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WEIGHTED HOMOGENEOUS SURFACE SINGULARITIES

HOMEOMORPHIC TO BRIESKORN COMPLETE INTERSECTIONS

TOMOHIRO OKUMA

Abstract. For a given topological type of a normal surface singularity, there are various
types of complex structures which realize it. We are interested in the following problem:

Find the maximum of the geometric genus and a condition for that the maximal ideal cycle

coincides with the fundamental cycle on the minimal good resolution. In this paper, we study
weighted homogeneous surface singularities homeomorphic to Brieskorn complete intersection

singularities from the perspective of the problem.

1. Introduction

The topological type of a normal surface singularity is determined by its resolution graph
([20]). For a given resolution graph of a normal surface singularity, there are various types of
complex structures which realize it. We are interested in finding the upper (resp. lower) bound of
basic invariants (e.g., the geometric genus), and in understanding the complex structures which
attain their maximum (resp. minimum).

Let (V, o) be a normal complex surface singularity with minimal good resolution X → V and
let Γ be the resolution graph of (V, o). As noticed above, the topological invariants of (V, o) are
precisely the invariants of Γ. In this paper, we consider the geometric genus

pg(V, o) = dimH1(OX)

and the maximal ideal cycle MX on X. In general, these invariants cannot be determined by
Γ and it is difficult to compute them. By the definition (Definition 2.1), the fundamental cycle
ZX on X is determined by Γ and the inequality MX ≥ ZX holds. The fundamental problem we
wish to explore is the following.

Problem 1.1. Let pg(Γ) denote the maximum of the geometric genus over the normal surface
singularities with resolution graph Γ.

(1) Find the value pg(Γ) and conditions for MX = ZX .
(2) Describe the properties and invariants of a singularity (V, o) with pg(V, o) = pg(Γ) or

MX = ZX .

It is known that in a complex analytic family of the resolution space X preserving Γ (cf. [10]),
the dimension of the cohomology of the structure sheaf is upper semicontinuous. So, we expect
the singularities (V, o) with pg(V, o) = pg(Γ) may have some kind of nice structure.

The equality MX = ZX holds for rational singularities ([2]), minimally elliptic singularities
([9]), and hypersurfaces zn = f(x, y) with certain conditions ([5], [31]). We have an explicit
condition for the equality MX = ZX for Brieskorn complete intersection singularities ([8], [12]);
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the result is generalized to Kummer coverings over weighted homogeneous normal surface singu-
larities in [29]. The upper bound of pg has been also studied by several authors (e.g., [34], [27],
[28], [15], [19]); the “rational trees” Γ whose pg(Γ) can be obtained from Γ are listed in [18, 1.7].
In Example 2.9 of the present paper, we shall introduce the weighted homogeneous singularities
of hyperelliptic type for which pg(Γ) is easily computed. Since

pg(V, o) = dimH0(OX)/H0(OX(−ZKX ))

for numerically Gorenstein singularity, where ZKX is the canonical cycle (Definition 2.1), it
might be natural to expect that there is a correlation between the properties pg(V, o) = pg(Γ)
and MX = ZX . In fact, when (V, o) is a numerically Gorenstein elliptic singularity (this is
characterized by Γ), we have that pg(V, o) = pg(Γ) if and only if (V, o) is a Gorenstein singularity
with MX = ZX ([21, 5.10], [34], [14]); in this case, pg(Γ) coincides with the length of the elliptic
sequence. However, in [18], we found an example such that the equality pg = pg(Γ) is realized by
both a Gorenstein singularity with MX > ZX and a non-Gorenstein singularity with MX = ZX .
In Section 4, we give an example which shows that the condition MX = ZX cannot control pg.

In this paper, we study normal surface singularities homeomorphic to Brieskorn complete
intersection singularities from the perspective of our problem above. First suppose that V is a
complete intersection given as follows:

V = { (xi) ∈ Cm | qi1xa11 + · · ·+ qimx
am
m = 0, i = 3, . . . ,m} (qij ∈ C).

The resolution graph of the singularity (V, o) is determined by the integers a1, . . . , am
(Theorem 3.2). We denote it by Γ(a1, . . . , am). Using the Pinkham-Demazure divisor D on
the central curve E0 of the exceptional set E ⊂ X, the homogeneous coordinate ring R of V
is represented as R =

⊕
k≥0H

0(OE0
(Dk))T k (see Section 2.2). We study arithmetic properties

of the numerical invariants arising from the topological type in terms of the divisors Dk on E0.
For this purpose, we employ the monomial cycles (cf. [22]) to connect the numerical information
of the divisors Dk and the complex analytic functions on X; note that monomial cycles play
an important role in the study of invariants of splice quotients ([22], [16]). For example, we
show that H0(OE0

(Dk)) 6= 0 if and only if degDk is a member of a certain semigroup, and that
Dk ∼ Dk′ if and only if degDk = degDk′ (see Proposition 3.8, Theorem 3.10). Applying these
results, we obtain the following (see Theorem 3.9, Theorem 3.12).

Theorem 1.2. If (V, o) is a Brieskorn complete intersection such that the central curve E0 is
rational or elliptic curve, then pg(V, o) = pg(Γ) and MX = ZX .

Even if the singularity is not a Brieskorn complete intersection, we can apply a part of the
argument on the divisors Dk and prove the following (Theorem 3.16).

Theorem 1.3. There exists a weighted homogeneous singularity with a resolution graph
Γ(a1, . . . , am) such that the maximal ideal cycle coincides with the fundamental cycle on the
minimal good resolution.

We shall describe the property of the Pinkham-Demazure divisor corresponding to the singu-
larity in Theorem 1.3.

If the central curve E0 has genus g ≥ 2, we cannot expect a result similar to Theorem 1.2.
In fact, there may be various types of complex structures even when g = 2. To show this, in
Section 4, we fix a resolution graph Γ = Γ(2, 3, 3, 4), which is the simplest one in a sense, and
investigate the singularities having this graph. Any Brieskorn complete intersection singularity
with this graph satisfies neither pg(V, o) = pg(Γ) nor MX = ZX . Assume that (V, o) is a
weighted homogeneous surface singularity with resolution graph Γ. We prove that (V, o) satisfies
pg(V, o) = pg(Γ) if and only if it is hyperelliptic type, and show that such a singularity is a
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complete intersection, which is a double cover of a rational double point of type A1. For the
geometric genus, the multiplicity, and the embedding dimension of these singularities, see Table
1, where the rightmost column indicates the subsections which include the details.

type pg mult embdim Section

Brieskorn CI 8 6 4 Section 4.1

maximal pg 10 4 4 Section 4.2

Table 1. Special types

Next, in Section 4.3, we give a complete classification of the weighted homogeneous normal
surface singularities (V, o) with resolution graph Γ = Γ(2, 3, 3, 4) such that MX = ZX . We
can see the fundamental invariants of those singularities in Table 2. For each class, we prove
the existence of the singularities by showing the explicit description of the Pinkham-Demazure
divisor (cf. Section 4.3).

pg mult embdim ring Proposition

8 3 4 non Gorenstein 4.13

8 4 4 non Gorenstein 4.16(1)

7 4 5 non Gorenstein 4.16(2)

8 5 5 Gorenstein 4.18(1)

7 5 5 non Gorenstein 4.18(2)

6 6 7 non Gorenstein 4.21

Table 2. Singularities with MX = ZX

Note that for any two singularities in Table 2, they have the same thick-thin decomposition
if and only if they have the same multiplicity; see [4] and the proof of Proposition 4.10 (2).

This paper is organized as follows. In Section 2, we review basic facts on weighted homo-
geneous surface singularities and introduce the singularity of hyperelliptic type. In Section 3,
first we summarize the results on Brieskorn complete intersection surface singularities, and prove
Theorem 1.2 and Theorem 1.3. In Section 4, we study weighted homogeneous singularities with
resolution graph Γ = Γ(2, 3, 3, 4) such that pg = pg(Γ) and those with MX = ZX .

Acknowledgement. The author would like to thank the referee for reading the paper care-
fully and providing several thoughtful comments which helped improving the paper, especially,
Lemma 4.3 and Proposition 4.9.

2. Preliminaries

Let (V, o) be a normal complex surface singularity, namely, the germ of a normal complex
surface V at o ∈ V . We denote by m the maximal ideal of the local ring OV,o. Let π : X → V
denote the minimal good resolution of the singularity (V, o) with exceptional set E = π−1(p),
and let {Ei}i∈I denote the set of irreducible components of E. We denote by Γ the resolution
graph of (V, o), namely, the weighted dual graph of E. A divisor on X supported in E is called a
cycle. We denote the group of cycles by ZE. An element of QE := ZE ⊗Q is called a Q-cycle.
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Since the intersection matrix (EiEj) is negative definite, for every j ∈ I there exists an effective
Q-cycle E∗j such that E∗jEi = −δji, where δji denotes the Kronecker delta. Let ZE∗ ⊂ QE
denote the subgroup generated by {E∗i }i∈I .

For any Q-divisor F =
∑
ciFi with distinct irreducible components Fi, we denote by cffFi(F )

the coefficient of Fi in F , i.e., cffFi(F ) = ci. For a function h ∈ H0(OX) \ {0}, we denote by
(h)E ∈ ZE the exceptional part of the divisor divX(h); this means that divX(h) − (h)E is an
effective divisor containing no components of E. We call divX(h) − (h)E the non-exceptional
part of divX(h). We simply write (h)E instead of (h ◦ π)E for h ∈ m \ {0}.

