalued

map h+ : N+ → Ñ+, where h+(x+
i ) = {a+

i , b
+
i }, h+(C1) = (a+

1 , b
+
1 ), h+(C1

2 ) = (a+
1 , a

+
2 ),

h+(C2
2 ) = (b+2 , b

+
1 ), . . . , h+(C1

n−1) = (a+
n−2, a

+
n−1), h+(C2

n−1) = (b+n−1, b
+
n−2),

h+(C1
n) = (a+

n−1, b
+
n−1), and h+ restricted to N+ \

⋃n−1
i=1 {x

+
i } is a homeomorphism which pre-

serves the counterclockwise orientation on the boundaries. Given x ∈ N \ {p}, there exists
x− ∈ N− (resp., x+ ∈ N+), where x belongs to the orbit u(p, x−) (resp., u(x+, p)). Define the

multivalued map h : N → Ñ by:

h(u(p, x)) =

{
u(p̃, h−(x)) (resp., u(h+(x), p̃)), if x /∈ A
{u(p̃, a−i ), u(p̃, b−i )} (resp., {u(a+

i , p̃), u(b+i , p̃)}, if x ∈ A

Consider the closed setD = {u(p̃, a−i ), u(p̃, b−i ); i = 1, . . . , n−1} (resp., D = {u(a+
i , p̃), u(b+i , p̃);

i = 1, . . . , n− 1}). Define the projection map p : Ñ → N as

p(u(x̃, ỹ)) =

{
h−1(u(x̃, ỹ)), if u(x̃, ỹ) /∈ D
u(p, x−i ) (resp. u(x+

i , p)), if u(x̃, ỹ) ∈ D .



46 D.V.S. LIMA, S. A. RAMINELLI, AND K. A. DE REZENDE

p p̃

x−1 x−2 x−3 a−1

b−1

a−2 a−3

b−2 b−3
x x̃
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Figure 10. Isolating blocks for a repelling Whitney singularity and its Morsification.

Another possible Morsification for a repelling n-sheet Whitney singularity is a disjoint union
of n repeller disks.

2) Let p be a saddle Whitney singularity of ss-nature. (If p has su-nature the prove is
completely analogous by using the reverse flow.)

Let N be an isolating block for p. One has two cases to consider, first when the exit set of N is
disconnected and secondly when its is connected.

2.1) Consider the case where the exit set N− is disconnected, i.e. N−i is homeomorphic to S1

for i = 1, 2. The regular isolating block Ñ is a sphere with 3 holes containing a regular

singularity of saddle nature p̃ with entering set Ñ+ homeomorphic to S1 and exit set

Ñ− with exactly two boundary components homeomorphic to S1. See Figure 11. Let
x+ ∈ N+ be the point belonging to a orbit u(x+, p) on SP(N). Define the multivalued
map

h+ : N+ → Ñ+ by h+(x+) = {a+, b+} and h+(N+ \ {x+}) = Ñ+ \ {a+, b+},

such that h+ restricted to N+ \ {x+} is a homeomorphism which preserves the counter-
clockwise orientation on the boundaries. Consider the trivial homeomorphisms

hi : N−i → Ñ−i . Define the multivalued map h : N → Ñ as

h(u(x, y)) =

 u(h+(x), hj(y)), if x 6= x+ and x 6= p
u(p̃, hj(y)), if x 6= x+ and x = p
{u(a+, p̃), u(b+, p̃)}, if x = x+

Consider the closed set D = {u(a+, p̃), u(b+, p̃)}. Define the projection map

p : Ñ → N by

p(u(x̃, ỹ)) =

{
h−1(u(x̃, ỹ)), if u(x̃, ỹ) /∈ D
u(x+, p), if u(x̃, ỹ) ∈ D

′

.
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x+

a+

b+y+

y− ỹ−

ỹ+

p p̃

Morsification

Figure 11. Isolating blocks for a saddle Whitney singularity and its Morsification.

2.2) Consider the case where the exit set N− is connected, homeomorphic to S1. The regular

isolating block Ñ is a sphere with 3 holes containing a regular singularity of saddle

nature p̃ with exit set Ñ− homeomorphic to S1 and entering set Ñ+ with exactly two
boundary components homeomorphic to S1. See Figure 12. Let x+ ∈ N+ be the point

in the orbit u(x+, p) on SP(N). Consider a multivalued map h+ : N+ → Ñ+, such that

h+(x+) = {a+, b+}, h+(N+ \ {x+}) = Ñ+ \ {a+, b+}, and h+ restricted to N+ \ {x+} is
a homeomorphism which preserves the counterclockwise orientation on the boundaries.

Considering the trivial homeomorphism h : N− → Ñ−, one defines the multivalued map

h : N → Ñ as

h(u(x, y)) =

 u(h(x), hj(y)), if x 6= x+ and x 6= p
u(p̃, hj(y)), if x 6= x+ and x = p
{u(a+, p̃), u(b+, p̃)}, if x = x+

.

Consider the closed set D = {u(a+, p̃), u(b+, p̃)}. Define the projection map

p : Ñ → N by

p(u(x̃, ỹ)) =

{
h−1(u(x̃, ỹ)), if u(x̃, ỹ) /∈ D
u(x+, p), if u(x̃, ỹ) ∈ D .

p

x+

y−

y+

N

a+ b+

p

ỹ+

ỹ−

Ñ

Morsification

Figure 12. Isolating blocks for a saddle Whitney singularity and its Morsification.

�

Combinatorially the isolating blocks for Whitney singularities together with its Morsification
can be seen as the Lyapunov (semi)graphs in Figure 13.
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Figure 13. Morsification of a Lyapunov semigraph with vertex associated to
a Whitney singularity.

3.3. Morsification of Double and Triple Crossing Singularities. Let p be a double cross-
ing singularity in M ∈ M(GD) and N be an isolating block for p with GS-flow ϕX where
X ∈ XGD(M). Consider the boundaries N− and N+ of the isolating block N which constitute
the exit and entering sets of ϕX , respectively. Next it is shown how to Morsify the GS-flow on

N to obtain a regular flow on a smooth isolating block Ñ . Considering a Morsification of all iso-
lating blocks of singularities of M , one can glue them together to form a flow on a disconnected

smooth surface M̃ .

Proposition 3.3. Let M ∈M(GD) be a singular 2-manifold, X ∈ XGD(M) a GS-vector field on
M and ϕX the GS-flow associated to X. Given a double crossing singularity p and an isolating

block N for p, there exists a Morsification (Ñ , ϕX̃) such that each orbit of ϕX in SP(M) admits
a duplication of orbits in N .

Proof. Consider the different type of double crossing singularities.

1) Let p be a repelling (resp., attracting) n-sheet double crossing singularity. Consider a

smooth block formed by n disjoint discs, Ñ ' tni=1D
2
i , containing n repelling (resp.,

attracting) regular singularities p̃1,. . . , p̃n and having exit set Ñ− (resp. entering set

Ñ+) homeomorphic to a disjoint union of n circles, as in Figure 14.
Let Ai = {xi, yi}, where xi, yi ∈ N− (resp., xi, yi ∈ N+) be the points associated to

the orbits u(p, xi) (resp., u(xi, p)) on SP(N) that connects p and xi, and u(p, yi) (resp.,
u(yi, p)) that connects p and yi, i = 1,. . . , n− 1.

Consider the external arcs C1
1 = (y1, x1), C1

2 = (x1, x2), C2
2 = (y2, y1), . . . ,

C1
n−1 = (xn−2, xn−1), C2

n−1 = (yn−1, yn−2) and C1
n = (xn−1, yn−1)

in N− (resp., N+) as well as c11 = (y1, x1), c21 = (x1, y1), c12 = (y2, x2), c22 = (x2, y2) ,. . .,
c1n−1 = (yn−1, xn−1) and c2n−1 = (xn−1, yn−1) in N− (resp., N+) with counterclockwise
orientations.

Define the multivalued map h− : N− → Ñ−, by h−(xi) = {ai, ci}, h−(yi) = {bi, di},
h−(C1) = (b1, a1), h−(C1

2 ) = (a1, a2), h−(C2
2 ) = (b2, b1), . . . , h−(C1

n−1) = (an−2, an−1),
h−(C2

n−1) = (bn−1, bn−2), h−(Cn) = (an−1, bn−1), h−(c11) = (d1, c1), h−(c21) = (c1, d1),
h−(c12) = (d2, c2), h−(c22) = (c2, d2), . . . , h−(c1n−1) = (dn−1, cn−1) and
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h−(c2n−1) = (cn−1, dn−1), such that h− restricted to N− \
⋃n−1
i=1 {xi, yi} is a homeo-

morphism which preserves orientation on the boundaries. Analogously, define the mul-

tivalued map h+ : N+ → Ñ+. Define the multivalued map h : N → Ñ by

h(u(p, x)) =

 u(p̃1, h
−(x)), if x ∈ C∗i

u(p̃i, h
−(x)), if x ∈ c∗i−1

{u(p̃1, h
−(x)), u(p̃i+1, h

−(x))}, if x ∈ Ai
The case where p is an attracting double singularity, the prove follows analogously.
If x ∈ Ai, then x = xi ou x = yi. Without loss of generality, suppose that x = xi.

Hence, the orbit u(p, xi) is mapped by h to u(p̃1, ai) and u(p̃i+1, ci).
Finally, consider the closed set D =

⋃n
i=1Di, where

Di = {u(p̃1, h
−(x)), u(p̃i+1, h

−(x));x ∈ Ai}.

Define the map p : Ñ → N by

p(u(x̃, ỹ)) =

{
h−1(u(x̃, ỹ)), if u(x̃, ỹ) /∈ D
u(p, h−1(ỹ)), if u(x̃, ỹ) ∈ Di

.

See Figure 14.

p

p

p̃1

p̃1

x1

y1

a1

b1

c1
d1

x1 x2

y1 y2

a1

b1

c1
d1

a2

b2

c2
d2

p̃2

p̃2 p̃3

x x̃

x
x̃

Morsification

Morsification

Figure 14. Isolating blocks for a repelling 2-sheet and 3-sheet double crossing
singularities and their Morsification.

2) Let p be a saddle double crossing singularity of sa (resp., sr) nature. Let N be an

isolating block for p, and consider the smooth disjoint block Ñ , containing two regular
singularities p̃1 and p̃2, where p̃1 is a saddle and p̃2 is an attractor (resp., repeller).

The isolating block Ñ has Ñ− and Ñ+ as exit and entering sets, respectively, where
each connected component is homeomorphic to S1. There are two cases to be considered.
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• Ñ− (resp., Ñ+) is disconnected;

• Ñ− (resp., Ñ+) connected.
2.1 Let N−i , i = 1, 2, be the connected components of the exit set.

Let x+, y+ ∈ N+ be the points of the orbits u(x+, p) and u(y+, p) on SP(N).
Consider the external arcs C1 = (y+, x+), C2 = (x+, y+), and the internal arcs
c1 = (y+, x+), c2 = (x+, y+) in N+ with counterclockwise orientations. Define the

multivalued map h+ : N+ → Ñ+ by h+(x+) = {a+, c+}, h+(y+) = {b+, d+} and

h+(N+ \ {x+, y+}) = N̂+ \ {a+, b+, c+, d+}, such that the map h+ restricted to
N+ \ {x+, y+} is a homeomorphism which preserves the orientation on the bound-

aries. Consider the trivial homeomorphisms hj : N−j → Ñ−j . Define the multivalued

map h : N → Ñ by

h(u(x, y)) =

 u(h+(x), hi(y)), if x ∈ Ci
u(h+(x), p̃2), if x ∈ ci
{u(h+(x), p̃1), u(h+(x), p̃2)}, if x ∈ {x+, y+}

.

If x1 ∈ Ci, the orbit u(x1, y1) is mapped by h to u(x̃1, ỹ1), where x̃1 = h+(x1)
and ỹ1 = hi(y1). If x2 ∈ ci, the orbit u(x2, p) is mapped by h to u(x̃2, p̃2), where
x̃2 = h+(x2).
If x = x+, the orbit u(x+, p) is mapped by h to u(a+, p̃1) and u(c+, p̃2). Analogously
for x = y+.

Finally, consider the closed set D = {u(h+(x), p̃1), u(h+(x), p̃2)}. Define p : Ñ → N
by

p(u(x̃, ỹ)) =

{
h−1(u(x̃, ỹ)), if u(x̃, ỹ) /∈ D
u(h−1(x̃), p), if u(x̃, ỹ) ∈ D .

See Figure 15.

y+

x+ a+

b+

c+
d+

p p̃1

p̃2

x1

y1

x̃1

ỹ1

x2 x̃2

Morsification

Figure 15. Isolating block for a saddle double crossing singularity of sa-nature
and its Morsification.

2.2 Suppose that N− and N+ are both connected. Let Ñ be the disjoint union of a

2-sphere minus three discs, Ñ1, and an attracting disc, Ñ2. The entering set of Ñ

is a disjoint union of three circles Ci, i = 1, 2, 3, where the entering set of Ñ1 is C1

and C2 and the entering set of Ñ2 is C3.
Let x+, y+ ∈ N+ be the points on the orbits u(x+, p) and u(y+, p) on SP(N).
Consider the arcs c1 = (x+, x+), c2 = (y+, y+) c3 = (y+, x+), c4 = (x+, y+) in N+

with counterclockwise orientation. Define the multivalued map h+ : N+ → Ñ+,
by h+(x+) = {a+, c+}, h+(y+) = {b+, d+}, h+(c1) = Ci, for i = 1, 2, h+(c3) is

the arc (c+, d+) in C̃3, and h+(c4) is the arc (d+, c+) in C̃3, such that the map h+
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restricted to N+ \ {x+, y+} is a homemomorphism which preserve orientation on

the boundary. Consider the trivial homemomorphism h− : N− → Ñ−. Define the

multivalued map h : N → Ñ by

h(u(x, y)) =

 u(h+(x), h−(y)), if x ∈ c1 ∪ c2
u(h+(x), p̃2), if x ∈ c3 ∪ c4
{u(h+(x), p̃1), u(h+(x), p̃2)}, if x ∈ {x+, y+}

.

If x = x+, the orbit u(x+, p) is mapped by h to u(a+, p̃1) and u(c+, p̃2). If x = y+,
the orbit u(y+, p) is mapped by h to u(b+, p̃1) and u(d+, p̃2).

Finally consider the closed set D = {u(h+(x), p̃1), u(h+(x), p̃2)}. Define p : Ñ → N
by

p(u(x̃, ỹ)) =

{
h−1(u(x̃, ỹ)), if u(x̃, ỹ) /∈ D
u(h−1(x̃), p), if u(x̃, ỹ) ∈ D .

See Figure 16.

a+ b+

c+ d+x̃1

ỹ1

x2
x̃2

x+ y+

y1

p p̃1

p̃2

x1

Morsification

x2x+ y+

y1

p

x1

Figure 16. Isolating block for a saddle double crossing singularity of sa-nature
and its Morsification.

3) Let p be a double crossing saddle singularity of sss-nature (ssu-nature). Let N be an

isolating block for p and consider the smooth isolating block Ñ , containing two regular
saddle singularities p̃1 and p̃2.

