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ON THE FIFTH WHITNEY CONE OF A COMPLEX ANALYTIC CURVE

GILES FLORES, ARTURO, SILVA, OTONIEL NOGUEIRA, AND SNOUSSI, JAWAD

Abstract. From a procedure to calculate the C5-cone of a reduced complex analytic curve

X ⊂ Cn at a singular point 0 ∈ X, we extract a collection of integers that we call auxiliary
multiplicities and we prove they characterize the Lipschitz type of complex curve singularities.

We then use them to improve the known bounds for the number of irreducible components of

the C5-cone. We finish by giving an example showing that in a Lipschitz equisingular family
of curves the number of planes in the C5-cone may not be constant.

1. Introduction

In [18, Sec. 3], Whitney introduced some spaces that are now known in the literature as
Whitney cones. Given an analytic set W in Cn and a point p ∈W , Whitney defined six types of
cones, C1(W,p), C2(W,p), · · · , C6(W,p), all of them having the point p as vertex. In this work
we will deal with the cones C3(W,p), C4(W,p) and C5(W,p) and for simplicity we will suppose
that p is the origin. Roughly speaking, the cone C3(W, 0), known as the Zariski tangent cone,
is the set of limit positions of secants of W passing through 0. The cone C4(W, 0) is the set of
all limits of tangent vectors to X at 0. Finally the cone C5(W, 0) is the set of all limit positions
of bi-secants, i.e., limits of lines passing through a couple of points both converging to 0; see
Section 2.1, and also [3, p. 92] for precise definitions.

Whitney cones have proven to be very useful in singularity theory. For instance, in Sections 1
and 2 of [16] Stutz gives conditions for the weak (respectively, strong) equisingularity of a family
(W, 0) of germs of complex analytic sets in terms of the dimensions of the cones C4(W, 0) and
C5(W, 0). Also, if (X, 0) is a germ of singular reduced curve, then the cone C5(X, 0) determines
the set of all projections of (X, 0) to (C2, 0) such that the image is a curve with minimal Milnor
number (see [1, Prop. IV.2]).

It is well known that if I ⊂ C{X1, . . . , Xn} is a defining ideal of an analytic germ
(W, 0) ⊂ (Cn, 0), then by using standard bases, one can find generators f1, . . . , fk of the ideal
I such that the ideal generated by the initial forms In0(fi), i = 1, . . . , k, is a defining ideal of
the cone C3(W, 0). In particular this gives the C3-cone an algebraic structure. Whitney also
provided the cones C4 and C5 with an algebraic structure; see [18, Th. 5.6]. However there is
no known canonical method to determine defining equations for these cones in all dimensions.

In the case where (X, 0) is a germ of curve singularity, limits of secants and limits of tangents
coincide. Consequently the sets C3(X, 0) and C4(X, 0) are the same, and these are a finite
union of lines that can be determined directly either from the equations of (X, 0) or from the
parametrizations of each of its branches.

In 1972, Stutz showed that if (X, 0) is an analytic singular curve in (Cn, 0), then C5(X, 0) has
dimension 2 ([16, Lem. 3.15]). Some years later, Briançon, Galligo and Granger showed that if
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(X, 0) is a singular germ of reduced curve, then C5(X, 0) is a finite union of planes, each of them
containing at least one tangent of (X, 0) ([1, Prop. IV.1]).

In 2002, Krasiński, gave in [10] formulas to determine the planes of the C5-cone of a curve,
starting from the parametrizations of each of its branches. He also gave a bound on the number
of these planes.

In this work, we start by describing the procedure given by Kraziński in [10]. We call it the
“C5-procedure” and present it in Theorem 3.2.

The main idea is the following: For each branch (X(i), 0) of (X, 0) of multiplicity m(i) and
for each pair of branches (X(j), 0) and (X(k), 0) of (X, 0) of multiplicities m(j) and m(k), we
construct a collection of analytic maps depending on the m(i)-th roots of unity and the Puiseux
parametrization of (X(i), 0) on one hand, and on the m(k)-th roots of unity and the parametriza-
tions of (X(j), 0) and (X(k), 0) on the other hand supposing that m(k) ≤ m(j). We call these
maps auxiliary parametrizations associated to the curve (X, 0). The images of these maps are a
collection of curves that we call auxiliary curves associated to (X, 0). When (X, 0) is a singular
curve, the tangent lines of the auxiliary curves, along with the tangent lines to the branches
of (X, 0) give rise to a finite union of planes which form the cone C5(X, 0). We give precise
definitions of the auxiliary curves and parametrizations in Section 2.

This strategy was already at the heart of the proof, by Briançon, Galligo and Granger in [1,
Prop. IV.1], that the C5-cone is a finite union of planes. Since it doesn’t seem to be widespread
knowledge among the community we chose to present an explicit procedure giving a precise
definition of the planes of the C5-cone of a curve. This is the aim of the first part of this work
and it is explained in Sections 2 and 3.

In a second step, we exhibit from the auxiliary parametrizations a collection of integers that
we call auxiliary multiplicities. We show that they determine the bi-Lipschitz type of the curve
singularity.

These numbers were first used by Pham and Teissier in [12] to study the saturation of local
analytic algebras of dimension one. They show in particular that for plane curve singularities,
the auxiliary multiplicities determine the topological type of the curve. In 2003, using a different
approach, Fernandes gave an improved version of this result in [4]. We recall these results in the
first part of Section 4.

Neumann and Pichon also used the auxiliary multiplicities to prove a result by Teissier stating
that, for a complex curve germ (X, 0) ⊂ (Cn, 0), the restriction to X of a generic linear projection
to C2 is bi-Lipschitz for the outer geometry [11, Th. 5.1]. In their work, they call these numbers
“essential integer exponents”.

Also in Section 4, we show that for a reduced curve singularity (X, 0), the auxiliary multiplic-
ities are bi-Lipschitz invariants of (X, 0) for the outer metric. More precisely, we show that two
germs of curves (X, 0) and (Y, 0) in (Cn, 0) are bi-Lipschitz equivalent if and only if there exists
a bijection between its branches preserving all the auxiliary multiplicities (Theorem 4.12). We
refer to [5] for a generalization of these results.

In Section 5, we address the question of the number of planes that appear in the C5-cone of
a curve singularity (X, 0). Using our previous results we are able to improve the known upper
bounds for the number of irreducible components of C5(X, 0) in Propositions 5.4 and 5.7.

In the case of the C3-cone of curves, it is known that the number of irreducible components of
the cone need not be constant in Whitney equisingular families of curves, see [6, Ex. 4.13]. It has
also been proved that in bi-Lipschitz equisingular families of curves, the number of irreducible
components of the C3-cone is constant, see [6] and also [13] for a more general situation. Thus,
we have a natural question: Is the number of planes of C5(X, 0) a bi-Lipschitz invariant for a
curve (X, 0)? In Section 6, we give a negative answer to this question with an example of a
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Lipschitz regular family of curves where the number of planes in the C5-cone is not constant.
We finish by using this to construct curves which are bi-Lipschitz equivalent but not analytically
equivalent.