A Q-cycle D is said to be nef (resp. anti-nef) if DEi ≥ 0 (resp. DEi ≤ 0) for all i ∈ I. Note
that if a cycle D 6= 0 is anti-nef, then D ≥ E.

Definition 2.1. The fundamental cycle is by definition the smallest non-zero anti-nef cycle and
denoted by ZX . The maximal ideal cycle on X is the minimum of { (h)E | h ∈ m \ {0}} and
denoted by MX . Clearly, ZX ≤MX . There exists a Q-cycle ZKX such that (KX +ZKX )Ei = 0
for every i ∈ I, where KX is a canonical divisor on X. We call ZKX the canonical cycle on X.

2.1. Cyclic quotient singularities. Let n and µ be positive integers with µ < n and
gcd(n, µ) = 1. Let εn ∈ C denote the primitive n-th root of unity and let G denote the

cyclic group

〈(
εn 0
0 εµn

)〉
⊂ GL(2,C). Suppose that V = C2/G. Then (V, o) is called the cyclic

quotient singularity of type Cn,µ. For integers ci ≥ 2, i = 1, . . . , r, we put

[[c1, . . . , cr]] := c1 −
1

c2 −
1

. . . −
1

cr

If n/µ = [[c1, . . . , cr]], the resolution graph Γ is a chain as in Figure 1, where all components Ei
are rational.

−c1 −cr· · ·

E1 Er

Figure 1. The resolution graph of Cn,µ

It is known that the local class group Cl(V, o) is isomorphic to the finite abelian group

ZE∗/ZE = 〈[E∗1 ]〉 = 〈[E∗r ]〉
of order n, where [E∗i ] = E∗i + ZE (cf. [13, II (a)], [3, III. 5]).

Suppose that E0 is a prime divisor onX such that E0Ei = δ1i for 1 ≤ i ≤ r; so E0+E1+· · ·+Er
looks like a chain of curves. For any positive integer m0, let

L(m0) =

{
m0E0 +

r∑
i=1

miEi

∣∣∣∣∣ m1, . . . ,mr ∈ Z>0

}
.

Then we define a set D(m0) as follows:

D(m0) := {D ∈ L(m0) | DEi ≤ 0, i = 1, . . . , r}.
It is easy to see that D(m0) is not empty and has a unique smallest element.

Let dxe denote the ceiling of a real number x.
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Lemma 2.2. Let D ∈ D(m0). We have the following:

(1) There exists an effective cycle F such that (D + F )Ei = 0 for 1 ≤ i < r and

Supp(F ) ⊂
⋃
i>1

Ei.

(2) If DEi = 0 for 1 ≤ i < r and DEr ≥ −1, then D is the smallest element of D(m0).
(3) Assume that D,D′ ∈ D(m0) and DEi = D′Ei for 1 ≤ i < r. If D > D′, then

cffE1
(D) > cffE1

(D′).
(4) Assume that D and D′ are the smallest elements of D(m0) and D(m′0), respectively, and

that D′Ei = 0 for 1 ≤ i ≤ r. Then D +D′ is the smallest element of D(m0 +m′0).

Proof. We write as D =
∑r
i=0miEi and D′ =

∑r
i=0m

′
iEi.

(1) For any 1 ≤ k < r, there exists a cycle F ′ supported on Ek+1 + · · ·+ Er such that

cffEk+1
(F ′) = 1, F ′Ek+1 = · · · = F ′Er−1 = 0, F ′Er < 0

(cf. [3, III.5]). If a := DEk < 0, then D + aF ′ ∈ D(m0) and (D + aF ′)Ek = 0. By repeating
this process, we obtain the assertion.

(2) It follows from [11, Lemma 2.2] (cf. [12, 2.1]).
(3) If m1 = m′1, we can take 1 ≤ k < r so that mi = m′i for i ≤ k and mk+1 > m′k+1. Then

(D −D′)Ek = mk+1 −m′k+1 > 0; it contradicts that DEk = D′Ek.
(4) Let di = [[ci, . . . , cr]]. By [8, Lemma 1.1], the minimality of D is characterized by the

condition that mi = dmi−1/die for 1 ≤ i ≤ r. By the assumption, it follows from Lemma 1.2 (1)
and (2) of [8] that m′i = m′i−1/di. Hence we have

mi +m′i = dmi−1/die+m′i−1/di =
⌈
(mi−1 +m′i−1)/di

⌉
.

�

2.2. Weighted homogeneous surface singularities. Let us recall some fundamental facts
on weighted homogeneous surface singularities (cf. [23]).

Assume that (V, o) is a weighted homogeneous singularity. Then the resolution graph Γ of
(V, o) is a star-shaped graph as in Figure 2, where Ei,j are rational curves, g is the genus of the
curve E0, ci,j and c0 are the self-intersection numbers. The component E0 is called the central
curve.

E0 −c0

[g]

−c1,1

E1,1

−c1,s1

E1,s1

−cm,1

Em,1

−cm,sm

Em,sm

· · ·

· · ·

·
·
·

Figure 2. A star-shaped resolution graph

For 1 ≤ i ≤ m, we define positive integers αi and βi with gcd(αi, βi) = 1 by

αi/βi = [[ci,1, . . . , ci,si ]].
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The data

(g, c0, (α1, β1), . . . , (αm, βm))

is called the Seifert invariant. Note that the graph Γ can be recovered from the Seifert invariant.
Let Pi ∈ E0 denote the point E0∩Ei,1 and Q a divisor on E0 such that OE0

(−E0) ∼= OE0
(Q).

We define a Q-divisor D and divisors Dk (k ∈ Z≥0) on E0 as follows:

D := Q−
m∑
i=1

βi
αi
Pi, Dk := kQ−

m∑
i=1

⌈
kβi
αi

⌉
Pi.

We call D the Pinkham-Demazure divisor. It is known that degD > 0. For any divisor F on
E0, we write as

Hi(F ) = Hi(OE0
(F )), hi(F ) = dimCH

i(F ).

Let R := R(V, o) denote the homogeneous coordinate ring of the singularity (V, o). Then
we have the expression R =

⊕
k≥0H

0(Dk)T k ⊂ C(E0)[T ], where C(E0) is the field of rational

functions on E0 and T an indeterminate (cf. [23], [30]). We have the following.

Theorem 2.3 (Pinkham [23]). pg(V, o) =
∑
k≥0 h

1(Dk).

Let H(V, t) denote the Hilbert series of the graded ring R, i.e., H(V, t) =
∑
k≥0 h

0(Dk)tk.

Proposition 2.4. We have the following.

(1) If we write as H(V, t) = p(t)/q(t) + r(t), where p, q, r ∈ C[t] and deg p < deg q, then
pg(V, o) = r(1).

(2) Let (V1, o1) and (V2, o2) be weighted homogeneous singularities with the same resolution
graph. Then pg(V1, o1)− pg(V2, o2) = (H(V1, t)−H(V2, t))|t=1.

Proof. (1) follows from [17, 3.1.3].
(2) It follows from Theorem 2.3 and the Riemann-Roch Theorem

h0(Dn)− h1(Dn) = degDn + 1− g

(the right-hand side is determined by Γ). �

The next theorem follows from [33, 2.9].

Theorem 2.5. Let D′ =
∑

((αi − 1)/αi)Pi. Then R is Gorenstein if and only if there exists
an integer a such that KC ∼ aD − D′; the integer a coincides with the a-invariant a(R) of
Goto–Watanabe ([6]).

2.3. Surface singularities with star-shaped graph. First, we briefly review some important
facts in [30, §6]. Assume that (V, o) is a normal surface singularity with star-shaped resolution
graph Γ as Figure 2. Even if (V, o) is not weighted homogeneous, in the same manner as in
Section 2.2, we obtain the Pinkham-Demazure divisor

D = Q−
m∑
i=1

βi
αi
Pi

on the central curve E0 ⊂ E on the minimal good resolution X. We define the graded ring R by

R = R(E0, D) :=
⊕
k≥0

H0(Dk)T k ⊂ C(E0)[T ].

Let V = SpecR and o ∈ V the point defined by the maximal ideal
⊕

k≥1H
0(Dk)T k. Then

(V , o) is a weighted homogeneous normal surface singularity with resolution graph Γ.
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Theorem 2.6 (Tomari-Watanabe [30, §6]). For every n ∈ Z≥0, there exists the minimal cycle
Ln ∈ ZE such that Ln is anti-nef on E − E0 and cffE0(Ln) = n.1 Then we have a natural
isomorphism OE0

(−Ln) ∼= OE0
(Dn) for n ∈ Z≥0; in fact,
m∑
i=1

⌈
kβi
αi

⌉
Pi = (Ln − nE0)|E0 .

In general, we have pg(V, o) ≤ pg(V , o). If the equality pg(V, o) = pg(V , o) holds, the following
sequence is exact for n ≥ 0:

0→ H0(OX(−Ln − E0))→ H0(OX(−Ln))→ H0(OE0(Dn))→ 0.

Remark 2.7. From the definitions of ZX and MX , we have the following:

cffE0
(ZX) = min {m ∈ Z>0 | degDm ≥ 0},

cffE0
(MX) = min

{
m ∈ Z>0 | H0(Dm) 6= 0

}
.