The isolating block Ñ has Ñ− and Ñ+ as exit and entering sets, respectively. We
will consider the following cases:

• Ñ+ (resp., Ñ−) is connected;

• Ñ+ (resp., Ñ−) is disconnected.
3.1) Consider the isolating block N in Figure 17 with exit set homeomorphic to four

disjoint circles N−ij , where N−1j are the external boundaries and N−2j are the internal

boundaries, j = 1, 2. Let Ñ the a smooth isolating block formed by the disjoint

union of two isolating blocks Ñ1 and Ñ2, for the regular saddle and attracting

singularities p̃1 and p̃2, respectively. In Ñ1 the exit set is Ñ−1j and the entering set

Ñ+
1 and in Ñ2 the exit set is Ñ−2j and the entering set is Ñ+

2 , homeomorphic to S1,
j = 1, 2.
Let x+, y+ ∈ N+ be points on the orbits u(x+, p) and u(y+, p) on SP(N). Consider
the external arcs C1 = (y+, x+), C2 = (x+, y+) and the internal arcs
c1 = (y+, x+), c2 = (x+, y+) in N+ with counterclockwise orientation. Define the

multivalued map h+ : N+ → Ñ+ by h+(x+) = {a+, c+}, h+(y+) = {b+, d+} and

h+(N+ \ {x+, y+}) = Ñ+ \ {a+, b+, c+, d+}, such that h+ restricted to
N+ \ {x+, y+} is an orientation preserving homeomorphism. Consider the triv-

ial homeomorphisms hij : N−ij → Ñ−ij . Define the multivalued mpa h : N → Ñ
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by

h(u(x, y)) =


u(h+(x), hij(y)), if x ∈ Ci ∪ ci and x 6= p
u(p̃1, h1j(y)), if y ∈ N−1j and x = p

u(p̃2, h2j(y)), if y ∈ N−2j and x = p

{u(h+(x), p̃1), u(h+(x), p̃2)}, se x ∈ {x+, y+}

If x1 ∈ Ci, the orbit u(x1, y1) is mapped by h to u(x̃1, ỹ1),where x̃1 = h+(x1) and
ỹ1 = h1j(y1). If x2 ∈ ci, the orbit u(x2, y2) is mapped by h to u(x̃2, ỹ2), where
x̃2 = h+(x2) and ỹ2 = h2j(y2).
If x ∈ N−1j , the orbit u(p, x) is mapped by h to u(p̃1, x̃), where x̃ = h1j(x). If

x ∈ N−2j , the orbit u(x, p) is mapped by h to u(p̃2, x̃), where x̃ = h2j(x).

If x = x+, the orbit u(x+, p) is mapped by h to u(a+, p̃1) and u(c+, p̃2). Similarly,
if x = y+.

Finally, consider the closed set D = {u(h+(x), p̃1), u(h+(x), p̃2)}. Define p : Ñ → N
by

p(u(x̃, ỹ)) =

{
h−1(u(x̃, ỹ)), se u(x̃, ỹ) /∈ D
u(h−1(x̃), p), se u(x̃, ỹ) ∈ D

See Figure 17.
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p̃2
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y+ b+

c+
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x̃2
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Morsification

Figure 17. Isolating blocks for a saddle double crossing singularity of sss-
nature and its Morsification.

3.2) This case follows with a similar proof. See Figure 18.
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Figure 18. Isolating blocks for a saddle double crossing singularity of sss-
nature and its Morsification.

�
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Proposition 3.4. Let M ∈M(GT ) be a singular 2-manifold, X ∈ XGT (M) a GS-vector field on
M and ϕX the GS-flow associated to X. Given a triple crossing singularity p and an isolating

block N for p, there exists a Morsification (Ñ , ϕX̃) such that each orbit of ϕX in SP(M) admits
a triplication of orbits in N .

Proof. The proof follows the same steps as the previous one. �

Combinatorially the isolating blocks for double and triple singularities together with its Mor-
sification can be seen as the Lyapunov (semi)graphs in Figures 19 and 20. By considering the
opposite direction on the graphs in Figure 19, we obtain the graphs for attracting double crossing
singularities.
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b−1 b−2 b−3
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Figure 19. Morsification of a Lyapunov semigraph with vertex associated to
a double crossing singularity.

There are other isolating blocks for saddle double crossing singularities which are not consid-
ered in this work.
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Figure 20. Morsification of a Lyapunov semigraph with vertex associated to
a triple crossing singularity.
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4. Gutierrez-Sotomayor Chain Complex

The goal of this section is to define a chain complex that describes the dynamics of a given
GS-flow on a closed stratified 2-manifold M ∈M(GS), analogously to the Morse chain complex
associated to a Morse-Smale flow. We make use of the Morsification process to introduce the
notion of GS-intersection numbers which makes it possible to count the flow lines between
consecutive GS singularities with sign, as in Subsection 4.2 below. In Subsection 4.1, we present
a brief introduction on Morse chain complexes associated to Morse functions on closed manifolds.

4.1. Morse Chain Complex. Let M be a smooth closed n-manifold. A smooth function
f : M → R is called a Morse function if each critical point of f is nondegenerate, i.e. the
Hessian matrix of f at p, Hf

p , is non-singular. The Morse index indf (p) of a critical point p is

the dimension of the maximal subspace where Hf
p is negative definite. Moreover, since M is a

closed manifold, then the set of critical points of a Morse function is finite.
Fix a Riemannian metric g on M and let f : M → R be a smooth Morse function. The

identity g(∇f, ·) = df(·) uniquely determines a gradient vector field ∇f on M . Denote the flow
associated to −∇f by ϕf , which is called the negative gradient flow. The singularities of the
vector field −∇f correspond to the critical points of f .

A Morse function f is called a Morse-Smale function if, for each x, y ∈ Crit(f), the unstable
manifolds of ϕf at x, Wu(x), and the stable manifold of ϕf at y, W s(y), intersect transversally.
We define (f, g) as a Morse-Smale pair. Hereafter, in this subsection, assume that f is a Morse-
Smale function, unless stated otherwise. In this case, the negative gradient flow ϕf is also called
a Morse flow.

Given x, y ∈ Crit(f), the connecting manifold of x and y is given byMxy := Wu(x)∩W s(y).
The connecting manifold Mxy is the set containing all points p ∈ M such that ω(p) = y
and α(p) = x. The moduli space between x and y is defined by Mx

y(a) := Mxy ∩ f−1(a),
where a is a regular value between f(x) and f(y). The space Mx

y(a) is a set of points that
are in 1-1 correspondence to the orbits running from x to y. For different choices of regular
values a1, a2 there is a natural identification between Mx

y(a1) and Mx
y(a2) given by the flow.

Hence, one uses the notationMx
y for the moduli space. Whenever f is a Morse-Smale function,

the connecting manifolds and the moduli spaces are orientable closed submanifolds of M of
dimensions dim(Mxy) = indf (x)−indf (y), and dim(Mx

y) = indf (x)−indf (y)−1, respectively.
Once orientations are chosen for Wu(x) and Wu(y), these induce an orientation on Mxy

denoted by [Mxy]ind, for x, y ∈ Crit(f). The procedure given in [22] to obtain this orientation
is:

(1) If indf (y) > 0 , then
(a) Let VMxy

W s(y) be the normal bundle of W s(y) restricted to Mxy. Consider the
fiber VyW s(y) with an orientation given by the isomorphism

TyW
u(y)⊕ TyW s(y) ' TyM ' VyW s(y)⊕ TyW s(y).

The orientation on the fiber at y determines an orientation on the normal bundle
VMxy

W s(y) restricted to the submanifold Mxy.
(b) The orientation on Mxy is determined by the isomorphism

TMxyW
u(x) ' TMxy ⊕ VMxyW

s(y).

(2) If indf (y) = 0, then VyW s(y) = 0. Hence, TMxy
Wu(x) ' TMxy.

Note that there are no restrictions on the orientability of the manifold M .
Given x, y ∈ Crit(f) with indf (x)− indf (y) = 1, let u ∈ Mx

y . The characteristic sign nu of
the orbit O(u) through u is defined via the identity [O(u)]ind = nu[u̇], where [u̇] and [O(u)]ind
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denote the orientations on O(u) induced by the flow and byMxy, respectively. The intersection
number of x and y is defined by

n(x, y) =
∑
u∈Mx

y

nu.

The intersection number between x and y counts, with sign, the flow lines from x to y. In the
literature there are other ways to count such flow lines with orientations, for example, see [1],
Chapter 7.

Fix an arbitrary orientation for the unstable manifolds Wu(x), for each x ∈ Crit(f), and
denote by Or the set of these choices. The Morse graded group C = {Ck(f)} is defined as the
free abelian groups generated by the critical points of f and graded by their Morse index, i.e.,

Ck(f) :=
⊕

x∈Critk(f)

Z〈x〉,

where 〈x〉 denotes the pair consisting of the critical point x of f and the orientation chosen on
Wu(x). The Morse boundary operator ∂k(x) : Ck(f) −→ Ck−1(f) is given on a generator x of
Ck(f) by

(2) ∂k〈x〉 :=
∑

y∈Critk−1(f)

n(x, y)〈y〉,

and it is extended by linearity to general chains.
The pair (C∗(f), ∂∗) is a chain complex, that is, ∂ is of degree −1 and ∂ ◦ ∂ = 0. This chain

complex is called a Morse chain complex.
The proof that ∂ ◦∂ = 0 follows by analyzing the 1-dimensional connected components of the

moduli space Mx
z , where x ∈ Critk(f) and z ∈ Critk−2(f), which can be either diffeomorphic

to (0, 1) or to S1, as in Figure 21. In [22], it is proved that if (u, v) and (ũ, ṽ) are two broken
flow lines corresponding to the ends of a noncompact connected component ofMx

z , then the null
cycle condition is satisfied, i.e. nunv + nũnṽ = 0.

x

z

y ỹ

z

x

u ũ

v ṽ

Mxz

Mx
z

Mxz

Mx
z

Figure 21. Possible connected components of Mxz for x ∈ Critk(f) and
z ∈ Critk−2(f).

The Morse homology groups with integer coefficients are defined by

HMk(M,f, g,Or;Z) =
Ker ∂k
Im ∂k+1

, ∀k ∈ Z.

In [22], it was proved that, for two choices of Morse-Smale pairs (f1, g1) and (f2, g2) with
orientations Or1 and Or2 on all unstable manifolds, the associated Morse homology
groups HMk(M,f1, g1, Or1;Z) and HMk(M,f2, g2, Or2;Z) are naturally isomorphic, for all
k ∈ Z. Hence, this homology is simple denoted by HM∗(M,Z). Moreover, one has that
HM∗(M ;Z) ∼= Hsing(M ;Z), i.e., the Morse homology of M is isomorphic to the singular homol-
ogy of M .
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4.2. Gutierrez-Sotomayor Chain Complex. Let M ∈ M(GS) be a compact singular 2-
manifold, X ∈ XGS(M) a GS-vector field on M and ϕX the Gutierrez-Sotomayor flow on M
associated to X. In this section, one defines a chain complex for a given GS-flow analogous to
the Morse chain complex of a Morse-Smale flow. We will start by obtaining the characteristic
signs of the flow lines on M from the characteristic signs of the flow lines on the smooth surface

M̃ obtained by a Morsification process. Subsequently, it is possible to define a GS-chain group
and a GS-boundary map, as in the Definition 4.2.

Given x, y ∈ Sing(X), define the connecting manifold of x and y by

Mxy :=Mxy(X,M) := Wu(x) ∩W s(y),

where W s, Wu are the stable and unstable sets of the singularity, respectively. In other words,
the connecting manifoldMxy is composed by the points p ∈M such that ω(p) = y and α(p) = x.
The moduli space between the singularities x and y is defined as the quotient of the connecting
manifold Mxy by the natural action of R on the flow lines, i.e.,

Mx
y :=Mxy/R.

Define the nature numbers of a GS-singularity as follows:

Definition 4.1. Denote by Sing(X) the set of singularities of a vector field X ∈ XGS(M).
Given p ∈ Sing(X), define ηk(p) as the k-th nature number of p, where:

• k = 2 represents the repelling nature r;
• k = 1 represents the saddle nature s;
• k = 0 represents the attracting nature a.

Two singularities x and y are said to be consecutive if ηk(x) and ηk−1(y) are both non zero,
for some k = 1, 2.

For example, if p is a triple crossing singularity of ssa nature, we have that η2(p) = 0,
η1(p) = 2 and η0(p) = 1.

Note that in the Morse-Smale case, each singularity of index k has only one nature, implying
that it contributes with only one generator for the k-th Morse chain group. The same holds
for cone singularities and Whitney singularities. However, this is not the case for the double
and triple crossing singularities, since they have at least two natures. Hence, these type of
singularities will have more than one generator in the GS-chain groups associated with them.
Moreover, for a double or triple crossing singularity x, the singularities associated to x by the
Morsification process are in one-to-one correspondence with the collection of nature numbers of
x.

In order to distinguish the generators provided by a GS-singularity x, we denote the generators
of the nature of a singularity x by

{hik(x) | i = 1, . . . , ηk(x), k = 0, 1, 2},

where hik(x) represents a generator of k-nature of the singularity x. The advantage of this
notation is that this set {hik(x) | x ∈ Sing(X), i = 1, . . . , ηk(x)} will generate the k-chain group
of the GS-chain complex that we define below.

Definition 4.2. Given a GS-flow ϕX , the Gutierrez-Sotomayor chain group CGSk (M,X)
with integer coefficients graded by the nature of the singularities is the free abelian group generated
by the set of GS-singularities Sing(X) of the vector field X, i.e.:

CGSk (M,X) :=
⊕

x∈Sing(X)

(
ηk(x)⊕
i=1

Z〈hik(x)〉

)
, k ∈ Z,
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where hik(x) denotes a generator associated to the k-nature of the singularity x. The k-th

Gutierrez-Sotomayor boundary map, ∆GSk : CGSk (M,X) → CGSk−1(M,X), is given on a

generator hik(x) by

∆GSk 〈h
i
k(x)〉 :=

∑
y∈Sing(X)

(
ηk−1(y)∑
j=1

n(hik(x), hjk−1(y))〈hjk−1(y)〉

)
,

and it is extended by linearity to general chains.

The overarching idea is to make use of the Morsification of the GS-flow defined in Section 3,
in order to define a GS-intersection number from the Morse counterpart. Intersection numbers
depends heavily on the smooth structure of the manifold, i.e, the existence of tangent and normal
bundles. The number n(hik(x), hjk−1(y)) is called the GS-intersection number of the generators

hik(x) and hjk−1(y) and will be defined in the following subsections as the sum
∑

nu, over all

flow lines u ∈ Mhi
k(x)

hj
k−1(y)

, where nu is the GS-characteristic sign of the flow line u. This process

relies on the Morsification process.
Furthermore, in the following subsections, we prove that, given M ∈ M(GS) and

X ∈ XGS(M), the pair (CGS∗ (M,X),∆GS∗ ) is a chain complex which we refer to as a Gutierrez-
Sotomayor chain complex .

Throughout this section, a GS-chain complex will be defined for flows associated to vec-
tor fields restricted to flows associated to vector fields X in XGC(M), XGW(M), XGD(M) and
XGT (M).

4.3. Gutierrez-Sotomayor complex for cone singularities. In the previous section, we
defined the Morsification process of a given GS-flow containing only regular and cone type
singularities on a singular 2-manifold M ∈ M(GC) in order to obtain a smooth manifold

M̃ ∈M(R) with a smooth Morse flow ϕ̃X̃ on it. Therefore, one can attach to each flow line of
ϕ̃X̃ a characteristic sign. Now, the idea is to transfer these signs to the corresponding flow lines
of the singular flow ϕX .

We now define the transfer process of characteristic signs from the Morse setting to the GS-
setting.

Definition 4.3 (Characteristic signs of flows lines of XGC(M)). Consider x, y ∈ Sing(X) sin-
gularities of consecutive natures, where X ∈ XGC(M). The GS-characteristic sign nu of a
flow line u ∈Mxy is defined as follows:

(1) Let x be a singularity of repeller nature and y a cone singularity of saddle nature. De-
note by ỹ, ỹ′ the singularities associated to y by the Morsification process, and by x̃ the

singularity of repeller nature associated to x. It is easy to see that Mx
y ≈ M̃x̃

ỹ ≈ M̃x̃
ỹ′ .