Before starting, we will establish some notations that will be used throughout this work.

• Unless stated otherwise, W denotes an arbitrary analytic set in Cn and we will denote the
non-singular locus of (W, 0) by reg(W, 0). On the other hand, (X, 0) and (Y, 0) will denote germs
of reduced analytic (singular or smooth) curves in (Cn, 0), with n ≥ 2.
•When (X, 0) and (Y, 0) are germs of plane curves, the number i(X,Y ) denotes the intersec-

tion multiplicity of (X, 0) and (Y, 0).
• (X(i), 0) denotes an irreducible component, or a branch of a curve (X, 0). A parametrization

of (X(i), 0) will be denoted by ϕ(i) = (ϕ
(i)
1 , · · · , ϕ(i)

n ).

• m(X, 0) or m (for short) denotes the multiplicity of (X, 0) and m(i) denotes the multiplicity
of (X(i), 0).
• Gm denotes the cyclic group with m elements (m-roots of unity). If θ ∈ Gm, then ord(θ)

denotes the order of θ in Gm.
• Given ϕ(u) =

∑
aiu

i a non-zero element in C{u}, the ring of convergent power series in the
variable u, ord0(ϕ) denotes the order of ϕ at 0, i.e., the minimum integer n such that an 6= 0.
Set ord0(0) =∞.

2. Preliminaries

2.1. The Whitney cones C3, C4 and C5. Let W be an analytic set in Cn, and p ∈W . As
stated in the introduction, for simplicity we will assume that the point p is the origin. Following
[3, p. 91], we start by defining the cones C3(W, 0), C4(W, 0) and C5(W, 0); throughout this work
we will only deal with these three cones.

Definition 2.1. Let v be a vector in Cn.

(a) We say that v ∈ C3(W, 0) if there exist a sequence of points (ws) ∈ W and a sequence of
complex numbers (λs) such that (ws)→ 0 and (λsws)→ v as s→∞.

(b) We say that v ∈ C4(W, 0) if there are sequences of points (ws) ∈ reg(W ) and of vectors
(vs) ∈ TwsW such that (ws)→ 0 and (vs) −→ v as s −→∞.

(c) We say that v ∈ C5(W, 0) if there are distinct sequences of points (ws), (w
′
s) ∈ W and a

sequence of numbers (λs) ∈ C such that (ws)→ 0, (w′s)→ 0 and λs(ws − w′s)→ v as s→∞.

Remark 2.2. (a) The cone C3(W, 0) is made of lines through 0 obtained as limits of secant
lines with direction ws − 0 where (ws) ⊂ W \ {0} is a sequence of points converging to 0. The
cone C4(W, 0) is the union of all limits of tangent spaces TwsW to W at non-singular points ws
converging to 0. The cone C5(W, 0) is the set of all the lines obtained as limits of secant lines
with direction ws − w′s through distinct sequences of points ws and w′s of W , both converging to 0.

(b) Whitney provided the cones C3, C4 and C5 with an algebraic structure (see [18, Sec. 5]),
making them possibly non-reduced algebraic spaces. However, in this work we are only interested
in their reduced structure, or their set theoretic construction.
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(c) The cone C3(W, 0) is sometimes called Zariski’s tangent cone. It is a well described and
widely studied space, see for example [3, Ch. 2]. In the case of a germ of curve (X, 0) in (Cn, 0),
we know that limits of secants through 0 and limits of tangents of (X, 0) at 0 coincide; see for
example [15, Prop. 2.3.4]. Hence, the cones C3(X, 0) and C4(X, 0), both provided with the re-
duced structure, are the same space. Therefore, the next natural step is to study the C5-cone of X.

(d) We have that C3(W, 0) ⊂ C4(W, 0) ⊂ C5(W, 0) and, for i = 3, 4,

Ci(W
(1) ∪W (2), 0) = Ci(W

(1), 0) ∪ Ci(W (2), 0).

However, in general

C5(W (1), 0) ∪ C5(W (2), 0) ⊆ C5(W (1) ∪W (2), 0),

and this inclusion can be proper, as we will see in Example 3.3.

The following Theorem is due to Briançon, Galligo and Granger.

Theorem 2.3. ([1], Th. IV.1) If X is an analytic singular reduced complex curve, then C5(X, 0)
is a finite union of planes, each of them containing at least one tangent to X at 0.

We would like to describe more precisely how to find the planes of the cone C5(X, 0). Inspired
by the proof of Theorem 2.3 in [1, IV.1], and using the results of [10] we will describe a procedure
to build the C5-cone of a curve. For that purpose, in the next section, we introduce the notion
of auxiliary curves associated to (X, 0) that will play a fundamental role in what follows.

2.2. Auxiliary parametrizations, curves and multiplicities. Starting from local
parametrizations of the branches of a germ of complex analytic curve (X, 0), or equivalently,
from its normalization, we will produce a collection of curves whose tangent lines allow us to
give a precise description of the cone C5(X, 0). Furthermore, multiplicities associated with these
curves will happen to be bi-Lipschitz invariants of the original curve.

Definition 2.4. (a) Let (X, 0) ⊂ (Cn, 0) be a germ of irreducible and reduced curve. A
parametrization of (X, 0) is a finite holomorphic map germ:

ϕ : (C, 0)→ (Cn, 0), u 7→ (ϕ1(u), · · · , ϕn(u))

with ϕ(C, 0) = (X, 0).
If in addition, ϕ satisfies the following factorization property: “Each finite holomorphic map

germ ψ : (C, 0) → (Cn, 0), such that ψ(C, 0) = (X, 0), factors in a unique way through ϕ, that

is, there exists a unique holomorphic map germ ψ̂ : (C, 0) → (C, 0) such that ψ = ϕ ◦ ψ̂”, then
we say that ϕ is a primitive parametrization of (X, 0).

If (X, 0) = (X(1) ∪ · · · ∪X(r), 0), then a parametrization of (X, 0) is a system of parametriza-
tions {ϕ(1), · · · , ϕ(r)} of the branches (X(i), 0).

(b) Let (X, 0) be a germ of irreducible curve in (Cn, 0) with multiplicity m. We say that a
primitive parametrization ϕ : (C, 0)→ (X, 0) is a Puiseux parametrization of (X, 0) if ϕ has the
following form:

ϕ(u) = (ϕ1(u), · · · , ϕn(u)) =∑
i≥m

a1,iu
i, · · · ,

∑
i≥m

aj−1,iu
i, um ,

∑
i≥m

aj+1,iu
i, · · · ,

∑
i≥m

an,iu
i

 .

In this case, the j-th coordinate is called a special coordinate for the parametrization ϕ. If
(X, 0) = (X(1) ∪ · · · ∪X(r), 0), then a Puiseux parametrization of (X, 0) is a system of Puiseux
parametrizations {ϕ(1), · · · , ϕ(r)} of the branches (X(i), 0).
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We say that a system of Puiseux parametrizations {ϕ(1), · · · , ϕ(r)} is compatible if for any
pair (i, j) such that X(i) is tangent to X(j) the respective primitive Puiseux parametrizations of
X(i) and X(j) have a common special coordinate (not necessarily with the same power “m”).