Clearly, z0 := cffE0
(ZX) ≤ m0 := cffE0

(MX). One of fundamental problems is to find a
characterization for the equality z0 = m0. We have ZX = Lz0 by the definition of the cycles Ln.
It might be natural to ask whether the condition m0 = z0 implies the equality MX = ZX . For
Brieskorn complete intersection singularities, we have a criterion for z0 = m0 and we always have
MX = Lm0

(see [8], [12]). However, in general, this is not true even for weighted homogeneous
singularities (see [29]). We will see later (Proposition 4.9) an example of a weighted homogeneous
singularity homeomorphic to a Brieskorn complete intersection singularity which does not satisfy
MX = Lm0 though z0 = m0 and has the “maximal geometric genus” in the following sense.

Definition 2.8. Let X (Γ) denote the set of normal surface singularities with resolution graph
Γ and let

pg(Γ) := max {pg(W, o) | (W, o) ∈ X (Γ)}.
Obviously, pg(Γ) is an invariant of Γ. From Theorem 2.6, pg(Γ) is attained by a weighted

homogeneous singularity. However, the inequality pg(V , o) < pg(Γ) may happen in general,

namely, pg(V , o) is not topological, even if Γ is a resolution graph of a Brieskorn complete
intersection singularity (see Section 4).

Let bxc denote the floor (or, integer part) of a real number x.

Example 2.9. Assume that a resolution graph Γ has the Seifert invariant

(g, c0, k1(α1, β1), . . . , km(αm, βm)),

where ki(αi, βi) means that (αi, βi) is repeated ki times, and (αi, βi) 6= (αj , βj) for i 6= j.
Moreover, assume that k2, . . . , km ∈ 2Z; in this case, we call Γ a hyperelliptic type.

Let C be a hyperelliptic or elliptic curve of genus g and let R(C) be the set of ramification
points of the double cover C → P1 with involution σ : C → C. Let P ∈ R(C) and Q = c0P . Take
Pi,j ∈ C \ R(C) (1 ≤ i ≤ m, 1 ≤ j ≤ bki/2c) so that P1,1, σ(P1,1), . . . , Pm,bkm/2c, σ(Pm,bkm/2c)
are different from each other. Let Qi,j = Pi,j + σ(Pi,j). Then we define the Pinkham-Demazure
divisor D on C by

D =


Q−

m∑
i=1

βi
αi

ki/2∑
j=1

Qi,j if k1 ∈ 2Z,

Q− β1
α1
P − β1

α1

(k1−1)/2∑
j=1

Q1,j −
m∑
i=2

βi
αi

ki/2∑
j=1

Qi,j if k1 6∈ 2Z.

1Our symbol Ln is equal to −L−n in [30, §6].
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Since Qi,j ∼ 2P , we have Dn ∼ (degDn)P . Let R =
⊕

k≥0H
0(Dk)T k and V = SpecR. We

say that the weighted homogeneous normal surface singularity (V , o) is a hyperelliptic type, too.
Then the singularity (V , o) has the resolution graph Γ and pg(V , o) = pg(Γ), because it follows
from Clifford’s theorem that h1(Dn) is the maximum of h1(D′n), where C ′ is any nonsingular
curve of genus g and D′ is any Pinkham-Demazure divisor on C ′ which corresponding to the
resolution graph Γ.

The following problems are open even for Brieskorn complete intersections.

Problem 2.10. Give an explicit way to compute pg(Γ) from Γ.

Problem 2.11. Classify complex structures which attain pg(Γ). Is E0 always hyperelliptic if
pg(V, o) = pg(Γ)?

Problem 2.12. How can we generalize the notion of “hyperelliptic type” to non-star-shaped
cases?

3. Brieskorn complete intersection singularities

In this section, we review some basic facts on the Brieskorn complete intersection (BCI for
short) surface singularities and study arithmetic properties of invariants of those singularities.
Then we show that a BCI singularity with g ≤ 1 always has the maximal geometric genus and
its maximal ideal cycle coincides with the fundamental cycle on the minimal good resolution.
We basically use the notation of Section 2.

Recall that π : X → V denotes the minimal good resolution of a normal surface singularity
(V, o) with exceptional set E.

3.1. The cycles and the Seifert invariants. We summarize the results in [12] which will be
used in this section; those are a natural extension of the results on the hypersurface case obtained
by Konno and Nagashima [8]. We assume that (V, o) is a BCI normal surface singularity, namely,
V ⊂ Cm can be defined as

(3.1) V = { (xi) ∈ Cm | qi1xa11 + · · ·+ qimx
am
m = 0, i = 3, . . . ,m},

where ai are integers such that 2 ≤ a1 ≤ · · · ≤ am and qij ∈ C.
We define positive integers `, `i, α, αi, βi, ĝ, ĝi, and ei as follows:2

` := lcm{a1, . . . , am}, `i := lcm({a1, . . . , am} \ {ai}),
αi := `/`i, α := α1 · · ·αm, ĝ := a1 · · · am/`, ĝi := ĝαi/ai, ei := `/ai,

eiβi + 1 ≡ 0 (mod αi) and 0 ≤ βi < αi.

We easily see that the polynomials appeared in (3.1) are weighted homogeneous polynomials of
degree ` with respect to the weights (e1, . . . , em) and that gcd{αi, αj} = 1 for i 6= j.

Definition 3.1. Let Z(i) = (xi)E , the exceptional part of the divisor divX(xi).

The next result follows from Theorem 4.4, 5.1, 6.1 of [12].

Theorem 3.2. We have the following.

(1) The resolution graph of (V, o) is as in Figure 3 (si = 0 if αi = 1), where

E = E0 +

m∑
i=1

si∑
ν=1

ĝi∑
ξ=1

Ei,ν,ξ,

2Using the notation of [12, §3], we have l = dm, `i = dim, αi = nim, βi = µim, ei = eim.
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and the Seifert invariant is given by the following:

2g − 2 = (m− 2)ĝ −
m∑
i=1

ĝi,

c0 =

m∑
i=1

ĝiβi
αi

+
a1 · · · am

`2
, βi/αi =

{
[[ci,1, . . . , ci,si ]]

−1 if αi ≥ 2

0 if αi = 1.

(2) For 1 ≤ i ≤ m, we have

cffE0(Z(i)) = ei = deg(xi), Z(i) =

{∑ĝi
ξ=1E

∗
i,si,ξ

if αi ≥ 2

ĝiE
∗
0 if αi = 1.

Hence Z(i) = Lei for 1 ≤ i ≤ m, and MX = Z(m) since e1 ≥ · · · ≥ em.
(3) We have cffE0(ZX) = min{em, α} (cf. Remark 2.7) and

ZX =

{
MX if em ≤ α
deg(αD)E∗0 if em > α.

In particular, ZX = MX if and only if em ≤ α.

E0 −c0

[g]

−c1,1

E1,1,1

−c1,2

E1,2,1

−c1,s1

E1,s1,1

−c1,1

E1,1,ĝ1

−c1,2

E1,2,ĝ1

−c1,s1

E1,s1,ĝ1

−cm,1

Em,1,1

−cm,2

Em,2,1

−cm,sm

Em,sm,1

−cm,1

Em,1,ĝm

−cm,2

Em,2,ĝm

−cm,sm

Em,sm,ĝm

· · ·

· · ·

· · ·

· · ·

·
·
·

·
·
·

·
·
·

ĝ1

ĝm

Figure 3. The graph Γ(a1, . . . , am)

Definition 3.3. We denote the weighted dual graph of Figure 3 by Γ(a1, . . . , am).

Remark 3.4. We describe more precisely the situation of Theorem 3.2 (2).

Let Hi := divX(xi)− Z(i). Then we have the decomposition Hi =
⋃ĝi
ξ=1Hi,ξ into irreducible

components such that

• Hi,ξE = Hi,ξEi,si,ξ = 1 if αi 6= 1,
• Hi,ξE = Hi,ξE0 = 1 and Hi,ξ ∩Hi,ξ′ = ∅ (ξ 6= ξ′) if αi = 1.
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In any cases, Hi ∩Hj = ∅ for i 6= j.
For 1 ≤ i ≤ m, let {Piξ | ξ = 1, . . . , ĝi} ⊂ E0 denote the set of points determined by xi = 0

in the weighted projective space P(e1, . . . , em). Then

{Piξ} =

{
E0 ∩ Ei,1,ξ if αi 6= 1,

E0 ∩Hi,ξ if αi = 1.

Let us recall that OE0(−Ln) ∼= OE0(Dn) (see Theorem 2.6) and Dα = αD.

Lemma 3.5. We have the following.

(1) For n ∈ Z>0, α | n if and only if Ln = (degDn)E∗0 . In particular, if degDei > 0, then
α | ei.

(2) If d ∈ Z>0 and dE∗0 ∈ ZE, then dE∗0 = Ln, where n = dα/degDα.

Proof. (1) Let φ : X → X ′ be the blowing-down of the divisor E − E0. Then, at each point

φ(Piξ) ∈ X ′ (1 ≤ i ≤ m, 1 ≤ ξ ≤ ĝi),
the reduced divisor φ(E0) is a Q-Cartier divisor and the order of

[φ(E0)] ∈ Cl(X ′, φ(Piξ))

is αi (see Section 2.1). As in [13, II (b)], we have the pull-back φ∗φ(E0). Then

E∗0 = cffE0(E∗0 )(φ∗φ(E0)).