Hence, given u ∈ Mx
y there are corresponding flow lines ũ ∈ M̃x̃

ỹ and ũ′ ∈ M̃x̃
ỹ′ in the

Morsified flow. Define

nu :=

{
nũ, if nũ = nũ′

0, if nũ 6= nũ′

(2) Let x be a cone singularity of saddle nature and y a singularity of attractor nature.
Denote by x̃, x̃′ the singularities associated to x by the Morsification process, and by ỹ

the singularity of repeller nature associated to y. It is easy to see thatMx
y ≈ M̃x̃

ỹ ≈ M̃x̃′

ỹ .

Hence, given u ∈ Mx
y there are corresponding flow lines ũ ∈ M̃x̃

ỹ and ũ′ ∈ M̃x̃′

ỹ in the
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Morsified flow. Define

nu :=

{
nũ, if nũ = nũ′

0, if nũ 6= nũ′

(3) For the other cases, one has that Mx
y ≈ M̃x̃

ỹ . For each u ∈Mx
y , define nu := nũ.

Once the characteristic signs are well defined for the flow lines of ϕX with X ∈ XGC(M), the
GS-intersection number between consecutive singularities x and y is defined as

n(x, y) :=
∑
u∈Mx

y

nu,

This sum is finite since the moduli space is compact. i.e., the sum of the characteristic signs of
the flow lines connecting x to y. Thus, the GS-boundary map ∆GC∗ , described in Definition 4.2,
is well defined for GS-flows on M ∈ M(GC). Now, we will prove that (CGC∗ (M,X),∆GC∗ ) is in
fact a chain complex for X ∈ XGC(M) and M ∈M(GC).

Lemma 4.1. Let GGC be the graph of the matrix associated to the GS-boundary map ∆GC and let
y ∈ Sing(X) be a cone singularity of saddle nature. Therefore, the incidence degree of the vertex
vy is null or 2, and in the latter case, the two edges are both positively or negatively incident in
vy. Consequently, there is no cycle in G(∆GC) containing vy.

Proof. Let y ∈ Sing(X) be a cone singularity of saddle nature. Since, y has saddle nature, the
positively and negatively incident edges appear in pairs and up to two positively incident edges
and two negatively incident edges. Hence, the incident degree of vy belongs to the set {0, 2, 4}.

Suppose that the incident degree of the vertex vy is four. This is also the case for the vertices

vỹ and vỹ′ of the Morsified boundary map ∆̃, where ỹ, ỹ′ are the singularities associated to y by
the Morsification process. Therefore, there are two vertices vx̃1 , vx̃2 corresponding to repeller
singularities and two vertices vz̃1 , vz̃2 corresponding to attractor singularities which belong to

distinct cycles in G(∆̃) involving the vertices vỹ and vỹ′ . Moreover, these cycles can be chosen

matching the ends of noncompact connected components of the moduli spaces M̃x̃1z̃1 and M̃x̃2z̃2 .

Let (ũi, ṽi) ∈ M̃x̃i

ỹ × M̃
ỹ
z̃i

and (ũ′i, ṽ
′
i) ∈ M̃

x̃i

ỹ′ × M̃
ỹ′

z̃i
, be the broken orbits that correspond the

ends of such component of M̃x̃iz̃i , for i = 1, 2, see Figure 22.

vx̃1

vỹ vỹ′

vz̃1

ũ1 ũ′1

ṽ1 ṽ1

nũ1 nũ′1

nṽ1 nṽ′1

vx̃2

vỹ vỹ′

vz̃2

ũ2 ũ′2

ṽ2 ṽ2

nũ2 nũ′2

nṽ2 nṽ′2

Figure 22. Connected components of M̃x̃1z̃1 and M̃x̃2z̃2 .

Since these spaces correspond to moduli spaces of order two of a Morse flow,

nũi
.nṽi + nũ′i .nṽ′i = 0, for i = 1, 2,
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as proved in [22]. Thus, for each i = 1, 2, there are exactly two possibilities for the characteristic
signs: {

nũi = nũ′i
nṽi 6= nṽ′i

or

{
nũi
6= nũ′i

nṽi = nṽ′i
.

If the first (resp., second) possibility holds, then by the sign transfer process, one has that
nvi = 0 (resp., nui = 0). See Figure 23. In any case, it contradicts the assumption that there
are four incident edges to the vertex vy of G(∆GC). Hence, the incidence degree of vy is either 0
or 2.

vx̃1

vỹ vỹ′

vz̃1

ũ1 ũ′1

ṽ1 ṽ1

nũ1 nũ′1

nṽ1 nṽ′1

vx1

vy

vz1

nu1 = 0
u1

nv1

v1

vx̃1

vỹ vỹ′

vz̃1

ũ1 ũ′1

ṽ1 ṽ1

nũ1 nũ′1

nṽ1 nṽ′1

vx1

vy

vz1

nu1 = 0
u1

nv1

v1

Figure 23. Transfer of characteristic signs of the ends of the noncompact con-

nected components of M̃x̃1z̃1 and M̃x̃2z̃2

Now, we need to prove that if the incidence degree of vy is 2 then both edges are positively
incident or both are negatively incident to vy. Since the characteristic signs of the two flow lines
on the unstable manifold of a saddle are opposite, then nṽ2 = −nṽ1 and nṽ′2 = −nṽ′1 . Thus:

{
nũ1 = nũ′1
nṽ1 6= nṽ′1

⇒
{
nũ2 = nũ′2
nṽ2 6= nṽ′2

and {
nũ1
6= nũ′1

nṽ1 = nṽ′1
⇒

{
nũ2
6= nũ′2

nṽ2 = nṽ′2
.

In other words, if the incidence degree of vy is two then the two edges are positively or negatively
incident to it. �

The previous lemma is essential in the proof that (CGC∗ (M,X),∆GC∗ ) is a chain complex.

Theorem 4.1. Let ∆GC∗ be the GS-boundary map associated to ϕX , where X ∈ XGC(M). Then
∆GCk−1 ◦∆GCk = 0, for all k ∈ Z.

Proof. Given a singularity of repeller nature x and a singularity of attractor nature z, consider

B1
xz := {(u, v) | u ∈Mx

y , v ∈My
z , for y ∈ Sing(X) of saddle nature}.
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With this notation, one can write the composition ∆GCk−1 ◦∆GCk as follows:

∆GCk−1 ◦∆GCk (x) =
∑

z∈Sing(X)

( ∑
y∈Sing(X)

n(x, y)n(y, z)

)
z

=
∑

z∈Sing(X)

( ∑
y∈Sing(X)

∑
u∈Mx

y

∑
v∈My

z

nunv

)
z

=
∑

z∈Sing(X)

( ∑
(u,v)∈B1

xz

nunv

)
z

=
∑

z∈Sing(X)

(∑
(nuinvi + nujnvj )

)
z

where the sum in the last equality is over the ends of the connected components of Mx
z , for all

z ∈ Sing(X) of attractor nature.
In terms of the graph of the map G(∆GC), fixing x and z, each term nui

nvi + nuj
nvj of the

last sum corresponds to a cycle in G(∆GC) connecting the vertices vx and vz. By Lemma 4.1, no
cycle in G(∆GC) contains a vertex vy, where y is a cone singularity of saddle nature. Therefore,

the cycles in the graph G(∆GC) are also cycles in the graph G(∆̃), where ∆̃ is the Morsified
boundary map. Since the cycles we are considering correspond to the ends of noncompact
connected components of the moduli space Mz

x of order 2, then nui
nvi + nuj

nvj = 0. It follows

that ∆GCk−1 ◦∆GCk = 0. �

We have shown that the pair (CGC∗ (M,X),∆GC∗ ) is in fact a chain complex whenever
X ∈ XGC(M) and M ∈M(GC).

Example 4.1. Consider a GS-flow ϕX defined on a singular manifold M and its Morsification

(M̃, ϕX̃) as in Figure 24, where the characteristic sign transfer process is illustrated. Consider

as well, the choice of orientations on the unstable manifolds of the critical points of M̃ . The
GS-characteristic signs on the orbits of ϕX are obtained from this choice as shown in Figure 24.

x1 x2

y3

y2

y1

z1 z2

x1 x2

ỹ3

ỹ3
′

y2

y1

z1 z2

12 2 1
nu1

=1

nu′
1
=1

nu′′
1
=−1

nu2
=−1

nu′
2
=−1

nu′′2
=1

nv1 =0
nv′1

=1

nv′′1
=1

nv2 =0

nv′2
=−1

nv′′2
=−1

M M̃

Sign transfer

Morsification

Figure 24. A GS-flow on a pinched torus with cone singularities and its Mor-
sification.
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Let us examine this example in more detail. For instance, in the sign transfer process, consider

the connecting manifold M̃x1z2 with its ends given by the broken flow lines (ũ1, ṽ2) and ( ˜̃u1, ˜̃v2).
One has that nũ1

= 1 = n ˜̃u1
. On the other hand, since nu1

= 1 and nṽ2 = −1 6= 1 = n ˜̃v2
, one

has that nv2 = 0. See Figure 25. Analogously, the same analysis holds for Mx2z1 , obtaining
nu2

= −1 and nv1 = 0.

x1

ỹ3 ỹ3
′

z2

ũ1 ˜̃u1

ṽ2 ˜̃v2

nũ1 = 1 n ˜̃u1
= 1

nṽ2 = −1 n ˜̃v2
= 1

x1

y3

z2

nu1 = 1
u1

nv2 = 0
v2

Figure 25. Characteristic sign tranfer.

The remaining orbits inherit the same characteristic signs as in M̃ , since all but y3 are regular
singularities.

The GS-chain groups are:

CGC2 (M,X) = Z〈x1〉⊕Z〈x2〉, CGC1 (M,X) = Z〈y1〉⊕Z〈y2〉⊕Z〈y3〉, CGC0 (M,X) = Z〈z1〉⊕Z〈z2〉,
and CGCk (M) = 0, k 6= 0, 1, 2.

The GS-intersection numbers are:

n(x1, y1) = nu′′1 = −1, n(x2, y1) = nu′′2 = 1, n(x1, y2) = nu′1 = 1, n(x2, y2) = nu′2 = −1,
n(x1, y3) = nu1

= 1, n(x2, y3) = nu2
= −1, n(y1, z1) = nv′′1 = 1, n(y1, z2) = nv′′2 = −1,

n(y2, z1) = nv′1 = 1, n(y2, z2) = nv′2 = −1, n(y3, z1) = nv1 = 0 and n(y3, z2) = nv2 = 0.

Therefore, the GS-boundary maps ∆GC2 : C2 → C1, ∆GC1 : C1 → C0 and ∆GC0 : C0 → 0 are given
by:

∆GSC2 (x1) = −〈y1〉+ 〈y2〉+ 〈y3〉, ∆GC2 (x2) = 〈y1〉 − 〈y2〉 − 〈y3〉

∆GC1 (y1) = 〈z1〉 − 〈z2〉, ∆GC1 (y2) = 〈z1〉 − 〈z2〉, ∆GC1 (y3) = 0

∆GC0 (z1) = 0 = ∆0(z2),

respectively. Hence, the matrix associated to the GS-boundary map ∆GC and its graph GGC are
as in Figure 26.
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x1 x2

y1 y3y2

z1 z2

x̃1 x̃2

ỹ1 ỹ2 ỹ3
′ ỹ3

z̃1 z̃2

z1 z2 y1 y2 y3 x1 x2
z1
z2
y1
y2
y3
x1
x2

1
−1

1
−1

−1 1
1 −1
1 −1

0
0

z̃1 z̃2 ỹ1 ỹ2 ỹ3
′ ỹ3 x̃1 x̃2

z̃1
z̃2
ỹ1
ỹ2
ỹ3
′

ỹ3
x̃1
x̃2

1

−1

1

−1

−1

1

1
−1

−1 1

1 −1

1
1

−1
−1

∆GC(M) = ∆̃(M̃) =

G(∆GC) G(∆̃)

Figure 26. GS-boundary map and its matrix graph and its associated Morsification.

It is also interesting to verify that Lemma 4.1 holds in this example. Note that the orbits
connecting ỹ3 and z̃1, ỹ′3 and z̃1 have opposite characteristic signs. Hence the characteristic sign
of the orbit connecting y3 and z1 is zero. The same holds for the orbit that connects y3 and z2.

Note that G̃, the graph associated to ∆̃ has cycles containing the vertices vỹ3 and vỹ3′ . However,
the graph GGC of the boundary map ∆GC has no cycle containing vy3 . This is always the case, as
it was proven in Lemma 4.1, which asserts that vertices associated to saddle cone singularities
have only either two positively incident or two negatively incident edges. Hence, the cycles in

GGC are also in G̃ and inherit the null cycle condition. 4

4.4. Gutierrez-Sotomayor complex for Whitney, double and triple crossing singulari-
ties. Given a singular flow ϕX on a singular 2-manifold M ∈M(GS) associated to X ∈ XGS(M),
where S =W,D or T , the Morsification process gives us a Morsified flow ϕX̃ on a smooth man-

ifold M̃ ∈ M(GC) associated to X̃ ∈ X(GC). In what follows, we define characteristic signs for
the flow lines of ϕX by means of the transfer process of the characteristic signs of the orbits of
the Morse flow ϕX̃ .

For the case of a vector field X ∈ XGW(M), note that each Whitney singularity x of X

has an associated regular singularity x̃ in X̃ ∈ X(GC), which makes the sign transfer process
straightforward.

Definition 4.4 (Characteristic signs of flows lines of XGW(M)). Let x, y ∈ Sing(X) be singu-
larities of consecutive natures and X ∈ XGW(M). The GS-characteristic sign nu of a flow
line u ∈Mxy is defined as follows:

(1) If u does not belong to the singular part of M , define nu = nũ;
(2) If u belongs to the singular part of M , define nu = 0.

The numbers nu are well defined, since the orbits of ϕX in the regular part of M has exactly
one corresponding orbit in the Morsified flow ϕX̃ .
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In the context of flows ϕX where X ∈ XGW(M), the GS-intersection number between consec-
utive singularities x and y is defined as n(x, y) :=

∑
u∈Mx

y
nu.

Now, consider the case of crossing singularities. If x is a double or a triple crossing singu-
larity then it is associated to at least two singularities in the Morsified flow. In fact, if x is a
n-sheet double crossing singularity of attractor (resp., repeller) nature, then there are n reg-

ular singularities h1
0(x), . . . , hn0 (x) ∈ Sing(X̃) (resp., h1

2(x), . . . , hn2 (x) ∈ Sing(X̃)) of attractor
(resp., repeller) nature associated to x via the Morsification process. Throughout this paper,
assume that h1

0(x) (resp., h1
2(x)) corresponds to the singularity of the external manifold and

h2
0(x), . . . , hn0 (x) (resp., h2

2(x), . . . , hn2 (x)) correspond to the singularities of the internal mani-
folds. If x is a double crossing singularity of sa-nature (resp., sr-nature), then there exist exactly
two singularities associated to x via the Morsification process, namely, a regular saddle or saddle
cone singularity h1

1(x) and a regular attracting singularity (resp., repelling) h1
0(x). If x is a dou-

ble crossing singularity of sss- or ssu-nature, then there are two saddle cone or regular saddle
singularities h1

1(x) and h2
1(x) associated to x via the Morsification process.

Note that, given u ∈ Mxy, if x and y are both double crossing singularities of consecutive
natures, then u is a orbit on SP(N). Hence, there are exactly two flow lines in ϕX̃ which project

to u by the Morsification process, namely, ũe and ũi, the first one is in the external manifold and
the second one is in the internal manifold. Although x and y are considered to be consecutive
singularities, one of the flow lines ũe and ũi maybe be connecting non consecutive singularities
in the Morsified flow in ϕX̃ . In this sense, to simplify notation we will consider nũ = 0 whenever
u is a flow line between non consecutive points. For example, this is the case of a double crossing
singularity of sr-nature and a double crossing singularity of a2-nature.