(c) Suppose that (X, 0) = (X(1) ∪ · · · ∪X(r), 0) and define the following sets:

− S(X) is the set of indices of singular branches, i.e., the subset of {1, · · · , r} defined by:
i ∈ S(X) if and only if (X(i), 0) is singular.

− T (X) is the set of pairs of indices of tangent branches, i.e., the set of pairs (i, j) with i < j
such that (X(i), 0) is tangent to (X(j), 0).

− NT (X) is the set of pairs of indices of non-tangent branches, i.e., pairs (i, j) with i < j such
that (X(i), 0) is not tangent to (X(j), 0).

Remark 2.5. It is well known that if (X, 0) is irreducible and ϕ is an arbitrary primitive
parametrization of (X, 0), then there is an analytic isomorphism ξ : (C, 0) → (C, 0) such that
ϕ◦ξ is a Puiseux parametrization of (X, 0). Therefore, given a curve (X, 0), we can always choose
a Puiseux parametrization for each branch of (X, 0) (see for instance [3, p. 98]). Furthermore,
it is not hard to see that a compatible system of Puiseux parametrizations for a curve always
exists. Consider a germ of curve (X, 0) = (X(1)∪X(2), 0) in (Cn, 0), with two tangent irreducible
components. Consider a system of Puiseux parametrizations {ϕ(1), ϕ(2)} of (X, 0), defined as:

ϕ(1)(u) = (ϕ
(1)
1 , . . . , ϕ

(1)
n ) and ϕ(2) = (ϕ

(2)
1 , . . . , ϕ

(2)
n ).

The system of parametrizations {ϕ(1), ϕ(2)} of (X, 0) is compatible if and only if there exists
j ∈ {1, . . . n} such that:

ϕ
(1)
j (u) = um

(1)

and ϕ
(2)
j (u) = um

(2)

,

where the integers m(1) and m(2) are respectively the lowest orders among the ϕ
(1)
i ’s and ϕ

(2)
i ’s,

respectively.
Such an index j is a common special coordinate for ϕ(1) and ϕ(2).

We are now able to present our main definition. Given a finite analytic map germ
f : (C, 0) → (Cn, 0), it is well-known that the image of f is an analytic set. However, we
can consider different analytic structures on the image of f (see for instance [8, p. 48]). In
the next definition, we will define some curves as images of finite maps and we will adopt the
reduced structure for these images.

Definition 2.6. (Auxiliary curves and multiplicities) Let (X, 0) = (X(1) ∪ · · · ∪ X(r), 0) be a
germ of reduced curve in (Cn, 0).

(a) Suppose that r = 1 so that (X, 0) = (X(1), 0) is irreducible and singular. Define

m(1) := m(X(1), 0) to be its multiplicity. Let ϕ(1) = (ϕ
(1)
1 , · · · , ϕ(1)

n ) be a Puiseux parametriza-

tion of (X(1), 0). For each m(1)-th root of unity θ 6= 1 ∈ Gm(1) :

(a.1) Define the map:

φ
(1)
θ : (C, 0) → (Cn, 0)

u 7→ ϕ(1)(u)− ϕ(1)(θu),

we will call it an auxiliary characteristic parametrization associated to (X(1), 0). The image

of φ
(1)
θ will be called an auxiliary characteristic curve associated to (X(1), 0) and denoted by

(A
(1)
θ (X), 0).
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(a.2) Define the C-vector space H
(1)
θ to be the linear space generated by non-zero vectors in

C3(X, 0) and C3(A
(1)
θ (X), 0).

(a.3) Define m
(1)
θ := minj{ ord0[ϕ

(1)
j (u)− ϕ(1)

j (θu)] }. The collection

{m(1)} ∪ {m(1)
θ | θ ∈ Gm(1)}

is called the characteristic auxiliary multiplicities associated to (X(1), 0). We will denote it by
ChAM(X(1), 0).

(b) Suppose that (X, 0) = (X(1) ∪X(2), 0), set m(i) = m(X(i), 0) to be their respective multiplic-
ities and suppose that m(1) ≥ m(2).
Choose compatible Puiseux parametrizations ϕ(1) and ϕ(2) for (X(1), 0) and (X(2), 0), respec-
tively. Then, for each θ ∈ Gm(2) :

(b.1) Define the map:

φ
(1,2)
θ : (C, 0) → (Cn, 0)

u 7→ ϕ(1)(um
(2)

)− ϕ(2)(θum
(1)

),

and call it a contact auxiliary parametrization associated to (X(1), 0) and (X(2), 0). The image

of the map φ
(1,2)
θ will be called a contact auxiliary curve associated to (X(1), 0) and (X(2), 0),

and denoted by (A
(1,2)
θ (X), 0).

(b.2) Let w1, w2, w(1,2) be non-zero vectors in C3(X(1), 0), C3(X(2), 0) and C3(A
(1,2)
θ (X), 0),

respectively. Define the C-vector space H
(1,2)
θ to be the linear space generated by w1, w2, w3.

(b.3) Define

m
(1,2)
θ := ordφ

(1,2)
θ = minj{ ord0[ϕ

(1)
j (um

(2)

)− ϕ(2)
j (θum

(1)

)] }.

The ordered sequence of integers, with possible repetitions, (m
(1,2)
θ1
≤ . . . ≤ m(1,2)

θ
m(2)

, θi ∈ Gm(2)) is

called the contact auxiliary multiplicities of the pair ((X(1), 0), (X(2), 0)). It will be denoted by
CoAM(X(1), X(2), 0).

(c) In general, suppose that (X, 0) = (X(1) ∪ · · · ∪ X(r), 0). Choose a compatible system of
Puiseux parametrizations {ϕ(1), · · · , ϕ(r)} of (X, 0), set m(i) = m(X(i), 0) and suppose

m(1) ≥ m(2) ≥ · · · ≥ m(r).

An auxiliary multiplicity of (X, 0) is either a characteristic auxiliary multiplicity associated

to a branch, denoted by m
(i)
θ , or a contact auxiliary multiplicity associated to a pair of branches,

denoted by m
(i,j)
θ .

In a similar way, an auxiliary curve of (X, 0) is a branch which is either a characteristic

auxiliary curve associated to a branch of (X, 0), denoted by A
(i)
θ (X, 0), or a contact auxiliary

curve associated to a pair of branches of (X, 0), denoted by A
(i,j)
θ (X, 0). For each (X(i), 0)

(respectively, for each pair (X(i) ∪X(j), 0), with i < j) we define the spaces H
(i)
θ (respectively,

H
(i,j)
θ ) as in (a) and (b).

For a smooth branch (X, 0) the only characteristic auxiliary multiplicity would be the multi-
plicity of the branch. i.e. ChAM(X, 0) = {1}.
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Remark 2.7. (a) The terminology we use in this definition will be justified by Lemmas 4.2, 4.3,
4.5, Remark 2.5 and Proposition 4.10.