Since αi’s are pairwise relatively prime, α is the minimal positive integer such that αφ(E0)
is a Cartier divisor on X ′, or equivalently, φ∗(αφ(E0)) ∈ ZE. Hence α | n if and only if
φ∗(nφ(E0)) ∈ ZE. If this is the case, φ∗(nφ(E0)) = Ln by Lemma 2.2 (2), and moreover,
Ln = (−LnE0)E∗0 = (degDn)E∗0 . By Theorem 3.2 (2), Lei = (degDei)E

∗
0 if degDei > 0.

(2) As seen above, dE∗0 = Ln by Lemma 2.2 (2). Then n = d cffE0
(E∗0 ). From (1), we have

α = degDα cffE0
(E∗0 ). �

3.2. The coordinate ring and the semigroups. By virtue of Theorem 3.2, we can write
down the Pinkham-Demazure divisor as follows:

D = Q−∆, ∆ =

m∑
i=1

βi
αi
P̄i, P̄i =

ĝi∑
ξ=1

Piξ (βi = 0 if αi = 1).

Definition 3.6. We call a cycle C ≥ 0 a monomial cycle if C =
∑m
i=1miZ

(i) with mi ∈ Z≥0,
and write x(C) =

∏m
i=1 x

mi
i . Clearly, (x(C))E = C.

Remark 3.7. Let C > 0 be an anti-nef Q-cycle. Suppose that αi > 1 for i ≤ s and αi = 1 for
i > s. If, for each i ≤ s, ci := CEi,si,ξ is non-negative integer independent of 1 ≤ ξ ≤ ĝi, and if
the intersection numbers of C and the exceptional components other than

Ei,si,ξ (i ≤ s, 1 ≤ ξ ≤ ĝi)
are zero, then C is a monomial cycle since C =

∑s
i=1 ciZ

(i).
On the other hand, even if C ∈ ZE and C = cE∗0 for some c ∈ Z>0, C is not necessarily a

monomial cycle. For example, if α < em, then Lα = (degDα)E∗0 is not a monomial cycle (see
Lemma 3.5, Theorem 3.2 (2)).

Let 〈m1, . . . ,mk〉 ⊂ Z≥0 denote the numerical semigroup generated by integers

m1, . . . ,mk ∈ Z≥0.
For n ∈ Z≥0, let Rn = H0(Dn)Tn ⊂ R := R(V, o), the vector space of homogeneous functions
of degree n (see Section 2.2).
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Proposition 3.8. Let n ∈ Z≥0. We have the following.

(1) If degDn ∈ 〈ĝ1, . . . , ĝm〉, then there exists a monomial cycle W such that cffE0
(W ) = n,

and hence h0(Dn) 6= 0.
(2) If degDn = degDk ∈ 〈ĝ1, . . . , ĝm〉 for some k ≥ 0, then Dn ∼ Dk. In particular, if

degDn = 0, then Dn ∼ 0.
(3) If d := degDn > 0, then dE∗0 ∈ ZE and degDα | d.

Proof. (1) We first assume that degDn = 0. If αi > 1, then cffEi,j,ξ(Ln) is independent of
1 ≤ ξ ≤ ĝi for each 1 ≤ j ≤ si (see Figure 3). Therefore, by Lemma 2.2 (1), there exists a cycle
F > 0 such that L := Ln + F is a monomial cycle with cffE0

(L) = cffE0
(Ln) = n and LE0 = 0

(cf. Remark 3.7). Then x(L) ∈ Rn.
Next assume that degDn = c1ĝ1 + · · · + cmĝm > 0 (ci ∈ Z≥0). We may assume that αi > 1

for i ≤ s and αi = 1 for i > s. For i ≤ s, let Fi =
∑ĝi
ξ=1

∑si
j=1Ei,j,ξ. Since Fi is anti-nef on its

support and degDn = −LnE0, it follows from Theorem 3.2 (2) that the cycle

W ′ = Ln +

s∑
i=1

ciFi −
m∑

i=s+1

ciZ
(i)

is anti-nef and W ′E0 = 0. Applying the argument above to the cycle W ′, there exists a cy-
cle F ′ > 0 such that W ′ + F ′ is a monomial cycle with cffE0(W ′) = cffE0(W ′ + F ′) and
(W ′ + F ′)E0 = 0. Hence

W := W ′ + F ′ +

m∑
i=s+1

ciZ
(i)

is also a monomial cycle and cffE0
(W ) = cffE0

(W ′ +
∑m
i=s+1 ciZ

(i)) = n. Thus, we obtain that
x(W ) ∈ Rn.

(2) We denote by Cn the monomial cycle W ′ +F ′ above, and also by Ck the monomial cycle
obtained from Lk in the same manner as above. Since Cn − Ck = Ln − Lk, on a suitably small
neighborhood of E0 ⊂ X, we have

Ln − Lk = divX(x(Cn)/x(Ck)) ∼ 0.

Hence Dn −Dk ∼ (−Ln + Lk)|E0
∼ 0.

(3) Since degDn = −LnE0, Ln − dE∗0 is an anti-nef Q-cycle with (Ln − dE0)E0 = 0. By the
argument above, there exists a cycle F > 0 such that Ln − dE∗0 +F is a monomial cycle. Hence
dE∗0 is also a cycle (cf. Remark 3.7). We have degDα | d by Lemma 3.5. �

Theorem 3.9. If g ≤ 1, then pg(V, o) = pg(Γ(a1, . . . , am)) (see Definition 2.8).

Proof. By Pinkham’s formula, pg(V, o) =
∑
n≥0 h

1(Dn). If g = 0, then this is topological,

and the assertion is clear. Suppose that g = 1. If degDn 6= 0, then h1(Dn) is topological
by Riemann-Roch theorem and Serre duality, namely, independent of the complex structure of
(V, o). If degDn = 0, then h1(Dn) = h0(Dn) = 1 by Proposition 3.8. Hence

pg(V, o) = pg(Γ(a1, . . . , am)).

�

Theorem 3.10. We have the following.

(1) 〈e1, . . . , em〉 =
{
n ∈ Z≥0 | h0(Dn) 6= 0

}
.

(2) For n ∈ Z≥0, n ∈ 〈e1, . . . , em〉 if and only if degDn ∈ 〈ĝ1, . . . , ĝm〉.
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Proof. (1) follows from the fact that

R =
⊕
k≥0

H0(Dk)T k

is generated by the elements x1, . . . , xm with deg xi = ei.
(2) The “if” part follows from Proposition 3.8 (1). Assume that n =

∑m
i=1miei with mi ≥ 0.

Then the monomial cycle M :=
∑m
i=1miZ

(i) satisfies cffE0
(M) = n. We proceed in a similar way

as in the proof of Proposition 3.8. We may assume that αi > 1 for i ≤ s and αi = 1 for i > s.
Then −ME0 =

∑
i>smiĝi ∈ 〈ĝ1, . . . , ĝm〉 by Theorem 3.2 (2). Let W = M −

∑
i>smiZ

(i)

and n′ = cffE0
(W ). Clearly, W is also a monomial cycle. By the definition of Ln′ , we have

cffE0
(W − Ln′) = 0 and W − Ln′ ≥ 0. Since cffEi,j,ξ(Ln′) and cffEi,j,ξ(W )) are independent of

1 ≤ ξ ≤ ĝi for each 1 ≤ j ≤ si, we obtain that (W − Ln′)E0 ∈ 〈ĝ1, . . . , ĝm〉. On the other hand,
Ln = Ln′ + (M −W ) by Lemma 2.2 (4). Therefore,

degDn = −LnE0 = (W − Ln′ −M)E0 ∈ 〈ĝ1, . . . , ĝm〉. �

Corollary 3.11. If g > 0, then a(R) ∈ 〈e1, . . . , em〉 and 2g − 2 ∈ 〈ĝ1, . . . , ĝm〉. Note that
a(R) = (m− 2)`−

∑m
i=1 ei by [6, 3.1.6].

Proof. By Theorem 2.5, KE0 ∼ Da(R). Since h0(KE0) = g > 0, the assertion follows from
Theorem 3.10. �

Theorem 3.12. If H0(Dα) 6= 0, then MX = ZX . In particular, if g ≤ 1, then MX = ZX .

Proof. If H0(Dα) 6= 0, then α ∈ 〈e1, . . . , em〉 by Theorem 3.10. Hence em ≤ α, and MX = ZX
by Theorem 3.2. If g ≤ 1, we have H0(D) 6= 0 for any divisor D on E0 with degD > 0. �

Example 3.13. We have seen that if α < em, then H0(Dα) = 0 even though Dα > 0. We show
that the condition em < α does not imply H0(Dα) 6= 0; thus, the converse of Theorem 3.12 does
not hold.

Suppose that (a1, a2, a3) = (6, 10, 45). Then we have

{e1, e2, e3} = {15, 9, 2}, {ĝ1, ĝ2, ĝ3} = {5, 3, 2}, α = 3, degDα = 1,

and H0(Dα) = 0 by Theorem 3.10. Note that the Seifert invariant is (11, 1, 2(3, 1)). This is a
hyperelliptic type (see Example 2.9). Hence pg(V, o) = pg(Γ(6, 10, 45)).

3.3. Non-BCI singularities. In the rest of this section, we assume that (V, o) is an arbitrary
weighted homogeneous singularity with resolution graph Γ(a1, . . . , am). We use the same nota-
tion as above. Recall that the Pinkham-Demazure divisor is expressed as D = Q−∆.

Lemma 3.14. Assume that α ≤ em. Then MX = ZX if and only if there exists an effective
divisor F on E0 such that αD = Dα ∼ F and SuppF ∩ Supp ∆ = ∅.