Definition 4.5 (Characteristic signs of flows lines of XGD(M)). Let x, y ∈ Sing(X) be singu-
larities of consecutive natures and X ∈ XGD(M). The GS-characteristic sign nu of a flow
line u ∈Mxy is defined as follows:

(1) If u does not belong to the singular part of M , define nu = nũ;
(2) If u belongs to the singular part of M , define nu to be the pair nu = (neu, n

i
u) := (nũe , nũi),

where nũe and nũi are the characteristic signs of the flow lines ũe and ũi, respectively.

Note that, for vector fields having double crossing singularities, the characteristic sign of an
orbit is defined in terms of the signs of the orbits of their corresponding singularities through
the Morsified process. Hence, it is natural to define the intersection number between hjk(x) and

h`k−1(y) by

n(hjk(x), h`k−1(y)) =
∑

nũ,

where the sum is over the flow lines ũ ∈ M̃hj
k(x)

h`
k−1(y)

, for k = 1, 2, j = 1, . . . , ηk(x) and

` = 1, . . . , ηk−1(y).
Now, consider the case of triple crossing singularities. If x is an (2n+ 1)-sheet triple crossing

singularity of a2n+1-nature (resp., r2n+1-nature), then there are 2n+ 1 regular attracting (resp.,

repelling) singularities h1
0(x), . . . , h2n+1

0 (x) ∈ Sing(X̃) (resp., h1
2(x), . . . , h2n+1

2 (x) ∈ Sing(X̃))
associated to x via the Morsification process. Assume that h1

0(x) (resp., h1
2(x)) corresponds

to the singularity of the external manifold and h2
0(x), . . . , h2n+1

0 (x) (resp., h2
2(x), . . . , h2n+1

2 (x))
correspond to the singularities of the middle and internal manifolds. More specifically, the
singularities h2

0(x), . . . , hn+1
0 (x) (resp., h2

2(x), . . . , hn+1
2 (x)) belong to the middle manifolds and

hn+2
0 (x), . . . , h2n+1

0 (x) (resp., hn+2
2 (x), . . . , h2n+1

2 (x)) belong to the internal manifolds. If x is
a triple crossing singularity of ssa-nature (resp., ssr-nature), then there are regular saddle or
saddle cone singularities h1

1(x), h2
1(x) and a regular attracting (resp., repelling) singularity h1

0(x)
(resp., h1

2(x)) associated to x via the Morsification process.
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Note that, given a orbit u ∈ Mxy ⊂ M where x and y are consecutive triple crossing singu-
larities, then u is a orbit on SP(N). Hence, there are at most three orbits in ϕX̃ which projects
to u by the Morsfication process, namely,

ũe ∈ M̃h1
k(x)h1

k−1(y), ũ
m ∈ M̃

h
j1
k (x)h

`1
k−1(y)

e ũi ∈ M̃
h
j2
k (x)h

`2
k−1(y)

,

where k = 1, 2, j1, j2 ∈ {2, . . . , ηk(x)} and `1, `2 ∈ {2, . . . , ηk−1(y)}. One has that ũe belongs
to the external manifold, ũm belongs to the middle manifold and ũi belongs to the internal
manifold.

In other to simplify the notation, we consider nũi = 0 when hjk(x) and h`k−2(y) are not
consecutive generators in the Morsified flow.

Definition 4.6 (Characteristic signs of flows lines of XGT (M)). Let x, y ∈ Sing(X) be singu-
larities of consecutive natures and X ∈ XGT (M). The characteristic sign nu of a flow line
u ∈Mxy is defined as follows:

• If u does not belong to the singular part of M , define nu = nũ;
• If u belongs to the singular part of M , define nu to be the triple

nu = (neu, n
m
u , n

i
u) := (nũe , nũm , nũi),

where nũe , nũm and nũi are the characteristic signs of the flow lines ũe, ũm and ũi,
respectively.

Note that, for vector fields having triple crossing singularities, the characteristic sign of a flow
line is defined in terms of the characteristic sign of the orbits of their corresponding singularities
through the Morsification process. Hence, it is natural to define the intersection number between
hjk(x) and h`k−1(y) as

n(hjk(x), h`k−1(y)) =
∑

nũ,

where the sum is over flow lines ũ ∈ M̃hj
k(x)

h`
k−1(y)

, for k = 1, 2, j = 1, . . . , ηk(x) and

` = 1, . . . , ηk−1(y).
Now it remains to prove that the GS-boundary map ∆GS∗ , described in Definition 4.2, is well

defined for GS-flows on M ∈M(GS), S =W,D, T .

Proposition 4.1. Consider a flow ϕX in M ∈M(GS) associated to a vector field X ∈ XGS(M),

where S =W,D or T . Let ϕ̃X̃ be the flow in M̃ ∈M(GS) obtained by the Morsification process

of X ∈ XGS(M), then the boundary map ∆GS associated to ϕX is equal to the boundary map

∆̃GC associated to ϕ̃X̃ .

Proof. Given a flow line u of ϕX that does not belong to the singular part of M , the characteristic
sign nu of u is equal to the characteristic sign of its unique corresponding flow line ũ in ϕX̃ .
Therefore the intersection number between x, y ∈ Sing(X) is equal to the intersection number

x̃, ỹ ∈ Sing(X̃) whenever the connecting manifold Mxy is contained in the regular part of M .
Consider orbits in a connecting manifold Mxy which belong to the singular part of M . This

means that both x and y are not regular singularities. The proof is done case by case according
to the type of vector field X ∈ XGS(M) where S =W,D, T .

• Let X ∈ XGW(M) and x, y ∈ Sing(X) be Whitney singularities then u ∈Mxy belongs to

the singular part of M . Denote by x̃, ỹ ∈ Sing(X̃) the Morsified singularities associated

to x and y, respectively. The Morsified process matches u to two flow lines ũ1, ũ2 ∈ M̃ x̃
ỹ

with nũ1 6= nũ2 . Hence, n(x̃, ỹ) = 0 = n(x, y).
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• Let X ∈ XGD(M) and x, y ∈ Sing(X) be double crossing singularities then u ∈ Mxy

belongs to the singular part of M . Consider the flow lines of X̃,

ũe ∈ M̃h1
k(x)h1

k−1(y) and ũi ∈ M̃hj
k(x)h`

k−1(y),

with k = 1, 2, j ∈ {2, . . . , ηk(x)} and ` ∈ {2, . . . , ηk−1(y)}. By the definition of transfer
of signs, neu = nũe and niu = nũi . Thus,

n(x, y) =

( ∑
u∈Mxy

neu ,
∑

u∈Mxy

niu

)
=

(∑
ũe

nũe ,
∑
ũi

nũi

)
=
(
n(h1

k(x)h1
k−1(y)) , n(hjk(x)h`k−1(y)

)
.

• Let X ∈ XGT (M) and x, y ∈ Sing(X) be triple crossing singularities, then u ∈ Mxy

belongs to the singular part of M . Consider the flow lines of X̃,

ũe ∈ M̃h1
k(x)h1

k−1(y), ũ
m ∈ M̃

h
j1
k (x)h

`1
k−1(y)

and ũi ∈ M̃
h
j2
k (x)h

`2
k−1(y)

,

with k = 1, 2, j1, j2 ∈ {2, . . . , ηk(x)} and `1, `2 ∈ {2, . . . , ηk−1(y)}. By the definition of
sign transfer, one has that neu = nũe , nmu = nũm and niu = nũi . Therefore,

n(x, y) =

( ∑
u∈Mxy

neu,
∑

u∈Mxy

nmu ,
∑

u∈Mxy

niu

)
=

(∑
ũe

nũe ,
∑
ũm

nũm ,
∑
ũi

nũi

)

=
(
n(h1

k(x)h1
k−1(y)), n(hj1k (x)h`1k−1(y), n(hj2k (x)h`2k−1(y))

)
.

In any case, the proposition follows. �

Corollary 4.1. Let ∆GS∗ be the GS-boundary map associated to ϕX with X ∈ XGS(M), where
S =W,D or T . Then ∆GSk−1 ◦∆GSk = 0, for all k ∈ Z.

Proof. It follows directly from Theorem 4.1 and Proposition 4.1. �

Hence, the pair (CGS∗ (M,X),∆GS∗ ) is indeed a chain complex, whenever M ∈ M(GS),
X ∈ XGS(M) and S =W,D or T .

4.4.1. Examples.

Example 4.2. Consider a GS-flow ϕX defined on a singular manifold M ∈ M(GW) and its

Morsification (M̃, ϕX̃), as in Figure 27. Note that z2, y1, x1, x3 are regular singularities and
z1, y2, y3, x2 are Whitney singularities. Considering a choice of orientations on the unstable

manifolds of the critical points of M̃ , the GS-characteristic signs on the orbits of ϕX are obtained,
by the Definition 4.4.
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x1
x2

x3

y2
y1

y3

z1
z2

x1
x2

x3

y2
y1

y3

z1
z2

1
2

2
21

1

Morsification

Sign transfer

Figure 27. A GS-flow with Whitney singularities and its Morsification.

The GS-chain groups are:

CGW2 (M) = Z〈x1〉⊕Z〈x2〉⊕Z〈x3〉, CGW1 (M) = Z〈y1〉⊕Z〈y2〉⊕Z〈y3〉, CGW0 (M) = Z〈z1〉⊕Z〈z2〉
and CGWk (M) = 0, k 6= 0, 1, 2.

The GS- intersection numbers are:

n(x1, y2) = −1, n(x2, y1) = 1, n(x2, y2) = 1, n(x2, y1) = 1, n(x3, y1) = 0, n(x2, y3) = 0,
n(y1, z2) = 0, n(y2, z1) = 0, n(y3, z2) = 1, n(y3, z1)− 1,

The GS-boundary maps ∆GW2 : C2 → C1, ∆GW1 : C1 → C0 and ∆GW0 : C0 → 0 are given by:

∆GW2 (x1) = −〈y2〉, ∆GW2 (x2) = 〈y1〉+ 〈y2〉, ∆GW2 (x3) = −〈y1〉,

∆GW1 (y1) = 0, ∆GW1 (y2) = 0, ∆GW1 (y3) = 〈z2〉 − 〈z1〉.

Therefore, the matrix of the GS-boundary map ∆GW is as in Figure 28.

z1 z2 y1 y2 y3 x1 x2 x3
z1
z2
y1
y2
y3
x1
x2
x3

−1

1

∆GW(M) =

0

0

0

0
−1

−1

1

1

Figure 28. GS-boundary operator ∆GW(M) .

4

Example 4.3. Consider a GS-flow ϕX defined on a singular manifold M and its Morsification

(M̃, ϕX̃) as in Figure 29. Considering a choice of orientations on the unstable manifolds of the

critical points of M̃ , the GS-characteristic signs on the orbits of (M̃, ϕX̃) are obtained. By
Definition 4.5, one gets the GS-characteristic signs of the orbits in ϕX .



HOMOTOPICAL CANCELLATION THEORY FOR GUTIERREZ-SOTOMAYOR SINGULAR FLOWS 67

x1 x2
x3

x5 x4

y3

y1

y2

z1
z2

x̃5 x̃4

x̃1 x̃2

ỹ12

ỹ22

ỹ11

ỹ21

x̃3

ỹ3

z̃11

z̃21
z̃12

z̃22

1

2

2

1
1

2

1 2 1
2

u1u2
v1v2

Sign transfer

Morsification

Figure 29. A GS-flow with double crossing singularities and its Morsification.

Since the orbits u1, u2, v1 and v2 are orbits on the singular part of M , hence the GS-
characteristic sign is given by a pair: nu1

= (nu1
1
, nu2

1
) = (1,−1), nu2

= (nu1
2
, nu2

2
) = (−1, 1),

nv1 = (nv11 , nv21 ) = (1, 0), nv2 = (nv12 , nv22 ) = (−1, 0). The groups of the GS-chain complex are
given by

CGD2 (M) =

5⊕
i=1

Z〈xi〉 ⊕ Z〈y2
1〉

CGD1 (M) = Z〈y1
1〉 ⊕ Z〈y1

2〉 ⊕ Z〈y2
2〉 ⊕ Z〈y3〉, CGD0 (M) = Z〈z1

1〉 ⊕ Z〈z2
1〉 ⊕ Z〈z1

2〉 ⊕ Z〈z2
2〉

and CGDk (M) = 0, k 6= 0, 1, 2. Note that y1 is a double crossing singularity of saddle-repelling

nature (sr), hence it is associated to a generator in CGD2 (M) and a generator in CGD1 (M).
Analogously, the double crossing singularity y3 has saddle-saddle nature (sss), hence it is
associated to two generators in CGD1 (M). Finally, each attracting double crossing singular-

ity z1 and z2 is associated to two generators in CGD0 (M). The GS-intersection numbers are:
n(x1, y

1
2) = −1, n(x2, y

1
2) = 1, n(x2, y

1
1) = −1, n(x2, y3) = 0, n(x3, y

1
1) = 1, n(x4, y

2
2) = −1,

n(x5, y
2
2) = 1, n(y3, z

1
1) = 1, n(y3, z

1
2) = −1, n(y1, z2) = nv1 + nv2 = (1, 0) + (−1, 0) = (0, 0),

n(y2, z1) = nu1
+ nu2

= (1,−1) + (−1, 1) = (0, 0). Therefore, the GS-boundary operator
∆GD2 : C2 → C1, ∆GD1 : C1 → C0 and ∆GD0 : C0 → 0 are given by:

∆GD2 (x1) = −〈y1
2〉, ∆GD2 (x2) = −〈y1

1〉+ 〈y1
2〉, ∆GD2 (x3) = −〈y1

1〉,

∆GD2 (x4) = −〈y2
2〉, ∆GD2 (x5) = −〈y2

2〉, ∆GD1 (y3) = 〈z1
1〉 − 〈z1

2〉,

∆GD1 (y1
1) = 0, ∆GD1 (y1

2) = 0, ∆GD1 (y2
2) = 0, ∆GD0 (z1) = ∆GD0 (z2) = 0.

The matrix ∆GD of the GS-boundary operator is shown in Figure 30.
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z11 z
2
1 z

1
2 z

2
2 y

1
1 y

1
2 y

2
2 y3 x1 x2 x3 x4 x5 y

2
1

z11
z21
z12
z22
y11
y12
y22
y3
x1
x2
x3
x4
x5
y21

0

0

0

0 0 0

0 0 0

000

0 0 0

0

0 0

0

−1

0

0 0

0 0

1

0

−1 1 0

−1 1

0 0

−1−1

0

0 0

0 0

0

0

0
0

0

∆GD(M) =

Figure 30. GS-boundary operator ∆GD(M).

4

5. Dynamical Homotopical Cancellation Theorem for GS-flows

In this section we prove a homotopical cancellation theorem for consecutive singularities of a
Gutierrez-Sotomayor vector field.

In the homotopical cancellation process of singularities in S = C,W, D or T , three singularities
in S, one of saddle nature y and two of attracting (resp., repelling) nature z1, z2 (resp., x1, x2),
give rise to a new singularity of attracting nature z̄ (resp., repelling nature x̄). Droplets or folds
associated to these singularities are topological invariants and are registered in the singularity
type number, see definition in Section 2. After the homotopical cancellation of y and zi (resp.,
xi), i = 1 or 2, z̄ is the new singularity (resp., x̄) and the type number of z̄ is related to the
types numbers m(y), m(z1) and m(z2) (resp. m(y), m(x1) and m(x2)) of y, z1 and z2 (resp., y,
x1 and x2). We say that z̄ (resp., x̄) inherits the type numbers m(y), m(z1) and m(z2) as
follows:

m(z̄) = m(y) +m(z1) +m(z2) (resp., m(x̄) = m(y) +m(x1) +m(x2))

for S = C, W, D or T . Recall, that the type number of a regular singularity is always zero.
Hence, as a consequence, whenever z1 and z2 are regular z̄ will inherit a type number equal to
zero.