Clearly, the notion of auxiliary parametrizations and curves depends on the choice of the
compatible system of Puiseux parametrizations {ϕ(1), · · · , ϕ(r)}. However, we will show that
the auxiliary multiplicities do not depend on that choice; see Remarks 4.7 and 4.11. For this
reason, in the sequel, we frequently omit mentioning the chosen compatible system of Puiseux
parametrizations.

(b) As we said in the introduction, the auxiliary multiplicities were first used by Pham and
Teissier in [12] where they studied the saturation of local rings of analytic reduced curves. In
that context, the auxiliary multiplicities were used to prove that the saturation of the local ring
of a germ of plane curve (X, 0) determines, and is determined by the characteristic exponents
and the intersection multiplicities of the branches of (X, 0) (see [12, Prop. VI.3.2]).

(c) We will see in Section 3 that the spaces H
(i)
θ and H

(i,j)
θ are in fact two-dimensional C−vector

spaces (planes) in Cn and they are the irreducible components of C5(X, 0). If (i, j) ∈ T (X), then
C3(X(i), 0) and C3(X(j), 0) are the same (as reduced complex spaces). Therefore, in this case

H
(i,j)
θ can be generated by wi and w(i,j) or by wj and w(i,j). On the other hand, if (i, j) ∈ NT (X),

we will see in the proof of Theorem 3.2, following [10, Prop. 2.6], that H
(i,j)
θ is generated by wi

and wj, therefore it does not depend on θ. In this case, H
(i,j)
θ will be simply denoted by H(i,j).

Furthermore, in this case, one can check that the contact auxiliary multiplicites m
(i,j)
θ do not

depend on θ ∈ Gm(2) and are all equal to m(1)m(2).

Example 2.8. Consider the germ of curve (X, 0) = V (y2 − x3, z2 − x2y) in (C3, 0), where
(x, y, z) denotes a local system of coordinates in C3. We have that ϕ(u) = (u4, u6, u7) is a
Puiseux parametrization of (X, 0) and m(X, 0) = 4. Table 1 shows the auxiliary characteristic
parametrizations and multiplicities of (X, 0), where V (f) denotes the zero set of f ∈ O3.

Table 1. Auxiliary characteristic parametrizations and multiplicities of (X, 0)
of Example 2.8

θ Auxiliary characteristic parametrization φθ Hθ mθ

−1 (0, 0, 2u7) V (y) 7

i (0, 2u6, (1 + i)u7) V (z) 6

−i (0, 2u6, (1− i)u7) V (z) 6

3. How to find the C5-cone?

In this section, inspired by the result of Briançon, Galligo and Granger (Theorem 2.3), and
using the results of [10] we present a procedure to find the C5-cone of a germ of curve (X, 0). We
call it the “C5-procedure”. The main idea is that in the set of all (infinite) limits of bi-secants,
it is sufficient to find a finite number of directions in order to determine all planes of C5(X, 0).

Let us first notice that for a smooth branch, the C5-cone is a line. In fact, in [3, p. 92], Chirka
explains that all Whitney cones coincide with the tangent space when they are considered at
non-singular points.
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Lemma 3.1. Let (X, 0) be a germ of smooth curve in (Cn, 0). Then as reduced complex spaces,
we have that:

C5(X, 0) = C3(X, 0).

Proof. This is a direct consequence of the existence of a Puiseux parametrization. In fact,
consider a parametrization

ϕ : u 7→ (u, ϕ2(u), . . . , ϕn(u))

of the smooth curve, where the holomorphic functions ϕi have order at 0 at least two.
Then consider two different sequences of points ϕ(us) and ϕ(vs) with (us) and (vs) both

converging to 0 as s→∞. The line ϕ(us)− ϕ(vs) is represented by the projective point

(us − vs : ϕ2(us)− ϕ2(vs) : . . . : ϕn(us)− ϕn(vs)).

Since for all i = 2, · · · , n we have that ord0(ϕi) > 1, all the terms are then multiple of us − vs,
so that the limit line is represented by the projective point (1 : 0 . . . : 0) which is the line of the
cone C3(X, 0). �

Theorem 3.2. (C5-procedure) Let (X, 0) = (X(1) ∪ · · · ∪X(r), 0) be a germ of singular curve
in (Cn, 0). Choose a parametrization for each (X(i), 0) such that the system of parametrizations
is compatible. With the same notations as in Definition 2.6 and Remark 2.7 (c), consider the
following procedure:

Step 1: For each i ∈ S(X) and θ ∈ Gm(i) \ {1} find Hi
θ.

Step 2: For each (i, j) ∈ T (X), with i < j and assuming m(i) ≥ m(j), and θ ∈ Gm(j) find

H
(i,j)
θ .

Step 3: For each (i, j) ∈ NT (X) find H(i,j).

Then,

C5(X, 0) =


⋃

i ∈ S(X),

θ ∈ G
m(i) \ {1}

Hi
θ

 ∪


⋃
(i, j) ∈ T (X),

θ ∈ G
m(j)

H
(i,j)
θ

 ∪
 ⋃

(i,j)∈NT (X)

H(i,j)

 .

Each term of the union above is a two-dimensional plane in Cn, repetitions may occur.

We note that the C5-procedure is completely implementable on a computer program. In fact,
another work on an implementation of this procedure in Singular [9] is being carried out by
the second author and Aldicio Miranda (from Universidade Federal de Uberlândia - Brazil) and
we hope it will be available soon.

Example 3.3. Let (X, 0) = (X(1) ∪X(2) ∪X(3) ∪X(4), 0) be the germ of curve in (C3, 0) where
(X(i), 0) is parametrized by the map ϕi : (C, 0)→ (X(i), 0), defined respectively by:

ϕ(1)(u) := (u6, u11 − u9, u11 + u9), ϕ(2)(u) := (u4, u6, u9), ϕ(3)(u) := (u4, u3, u5) and
ϕ(4)(u) := (u, 2u, u).

Using the C5-procedure we can see that C5(X, 0) has seven different planes (see Figure 1)
and one can easily find the reduced equations for each of them. Taking the product of the seven
equations which define these planes, we find that:

C5(X, 0) = V (xy5z − y5z2 − 5xy3z3 + 5y3z4 + 4xyz5 − 4yz6).
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To illustrate this, we present, in Table 2, all the auxiliary parametrizations of (X, 0) and the

planes Hi
θ, H

(i,j)
θ and H(i,j) used in the C5-procedure to find C5(X, 0). Also in Table 2, we

present all auxiliary multiplicities of (X, 0) for completeness.

Figure 1. The cone C5(X, 0) (real points).

As we said in Remark 2.2, we note that in this example:(
C5(X(1), 0) ∪ C5(X(2), 0) ∪ C5(X(3), 0) ∪ C5(X(4), 0)

)
$ C5(X, 0).