Proof. Let c = degDα. Since α ≤ em, it follows from Theorem 3.2 and Lemma 3.5 that
ZX = Lα = cE∗0 (note that the fundamental cycle is determined by the resolution graph). On
the other hand, MX = ZX if and only if there exists a function h ∈ H0(OX(−ZX)) such that
divX(h) = ZX + H, where H is the non-exceptional part. In this case, we have EH = E0H
since H ∼ −cE∗0 . Thus (E − E0)H = 0. Let F = H|E0 . Then SuppF ∩ Supp ∆ = ∅ and
Dα ∼ −Lα|E0

∼ F .
Conversely, suppose that Dα ∼ F > 0 and SuppF ∩ Supp ∆ = ∅. Since H0(Dα) 6= 0, there

exists h ∈ H0(OX) such that divX(h) = cE∗0 +E′ +H where E′ is a cycle supported in E −E0

and H is the non-exceptional part. By assumption, (E′ + H)|E0 ∼ −Lα|E0 ∼ F . In fact, we
may assume that (E′ + H)|E0 = F , since the restriction map H0(OX(−Ln)) → H0(OE0(Dn))
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is surjective by Theorem 2.6. Then H|E0
= F by the assumption on the supports, and E′ = 0

since E′2 = divX(h)E′ = 0. �

Lemma 3.15. For any effective divisor F ∈ Div(E0) such that degF = degαD, there exists a

divisor Q̃ ∈ Div(E0) such that

F ∼ αQ̃− α∆.

Let D̃ = Q̃ − ∆ and R̃ = R(E0, D̃) (see Section 2.3). If R = R(E0, D) is a Gorenstein ring,

then R̃ is also Gorenstein if and only if a(Q̃−Q) ∼ 0, where a = a(R).

Proof. Since deg(F − αD) = 0, there exists a divisor QF with degQF = 0 such that

αQF ∼ F − αD.

Let Q̃ = QF +Q. Then

αQ̃− α∆ ∼ αQF + αQ− α∆ ∼ F.
Let D′ be the Q-divisor as in Theorem 2.5, and assume that R is Gorenstein. Then

KE0
∼ aD −D′, and R̃ is Gorenstein if and only if (aD −D′) ∼ (aD̃ −D′). �

Theorem 3.16. There exists a weighted homogeneous singularity with a resolution graph
Γ(a1, . . . , am) such that the maximal ideal cycle coincides with the fundamental cycle on the
minimal good resolution.

Proof. Let (V, o) be a BCI singularity. If em ≤ α, we have MX = ZX by Theorem 3.2. If

em > α, by Lemma 3.14 and 3.15, we can take a Pinkham-Demazure divisor D̃ on E0 so that

SpecR(E0, D̃) satisfies the assertion. �

4. Examples of singularities in X (Γ(2, 3, 3, 4))

We study some special structures of weighted homogeneous singularities with resolution graph
Γ(2, 3, 3, 4). The tuple of integers (a1, a2, a3, a4) = (2, 3, 3, 4) is characterized by the properties
that a1 + · · · + am (ai ≥ 2) is minimal such that the corresponding BCI singularity satisfies
E 6= E0 and g = 2.

Let Γ = Γ(2, 3, 3, 4) and let X (Γ) denote the set of weighted homogeneous singularities with
resolution graph Γ. We shall show that the singularities in X (Γ) which attain the maximal
geometric genus pg(Γ) (see Definition 2.8) are of hyperelliptic type, and obtain the equations for

them. Moreover, we classify the singularities in X (Γ) with the property that the maximal ideal
cycle coincides with the fundamental cycle.

In the following, we use the notation of Section 3. Notice that the coefficients of the cycles
ZX , Ln, and ZKX are determined by Γ.

First, we give the fundamental invariants of BCI singularities with resolution graph Γ (cf.
Section 3.1); these data and the following theorem are used in other subsections.

Notation 4.1. Let mult(V, o) (resp. embdim(V, o)) denote the multiplicity (resp. embedding
dimension) of the singularity (V, o), namely, that of the local ring OV,o.

Theorem 4.2. Let A := OW,p be the local ring of a d-dimensional Cohen-Macaulay complex
space W at p ∈W . Then we have the following.

(1) (Abhyankar [1]) embdimA ≤ multA+ d− 1.
(2) (Sally [25]) If A is Gorenstein and multA ≥ 3, then embdimA ≤ multA+ d− 2.
(3) (Serre [26]) If A is Gorenstein and embdimA = d+2, then A is a complete intersection.
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4.1. The BCI singularities. Assume that (V, o) is a BCI surface singularity with

(a1, . . . , a4) = (2, 3, 3, 4).

Then V can be defined by polynomials

f1 := x21 + x32 + px33, f2 := x32 + x33 + x44 (p 6= 0, 1).

These are weighted homogeneous of deg fi = ` = 12 with respect to the weights

(deg x1, . . . ,deg x4) = (e1, . . . , e4) = (6, 4, 4, 3).

We also have

(α1, . . . , α4) = (1, 1, 1, 2).

By [12, 6.3], mult(V, o) = a1a2 = 6. Let R = C[x1, . . . , x4]/(f1, f2). It follows from [6, 3.1.6]
that

a(R) = 12 + 12− (6 + 4 + 4 + 3) = 7.

The Hilbert series of R is

(4.1) H(V, t) =
(1− t12)2

(1− t3)(1− t4)2(1− t6)
= 1 + t3 + 2t4 + 2t6 + 2t7 + 3t8 + · · · .

By Proposition 2.4 (1), we have

pg(V, o) = (2 + 2t+ 2t3 + t4 + t7)|t=1 = 8.

From the result of Section 3.1, we have the resolution graph Γ as Figure 4.

E0 −2

[2]

−2 E1

−2 E2

−2 E3

Figure 4. Γ = Γ(2, 3, 3, 4)

Since α = 2 < e4, we have ZX 6= MX by Theorem 3.2. In fact, we have that

ZX = L2 = E + E0 = E∗0 , MX = Z(4) = L3 = ZX + E, ZKX = 4ZX .

The fundamental genus is pa(ZX) = h1(OZX ) = 1 + ZX(ZX + KX)/2 = 4. The arith-
metic genus of (V, o) is defined by pa(V, o) = max {pa(D) | D > 0 is a cycle}. It is known that
pa(ZX) ≤ pa(V, o) ≤ pg(V, o) (see [32]). By Koyama’s inequality (see [7, Proposition 1.6]), we
have pa(V, o) = pa(2ZX) = 5.

The Pinkham-Demazure divisor D and Dn are as follows:

(4.2) D = Q−
3∑
i=1

1

2
Pi, Dn = nQ−

3∑
i=1

⌈n
2

⌉
Pi,

where OE0(Q) = OE0(−E0) and {Pi} = E0 ∩ Ei. Since degQ = 2, we have the following table;
these are topological invariant and also used in Section 4.2–4.3.

n 1 2 3 4 5 6 7
degDn −1 1 0 2 1 3 2
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The divisor D satisfies the following analytic condition.

Lemma 4.3. Q ∼ 2Pi ∼ KE0
for i = 1, 2, 3.

Proof. Since a(R) = 7, by Theorem 2.5 and Proposition 3.8 (2),

KE0
∼ D7 ∼ D7 − 2D3 = Q.

Note that E0 is a hyperelliptic curve with g = 2. From Remark 3.4, we see that

{P1, P2, P3} = {f1 = f2 = x4 = 0} ⊂ P(6, 4, 4, 3).

Thus, a double cover E0 → P1 is given by (x1 : x2 : x3 : x4) 7→ (x2 : x3) and Pi are its
ramification points. Hence 2Pi ∼ KE0 . �

Later, we shall see the variation of the Pinkham-Demazure divisor D and corresponding
singularities with Γ = Γ(2, 3, 3, 4).

4.2. Singularities with pg = pg(Γ). Let C be a nonsingular curve of genus two and let
{P1, P2, P3} ⊂ C be a set of three distinct points. Let Q be a divisor on C with degQ = 2. We
define D and Dn (n ∈ Z≥0) as in (4.2). Suppose that (V, o) ∈ X (Γ) and the homogeneous coor-
dinate ring R of (V, o) is expressed as R =

⊕
n≥0H

0(Dn)Tn, where H0(Dn) = H0(C,OC(Dn))

(see Section 2.3). For n ∈ Z≥0, let Rn = H0(Dn)Tn. We identify C with the central curve
E0 ⊂ E.

Lemma 4.4. The following are equivalent.

(1) (V, o) is Gorenstein.
(2) KC is linearly equivalent to D7.
(3) h0(D7) = 2.

In this case, we have a(R) = 7.

Proof. Since g = g(C) = 2, for a divisor F of degree 2 on C, h0(F ) = 2 if and only if F ∼ KC .
The assertion follows from Theorem 2.5. �

Notation 4.5. Let R(C) ⊂ C be the set of ramification points of the double cover C → P1 and
σ : C → C the hyperelliptic involution; we have R(C) = {P ∈ C | σ(P ) = P}.

From Example 2.9, we have the following.

Proposition 4.6. Assume that P1 ∈ R(C), P2 ∈ C \ R(C), P3 = σ(P2) and Q = 2P1. Then

(4.3) Dn ∼

{
n
2P1 (n is even)
n−3
2 P1 (n is odd)

and pg(V, o) = pg(Γ).

We can prove the converse of the above result.