For example, in Figure 4, the three singularities: z1 a regular type singularity of attracting
nature, y2 a cone type singularity of saddle nature and z2 a 2-sheet cone type singularity of
attracting nature, are involved in the homotopical cancellation process. More specifically, they
give rise to z̄1 which inherits the types of z1, z2 and y2, i.e., z1 contributes zero, y2 contributes
one and z2 contributes 2, hence z̄1 is a 3-sheet cone type singularity of attracting nature. For
more examples, see Subsection 6.3.

Definition 5.1. Let X ∈ XGS(M) be a Gutierrez-Sotomayor vector field on M ∈ M(GS), for
S = C or W. Let p, q ∈ Sing(X) be consecutive singularities of k and k−1 nature numbers,
respectively. One says that p and q are dynamically homotopically cancelled and that to-
gether with q′ give rise to q̄′ if there is a singular 2-manifold M ′ of the same homotopy type as
M and there exists a vector field X ′ ∈ XGS(M ′) which is topologically equivalent to X outside
of a neighborhood V of the flow lines u1 and u2 which is given as follows:
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(1) If k = 1, thenMp
q = {u1} andMp

q′ = {u2}, where q′ is the other singularity of attracting

nature connecting with p. Moreover, the vector field X ′ ∈ XGS(M ′) on V contains only
one n-sheet S-singularity q̄′ ∈ XGS(M ′) of attracting nature which inherits the type
numbers of p, q and q′. In this case, p and q together with q′ give rise to q̄′.

(2) If k = 2, then Mp
q = {u1} and Mp′

q = {u2}, where p′ is the other singularity of repelling
nature connecting with q. Moreover, the vector field X ′ ∈ XGS(M ′) on V contains only
one singularity p′ of repelling nature. In this case, p and q together with p′ give rise to
an n-sheet S-singularity p̄′ ∈ XGS(M ′) which inherits the type numbers of p, p′ and q.

Note that if X ∈ XGS(M) is a GS-vector field on M ∈M(GS) with only regular singularities,
then the GS homotopical cancellation of consecutive singularities coincides with the notion of
cancellation of critical points established by Smale in the Morse setting. This follows, since
Morse critical points have a unique generator and hence q′ = q′ and p′ = p′ in Definition 5.1.

Consider M ∈M(GS) a closed 2-manifold and a GS-flow ϕX on M associated to a GS-vector
field X ∈ XGS(M), where S = C,W,D or T . Given consecutive singularities x and y, suppose
that:

• the GS-intersection number n(x, y) is ±1, when S = C or W;
• one of the coordinates of the GS-intersection number n(x, y) is equal to ±1, when S = D

or T .

The theorems in this section guarantee that under these conditions, it is always possible to
dynamically homotopically cancel the singularities with GS-intersection number equal to ±1.

Theorem 5.1 (Dynamical Homotopical Cancellation Theorem for GS-flows - Cases C and W).
Let X ∈ XGS(M) be a Gutierrez-Sotomayor vector field on M ∈ M(GS), for S = C or W. Let
p, q ∈ Sing(X) be consecutive singularities of k and k−1 nature numbers, respectively. If n(p, q)
is non zero, then p and q dynamically homotopically cancelled.

Proof. Consider k = 1, i.e. p is a saddle and q is an attracting singularity. The assumption that
n(p, q) is non zero guarantees that there exists a singularity q′ of attracting nature, distinct from
p and connecting with q. Let C(p, q, q′) be the set composed by the singularities p, q and q′ and
the flow lines Mp

q = {u1} and Mp
q′ = {u2} connecting them. C(p, q, q′) is an isolated invariant

set which is an attractor. Hence, choose an isolating block V of C(p, q, q′) such that the vector
field X is transversal to the boundary of V , ∂V .

Given a point x ∈ M , denote by γ(x) the orbit through the point x. Clearly γ(p) = p and
γ(q) = q and γ(q′) = q′. Consider a path δ which has image coinciding with the juxtaposition
of the paths

γ(q′) ∗ γ(u2) ∗ γ(p) ∗ γ−1(u1) ∗ γ(q),

i.e., δ is the path going from q to q′ through the orbits of u1 and u2. Since δ is not a closed path,
one can contract it to a point q′, obtaining a new topological space V preserving the boundary
∂V of the same homotopy type as V , where the type number of q′ is equal to

m(q′) = m(q) +m(q′) +m(p).

Now consider an attracting singular vector field on V such that q′ is a singularity of attracting
nature and the vector field is transverse to the boundary of V .

The result follows by gluing M \ V and V together with their respective vector fields.
If k = 2, the proof is analogous by considering the reverse flow. �

Definition 5.2. Let X ∈ XGS(M) be a Gutierrez-Sotomayor vector field on M ∈ M(GS), for

S = D or T . Let p, q ∈ Sing(X) be consecutive singularities, hjk(p) and h`k−1(q) be the respective
consecutive generators of their natures, where j ∈ {1, . . . , ηk(p)} and ` ∈ {1, . . . , ηk−1(q)}. One
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says that p and q are dynamically homotopically cancelled if there exists a vector field
X ′ ∈ XGS(M ′) which is topologically equivalent to X outside of a neighborhood V of the flow
lines u1 and u2 which are given as follows:

(1) If k = 1, then M̃hj
k(p)

h`
k−1(q)

= {u1} and M̃hj
k(p)

hi
k−1(q′)

= {u2}, where q′ is the other singu-

larity of attracting nature connecting with p such that hik−1(q′) and h`k−1(q) belong to

the same connected component of the Morsification M̃ . Moreover, the vector field
X ′ ∈ XGS(M ′) on V contains only one singularity q′ whose generators match the union

of all the generators of p, q and q′ excluding the cancelled pair of generators hjk(p) and

h`k−1(q). In this case, p and q together with q′ give rise to an n-sheet S-singularity
q′ ∈ XGS(M ′) which inherits the type numbers of p, q and q′.

(2) If k = 2, then M̃hj
k(p)

h`
k−1(q)

= {u1} and M̃hi
k(p′)

h`
k−1(q)

= {u2}, where p′ is the other singularity of

repelling nature connecting with q such that hik(p′) and hjk(p) belong to the same connected

component of the Morsification M̃ . Moreover, the vector field X ′ ∈ XGS(M ′) on V
contains only one singularity p′ whose generators match the union of all the generators
of p, q and p′ excluding the cancelled pair of generators hjk(p) and h`k−1(q). In this case, p
and q together with p′ give rise to an n-sheet S-singularity p′ ∈ XGS(M ′) which inherits
the type numbers of p, q and p′.

For example, in Figure 31, the three singularities: z1 and z2 are 2-sheet double crossing type
singularities of attracting nature and y is a regular type singularity of saddle nature; are involved
in the dynamical homotopical cancellation process. More specifically, they give rise to z̄2 which
inherits the types of z1, z2 and y, i.e., z1 contributes 1, y contributes zero and z2 contributes 1,
hence z̄2 is a 3-sheet double crossing type singularity of attracting nature. For more examples,
see Subsection 6.3.

y

z1
z2

Cancellation of (y3, z1)

Dynamical Homotopical

z̄2

Figure 31. Dynamical Homotopical Cancellation of the singularities y and z1.

Theorem 5.2 (Dynamical Homotopical Cancellation Theorem for GS-flows - Cases D and
T ). Let X ∈ XGS(M) be a Gutierrez-Sotomayor vector field on M ∈ M(GS), for S = D
or T . Let p, q ∈ Sing(X) be consecutive singularities, hjk(p) and h`k−1(q) be the respective
consecutive generators of their natures, where j ∈ {1, . . . , ηk(p)} and ` ∈ {1, . . . , ηk−1(q)}. If

n(hjk(p), h`k−1(q)) is non zero for some j and `, then p and q are dynamically homotopically
cancelled.

Proof. Firstly, one considers the Morsified manifold M̃ ∈M(GC) and the Morsified flow ϕX̃ on

M̃ associated to X̃ ∈ X(GC). One also needs to be aware that, in the Morsification process, the

generators of double or triple crossing points will give rise to singularities in XGS(M̃) which may

be in distinct connected components of M̃ .
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Consider k = 1, i. e. suppose that q is a singularity having at least one generator of
attracting nature and p is a singularity having at least one generator of saddle nature. Since
n(hjk(p), h`k−1(q)) is non zero for some j and `, there is another singularity q′ of attracting

nature connecting with p. In other words, n(hjk(p), h`
′

k−1(q′)) is non zero, for some `′. Moreover,

the generator hjk(p) corresponds to a saddle singularity and h`k−1(q) and h`
′

k−1(q′) correspond to
attracting singularities in the Morsified flow. Since they belong to the same connected component

of X̃, one can apply the Smale’s cancellation theorem and cancel hjk(p) and h`k−1(q), as in the

Morse case. After the cancellation, one obtains a Morsified flow ϕ
X̃′

on M̃ which coincides with

ϕX̃ outside a neighborhood V of the set C(hjk(p), h`k−1(q), h`
′

k−1(q′)) composed by the singularities

hjk(p), h`k−1(q) and h`
′

k−1(q′) and the flow lines connecting them.
An orbit γ of the initial singular flow ϕX , which belongs to the singular part of M and has ω-

limit set equal to p, q or q′, is a fold. Moreover, γ admits a duplication γ1 and γ2 in ϕX̃ . Only one

of these orbits has ω-limit set equal to hjk(p), h`k−1(q) or h`
′

k−1(q′), and after the cancellation, this

orbit will have ω-limit set equal to the singularity h`
′

k−1(q′). Now considering all the connected

components of M̃ with the respective new Morse vector field X̃ ′, one can identify all the orbits
γ corresponding to orbits on SP(M) in the initial flow. As a result, one obtains a new singular
manifold M ′ with a flow ϕX′ associated to a vector field X ′ ∈ XGS(M ′) which coincides with
X, up to topological equivalence, outside of a neighborhood V of the flow lines u1 and u2, as in
the statement of the theorem.

If k = 2, the proof is analogous by considering the reverse flow. �

6. Detecting Dynamical Homotopical Cancellations through Spectral
Sequences

The use of algebraic tools to extract dynamical information has been explored in highly
influential work, see [8, 12, 13]. Particularly, the use of spectral sequences has been used in
dynamical systems (see [2, 3, 10]) as well as in computational topology (see [7, 23]).

In this section, our main motivation is to establish how the algebraic cancellations in a spectral
sequence of a filtered GS-chain complex affects dynamical homotopical cancellations within a
GS-flow. In order to keep track of the changes of the differentials dr and the generators of the
modules Er on each page (Er, dr) of the spectral sequence, the Spectral Sequence Sweeping
Algorithm (SSSA) was developed in [5] and is presented in Section 6.1. It provides all of the
algebraic cancellations that occur on each page, as well as, the new generators of the modules
of the following page. With the complete information in hand of the algebraic cancellations in
Section 6.2, we make use of the Row Cancellation Algorithm (RCA), which is the dynamical
counterpart of the SSSA. We refer the reader to [5, 11] for more details on RCA and SSSA.

In Section 6.1, we give a brief overview of basic definitions for spectral sequences and state
the SSSA. In Section 6.2, we present the main homotopical cancellation results, Theorem 6.2
and Theorem 6.3. In Section 6.3 examples of these theorems for flows on M ∈ M(GS), where
S = C,W or D are proved.

6.1. Spectral Sequence Sweeping Algorithm. Let R be a principal ideal domain. A k-
spectral sequence E over R is a sequence {Er, ∂r}r≥k, such that

(1) Er is a bigraded module over R, i.e., an indexed collection of R-modules Erp,q, for all
p, q ∈ Z;

(2) dr is a differential of bidegree (−r, r− 1) on Er, i.e., an indexed collection of homomor-
phisms dr : Erp,q → Erp−r,q+r−1, for all p, q ∈ Z, and (dr)2 = 0;
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(3) for all r ≥ k, there exists an isomorphism H(Er) ≈ Er+1, where

Hp,q(E
r) =

Kerdr : Erp,q → Erp−r,q+r−1

Imdr : Erp+r,q−r+1 → Erp,q
.

Let Zkp,q = Ker(dkp,q : Ekp,q → Ekp,q−1) and Bkp,q = Im(dkp,q+1 : Ekp,q+1 → Ekp,q), then

Ek+1 = Zk/Bk and

Bk ⊆ Bk+1 ⊆ . . . ⊆ Br ⊆ . . . ⊆ Zr ⊆ . . . ⊆ Zk+1 ⊆ Zk.

Consider the bigraded modules Z∞ = ∩rZr, B∞ = ∪rBr and E∞ = Z∞/B∞. The latter
module is called the limit of the spectral sequence . A spectral sequence E = {Er, ∂r} is
convergent if given p, q there is r(p, q) ≥ k such that for all r ≥ r(p, q), drp,q : Erp,q → Erp−r,q+r−1

is trivial. A spectral sequence E = {Er, ∂r} is convergent in the strong sense if given p, q ∈ Z
there is r(p, q) ≥ k such that Erp,q ≈ E∞p,q, for all r ≥ r(p, q).

Let (C, ∂) be a chain complex. An increasing filtration F on (C, ∂) is a sequence of
submodules FpC of C such that FpC ⊂ Fp+1C, for all integer p, and the filtration is compatible
with the gradation of C, i.e. FpC is a chain subcomplex of C consisting of {FpCq}. A filtration
F on C is called convergent if ∩pFpC = 0 and ∪pFpC = C. It is called finite if there are
p, p′ ∈ Z such that FpC = 0 and Fp′C = C. Also, it is said to be bounded below if for any q
there is p(q) such that Fp(q)Cq = 0.

Given a filtration on C, the associated bigraded module G(C) is defined as

G(C)p,q =
FpCp+q
Fp−1Cp+q

.

A filtration F on C induces a filtration F on H∗(C) defined by

FpH∗(C) = Im [H∗(FpC)→ H∗(C)].

If the filtration F on C is convergent and bounded below then the same holds for the induced
filtration on H∗(C).

The following theorem (see [20], Chapter 9) shows that one can associate a spectral sequence
to a filtered chain complex whenever the filtration is convergent and bounded below.

Theorem 6.1 (Spanier, [20], Chapter 9). Let F be a convergent and bounded below filtration on
a chain complex C. There is a convergent spectral sequence with

E0
p,q =

FpCp+q
Fp−1Cp+q

= G(C)p,q and E1
p,q ≈ Hp+q

(
FpCp+q
Fp−1Cp+q

)
and E∞ is isomorphic to the bigraded module GH∗(C) associated to the induced filtration on
H∗(C).

This theorem is proved by expliciting algebraic formulas for the modules Er, which are given
by

Erp,q =
Zrp,q

Zr−1
p−1,q+1 + ∂Zr−1

p+r−1,q−r+2

,

where Zrp,q = {c ∈ FpCp+q | ∂c ∈ Fp−rCp+q−1}.
Despite the fact that E∞ does not determine H∗(C) completely, it determines the bigraded

module GH∗(C), i.e. E∞p,q ≈ GH∗(C)p,q. Moreover, it is a well known fact (see [6], Chapter 9)
that, whenever GH∗(C)p,q is free and the filtration is bounded, then

(3)
⊕
p+q=k

GH∗(C)p,q ≈ Hp+q(C).
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The Spectral Sequence Sweeping Algorithm (SSSA) was introduced in [5] in order to recover
the modules and differentials of a spectral sequence associated to a finite chain complex over
Z with a finest filtration. More specifically, let (C, ∂) be a finite chain complex such that each
module Ck is finitely generated. Denote the generators of the Ck chain module by h1

k, · · · , h
ck
k .