Remark 3.4. Since in the non-tangent case H
(i,j)
θ does not depend on θ, we do not need the con-

tact auxiliary parametrizations in Step 3 to find H
(i,j)
θ = H(i,j). Eventhough the information of

these auxiliary multiplicities is included in Table 2, they are not necessary for the C5-procedure.
They are included for completeness, in order to illustrate other elements of Definition 2.6.

Remark 3.5. Let (X, 0) be a germ of analytic reduced curve in (Cn, 0) and let

(X(1), 0), · · · , (X(r), 0)

be its decomposition into irreducible components. Taking representatives X(i) of (X(i), 0), con-
sider sequences of points (xs), (ys) in X and a sequence of complex numbers (λs) such that

(xs), (ys) → 0 and λs(xs − ys) → v 6= 0 as s → ∞. After extracting sub-sequences if needed,
we can assume there are only two possibilities: either both sequences are on the same branch, or
they are in two different branches. Hence, we can reduce our study to the following three cases
(each one of them corresponding to a step of Theorem 3.2):

Case (a): (X, 0) = (X(1), 0) ∪ (X(2), 0) where (X(1), 0) and (X(2), 0) have different tangents.

Case (b): (X, 0) is irreducible.

Case (c): (X, 0) = (X(1), 0) ∪ (X(2), 0) where (X(1), 0) and (X(2), 0) have the same tangent.
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Table 2. Auxiliary parametrizations and multiplicities of (X, 0) of Example 3.3

Step 1

i ∈ S(X) θ Characteristic auxiliary parametrization φ
(i)
θ

H
(i)
θ

m
(i)
θ

eπi/3 (0, ( 1
2

+ i
√

3
2

)u11 − 2u9, ( 1
2

+ i
√

3
2

)u11 + 2u9) V (y + z) 9

e2πi/3 (0, ( 3
2

+ i
√

3
2

)u11, ( 3
2

+ i
√

3
2

)u11) V (y − z) 11

i = 1 −1 (0, 2u11 − 2u9, 2u11 + 2u9) V (y + z) 9

e4πi/3 (0, ( 3
2
− i
√

3
2

)u11, ( 3
2
− i
√

3
2

)u11) V (y − z) 11

e5πi/3 (0, ( 1
2
− i
√

3
2

)u11 − 2u9, ( 1
2
− i
√

3
2

)u11 + 2u9) V (y + z) 9

−1 (0, 0, 2u9) V (y) 9

i = 2 i (0, 2u6, (1− i)u9) V (z) 6

−i (0, 2u6, (1 + i)u9) V (z) 6

i = 3
eπi/3 (0, ( 3

2
+ i
√

3
2

)u4, ( 1
2

+ i
√

3
2

)u5) V (z) 4

e2πi/3 (0, ( 3
2
− i
√

3
2

)u4, ( 3
2

+ i
√

3
2

)u5) V (z) 4

Step 2

(i, j) ∈ T (X) θ Contact auxiliary parametrization φ
(i,j)
θ

H
(i,j)
θ

m
(i,j)
θ

(i, j) = (1, 2)
e2kπi/4, k odd (0, u44, u36 + u44 − θu54) V (y) 36

e2kπi/4, k even (0,−2u36 + u44, u36 + u44 − θu54) V (y + 2z) 36

Step 3

(i, j) ∈ NT (X) − Contact auxiliary parametrization φ
(i,j)
θ

H(i,j) m(i)m(j)

(i, j) = (1, 3) θ ∈ G3 (u18 − θu24, u33 − u27 − u18, u33 + u27 − θ2u30) V (z) 18

(i, j) = (1, 4) θ ∈ G1 (0, u11 − u9 − 2u6, u11 + u9 − u6) V (y − 2z) 6

(i, j) = (2, 3) θ ∈ G3 (u12 − θu16, u18 − u12, u27 − θ2u20) V (z) 12

(i, j) = (2, 4) θ ∈ G1 (0, u6 − 2u4, u9 − 2u4) V (y − 2z) 4

(i, j) = (3, 4) θ ∈ G1 (u4 − u3,−u3, u5 − u3) V (x− z) 3

Proof. (of Theorem 3.2) The proof of this theorem is mainly due to Krasiński in [10], with ideas
already present in [1]. We describe below the link between the results of [10] and Theorem 3.2.
The case where (X, 0) is a smooth branch has already been treated in Lemma 3.1.

Let (X, 0) = (X(1) ∪ · · · ∪X(r), 0) be a germ of singular curve in (Cn, 0). As we pointed out
in Remark 2.2, the C5 cone of the curve is more than just the union of cones of its irreducible

components. The other planes are the H
(i,j)
θ which are the result of taking sequences of points

in two different irreducible components (X(i), 0) and (X(j), 0) of the curve. Krasińsky refers to
this as the relative tangent cone.

First of all, if the irreducible components (X(i), 0) and (X(j), 0) have different tangents then
[10, Prop. 2.6] implies that the plane H(i,j) generated by these two different tangent lines is the
only extra component, hense we get that:

C5(X(i) ∪X(j), 0) = C5(X(i), 0) ∪ C5(X(j), 0) ∪H(i,j).

By Theorem 2.3, we know that each plane (irreducible component) of C5(X, 0) contains at
least one tangent line to (X, 0). For the case of a single branch, or two different branches with
the same tangent, every such plane contains this tangent line. So to determine a plane of the
C5 cone all we need is to compute a limit of secants not contained in the tangent line, and this
is precisely the role of the auxiliary parametrizations.
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If (X, 0) is a singular branch then Theorem 3.4 in [10] states that:

C5(X, 0) = Hθ1 ∪ · · · ∪Hθm−1
,

where m is the multiplicity of (X, 0) and 1 6= θi ∈ Gm.
On the other hand, if we have two irreducible components (X(i), 0) and (X(j), 0) with the

same tangent, then again [10, Th. 3.4] implies that:

C5(X(i) ∪X(j), 0) = C5(X(i), 0) ∪ C5(X(j), 0) ∪H(i,j)
θ1
∪ · · · ∪H(i,j)

θ
m(j)

,

with m(j) ≤ m(i) and θk ∈ Gm(j) . �

4. Auxiliary multiplicities as a bi-Lipschtiz invariant

In this section we will show that the collection of all auxiliary multiplicities associated to a
germ of curve (X, 0) in (Cn, 0) is a complete invariant of the bi-Lipschitz type of the singularity
(Theorem 4.12). In order to do that, we will see first in Section 4.1 that this is true for plane
curves through some results of Pham and Teissier in [12]; see also [4]. After this, we will show in
Section 4.2 that the auxiliary multiplicities of a curve characterize the generic plane projections.
Finally, to conclude the proof, we will use in Section 4.3 a result by Teissier that says that the
restriction to a curve X ⊂ Cn of a generic linear projection from Cn to C2 is bi-Lipschitz with
respect to the outer metric. We note that the ideas and the spirit of this section are completely
inspired by the paper [1] and its appendix [12].