Proposition 4.7. Assume that pg(V, o) = pg(Γ). Then D can be taken as in Proposition 4.6,
namely, by suitable permutation of Pi’s, we have P1 ∈ R(C), P2 ∈ C \ R(C), P3 = σ(P2), and
Q ∼ 2P1.

Proof. By Proposition 2.4 (2) and Clifford’s theorem (cf. Example 2.9), we have

(4.4) h0(Dn) = bdegDn/2c+ 1 if degDn ≤ 2.

Since degD2 = 1 and h0(D2) = 1, there exists a point P4 ∈ C such that

(4.5) D2 = 2Q− (P1 + P2 + P3) ∼ P4.
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Since degD3 = 0 and h0(D3) = 1, it follows that

(4.6) D3 = 3Q− 2(P1 + P2 + P3) ∼ 0.

From (4.5) and (4.6), we have D4 ∼ 2P4 ∼ Q. Since h0(D4) = 2, we have P4 ∈ R(C). Therefore,
P + σ(P ) ∼ Q for any P ∈ C. It follows from (4.5) that

P1 + P2 + P3 ∼ Q+ P4 ∼ P1 + σ(P1) + P4.

Hence P2 + P3 ∼ σ(P1) + P4. If P2 + P3 = σ(P1) + P4, we are done (e.g., if P2 = P4, then
P2 ∈ R(C), σ(P1) = P3 6∈ R(C)). If P2 + P3 6= σ(P1) + P4, then h0(σ(P1) + P4) = 2, and this
implies that P1 = P4 and P3 = σ(P2). �

We shall give the fundamental invariants of these singularities.
For an invertible sheaf L on X, we say that P ∈ X is a base point of L if L is not generated

by its global sections at P .

Lemma 4.8 (cf. [32, 2.7], [24, 4.6]). If OX(−MX) has no base points, then mult(V, o) = −M2
X .

Proposition 4.9. Assume that pg(V, o) = pg(Γ). Then we have the following.

(1) MX = ZX +E1, where P1 is taken as in Proposition 4.6. Furthermore, OX(−MX) has
no base points and mult(V, o) = 4.

(2) pg(V, o) = 10.
(3) (V, o) is a complete intersection singularity defined as

V =
{

(x, y, z, w) ∈ C4
∣∣ y2 − xz = w2 − h5(x2, z) = 0

}
,

where h5 is a homogeneous polynomial of degree 5. This is a weighted homogeneous
singularity of weight type (2, 3, 4, 10; 6, 20).

Proof. Assume that D is as in Proposition 4.6. It follows from Lemma 4.4 that (V, o) is Goren-
stein, because KC ∼ 2P1 ∼ D7.

(1) Since h0(D2) > 0, there exists a homogeneous function h ∈ R2 such that

divX(h) = ZX + F +H,

where F is a cycle satisfying 0 ≤ F ≤ E1 + E2 + E3 and H is the non-exceptional part. Note
that any point of H ∩E is in E0 \{P1, P2, P3} or (E1∪E2∪E3)\E0, because h is homogeneous.
Since

0 ∼ divX(h)|E0
∼ −D2 + (F +H)|E0

∼ −P1 + (F +H)|E0
,

we have F ∩E0 = {P1} and H ∩E0 = ∅; thus F = E1 and E∩H ⊂ E1 \E0. Since cffE1(Ln) ≥ 2
for all n ≥ 3, we have that MX = ZX + E1 and OX(−MX) is generated by global sections
outside E1 ∩ H. Since L4 = 2E∗0 and D4 ∼ 2P0 for any P0 ∈ R(C) \ {P1}, there exists
g ∈ R such that divX(g) = L4 + H ′ where H ′ intersects E0 only at P0 (cf. the proof of
Lemma 3.14). Since cffE1

(MX) = cffE1
(L4) = 2 and L4E1 = 0, OX(−MX) has no base points.

Hence mult(V, o) = −(MX)2 = 4 by Lemma 4.8.
(2) Let (V0, o) ∈ X (Γ) be a BCI singularity. Since degDn ≥ 3 for n ≥ 8, h0(Dn) with n ≥ 8 is

independent of the complex structure of the pair (C,D). By (4.1) and (4.4), we have the Hilbert
series H(V, t) of R = R(V, o):

H(V, t) = H(V0, t) + t2 + t5 =

(
1− t6

) (
1− t20

)
(1− t2) (1− t3) (1− t4) (1− t10)

= 1 + t2 + t3 + 2t4 + t5 + 2t6 + 2t7 + 3t8 + 2t9 + 4t10 + · · · .
(4.7)

By Proposition 2.4 (2), pg(V, o) = pg(V0, o) + 2 = 10.
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(3) From (4.7), we have the following functions belong to a minimal set of homogeneous
generators of C-algebra R:

x = f2T
2 ∈ R2, y = f3T

3 ∈ R3, z = f4T
4 ∈ R4

such that divE0
(fi) ≥ Di. Since x3, y2, xz ∈ H0(D6)T 6 and h0(D6) = 2, we have a relation

r6(x, y, z) = 0 at degree 6. Let C[X,Y, Z] be the polynomial ring with

(degX,deg Y,degZ) = (2, 3, 4).

The difference between the Hilbert series of R and that of the quotient ring C[X,Y,Z]
r6(X,Y,Z) is

H(V, t)− (1− t6)

(1− t2)(1− t3)(1− t4)
= t10 + · · · .

Hence we have an element w ∈ R10 such that {x, y, z, w} is a subset of a minimal set of homo-
geneous generators of R. However, since (V, o) is Gorenstein and mult(V, o) = 4, it follows from
Theorem 4.2 that R is a complete intersection generated by just x, y, z, w as C-algebra. Let F (t)
be the Hilbert series of C[X,Y, Z,W ]/(r6(X,Y, Z)), where degW = 10. Then

H(V, t)− F (t) = −t20 + · · · .
Hence we have a relation r20(x, y, z, w) = 0 at degree 20. Then the natural C-homomorphism

S := C[X,Y, Z,W ]/(r6(X,Y, Z), r20(X,Y, Z,W ))→ R

induced by (X,Y, Z,W ) 7→ (x, y, z, w) is surjective and the Hilbert series of S coincides with
H(V, t). Hence S ∼= R.

Next we consider the equations. Suppose that φ : E0 → P1 is a double cover such that
φ(P1) = {x0 = 0} and φ(Pi) = {x1 = 0} (i = 2, 3), where x0 and x1 are the homogeneous
coordinates of P1. Then E0 can be defined by the equation x22 = x0h5(x0, x1), where h5(x0, x1)
is a homogeneous polynomial of degree 5 such that h5(1, 0)h5(0, 1) 6= 0; the branch locus of
the covering is {x0h5(x0, x1) = 0} ⊂ P1. Now, we can put x = x0x1, y = x0x

2
1, z = x0x

3
1,

w = x20x
5
1x2. Then we have the relations

y2 = x20x
4
1 = xz, w2 = h5(x0, x1)(x0x

2
1)5 = h5(x2, z). �

4.3. Singularities with MX = ZX . We classify the singularities (V, o) ∈ X (Γ) with property
that MX = ZX . We use the notation of the preceding subsection.

Proposition 4.10. We have the following.

(1) MX = ZX if and only if there exists a point P4 ∈ C \ {P1, P2, P3} such that D2 ∼ P4; if
this is the case, D7 ∼ 4P4 −Q.

(2) Assume that MX = ZX and that x ∈ R2 and y ∈ Rm belong to a minimal set of
homogeneous generators of the C-algebra R, where m is the minimum of the degrees of
those generators except for x. If P4 is not a base point of H0(Dm), then mult(V, o) = m.

Proof. (1) The equivalence follows from Lemma 3.14.
(2) We have divX(x) = ZX +H, where H is the non-exceptional part. Since H ∩ E = {P4},

OX(−ZX) has just a base point P4. Assume that u, v are the local coordinates at P4 ∈ X such
that E0 = {u = 0} and H = {v = 0}. By the assumption, we may also assume that x = u2v
and y = um. Note that m ≥ 3 since h0(D2) = 1.

Then, at P4 ∈ X, mOX = (u2v, um)OX = (v, um−2)OX(−ZX), where m ⊂ OV,o is the
maximal ideal. Therefore, the base point of OX(−ZX) is resolved by the composition Y → X
of m − 2 blowing-ups at the intersection of the exceptional set and the proper transform of H.
Then the maximal ideal cycle MY on Y is the exceptional part of divY (x) and by Lemma 4.8,
mult(V, o) = −M2

Y = −Z2
X + (m− 2) = m. �
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Remark 4.11. The proof of Proposition 4.10 shows that mult(W, o) ≥ −Z2
X + 1 = 3 for any

normal surface singularity (W, o) with resolution graph Γ.

Lemma 4.12. Let P ∈ C.

(1) P 6∈ R(C) if and only if the linear system |3P | is free.

(2) There exist three distinct points A1, A2, A3 ∈ C such that 3P ∼
∑3
i=1Ai. For such

points, P ∈ R(C) if and only if P ∈ {A1, A2, A3}.

Proof. (1) Since h0(3P ) = 2 by the Riemann-Roch theorem, |3P | is free if and only if h0(2P ) = 1.
(2) If the linear system |3P | is free, then the first assertion follows from Bertini’s Theo-

rem. If |3P | is not free, then |2P | = |KC | is free and thus we can take three distinct points

A1 := P,A2, A3 ∈ C such that 2P ∼ A2 + A3. Suppose that 3P ∼
∑3
i=1Ai. If P ∈ R(C), we

have P ∈ {A1, A2, A3} since |3P | has a base point P . If P ∈ {A1, A2, A3}, then h0(2P ) = 2. �

We always assume that MX = ZX in the rest of this section and use the notation above:
notice that h0(D2) = 1 and D2 ∼ P4 ∈ C \ {P1, P2, P3}, and that h0(D) ≥ degD − 1 for any
divisor D on C by the Riemann-Roch theorem.