One can reorder the set of the generators of C∗ as

{h1
0, · · · , h

`0
0 , h

`0+1
1 , · · · , h`11 , · · · , h

`k−1+1
k , · · · , h`kk , · · · },

where `k = c0 + · · ·+ ck
3. Let F be a finest filtration on C defined by

FpCk =
⊕

h`
k, `≤p+1

Z〈h`k〉,

for p ∈ N. The spectral sequence associated to (C∗, ∂∗) with this finest filtration has a special
property: the only q for which Erp,q is non-zero is q = k − p, where k is the index of the chain
in FpC \ Fp−1C. Hence, in this case, we omit reference to q. It is understood that Erp is in fact
Erp,k−p. The SSSA presented below, provides an alternative way to obtain such modules as well
as the differentials dr’s.

We can view the differential boundary map ∂ as the matrix ∆ where the column j of ∆
corresponds to the generator hjk of C∗, and the submatrix ∆k corresponds to the k-th boundary
map ∂k. From now on, the boundary operator ∂ and the matrix ∆ will be used interchangeably.

For completeness sake we give a summarized description of the Spectral Sequence Sweeping
Algorithm below. For more details see [5, 11].

Spectral Sequence Sweeping Algorithm - SSSA
For a fixed diagonal r parallel and to the right of the main diagonal, the method described

below must be applied simultaneously for all k.

Initialization Step:
(1) Let ξ1 be the first diagonal of ∆ that contains non-zero entries ∆i,j in ∆k, which will

be called index k primary pivots. Define ∆ξ1 to be ∆ with the k- index primary pivots
marked on the ξ1-th diagonal.

(2) Consider the matrix ∆ξ1 . Let ξ2 be the first diagonal greater than ξ1 which contains

non-zero entries ∆ξ1
i,j . The construction of ∆ξ2 follows the procedure below. Given a

non-zero entry ∆ξ1
i,j on the ξ2-th diagonal of ∆ξ1 :

If ∆ξ1
s,j contains an index k primary pivot for s > i, then the numerical value of the

given entry remains the same, ∆ξ2
i,j = ∆ξ1

i,j , and the entry is left unmarked.

If ∆ξ1
s,j does not contain a primary pivot for s > i:

then if ∆ξ1
i,t contains a primary pivot, for t < j,

then define ∆ξ2
i,j = ∆ξ1

i,j and mark the entry ∆ξ2
i,j as a change-of-basis pivot.

Else, define ∆ξ2
i,j = ∆ξ1

i,j and permanently mark ∆ξ2
i,j as an index k primary pivot.

Iterative Step: Suppose by induction that ∆ξ is defined for all ξ ≤ r with the primary and
change-of-basis pivots marked on the diagonals smaller or equal to ξ. Without loss of generality,
one can assume that there is at least one change-of-basis pivot on the r-th diagonal of ∆r.
Otherwise, define ∆r+1 = ∆r with primary pivots and change-of-basis pivots marked as in step
(2) below.

3In order to simplify notation, we use the index fk to denote the first column of ∆ associated to a k-chain.

Hence fk = `k−1 + 1. Moreover, `k denotes the last column of ∆ associated to a k-chain.
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(1) Change of basis. Let ∆r
i,j be a change-of-basis pivot in ∆r

k. Denote by ∆r
i,t the

primary pivot in the i-th row, with t < j. Perform a change of basis on ∆r by adding
or subtracting the column t to the column j of ∆r, in order to zero out the entry ∆r

i,j

without introducing non-zero entries in ∆r
s,j for s > i.

Define T r as the matrix which performs all the change of basis on all of the r-th
diagonal. Define ∆r+1 = (T r)−1∆rT r.

(2) Markup. Given a non-zero entry ∆r+1
i,j on the (r + 1)-th diagonal of ∆r+1

k :

If ∆r+1
s,j contains a primary pivot for s > i, then leave the entry ∆r+1

i,j unmarked.

If ∆r+1
s,j does not contain a primary pivot for s > i:

then if ∆r
i,t contains a primary pivot, for t < j,

then mark ∆r
i,j as a change-of-basis pivot.

Else permanently mark ∆r
i,j as a primary pivot.

Final Step:
Repeat the above procedure until all diagonals have been considered.

According to the algorithm, if ∆r
i,j is a change-of-basis pivot on the r-th diagonal of ∆r

k,
then once the corresponding change of basis has been performed, one obtains a new k-chain
associated to column j of ∆r+1, which will be denoted by σj,r+1

k . Observe that σj,r+1
k is a linear

combination over Z of columns t and j of ∆r, i.e., σj,r+1
k is a linear combination over Z of σt,rk and

σj,rk . Hence,

σj,r+1
k =

j∑
`=fk

cj,r` h`k︸ ︷︷ ︸
σj,r
k

±
j−1∑
`=fk

cj−1,r
` h`k︸ ︷︷ ︸

σj−1,r
k

= cj,r+1
j hjk + cj−1,r+1

j−1 hj−1
k + · · ·+ cfk,r+1

fk
hfkk

where c`,r+1
k ∈ Z, for ` = fk, · · · , j. If ∆r contains an index k primary pivot in the entry ∆r

s,¯̀

with s > i and ¯̀< j, then q¯̀ = 0. Of course, the first column of any ∆k cannot undergo changes
of basis, since there is no column to its left associated to a k-chain.

The family of matrices {∆r} produced by the SSSA has several properties, such as: there is
at most one primary pivot in a fixed row or column; if the entry ∆r

j−r,j is a primary pivot or a
change-of-basis pivot, then ∆r

s,j = 0 for all s > j− r; ∆r is a strictly upper triangular boundary
map, for each r.

In [5] it is proved that the SSSA provides a system that spans the modules Er in terms of the
original basis of C∗ and identifies all differentials drp : Erp → Erp−r with primary and change-of
-basis pivots on the r-th diagonal. A formula for the module Zrp,k−p in terms of the chains σk’s
is

(4) Zrp,k−p = Z
[
µp+1,rσp+1,r

k , µp,r−1σp,r−1
k , · · · , µfk,r−p−1+fkσfk,r−p−1+fk

k

]
,

where fk is the first column of ∆ associated to a k-chain, and µj,ξ = 0 whenever there is a
primary pivot on column j below row (p − r + 1) and µj,ξ = 1 otherwise. Moreover, if Erp and
Erp−r are both non-zero, then the differential dr : Erp → Erp−r is induced by multiplication by
∆r
p−r+1,p+1, whenever this entry is either a primary pivot, change-of-basis pivot or a zero with

a column of zero entries below it.

6.2. Algebraic Cancellation and Dynamical Homotopical Cancellation. Our goal in
this subsection is to establish a global homotopical cancellation result for GS-flows which follows
closely the unfolding of its spectral sequence. In order to achieve this, we make use of the Row
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Cancellation Algorithm (RCA), which reflects more closely the effect of dynamical homotopical
cancellations on the modules Er, while at the same time retaining the relevant information given
by the primary and change of bases pivots of the SSSA.

Theorem 6.2 (Algebraic Cancellation and Dynamical Homotopical Cancellation via Spectral
Sequence). Let (CGS(M,X),∆GS) be the GS-chain complex associated to a GS-flow ϕX on a
singular 2-manifold M ∈ M(GS), where X ∈ XGS(M) and S = C,W,D or T . Let (Er, dr) be
the associated spectral sequence for a finest filtration F = {FpCGS} on the chain complex.

(1) If X ∈ XGC(M) or X ∈ XGW(M), then the algebraic cancellations of the modules Er

of the spectral sequence are in one-to-one correspondence with dynamical homotopical
cancellations of the singularities of X.

(2) If X ∈ XGD(M) or X ∈ XGT (M), then the algebraic cancellations of the modules Er

of the spectral sequence are in one-to-one correspondence with dynamical homotopical
cancellations of the natures of the singularities of X.

Moreover, the order of homotopical cancellation occurs as the gap r increases with respect to the
filtration F .

We want to associate the data of the spectral sequence (Er, dr) with a dynamical continuation
of the initial flow, by means of homotopical cancellations of the singularities and using as guide
the family of matrices {∆r}GS produced by the SSSA, which codifies all data related to the
modules and differentials of (Er, dr). However, it is easy to see that the matrices {∆r}GS are
not in general realized as the GS-boundary operator associated to a GS-flow. Moreover, the
changes of basis caused by pivots in row j− r reflect all the changes in connecting orbits caused
by the cancellation of the consecutive generators hjk and hj−rk−1. When we cancel the pair of

generators hjk and hj−rk−1, then

• all the flow lines between the corresponding singularities associated to generators of
k-nature and hj−rk−1 are immediately removed and new connections are born;

• also all the flow lines between hjk and singularities associated to generators of (k − 1)-
nature are immediately removed.

In this sense, in order to interpret the SSSA as a dynamical homotopical cancellation, we have to
perform the changes of basis that occur therein in a different order to reflect the death and birth
of connections. More specifically, if ∆r

j−r,j = ±1 is a primary pivot marked in step r of the SSSA
all changes of basis caused by ∆r

j−r,j must be performed in step r + 1. The algorithm which
reflects it is called the Row cancellation Algorithm (RCA) and it was first introduced in [2, 3].
One emphasizes that whenever a primary pivot is marked, all the changes of basis caused by
this pivot are performed in the next step.

Row Cancellation Algorithm - RCA

Initialization Step:: r = 0

∆̃r = ∆

T̃ r = I (m×m identity matrix)
Iterative Step:: (Repeated until all diagonals parallel and to the right of the main diag-

onal have been swept) Matrix ∆̃ update
r ← r + 1

∆̃r = (T̃ r−1)−1∆̃r−1T̃ r−1
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Markup

Sweep entries of ∆̃r in the r-th diagonal:

If ∆̃r
j−r,j 6= 0 and ∆̃r

.,j does not contain a primary pivot

Then permanently mark ∆̃r
j−r,j as a primary pivot

Matrix T̃ r construction

T̃ r ← I

For each primary pivot ∆̃r
p−r,p such that j < m, change the p-th row of T̃ r

as follows

T̃ rp,` ← −(1/∆̃r
p−r,p)∆̃

r
p−r,`, for ` = p+ 1, . . . ,m

Final Step:: Matrix ∆̃ update
r ← r + 1

∆̃r = (T r−1)−1∆̃r−1T r−1

In [3], it was proved the Primary Pivots Equality Theorem which states that the primary

pivots on the r-th diagonal of ∆̃r marked in the r-th step of the RCA coincide with the ones on
the r-th diagonal of ∆r marked in the r-th step of the SSSA. More details on this algorithm can
be found in [3].

Theorem 6.3 (Family of GS-Flows via Spectral Sequences). Let (CGS(M,X),∆GS) be the
GS-chain complex associated to a GS-flow ϕX on a singular 2-manifold M ∈ M(GS), where
X ∈ XGS(M) and S = C,W,D or T . The RCA for the GS-boundary map ∆GS produces a
family of GS-flows {ϕ1 = ϕX , ϕ

2, . . . , ϕω} where ϕr continues to ϕr+1 by cancelling pairs of
singularities of ϕr having gap r with respect to the filtration F . Moreover, the flow ϕω is a
minimal GS-flow in the sense that there is no more possible homotopical cancellations to be
done.

Proof. In order to prove the theorem, firstly one analyzes the local and global effects a homotopi-
cal cancellation of a pair of consecutive singularities has on the GS-boundary map ∆GS(M,ϕX′)
of the new flow ϕX′ . Secondly, one constructs a family of GS-flows {ϕ1 = ϕX , ϕ

2, . . . , ϕω} via
the RCA in such way that the connections of the flow ϕr are codified in the r-th matrix produced
by the RCA.

To simplify the exposition, one considers first the cases where X ∈ XGS(M) for S = C or W,
since in these cases each singularity posseses only one nature, hence there is only one generator
corresponding to the nature of the singularity.

Without loss of generality, the set of orientations of the unstable manifolds for the Morsified
flow ϕX̃ will be considered, within this proof, as the one where all orientations of the unstable
manifolds of repeller singularities are the same. This assumption guarantees that, whenever h1

is a saddle singularity, the flow lines in W s(h1)\{h1} either have opposite characteristic signs
or they are null. On the other hand, by definition, the flow lines in Wu(h1)\{h1} always have
opposite characteristic signs, if they are not null.

Throughout the proof, denote by n(hk, hk−1, ϕ) the intersection number of hk and hk−1 with
respect to the flow ϕ.

Let hjk and hj−rk−1 be consecutive singularities of the vector field X. By the Dynamical Homo-

topical Cancellation Theorem for GS-Flows (Theorem 5.1), if n(hjk, h
j−r
k−1, ϕX) = ±1 then these

singularities can be cancelled, i.e. there is a GS-flow ϕX′ which coincides with ϕX outside a

neighborhood of {hjk, hik−1, h
j−r
k−1} ∪ O(u1) ∪ O(u2), up to homotopy, where Mhj

k

hj−r
k−1

= {u1} and
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Mhj
k

hi
k−1

= {u2}. For k = 1 (resp., k = 2), let hj1 (resp., hj−r1 ) be a saddle singularity that

connects with the attracting (resp., repelling) singularities hj−r0 and hi0 (resp., hj2 and hp2). If hj1
cancels with hj−r0 (resp., hj2 cancels with hj−r1 ), then each saddle hp1 (resp., hi1) which connects

with hj−r0 (resp., hj2) in ϕX will connect with hi0 (resp., hp2) in ϕX′ . Since the old and new
connections have the same characteristic signs, then

n(hp1, h
i
0, ϕX′) = n(hp1, h

j−r
0 , ϕX) + n(hp1, h

i
0, ϕX)

(resp., n(hp2, h
i
1, ϕX′) = n(hp2, h

j−r
1 , ϕX) + n(hp2, h

i
1, ϕX)).

hj
1

hp
1

hp′

1

hj−r
0 hi

0h0

+1

−1

hp
1

h0 hi
0

hp′

1

−1
+1

ϕX ϕ′

of hj
1 and hj−r

0

u1

u2

hj
1

hp
1

hp′

1

h0 hj−r
0

hi
0

hp′

1

hi
0

hp
1

h0

+1

−1

+1

−1
ϕX ϕ′

of hj
1 and hj−r

0

u2u1

Homotopical Cancellation

Homotopical Cancellation

Figure 32. Birth and death of connections - characteristic signs.

Since the flow ϕX′ coincides with the flow ϕX outside a neighborhood U of

{hjk, h
i
k−1, h

j−r
k−1} ∪ O(u1) ∪ O(u2),

up to homotopy, the only intersection numbers that are modified after a homotopical cancellation

are those n(hp1, h
i
0), where hp1 is such that Mhp

1

hj−r
0

6= ∅ in the case of saddle-sink homotopical

cancellation, and those n(hp2, h
i
1), where hp2 is such thatMhp

2

hj−r
1

6= ∅, in the case of source-saddle

homotopical cancellation.
The GS-boundary map ∆GS(M,X ′) can be obtained from ∆GS(M,X) in the following way:

• If a saddle singularity hj1 is cancelled with an attracting singularity hj−r0 , then define the

matrix ∆̃ to be the matrix obtained from ∆GS(M,X) by replacing row i by the sum of

row (j − r) to row i. Then ∆GS(M,X ′) is the submatrix of ∆̃ which does not contain
rows j − r, j and neither columns j − r, j.