4.1. Plane curves. In this section, unless otherwise stated, (X, 0) denotes a germ of plane
curve. In [12, Sec. 3], Pham and Teissier proved a series of results on plane curves relating
characteristic exponents and intersection multiplicities with auxiliary multiplicities (although
the notion of “auxiliary multiplicities” does not appear in [12] with this terminology). For
commodity of the reader we choose to rewrite some of these results in this work. We will use
these relations to state the following theorem, which is itself a reformulation of [12, Prop. VI.3.2].

Theorem 4.1. Let (X, 0) = (X(1) ∪ · · · ∪ X(r), 0) and (Y, 0) = (Y (1) ∪ · · · ∪ Y (r′), 0) be the
decomposition into branches of germs of plane curves. Then (X, 0) and (Y, 0) have the same
topological type if and only if r = r′ and there exists a bijection ρ : {1, · · · , r} → {1, · · · , r}
preserving all the auxiliary multiplicities, that is:

ChAM(X(i), 0) = ChAM(Y (ρ(i)), 0) and CoAM(X(i), X(j)) = CoAM(Y (ρ(i)), Y (ρ(j))),

for all i ∈ S(X) and (i, j) ∈ T (X) ∪NT (X).

The case of irreducible curves is taken care of by the following lemma:

Lemma 4.2. ([12, Lem. VI.3.3]) Let (X, 0) be an irreducible plane curve. The set ChAM(X, 0)
and the set of all characteristic exponents of (X, 0) are the same.

To give an idea of how this works, recall that if m < β1 < . . . < βg is the set of characteristic
exponents of the germ (X, 0) with multiplicity m then after a change of coordinates it has a
parametrization ϕ = (ϕ1, ϕ2) of the form:

ϕ1(u) = um

ϕ2(u) = uβ1 +
∑s1
k=1 aβ1+ke1u

β1+ke1 + aβ2
uβ2 +

∑s2
k=1 aβ2+ke2u

β2+ke2 + · · ·

· · ·+aβjuβj+
∑sj
k=1 aβj+keju

βj+kej+· · ·+aβguβg+
∑∞
k=1 aβg+ku

βg+k,
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where e1 = gcd(m,β1) and in general ej = gcd(ej−1, βj). This gives rise to a filtration of the
group of m-th roots of unity:

Gm ⊃ Ge1 ⊃ · · · ⊃ Geg = {1},
with the property that:

θ ∈ Gek−1
\Gek ⇐⇒ mθ := ord0(ϕ2(u)− ϕ2(θu)) = βk,

(for a more detailed explanation see [7, Sec. 8.1.2]) which gives the desired result.

For the general case it is enough to consider a curve with two branches

(X, 0) = (X(1) ∪X(2), 0).

In this setting the topological type of the curve determines and is determined by the set of charac-
teristic exponents of each branch, plus the intersection multiplicity between them. The following
lemma tells us that this intersection multiplicity can be recovered from CoAM(X(1), X(2), 0),
the ordered sequence of contact auxiliary multiplicities of (X(1) ∪X(2), 0).

Lemma 4.3. ([12, Lem. VI.3.4]) The intersection multiplicity i(X(1), X(2), 0) of two plane
branches (X(1), 0) and (X(2), 0) at 0 satisfies:

i(X(1), X(2)) =
(m

(1,2)
θ1

+ · · ·+m
(1,2)
θ
m(2)

)

m(2)
,

where m(1) ≥ m(2) and Gm(2) = {θ1 , · · · , θm(2)}, (see Definition 2.6 b)).

Remark 4.4. Note that:

(1) If the branches are transversal then m
(1,2)
θ = m(1)m(2) for all θ ∈ Gm(2) and so:

i(X(1), X(2)) =
m(1)(m(2))2

m(2)
= m(1)m(2).

(2) This lemma is practically a direct consequence of Halphen’s formula [8, Prop. 3.10] as
seen in the proof by Pham and Teissier in [1, Lem. VI.3.4].

The last ingredient for the proof of Theorem 4.1 is to understand how the topological type of
the plane curve (X, 0) = (X(1)∪X(2), 0) determines all of its auxiliary multiplicities. We already
know (Lemma 4.2) that ChAM(Xi, 0)) corresponds to the set of characteristic exponents of the
branch. Also, if the branches are transversal, the previous remark tells us that the intersection
multiplicity determines the contact auxiliary multiplicities CoAM(X(1), X(2), 0), so all we are
left with is the tangent case.

Lemma 4.5 below gives us a precise description of CoAM(X(1), X(2), 0). But most importantly
for us, it establishes that this ordered sequence of integers is an invariant of the topological type
of the curve. Let:

ϕ(1)(u) =

um(1)

,
∑

i≥m(1)

aiu
i

 and ϕ(2)(u) =

um(2)

,
∑

i≥m(2)

biu
i


be a compatible system of parametrizations for (X, 0). Recall that m

(1,2)
θ is defined as the order

of the series:
ϕ
(1)
2 (um

(2)

)− ϕ(2)
2 (θum

(1)

).

Note that under this reparametrization of the branches, the sequence of characteristic exponents
of the branch (X(1), 0) is multiplied by m(2) and the sequence of characteristic exponents of
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the branch (X(2), 0) is multiplied by m(1). We will assume that these new sequences coincide
up to order τ ≥ 0. Meaning that if m(1) < α1 < · · · < αs and m(2) < γ1 < · · · < γr are the
characteristic exponents of (X(1), 0) and (X(2), 0), respectively, then:

α1m
(2) = γ1m

(1) =: β1, α2m
(2) = γ2m

(1) =: β2, · · · , ατm
(2) = γτm

(1) =: βτ .

Finally, let δ := max{m(1,2)
θ | θ ∈ Gm(2)}. Now we are able to state:

Lemma 4.5. ([12], Lem. VI.3.5) There exists an integer q, determined by the intersection
multiplicity of the branches and by the characteristic exponents of (X(1), 0) and (X(2), 0), such
that 0 ≤ q ≤ τ and:

(a) The set of contact auxiliary multiplicities is equal to:

{β1, · · · , βq, δ},

(In case q = 0 it is only δ).

(b) Set e0 = m(2). For j ∈ {1, . . . τ} define ej = gcd
(
m(2), γ1, . . . γj

)
, then the number of θ’s in

Gm(2) such that m
(1,2)
θ = βk (respect. m

(1,2)
θ = δ) is equal to ek−1 − ek (respect. eq).

These two data combined give us CoAM(X(1), X(2), 0). More precisely, the ordered sequence
of contact auxiliary multiplicities is:

β1 = · · · = β1︸ ︷︷ ︸ < β2 = · · · = β2︸ ︷︷ ︸ < · · · < βq = · · · = βq︸ ︷︷ ︸ < δ = · · · = δ︸ ︷︷ ︸ .
e0 − e1 times e1 − e2 times eq−1 − eq times eq times

Example 4.6. Let (X, 0) ⊂ (C2, 0) be a reduced curve with two tangent branches parametrized
by:

ϕ(1)(u) =
(
u12, u18 + u33 + u34

)
ϕ(2)(u) =

(
u8, u12 + u20 + 2u22 + u23

)
.