Let H(Γ, t) =
∑
n≥0 cnt

n denote the Hilbert series associated with a singularity (V ′, o) ∈ X (Γ)

with pg(V
′, o) = pg(Γ). As we have seen in (4.7),∑

n≥0

cnt
n = 1 + t2 + t3 + 2t4 + t5 + 2t6 + 2t7 + · · · .

We have the following:

h0(Dn) = cn for n = 0, 1, 2, 6 and n ≥ 8,

h0(D3), h0(D5) ∈ {0, 1}, h0(D4), h0(D7) ∈ {1, 2}.
We classify those singularities; they are divided into the following cases:

I. h0(D3) = 1.
II. h0(D3) = 0 and h0(D4) = 2.

III. h0(D3) = 0 and h0(D4) = 1.

We shall eventually have six cases as seen in Table 2.

Proposition 4.13. Assume that MX = ZX . If h0(D3) = 1, then (V, o) is not Gorenstein,
pg(V, o) = 8, mult(V, o) = 3, embdim(V, o) = 4, and

H(V, t) = 1 + t2 + t3 + t4 + t5 + 2t6 + t7 + · · · = 1 + t8 + t10

(1− t2) (1− t3)
.

Furthermore, the C-algebra R is generated by homogeneous elements of degree 2, 3, 8, 10. Note
that (V, o) has the minimal multiplicity among the singularities in X (Γ) (see Remark 4.11).

Proof. We have h0(D5) = 1, since h0(D2) = h0(D3) = 1. Since D2 ∼ P4 and D3 ∼ 0, by a
similar argument as in the proof of Proposition 4.7 we have that

3Q ∼ 2

3∑
i=1

Pi, Q ∼ 2P4 ∼ D4 ∼ D7, 3P4 ∼
3∑
i=1

Pi.

In particular, h0(D4) = h0(D7). By Proposition 4.10 (2), mult(V, o) = 3.
Suppose that h0(D4) = 2. Then (V, o) is Gorenstein by Lemma 4.4. Therefore,

embdim(V, o) ≤ mult(V, o) = 3

by Theorem 4.2. Then R is generated by x ∈ R2, y ∈ R3 and z ∈ R4 as C-algebra R with
equation y2 + xz = 0 (cf. the proof of Proposition 4.9 (3)); however, this implies that (V, o) is
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rational. Hence h0(D4) = 1. Then (V, o) is not Gorenstein by Lemma 4.4, and therefore (V, o)
is not hypersurface. Thus, embdim(V, o) = 4 by Theorem 4.2. Since H(Γ, t)−H(V, t) = t4 + t7,
we have pg(Γ) − pg(V, o) = 2 by Proposition 2.4. Since x, y form a regular sequence of R, the
Hilbert series of R/(x, y) is H(V, t)(1− t2)(1− t3) = 1 + t8 + t10. Then we easily see the degrees
of generators. �

Remark 4.14. By Lemma 4.12, we can take distinct points P1, . . . , P4 ∈ C such that
3P4 ∼

∑3
i=1 Pi and 2P4 6∼ KC . Let Q = 2P4. Then we have

D2 ∼ P4, D3 ∼ 2(3P4 −
3∑
i=1

Pi) ∼ 0, h0(D4) = h0(D7) = h0(2P4) = 1,

and MX = ZX by Proposition 4.10. Hence we have a singularity (V, o) ∈ X (Γ) satisfying all the
conditions in Proposition 4.13.

Next we consider the case h0(D3) = 0. Since D2 ∼ P4, the following three conditions are
equivalent (cf. the proof of Proposition 4.7):

(1) h0(D3) = 0, (2) 3Q 6∼ 2
∑3
i=1 Pi, (3) Q 6∼ 2P4.

Let x ∈ R2\{0}. We will compute the embedding dimension of (V, o) via the curve singularity
(V (x), o), where V (x) = {x = 0} ⊂ V . Let H(V (x), t) =

∑
n≥0 dit

i denote the Hilbert series of

R/(x).

Lemma 4.15. The curve V (x) is irreducible and the set Γx := {n ∈ Z≥0 | dn 6= 0} is a numerical
semigroup. If Γx = 〈m1, . . . ,me〉, then

embdim(V, o)− 1 = embdim(V (x), o) ≤ e.

Proof. Let H ⊂ X be as in the proof of Proposition 4.10. Then H is irreducible and nonsingular
since EH = 1, and hence the induced map H → V (x) is the normalization. If h ∈ R \ (x) is a
homogeneous element, then the order of h|V (x) at o ∈ V (x) coincides with the order of vanishing
of h along E0, that is, deg h. Hence Γx coincides with the so-called semigroup of values of the
curve singularity (V (x), o). Then the inequality is well-known. �

In the following, it will be useful to notice that the Frobenius number of 〈a, b〉 is (a−1)(b−1)−1.

Proposition 4.16. Assume that MX = ZX . If h0(D3) = 0 and h0(D4) = 2, then (V, o) is not
Gorenstein and mult(V, o) = 4.

(1) If h0(D5) = 1, then pg(V, o) = 8, embdim(V, o) = 4,

H(V, t) = 1 + t2 + 2t4 + t5 + 2t6 + t7 + · · · = 1 + t5 + t10 + t11

(1− t2) (1− t4)
,

and C-algebra R is generated by homogeneous elements of degree 2, 4, 5, 11.
(2) If h0(D5) = 0, then pg(V, o) = 7, embdim(V, o) = 5,

H(V, t) = 1 + t2 + 2t4 + 2t6 + t7 + · · · = 1 + t7 + t9 + t10

(1− t2) (1− t4)
,

and C-algebra R is generated by homogeneous elements of degree 2, 4, 7, 9, 10.

Proof. We have that D4 ∼ 2P4 ∼ KC and D4 6∼ D7. Hence h0(D7) = 1 and (V, o) is not
Gorenstein by Lemma 4.4. Therefore, embdim(V, o) ≥ 4. Since H0(D4) has no base points,
we have mult(V, o) = 4 by Proposition 4.10, and embdim(V, o) ≤ 5 by Theorem 4.2. Take
homogeneous element y ∈ R4 such that x and y belong to a minimal set of homogeneous
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generators of C-algebra R. Then x, y form a regular sequence of R and the Hilbert series of
R/(x, y) is H ′(t) := H(V, t)(1− t2)(1− t4).

(1) Assume that h0(D5) = 1. We have H(V, t) = H(Γ, t)− (t3 + t7) and pg(V, o) = pg(Γ)− 2
by Proposition 2.4 (2). Since

H(V (x), t) = H(V, t)(1− t2) = 1 + t4 + t5 + t8
∑
i≥0

ti,

we have Γx = 〈4, 5, 11〉. It follows from Lemma 4.15 that embdim(V, o) = 4. Since

H ′(t) = 1 + t5 + t10 + t11,

we obtain the degrees of homogeneous generators of R.
(2) Assume that h0(D5) = 0. Then

H(V, t) = H(Γ, t)− (t3 + t5 + t7),

H(V (x), t) = 1 + t4 + t7
∑
i≥0

ti,

and

H ′(t) = 1 + t7 + t9 + t10.

Thus, we obtain the assertion by a similar argument as above. �

Remark 4.17. LetR(C) and σ be as in Notation 4.5. Suppose that P4 ∈ R(C) and P5 ∈ C\R(C).
(1) Let Q = P4 +P5. Then |2Q−P4| is free since h0(P4 + 2P5) = 2 > h0(2P5) = h0(P4 +P5).

Thus, there exist distinct points P1, P2, P3 ∈ C \ {P4} such that 2Q − P4 ∼ P1 + P2 + P3. We

set D = Q− 1
2

∑3
i=1 Pi. Then

D2 ∼ P4, D3 ∼ 2D2 −Q ∼ P4 − P5 6∼ 0, D4 ∼ KC ,

D5 ∼ 3D2 −Q ∼ 2P4 − P5 ∼ (P5 + σ(P5))− P5 = σ(P5).

Therefore, we have a singularity satisfying the condition of Proposition 4.16 (1).
(2) Let Q = 4P4 − 2P5. If |2Q− P4| has a base point P0, then

KC ∼ 2Q− P4 − P0 ∼ 7P4 − 4P5 − P0,

and thus 5P4 ∼ 4P5 + P0. However, since |5P4| has a base point P4, we have 4P4 ∼ 4P5; this
is impossible. Hence |2Q− P4| is free and there exist distinct points P1, P2, P3 ∈ C \ {P4} such
that 2Q− P4 ∼ P1 + P2 + P3. Then

D2 ∼ P4, D3 ∼ 2P5 − 2P4 6∼ 0, D4 ∼ KC ,

D5 ∼ 2P5 − P4, h0(2P5 − P4) = 0.

Hence we have a singularity satisfying the condition of Proposition 4.16 (2).

Proposition 4.18. Assume that MX = ZX . If h0(D3) = 0 and h0(D4) = h0(D5) = 1, then
mult(V, o) = embdim(V, o) = 5.