• If a repelling singularity hj2 is cancelled with a saddle singularity hj−r1 , then define the

matrix ∆̃ to be the matrix obtained from ∆GS(M,X) by replacing column p by the

sum of column j to column p. Then ∆GS(M,X ′) is the submatrix of ∆̃ which does not
contain rows j − r, j rows nor columns j − r, j.
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It is straightforward to see that this corresponds to the row operations performed by the RCA.

Consider the matrices {∆̃r} produced by the RCA when applied to ∆GS(M,X). Define
ϕ1 = ϕX and ϕr+1 to be a flow obtained from ϕr by cancelling all pairs of consecutive singular-

ities corresponding to primary pivots on the r-th diagonal of ∆̃r. In order to show that these
flows are well defined, we have to prove that whenever a primary pivot ∆r

j−r,j on the r-th diag-

onal of ∆̃r is marked, it is actually an intersection number between two consecutive singularities
hjk and hj−rk−1 of the flow ϕr and hence they can be cancelled by the Dynamical Homotopical
Cancellation Theorem (Theorem 5.1).

Since ϕ1 = ϕX , the GS-boundary map ∆GS(M,ϕ1) is ∆̃1. Let ∆1
j−1,j = ±1 be a primary pivot

on the first diagonal of ∆̃1. By definition, this primary pivot represents the intersection number
between two singularities of the flow ϕ1, namely hjk and hj−1

k−1, which are consecutive since the gap
between them is one. Using the Dynamical Homotopical Cancellation Theorem (Theorem 5.1),
we can define a flow ϕ2 by cancelling all pairs of consecutive singularities corresponding to

primary pivots on the first diagonal of ∆̃1. Moreover, the GS-boundary map ∆GS(M,ϕ2) is

the submatrix obtained from ∆̃2 which does not contain the columns and rows corresponding

to the cancelled singularities. Because of this and the fact that all non-zero entries of ∆̃2

belong to ∆GS(M,ϕ2), each non-zero entry of ∆̃2 represents an intersection number between

two singularities of ϕ2. Observe that two singularities hjk and hj−2
k−1 of ϕ2 with gap two in the

filtration F are consecutive in the flow ϕ2 since all the gap 1 singularities have been cancelled
in the previous stage.

Suppose that ϕr is well defined, that is, each primary pivot ∆r−1
j−(r−1),j on the diagonal (r−1)

of ∆̃r−1 corresponds to the intersection number of consecutive singularities hjk and h
j−(r−1)
k−1

of ϕr−1 and the GS-boundary map ∆GS(M,ϕr) is a submatrix of ∆̃r which does not contain

columns and rows of ∆̃r corresponding to all primary pivots marked until the diagonal r − 1.
These correspond to all singularities of ϕ of gap less than or equal to r−1. Under these hypothesis
singularities hik and hi−rk−1 of ϕr with gap r with respect to the filtration F are consecutive in the

flow ϕr. Hence two singularities corresponding to a primary pivot on the diagonal r of ∆̃r can be
cancelled, by the Dynamical Homotopical Cancellation Theorem (Theorem 5.1). Therefore, ϕr+1

is a well defined flow obtained from ϕr by cancelling all pairs of critical points corresponding

to primary pivots on the diagonal r of ∆̃r. Moreover, the GS-boundary map ∆GS(M,ϕr+1) is

a submatrix of ∆̃r+1 which does not contain columns and rows of ∆̃r+1 corresponding to all
primary pivots marked until step r. The flow ϕX continues to ϕr for all r.

Assume that X ∈ XGS(M) for S = D or T . The proof follows the same steps as above
by considering the homotopical cancellation of consecutive generators of the natures of the
singularities. �

Proof of Theorem 6.2. By the Primary Pivots for Orientable Surfaces Theorem, see [2, 3], the
primary pivots are always equal to ±1 when working on orientable surfaces. Thus the differentials
drp : Erp → Erp−r induced by the primary pivots are isomorphisms and the ones associated to
change of basis pivots always correspond to zero maps. Consequently, if drp is non-zero differential,

then, at the next stage of the spectral sequence, the algebraic cancellation Er+1
p = Er+1

p−r = 0
occurs.

An algebraic cancellation Er+1
p = Er+1

p−r = 0 is associated to a primary pivot ∆r
p−r+1,p+1 = ±1

on the r-th diagonal of ∆r produced by the r-th step of the SSSA. The row p−r+1 is associated to
hp−r+1
k−1 ∈ Fp−rCGSk−1\Fp−r−1C

GS
k−1 and the column p+1 is associated to hp+1

k ∈ FpCGSk \Fp−1C
GS
k

in a gradient flow ϕ associated to f . By the Primary Pivots Equality Theorem in [3], the primary
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pivot ∆r
p−r+1,p+1 = ±1 is also a primary pivot ∆̃r

p−r+1,p+1 = ±1 of the RCA. As it was shown in
the proof of Theorem 6.3, the primary pivot ∆r

p−r+1,p+1 corresponds to the intersection number

of two consecutive generators of natures of the singularities hp+1
k and hp−r+1

k−1 of the flow ϕr.
This pair can be homotopical cancelled by the Dynamical Homotopical Cancellation Theorem
(Theorem 5.1).

Moreover, Erp and Erp−r correspond to generators of saddle and attractor (or repeller and sad-
dle) natures, respectively, with gap r with respect to the filtration F . Therefore, the dynamical
and algebraic cancellations occur with increasing gap. �

6.3. Examples. In this subsection we present some examples where we explore the algebraic
cancellations of the modules of the spectral sequence and their corresponding dynamical homo-
topical cancellations.

Throughout this section, the primary pivots are the entries indicated by darker edge and the
change of basis pivots are indicated by dashed edges, null entries are left blank and the diagonal
being swept is indicated with a gray line.

Example 6.1. Consider the singular manifold M ∈ M(GC) and a GS-flow ϕX associated to
a vector field X ∈ XGC(M) as in Figure 33. Consider as well a choice of orientations on the

unstable manifolds of the critical points of a Morsification M̃ . Then we are able to determine
the GS-characteristic signs of the orbits of ϕX , as it is shown in Figure 33.

x1 x3 x2

z4 z3
z2 z1

y1

y2

y3y4

x̃1 x̃3 x̃2

z̃4 z̃3
z̃2 z̃1

ỹ1

ỹ3ỹ4

ỹ′4

ỹ′3

1
2 2 2

1 1

Morsification ỹ5

Sign transfer

Figure 33. A GS-flow with cone singularities, its Morsification and sign tranfers.

The GS-chain groups are:

C0(M,X)GC = Z[〈z1〉, 〈z2〉, 〈z3〉, 〈z4〉], C1(M,X)GC = Z[〈y1〉, 〈y2〉, 〈y3〉, 〈y4〉],
C2(M,X)GC = Z[〈x1〉, 〈x2〉, 〈x3〉], and Ck(M) = 0, k 6= 0, 1, 2. The GS-boundary operator ∆GS∗
is given by the matrix in Figure 35a.

Consider a finest filtration on the GS-chain complex (CGC∗ (M,X),∆GC∗ ), namely,

F0C
GC = Z[z1], F1C

GC = Z[z1, z2], F2C
GS = Z[z1, z2, z3],

F3C
GS = Z[z1, z2, z3, z4], F4C

GC = Z[z1, z2, z3, z4, y1], F5C
GC = Z[z1, z2, z3, z4, y1, y2],

F6C
GC = Z[z1, z2, z3, z4, y1, y2, y3], F7C

GC = Z[z1, z2, z3, z4, y1, y2, y3, y4],

F8C
GC = Z[z1, z2, z3, z4, y1, y2, y3, y4, x1], F9C

GC = Z[z1, z2, z3, z4, y1, y2, y3, y4, x1, x2]

and

F10C
GC = Z[z1, z2, z3, z4, y1, y2, y3, y4, x1, x2, x3].
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The spectral sequence associated to (CGC∗ (M,X),∆GC∗ ) enriched with the filtration F is shown
in Figure 34.

E0 :

E1 :

E2 :

[z1] [z2] [z4] [y1] [y2] [y3] [y4]

0

E3 :

d34

E4 :

0

0 0 0 0 0

d39

Z ZZZZZZ Z [z3] [x1] [x2] [x3]

d18

ZZZ

[z1] [z2] [z4] [y1] [y2] [y3] [y4]Z ZZZZZZ Z [z3] [x1] [x2] [x3]ZZZ

[z1] [z2] [z4] [y1] [y2] [y3]Z ZZZZZ Z [z3] [x2] [x3]ZZ

00[z1] [z2] [z4] [y1] [y2] [y3]Z ZZZZZ Z [z3] [x2] [x3]ZZ

[z1] [z4] [y2]Z ZZZ [z3] [x3]Z0

Figure 34. The spectral sequence for (CGC∗ (M,X),∆GC∗ ) with filtration F .

Applying the SSSA to the GS-boundary differential ∆GC , one obtains the sequence of matrices
∆1, · · · ,∆5 as in Figures 35b,· · · , 35f, respectively, where the singularities are identified by
hi0 = zi, h

i+4
1 = yi, for i = 1 . . . 4 and hi+8

2 = zi, for i = 1, . . . , 3.
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h2
11

1 1

-1 -1

1 -1

-1 1

1 -1

-1 1

(a) ∆0, the GS-boundary operator.

σ2
11,1 = h2

11

σ2
10,1 = h2

10

σ2
9,1 = h2

9

σ1
8,1 = h1

8

σ1
7,1 = h1

7

σ1
6,1 = h1

6

σ1
5,1 = h1

5

σ0
4,1 = h0

4

σ0
3,1 = h0

3

σ0
2,1 = h0

2

σ0
1,1 = h0

1

σ0
1,1 σ0

2,1 σ0
3,1 σ0

4,1 σ1
5,1 σ1

6,1 σ1
7,1 σ1

8,1 σ2
9,1σ2

10,1σ2
11,1

1 1

-1 -1

1 -1

-1 1

1 -1

-1 1

(b) ∆1, sweeping 1-st diagonal.
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σ2
11,2 = h2

11

σ2
10,2 = h2

10

σ2
9,2 = h2

9

σ1
8,2 = h1

8

σ1
7,2 = h1

7

σ1
6,2 = h1

6

σ1
5,2 = h1

5

σ0
4,2 = h0

4

σ0
3,2 = h0

3

σ0
2,2 = h0

2

σ0
1,2 = h0

1

σ0
1,2 σ0

2,2 σ0
3,2 σ0

4,2 σ1
5,2 σ1

6,2 σ1
7,2 σ1

8,2 σ2
9,2σ2

10,2σ2
11,2

1 1

-1 -1

1 -1

-1 1

1 -1

-1 1

(c) ∆2, sweeping 2-nd diagonal.

σ2
11,3 = h2

11

σ2
10,3 = h2

10

σ2
9,3 = h2

9

σ1
8,3 = h1

8

σ1
7,3 = h1

7

σ1
6,3 = h1

6

σ1
5,3 = h1

5

σ0
4,3 = h0

4

σ0
3,3 = h0

3

σ0
2,3 = h0

2

σ0
1,3 = h0

1

σ0
1,3 σ0

2,3 σ0
3,3 σ0

4,3 σ1
5,3 σ1

6,3 σ1
7,3 σ1

8,3 σ2
9,3 σ2

10,3σ2
11,3

1 1

-1 -1

1 -1

-1 1

1 -1

-1 1

(d) ∆3, sweeping 3-rd diagonal.

σ2
11,4 = h2

11 + h2
9

σ2
10,4 = h2

10

σ2
9,4 = h2

9

σ1
8,4 = h1

8

σ1
7,4 = h1

7

σ1
6,4 = h1

6

σ1
5,4 = h1

5

σ0
4,4 = h0

4

σ0
3,4 = h0

3

σ0
2,4 = h0

2

σ0
1,4 = h0

1

σ0
1,4 σ0

2,4 σ0
3,4 σ0

4,4 σ1
5,4 σ1

6,4 σ1
7,4 σ1

8,4 σ2
9,4 σ2

10,4σ2
11,4

1 1

-1 -1

1 -1

-1 1

1 -1

-1

(e) ∆4, sweeping 4-th diagonal.
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σ2
11,5 = h2

10 + h2
11 + h2

9

σ2
10,5 = h2

10

σ2
9,5 = h2

9

σ1
8,5 = h1

8

σ1
7,5 = h1

7

σ1
6,5 = h1

6 - h1
5

σ1
5,5 = h1

5

σ0
4,5 = h0

4

σ0
3,5 = h0

3

σ0
2,5 = h0

2

σ0
1,5 = h0

1

σ0
1,5 σ0

2,5 σ0
3,5 σ0

4,5 σ1
5,5 σ1

6,5 σ1
7,5 σ1

8,5 σ2
9,5 σ2

10,5σ2
11,5

1

-1

-1

1

-1

(f) ∆5, sweeping 5-th diagonal.

Figure 35. Sequence of matrices produced by the SSSA.

As proven in Theorem 6.2, the primary pivots detect algebraic cancellations of the modules
of the spectral sequence. More specifically,

• the primary pivot ∆1
8,9 detects the algebraic cancellation of the modules E1

8 and E1
7 ;

• the primary pivot ∆2
7,10 detects the algebraic cancellation of the modules E2

9 and E2
1 ;

• the primary pivot ∆2
2,5 detects the algebraic cancellation of the modules E2

4 and E2
1 .

On the other hand, these algebraic cancellations are associated to dynamical cancellations by
Theorem 6.2, namely:

• the algebraic cancellation of E1
8 and E1

7 determines the dynamical homotopical cancel-
lation of the singularities (x1, y4).

• the algebraic cancellation of E2
9 and E2

1 determines the dynamical homotopical cancel-
lation of the singularities (x2, y3).

• the algebraic cancellation of E2
4 and E2

1 determines the dynamical homotopical cancel-
lation of the singularities (y1, z2).

Figure 36 shows the dynamical homotopical cancellations of the pair of singularities (x1, y4),
(x2, y3) and (y1, z2), respectively.
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x2

z4 z3
z2 z1

y1

y2

y3

x1

y4

x3

Cancelling

u1 u2
(x1, y4)

x3

z2 z1

y1

y2

z4

z3

x2

y3
v1

v2

z2 z1

y2

x3

z4

z3

y2

x3

z4

z3

z1

y1

w1
w2

Cancelling

(x2, y3) (y1, z2)

Cancelling

Homotopical

Homotopical Homotopical

Figure 36. Homotopical Cancellation the pair of singularities (x1, y4), (x2, y3)
and (y1, z2), sucessively.

Example 6.2. Consider the singular manifold M ∈M(GW) and the GS-flow ϕX associated to
a vector field X ∈ XGW(M) as in Figure 27. The GS-chain complex associated to this flow is
presented in Example 4.2. Consider a finest filtration on (CGW∗ (M,X),∆GW∗ ), namely,

F0C
GW = Z[z1], F1C

GW = Z[z1, z2], F2C
GW = Z[z1, z2, y1], F3C

GW = Z[z1, z2, y1, y2],

F4C
GW = Z[z1, z2, y1, y2, y3], F5C

GW = Z[z1, z2, y1, y2, y3, x1],

F6C
GW = Z[z1, z2, y1, y2, y3, x1, x2] and F7C

GW = Z[z1, z2, y1, y2, y3, x1, x2, x3].
The spectral sequence associated to (CGW∗ (M,X),∆GW∗ ) enriched with the filtration F is

shown in Figure 37.

E0 :

E1 :

E3 :

E0
1

0

E4 :

E5 : 0 0 0

d46

[z1] [z2] [y1] [y2] [y3]Z ZZZZ [x1] [x2] [x3]ZZZ

[z1] [z2] [y1]Z ZZ [x3]Z

[z1]Z [x3]Z0

E0
0 E0

2 E0
3 E0

4 E0
5 E0

6 E0
7

E2 : [z1] [z2] [y1] [y2] [y3]Z ZZZZ [x1] [x2] [x3]ZZZ

d25

00[z1] [y1]Z Z [x2] [x3]ZZ

d34

0

[x2]Z0 [y3]Z

0 0

0

Figure 37. The spectral sequence for (CGW∗ (M,X),∆GW∗ ) with filtration F .