Note that m(2) = 8, in order to compute the contact auxiliary multiplicities we need to compute
the order of the series:

ϕ(1)(u8)− ϕ(2)(θu12) =
(
0, (1− θ4)u144 − θ4u240 + (1− θ6)u264 + u272 − θ7u276

)
,

with θ ∈ G8. Following the notation of Lemma 4.5 we have τ = 2 with:

β1 = 144 and β2 = 264

e0 = 8, e1 = gcd(8, 12) = 4 and e2 = gcd(8, 12, 22) = 2.

Now, for θ ∈ G8 \G4 we have that m
(1,2)
θ = β1 = 144, and for θ ∈ G4 we have that m

(1,2)
θ = 240.

This implies that q = 1, δ = 240 and we have e0 − e1 = 4 θ’s that give us β1 and e1 = 4 θ’s
that give us δ. Finally, we can easily calculate the intersection multiplicity between (X(1), 0) and
(X(2), 0) as:

i(X(1), X(2)) =
144 · 4 + 240 · 4

8
= 192.

Combining the three previous lemmas, we can proceed to prove Theorem 4.1.
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Proof. (of Theorem 4.1) Consider the plane curves

(X, 0) = (X(1) ∪ · · · ∪X(r), 0) and (Y, 0) = (Y (1) ∪ · · · ∪ Y (r′), 0).

Suppose that r = r′ and also that there is a bijection ρ : {1, · · · , r} → {1, · · · , r} preserving all
the auxiliary multiplicities. By Lemmas 4.2 and 4.3, the bijection ρ also preserves the charac-
teristic exponents and the intersection multiplicities of (X, 0). Hence, (X, 0) and (Y, 0) have the
same topological type.

Conversely, if (X, 0) and (Y, 0) have the same topological type, then r = r′ and there exists
a bijection ρ on the set {1, · · · , r} preserving characteristic exponents and intersection multi-
plicities. It is enough to consider the case where r = 2, i.e., (X, 0) = (X(1) ∪ X(2), 0) and
(Y, 0) = (Y (1) ∪ Y (2), 0).

Let ϕ(1) and ϕ(2) (respectively, ψ(1) and ψ(2)) be a system of compatible Puiseux parametriza-

tions for (X, 0) (respectively, (Y, 0)). Let m
(1,2)
θ (respectively, l

(1,2)
θ ) be a contact auxiliary

multiplicity of the pair (X(1) ∪ X(2), 0) (respectively, (Y (1) ∪ Y (2), 0)). We have that m
(1,2)
θ

(respectively, l
(1,2)
θ ) is defined as the order of the series:

ϕ
(1)
2 (um

(2)

)− ϕ(2)
2

(
θum

(1)
)

, (respectively, ψ
(1)
2 (ul

(2)

)− ψ(2)
2

(
θul

(1)
)

).

Note that under this reparametrization of the branches, the sequence of characteristic expo-
nents of the branch (X(1), 0) (respectively, (Y (1), 0)) is multiplied by m(2) (respectively, l(2)), and
the sequence of characteristic exponents of the branch (X(2), 0) (respectively, (Y (2), 0)) is multi-
plied by m(1) (respectively, l(1)). We will assume that these new sequences coincide up to order
τ ≥ 0 (respectively, τ ′ ≥ 0). Meaning that if m(1) < α1 < · · · < αs and m(2) < γ1 < · · · < γl
(respectively, l(1) < α′1 < · · · < α′s′ and l(2) < γ′1 < · · · < γ′l′) are the characteristic exponents of

(X(1), 0) and (X(2), 0) (respectively, (Y (1), 0) and (Y 2, 0)), then:

α1m
(2) = γ1m

(1) =: β1, α2m
(2) = γ2m

(1) =: β2, · · · , ατm
(2) = γτm

(1) =: βτ

(respectively, α′1l
(2) = γ′1l

(1) =: β′1, α′2l
(2) = γ′2l

(1) =: β′2, · · · , α′τ ′ l
(2) = γ′τ ′ l

(1) =: β′τ ′)

Lemma 4.2 implies that the set of characteristic auxiliary multiplicities of (X(i), 0) and
(Y (i), 0) are the same for all i. In particular, by Lemma 4.2 we have that τ = τ ′ and β′i = βi for
all i ≤ τ .

Using the notation of Lemma 4.5, we have that there exists an integer q ≥ 0 (respectively, q′ ≥
0) such that the set of contact auxiliary multiplicities of the pair (X(1) ∪X(2), 0) (respectively,
(Y (1) ∪ Y (2), 0)) is either {δ} if q = 0 (respectively, δ′ if q′ = 0), or {β1, · · · , βq, δ} if q ≥ 1
(respectively, {β1, · · · , βq′ , δ′} if q′ ≥ 1).

Again by Lemma 4.5, q (respectively, q′) is determined by the intersection multiplicity and
by the characteristic exponents of (X(1), 0) and (X(2), 0) (respectively, (Y (1), 0) and (Y (2), 0)).
Therefore, q′ = q and using Lemma 4.3 and Lemma 4.5(b) and (c) one can conclude that δ′ = δ.
Therefore the ordered sequence of contact auxiliary multiplicities of (X(1), 0) and (X(2), 0) and
the one of (Y (1), 0) and (Y (2), 0) are the same. �

Remark 4.7. Note that Theorem 4.1 and Lemmas 4.2, 4.3 and 4.5 show in particular that for a
plane curve (X, 0) the auxiliary multiplicities do not depend on the choice of the parametrization
of the branches of (X, 0).
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4.2. Generic projections of space curves in C2. Now we will prove that the auxiliary
multiplicities of a space curve singularity are the same as those of its generic projection to C2.
In this context the genericity we consider is characterized by transversality of the direction of
the projection with the C5-cone of the space curve singularity. More precisely:

Definition 4.8. Let (X, 0) be a germ of curve in (Cn, 0). Let π : (Cn, 0) → (C2, 0) be a linear
projection. We say that the projection π is C5-generic for the germ of curve (X, 0) if the kernel
of π intersects transversally the cone C5(X, 0); that is, ker(π) ∩ C5(X, 0) = {0}.

When π is C5-generic for (X, 0), we will denote by (X̃, 0) the image π(X, 0), and we will call
it the C5-generic projection of (X, 0) (see [1, Chap. IV]).

Remark 4.9. We will see in the proof of Proposition 4.10 that a C5-generic projection in the
sense of Definition 4.8, preserves multiplicities of the branches, that is: a curve and its C5-
generic projection have the same multiplicity.

We can also notice that if two branches of a curve are non-tangent then neither are the
branches of its C5-generic projection. In fact, if the images by a linear projection of two non-
tangent branches are tangent plane curves, then the two-dimensional plane, generated by the
tangent lines of both branches, intersects the kernel of the projection. We have seen in Theorem
3.2, that the plane generated by both tangents is a plane of the C5-cone of the space curve. So
the projection is not C5-generic.

Proposition 4.10. Let (X, 0) be a germ of curve in (Cn, 0) and π : (Cn, 0) → (C2, 0) a linear
projection. Then, π is C5-generic if and only if

ChAM(X, 0) = ChAM(π(X), 0) and CoAM(X, 0) = CoAM(π(X), 0).