(1) If h0(D7) = 2, then (V, o) is Gorenstein, pg(V, o) = 8,

H(V, t) = 1 + t2 + t4 + t5 + 2t6 + 2t7 + · · · = 1 + t6 + t7 + t8 + t14

(1− t2) (1− t5)
,

and C-algebra R is generated by homogeneous elements of degree 2, 5, 6, 7, 8.
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(2) If h0(D7) = 1, then (V, o) is not Gorenstein, pg(V, o) = 7,

H(V, t) = 1 + t2 + t4 + t5 + 2t6 + t7 + · · · = 1 + t6 + t8 + t9 + t12

(1− t2) (1− t5)
,

and C-algebra R is generated by homogeneous elements of degree 2, 5, 6, 8, 9.

Proof. The proof is similar to that of Proposition 4.16. We have R4 = R2
2 and D4 ∼ 2P4 6∼ KC .

Since D3 6∼ 0 and h0(D5) = 1, there exists a point P5 ∈ C such that D5 ∼ P5 6= P4 (note that
D2 6∼ D2 + D3 = D5). Therefore, mult(V, o) = 5 by Proposition 4.10 (2). Let y ∈ R5 \ {0}.
Then the Hilbert series of R/(x, y) is H ′(t) := H(V, t)(1− t2)(1− t5). From Lemma 4.4, (V, o)
is Gorenstein if and only if h0(D7) = 2.

(1) Assume that h0(D7) = 2. We have H(V, t) = H(Γ, t)− (t3 + t4) and

H ′(t) = 1 + t6 + t7 + t8 + t14.

Hence pg(V, o) = pg(Γ) − 2 by Proposition 2.4 and embdim(V, o) = 5 by Theorem 4.2 (2).
Therefore, R is generated by homogeneous elements of degree 2, 5, 6, 7, 8.

(2) Assume that h0(D7) = 1. We have

H(V, t) = H(Γ, t)− (t3 + t4 + t7),

H ′(t) = 1 + t6 + t8 + t9 + t12,

H(V, t)(1− t2) = 1 + t5 + t6 + t8
∑
i≥0

ti,

and Γx = 〈5, 6, 8, 9〉. Hence we obtain the assertion by similar arguments as above. �

The following proposition shows the existence and the property of D corresponding to the
singularities in Proposition 4.18 (1).

Proposition 4.19. We have the following.

(1) There exist points P1, . . . , P4 ∈ C and an effective divisor Q of degree two on C which
satisfy the condition

(C1) P1, . . . , P4 are distinct, 2Q ∼
∑4
i=1 Pi, 2P4 6∼ KC , 4P4 ∼ Q+KC .

(2) Let P1, . . . , P4 and Q be as above, and let D = Q− 1
2

∑3
i=1 Pi. Then the condition (C1)

is satisfied if and only if MX = ZX and h0(D3) = 0, h0(D4) = h0(D5) = 1, h0(D7) = 2.

Proof. (1) Assume thatR(C) and σ be as in Notation 4.5. Let P4 ∈ C satisfies 3(P4−σ(P4)) 6∼ 0.
Then 2P4 6∼ KC , because P4 6∈ R(C). Since deg(4P4−KC) ≥ 2, there exists an effective divisor
Q on C such that 4P4 − KC ∼ Q. Since deg(2Q − P4) = 3, we have h0(2Q − P4) = 2. If
the linear system |2Q − P4| is free, then we have three distinct points P1, P2, P3 ∈ C \ {P4}
such that 2Q ∼

∑4
i=1 Pi. If |2Q − P4| has a base point G ∈ C, then 2Q − P4 − G ∼ KC . If

G = P4, we have 2Q ∼ 2P4 +KC . Since 4P4 ∼ Q+KC , we have Q+ 2P4 ∼ 2KC ∼ Q+ σ(Q),
and hence 2P4 ∼ σ(Q). However, 4P4 ∼ Q + KC ∼ σ(2P4) + σ(P4) + P4; it contradicts that
3(P4−σ(P4)) 6∼ 0. Therefore, G 6= P4. We can take P1 ∈ C so that P1, P2 := σ(P1), P3 := G,P4

are distinct. Then 2Q− P4 ∼ KC + P3 ∼ P1 + P2 + P3.
(2) Assume that (C1) is satisfied. By Proposition 4.10 (1), we have MX = ZX since

D2 = 2Q−
3∑
i=1

Pi ∼ P4.
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We also have

D3 ∼ 2P4 −Q 6∼ 0, D4 ∼ 2P4 6∼ KC ,

D5 ∼ 3P4 −Q ∼ KC − P4 ∼ P4 + σ(P4)− P4 = σ(P4),

D7 ∼ 4P4 −Q ∼ KC .

Thus, we obtain that (h0(D3), h0(D4), h0(D5), h0(D7)) = (0, 1, 1, 2).
The converse follows from the arguments above. �

Remark 4.20. We take distinct points P4, P5 ∈ C \ R(C) such that

P4 + P5 6∼ KC and 2(2P4 − P5) 6∼ KC ,

and let Q = 3P4−P5. Then P4 is not a basepoint of |2Q−P4|. As in the proof of Proposition 4.19,
we obtain distinct points P1, P2, P3 ∈ C \ {P4} such that 2Q−P4 ∼ P1 +P2 +P3. Then we have

D2 ∼ P4, h0(D3) = h0(P5 − P4) = 0, h0(D4) = h0(2P4) = 1,

h0(D5) = h0(P5) = 1, h0(D7) = h0(P4 + P5) = 1.

Hence there exists a singularity satisfying the conditions of Proposition 4.18 (2).

Proposition 4.21. Assume that MX = ZX . If h0(D3) = 0, h0(D4) = 1, h0(D5) = 0. Then
(V, o) is not Gorenstein, h0(D7) = 1, pg(V, o) = 6, mult(V, o) = 6, embdim(V, o) = 7,

H(V, t) = 1 + t2 + t4 + 2t6 + t7 + · · · = 1 + t7 + t8 + t9 + t10 + t11

(1− t2) (1− t6)

and C-algebra R is generated by homogeneous elements of degree 2, 6, 7, 8, 9, 10, 11.

Proof. Since D4 ∼ 2P4 6∼ KC and D6 ∼ 3P4, H0(D6) is free (cf. Lemma 4.12). Hence we
have mult(V, o) = 6 by Proposition 4.10 (2) and embdim(V, o) ≤ 7 by Theorem 4.2. Take
a homogeneous element y ∈ R6 such that x and y belong to a minimal set of homogeneous
generators of C-algebra R. Then x, y form a regular sequence of R and the Hilbert series of
R/(x, y) is H ′(t) := H(V, t)(1− t2)(1− t6).

If h0(D7) = 2, then H ′(t) = 1 + 2t7 + t8 + t10 + t11 − t13 + t15 has a negative coefficient; it
is a contradiction. Hence we have h0(D7) = 1. Then H(V, t) = H(Γ, t) − (t3 + t4 + t5 + t7),
H ′(t) = 1 + t7 + t8 + t9 + t10 + t11. Hence pg(V, o) = pg(Γ)− 4, embdim(V, o) = 7 and C-algebra
R is generated by homogeneous elements of degree 2, 6, 7, 8, 9, 10, 11. �

Remark 4.22. Let P4, P5 ∈ C\R(C) be distinct points such that P4+P5 6∼ KC . Let Q = P4+P5.
Then |2Q − P4| is free because h0(P4 + P5) = h0(2P5) = 1. Hence there exist three distinct
points P1, P2, P3 ∈ C \ {P4} such that 2Q− P4 ∼ P1 + P2 + P3. Then we have

h0(D3) = h0(P4 − P5) = 0, h0(D4) = h0(2P4) = 1,

h0(D5) = h0(2P4 − P5) < h0(2P4) = 1,

h0(D7) = h0(3P4 − P5) < h0(3P4) = 2.

Therefore, we have a singularity of Proposition 4.21.

For reader’s convenience, we provide a table of the conditions for the Pinkham-Demazure
divisors D = Q−

∑3
i=1

1
2Pi which induce the singularities discussed in this subsection; for each

case, R = R(C), four points P1, . . . , P4 ∈ C are distinct, and P1 + P2 + P3 ∼ 2Q− P4.
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pg mult embdim Pinkham-Demazure divisor

8 3 4 Q = 2P4, P4 6∈ R
8 4 4 Q = P4 + P5, P4 ∈ R, P5 6∈ R
7 4 5 Q = 4P4 − 2P5, P4 ∈ R, P5 6∈ R
8 5 5 Q = 4P4 −KC , P4 6∈ R
7 5 5 Q = 3P4 − P5, P4 6∈ R, P5 6∈ R, P4 6= P5,

P4 + P5 6∼ KC , 2(2P4 − P5) 6∼ KC

6 6 7 Q = P4 + P5, P4 6∈ R, P5 6∈ R, P4 6= P5, P4 + P5 6∼ KC

Table 3. Singularities with MX = ZX and Pinkham-Demazure divisors

Remark 4.23. Taking a general Pinkham-Demazure divisor D = Q −
∑3
i=1

1
2Pi, we have a

singularity (V, o) ∈ X (Γ) with H(V, t) = 1 + t4 + 2t6 + t7 + · · · and that pg(V, o) = 5. Recall
that pa(V, o) = 5 (see Section 4.1). Therefore, we have the equality

pa(V, o) = min {pg(W, o) | (W, o) ∈ X (Γ)},
and this is realized by a weighted homogeneous singularity (cf. Theorem 2.6).
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