Applying the SSSA to the GS-boundary differential ∆GW , one obtains the sequence of matrices
∆1, · · · ,∆6 as in Figures 38a,· · · , 38f, respectively, where the singularities are identified by
hi0 = zi, for i = 1, 2, hi+2

1 = yi, for i = 1 . . . 3 and hi+5
2 = xi, for i = 1 . . . 3.
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σ2
8,1 = h2

8

σ2
7,1 = h2

7

σ2
6,1 = h2

6

σ1
5,1 = h1

5

σ1
4,1 = h1

4

σ1
3,1 = h1

3

σ0
2,1 = h0

2

σ0
1,1 = h0

1

σ0
1,1 σ0

2,1 σ1
3,1 σ1

4,1 σ1
5,1 σ2

6,1 σ2
7,1 σ2

8,1

-1

1

1 -1

-1 1

(a) ∆1, sweeping 1-st diagonal.

σ2
8,2 = h2

8

σ2
7,2 = h2

7

σ2
6,2 = h2

6

σ1
5,2 = h1

5

σ1
4,2 = h1

4

σ1
3,2 = h1

3

σ0
2,2 = h0

2

σ0
1,2 = h0

1

σ0
1,2 σ0

2,2 σ1
3,2 σ1

4,2 σ1
5,2 σ2

6,2 σ2
7,2 σ2

8,2

-1

1

1 -1

-1 1

(b) ∆2, sweeping 2-nd diagonal.

σ2
8,3 = h2

8

σ2
7,3 = h2

7

σ2
6,3 = h2

6

σ1
5,3 = h1

5

σ1
4,3 = h1

4

σ1
3,3 = h1

3

σ0
2,3 = h0

2

σ0
1,3 = h0

1

σ0
1,3 σ0

2,3 σ1
3,3 σ1

4,3 σ1
5,3 σ2

6,3 σ2
7,3 σ2

8,3

-1

1

1 -1

-1 1

(c) ∆3, sweeping 3-rd diagonal.
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σ2
8,4 = h2

8

σ2
7,4 = h2

6 + h2
7

σ2
6,4 = h2

6

σ1
5,4 = h1

5

σ1
4,4 = h1

4

σ1
3,4 = h1

3

σ0
2,4 = h0

2

σ0
1,4 = h0

1

σ0
1,4 σ0

2,4 σ1
3,4 σ1

4,4 σ1
5,4 σ2

6,4 σ2
7,4 σ2

8,4

-1

1

1 -1

-1

(d) ∆4, sweeping 4-th diagonal.

σ2
8,5 = h2

8

σ2
7,5 = h2

6 + h2
7

σ2
6,5 = h2

6

σ1
5,5 = h1

5

σ1
4,5 = h1

4

σ1
3,5 = h1

3

σ0
2,5 = h0

2

σ0
1,5 = h0

1

σ0
1,5 σ0

2,5 σ1
3,5 σ1

4,5 σ1
5,5 σ2

6,5 σ2
7,5 σ2

8,5

-1

1

1 -1

-1

(e) ∆5, sweeping 5-th diagonal.

σ2
8,6 = h2

6 + h2
7 + h2

8

σ2
7,6 = h2

6 + h2
7

σ2
6,6 = h2

6

σ1
5,6 = h1

5

σ1
4,6 = h1

4

σ1
3,6 = h1

3

σ0
2,6 = h0

2

σ0
1,6 = h0

1

σ0
1,6 σ0

2,6 σ1
3,6 σ1

4,6 σ1
5,6 σ2

6,6 σ2
7,6 σ2

8,6

-1

1

1

-1

(f) ∆6, sweeping 6-th diagonal.

Figure 38. Sequence of matrices produced by the SSSA.
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As proven in Theorem 6.2, the primary pivots detect algebraic cancellations of the modules
of the spectral sequence. More specifically,

• the primary pivot ∆2
4,6 detects the algebraic cancellation of the modules E2

5 and E2
3 ;

• the primary pivot ∆3
2,5 detects the algebraic cancellation of the modules E3

4 and E3
1 ;

• the primary pivot ∆4
3,7 detects the algebraic cancellation of the modules E4

6 and E4
2 .

On the other hand, these algebraic cancellations are associated to dynamical homotopical can-
cellations by Theorem 6.2, namely:

• the algebraic cancellation of E1
5 and E1

3 determines the dynamical homotopical cancel-
lation of the singularities (x1, y2).

• the algebraic cancellation of E3
4 and E3

1 determines the dynamical homotopical cancel-
lation of the singularities (y3, z2).

• the algebraic cancellation of E4
6 and E4

2 determines the dynamical homotopical cancel-
lation of the singularities (x2, y1).

Figure 39 shows the dynamical cancellations of the pair of singularities (x1, y2), (y3, z2) and
(x2, y1), respectively.

x1
x2

x3

y2
y1

y3

z1
z2

Cancellation

u
of (x1, y2)

Cancellation

x2
x3

y1

y3

z2
z1

u

x3

Cancellation

z1

u

x2

y1

z1

u

x3

of (y3, z2)
of (x2, y1)

Homotopical Homotopical

Homotopical

Figure 39. Homotopical cancellation the pair of singularities (x1, y2), (y3, z2)
and (x2, y1), sucessively.

Example 6.3. Consider the singular manifold M ∈M(GD) and the GS-flow ϕX associated to
a vector field X ∈ XGD(M) as in Figure 29. The GS-chain complex associated to (M,X) is
presented in Example 4.3. The GS-boundary operator ∆GS∗ is given by the matrix in Figure 30.

Consider a finest filtration on (CGD∗ (M,X),∆GD∗ ), namely,

F0C
GD = Z[ze1], F1C

GS \ F0C
GD = Z[zi1], F2C

GD \ F1C
GD = Z[ze2], F3C

GD \ F2C
GD = Z[zi2],

F4C
GD \ F3C

GD = Z[ye1], F5C
GD \ F4C

GD = Z[yi1], F6C
GD \ F5C

GD = Z[ye2],
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F7C
GD \ F6C

GD = Z[yi2], F8C
GD \ F7C

GD = Z[y3], F9C
GD \ F8C

GD = Z[x1],

F10C
GD \ F9C

GD = Z[x2], F11C
GD \ F10CGD = Z[x3], F12C

GD \ F11CGD = Z[x4]

and F13C
GD\F12CGD = Z[x5]. The spectral sequence associated to (CGD∗ (M,X),∆GD∗ ) enriched

with the filtration F is shown in Figure 34.

E0, E1, E2 :

E3 :

E4 :

[ze1] [zi1] [zie] [ye1] [yi1] [ye2] [yi2]

E5 :

E6 :

Z ZZZZZZ Z [ze2] [y3] [x1] [x2]
d39

ZZZ [x3] [x4]ZZ [x5]Z

[ze1] [zi1] [zie] [ye1] [yi1] [ye2] [yi2]Z ZZZZZZ Z [ze2] [y3] [x1] [x2]ZZZ [x3] [x4]ZZ [x5]Z

[ze1] [zi1] [zie] [ye1] [yi1] [yi2]Z ZZZZZ Z [ze2] [y3] [x2]ZZ [x3] [x4]ZZ [x5]Z

[ze1] [zi1] [zie] [ye1] [yi1] [yi2]Z ZZZZZ Z [ze2] [y3] [x2]ZZ [x3] [x4]ZZ [x5]Z

[ze1] [zi1] [zie] [ye1] [yi1] [ye2]Z ZZZZZ Z [ze2] [y3] [x1] [x2]ZZZ [x3]Z [x5]Z

0 0

0 0
d512

0 0
d68 d69

E6 : [ze1] [zi1] [zie] [yi1] [ye2]Z ZZZZ [x1]Z [x3]Z [x5]Z0 00 0 0 0

d68

Figure 40. The spectral sequence for (CGD∗ (M,X),∆GD∗ ) with filtration F .

Applying the SSSA to the GS-boundary differential ∆GD, one obtains the sequence of matrices
∆1, · · · ,∆8 as in Figures 41a,· · · , 41f, respectively, where the singularities are identified by
h1

0 = ze1, h2
0 = zi1, h3

0 = ze2, h4
0 = zi2, h5

1 = ye1, h6
1 = yi1, h7

1 = ye2, h8
1 = yi2, h9

1 = y3 and hj+9
2 = xj ,

for j = 1 . . . 5.

σ2
14,3 = h2

14

σ2
13,3 = h2

13

σ2
12,3 = h2

12

σ2
11,3 = h2

11

σ2
10,3 = h2

10

σ1
9,3 = h1

9

σ1
8,3 = h1

8

σ1
7,3 = h1

7

σ1
6,3 = h1

6

σ1
5,3 = h1

5

σ0
4,3 = h0

4

σ0
3,3 = h0

3

σ0
2,3 = h0

2

σ0
1,3 = h0

1

σ0
1,3 σ0

2,3 σ0
3,3 σ0

4,3 σ1
5,3 σ1

6,3 σ1
7,3 σ1

8,3 σ1
9,3 σ2

10,3σ2
11,3σ2

12,3σ2
13,3σ2

14,3

1

-1

-1 -1

-1 1

-1 1

(a) ∆3, sweeping 3-rd diagonal.
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σ2
14,4 = h2

14

σ2
13,4 = h2

13

σ2
12,4 = h2

12

σ2
11,4 = h2

11

σ2
10,4 = h2

10

σ1
9,4 = h1

9

σ1
8,4 = h1

8

σ1
7,4 = h1

7

σ1
6,4 = h1

6

σ1
5,4 = h1

5

σ0
4,4 = h0

4

σ0
3,4 = h0

3

σ0
2,4 = h0

2

σ0
1,4 = h0

1

σ0
1,4 σ0

2,4 σ0
3,4 σ0

4,4 σ1
5,4 σ1

6,4 σ1
7,4 σ1

8,4 σ1
9,4 σ2

10,4σ2
11,4σ2

12,4σ2
13,4σ2

14,4

1

-1

-1 -1

-1 1

-1 1

(b) ∆4, sweeping 4-th diagonal.

σ2
14,5 = h2

14

σ2
13,5 = h2

13

σ2
12,5 = h2

12

σ2
11,5 = h2

10 + h2
11

σ2
10,5 = h2

10

σ1
9,5 = h1

9

σ1
8,5 = h1

8

σ1
7,5 = h1

7

σ1
6,5 = h1

6

σ1
5,5 = h1

5

σ0
4,5 = h0

4

σ0
3,5 = h0

3

σ0
2,5 = h0

2

σ0
1,5 = h0

1

σ0
1,5 σ0

2,5 σ0
3,5 σ0

4,5 σ1
5,5 σ1

6,5 σ1
7,5 σ1

8,5 σ1
9,5 σ2

10,5σ2
11,5σ2

12,5σ2
13,5σ2

14,5

1

-1

-1 -1

-1

-1 1

(c) ∆5, sweeping 5-th diagonal..

σ2
14,6 = h2

14

σ2
13,6 = h2

13

σ2
12,6 = h2

12

σ2
11,6 = h2

10 + h2
11

σ2
10,6 = h2

10

σ1
9,6 = h1

9

σ1
8,6 = h1

8

σ1
7,6 = h1

7

σ1
6,6 = h1

6

σ1
5,6 = h1

5

σ0
4,6 = h0

4

σ0
3,6 = h0

3

σ0
2,6 = h0

2

σ0
1,6 = h0

1

σ0
1,6 σ0

2,6 σ0
3,6 σ0

4,6 σ1
5,6 σ1

6,6 σ1
7,6 σ1

8,6 σ1
9,6 σ2

10,6σ2
11,6σ2

12,6σ2
13,6σ2

14,6

1

-1

-1 -1

-1

-1 1

(d) ∆6, sweeping 6-th diagonal.
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σ2
14,7 = h2

13 + h2
14

σ2
13,7 = h2

13

σ2
12,7 = h2

12

σ2
11,7 = h2

10 + h2
11

σ2
10,7 = h2

10

σ1
9,7 = h1

9

σ1
8,7 = h1

8

σ1
7,7 = h1

7

σ1
6,7 = h1

6

σ1
5,7 = h1

5

σ0
4,7 = h0

4

σ0
3,7 = h0

3

σ0
2,7 = h0

2

σ0
1,7 = h0

1

σ0
1,7 σ0

2,7 σ0
3,7 σ0

4,7 σ1
5,7 σ1

6,7 σ1
7,7 σ1

8,7 σ1
9,7 σ2

10,7σ2
11,7σ2

12,7σ2
13,7σ2

14,7

1

-1

-1 -1

-1

-1

(e) ∆7, sweeping 7-th diagonal.

σ2
14,8 = h2

13 + h2
14

σ2
13,8 = h2

13

σ2
12,8 = -h2

10 - h2
11 + h2

12

σ2
11,8 = h2

10 + h2
11

σ2
10,8 = h2

10

σ1
9,8 = h1

9

σ1
8,8 = h1

8

σ1
7,8 = h1

7

σ1
6,8 = h1

6

σ1
5,8 = h1

5

σ0
4,8 = h0

4

σ0
3,8 = h0

3

σ0
2,8 = h0

2

σ0
1,8 = h0

1

σ0
1,8 σ0

2,8 σ0
3,8 σ0

4,8 σ1
5,8 σ1

6,8 σ1
7,8 σ1

8,8 σ1
9,8 σ2

10,8σ2
11,8σ2

12,8σ2
13,8σ2

14,8

1

-1

-1

-1

-1

(f) ∆8, sweeping 8-th diagonal.

Figure 41. Sequence of matrices produced by the SSSA.

As proven in Theorem 6.2, the primary pivots detect algebraic cancellations of the modules
of the spectral sequence. More specifically,

• the primary pivot ∆3
7,10 detects the algebraic cancellation of the modules E3

9 and E3
6 ;

• the primary pivot ∆5
8,13 detects the algebraic cancellation of the modules E5

12 and E5
7 ;

• the primary pivot ∆6
3,9 detects the algebraic cancellation of the modules E6

8 and E6
2 ;

• the primary pivot ∆6
5,11 detects the algebraic cancellation of the modules E6

10 and E6
4 .

On the other hand, these algebraic cancellations are associated to dynamical homotopical can-
cellations, namely:

• the algebraic cancellation of E3
9 and E3

6 determines the dynamical cancellation of the
singularities (ye2, x1).

• the algebraic cancellation of E5
12 and E5

7 determines the dynamical homotopical cancel-
lation of the singularities (yi2, x4).
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• the algebraic cancellation of E6
8 and E6

2 determines the dynamical homotopical cancel-
lation of the singularities (ze2, y3).

• the algebraic cancellation of E6
10 and E6

4 determines the dynamical homotopical cancel-
lation of the singularities (ye1, x̄3).

Figure 42 shows the dynamical cancellation of the pair of singularities (ye2, x1), (yi2, x4), (ze2, y3)
and (ye1, x̄3), respectively.

x3 x4
x5

y3

y1

y2

z1
z2

x2x1

Cancellation

x3 x4
x5

y3

y1

z1
z2

x̄2

Cancellation

x3
x5

y3

y1

z1
z2

Cancellation

x3
x5

y1

z̄2 z̄2

x5

Cancellation

of (x̄3, y1)of (y3, z1)

of (x1, y2) of (x4, x̄2)

Homotopical Homotopical

Homotopical Homotopical

Figure 42. Homotopical cancellation of the pair of generators (ye2, x1), (yi2, x4),
(ze2, y3) and (ye1, x̄3), sucessively.
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