Proof. (⇒) We will suppose first that (X, 0) is irreducible. Let ϕ be a Puiseux parametrization
of (X, 0):

ϕ(u) :=

(
um,

∑
i>m

a2,iu
i ,
∑
i>m

a3,iu
i, · · · ,

∑
i>m

an,iu
i

)
.

Then, for θ 6= 1 ∈ Gm, the auxiliary parametrization φθ has the form:

φθ(u) =(
0, a2,kθ (1− θkθ )ukθ +

∑
i>kθ

a2,i(1− θi)ui , · · · , an,kθ (1− θkθ )ukθ +
∑
i>kθ

an,i(1− θi)ui
)

,

where kθ = min{ i | there exists j with aj,i(1 − θi) 6= 0}. In particular, aj,kθ 6= 0 for some j,
and therefore the characteristic auxiliary multiplicity mθ = kθ.

Now consider a projection π : (Cn, 0)→ (C2, 0) defined by

π(x1, x2, · · · , xn) := (x1, λ2x2 + · · ·λnxn).

Since C3(X, 0) is generated by (1, 0, . . . , 0) and C3(X, 0) ⊂ C5(X, 0), for generic values of
λ2, · · · , λn the projection π is C5-generic for (X, 0).

Suppose π is C5-generic for (X, 0), then π induces a Puiseux parametrization for the C5-

generic projection (X̃, 0) given by ϕ̃ = π ◦ ϕ. Furthermore, the auxiliary parametrization φ̃θ
associated to (X̃, 0) has the form:

φ̃θ(u) =

(
0, (λ2a2,kθ + · · ·+ λnan,kθ )(1− θkθ )ukθ +

∑
i>kθ

(λ2a2,i + · · ·+ λnan,i)(1− θi)ui
)
.
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Note that if (λ2a2,kθ + · · · + λnan,kθ ) 6= 0, then the order of the second coordinate of φ̃θ is kθ
which is then the characteristic auxiliary multiplicity associated to (X̃, 0) and θ, and the result
follows. Notice that in particular, the multiplicity of a curve and its C5-generic projection are
the same, as claimed in Remark 4.9.

Let us now prove that (λ2a2,kθ + · · ·+ λnan,kθ ) is in fact non-zero.

Suppose (λ2a2,kθ + · · · + λnan,kθ ) = 0, this means that the line generated by the vector
vθ = (0, a2,kθ , · · · , an,kθ ) is in ker(π). Note that the vector vθ generates the cone C3(Aθ(X, 0))
of the auxiliary characteristic curve Aθ(X, 0). By Theorem 3.2, vθ ∈ C5(X, 0), which contradicts
that π is C5-generic for (X, 0).

For the case where (X(1), 0) and (X(2), 0) are not tangent, we saw in Remark 4.9 that their
images by a C5-generic projection are not tangent and the multiplicities are the same. Thus the
proof follows by Lemma 4.3. The proof of the case of two tangent branches is analogous to the
proof of the irreducible case.

(⇐) Suppose that

ChAM(X, 0) = ChAM(π(X), 0) and CoAM(X, 0) = CoAM(π(X), 0)

holds for a non-C5-generic linear projection π. Then by transitivity, we have that

ChAM(π(X), 0) = ChAM(X̃, 0) and CoAM(π(X), 0) = CoAM(X̃, 0).

In particular, we have the equality between Milnor numbers,

µ(π(X), 0) = µ(X̃, 0),

which is a contradiction since µ(X̃, 0) < µ(π(X), 0) by [1, Prop. IV.2] or [7, Prop. 8.4.6]. �

Remark 4.11. Since all C5-generic projections of a germ of curve have the same topological
type (see [7, Prop. 8.4.6] or [1, Prop. IV.2]) then by Proposition 4.10 and Remark 4.7 we have
that the auxiliary multiplicities do not depend on the choice of the compatible system of Puiseux
parametrizations of (X, 0).

4.3. Bi-Lipschitz equivalence between curves. In this section we study the bi-Lipschitz
equivalence between germs of curves. We will consider only the outer metric, i.e., the met-
ric induced by the one on the ambient space. We say that two germs of curves (X, 0) and
(Y, 0) in (Cn, 0) are bi-Lipschitz equivalent if there exists a germ of bi-Lipschitz homeomorphism
h : (X, 0)→ (Y, 0) (that is, h and h−1 are Lipschitz maps).

As a consequence of the previous results, we will prove in this section that the auxiliary
multiplicities can be used to determine when two curves in (Cn, 0) are bi-Lipschitz equivalent.

Theorem 4.12. Let

(X, 0) = (X(1) ∪ · · · ∪X(r), 0) ⊂ (Cn, 0) and (Y, 0) = (Y (1) ∪ · · · ∪ Y (r′), 0) ⊂ (Cn
′
, 0)

be germs of curves. Then (X, 0) and (Y, 0) are bi-Lipschitz equivalent if and only if r = r′ and
there exists a bijection ρ : {1, · · · , r} → {1, · · · , r′} preserving all the auxiliary multiplicities,
that is:

ChAM(X(i), 0)) = ChAM(Y (ρ(i)), 0), and CoAM(X(i), X(j)) = CoAM(Y (ρ(i)), Y (ρ(j))),

for all i ∈ S(X) and (i, j) ∈ T (X) or (i, j) ∈ NT (X).

Proof. Let π1 : (X, 0)→ (X̃, 0) and π2 : (Y, 0)→ (Ỹ , 0) be restrictions of C5-generic projections
of (X, 0) and (Y, 0), respectively. Note that π1 and π2 are bi-Lipschitz homeomorphisms ([17],
see also [11], Th. 5.1).
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Suppose that (X, 0) and (Y, 0) are bi-Lipschitz equivalent and let h : (X, 0) → (Y, 0) be a

bi-Lipschitz homeomorphism, so r = r′. Note that the map π2 ◦ h ◦ π−11 : (X̃, 0) → (Ỹ , 0) is a
bi-Lipschitz homeomorphism. By Theorem 4.1 and Proposition 4.10 we can construct a bijection
ρ : {1, · · · , r} → {1, · · · , r} preserving all the auxiliary multiplicities.

Suppose now that r = r′ and there exists a bijection ρ : {1, · · · , r} → {1, · · · , r} preserving

all the auxiliary multiplicities. By Proposition 4.10 and Theorem 4.1 we have that (X̃, 0) and

(Ỹ , 0) have the same topological type. Since they are plane curves there exists a bi-Lipschitz

homeomorphism h̃ : (X̃, 0) → (Ỹ , 0). Note that the map π−12 ◦ h̃ ◦ π1 : (X, 0) → (Y, 0) is a bi-
Lipschitz homeomorphism, therefore (X, 0) and (Y, 0) are bi-Lipschitz equivalent, as desired. �

5. Upper bounds

In this section we present some upper bounds for the number of irreducible components
of C5(X, 0).

For a finite subset A of N or N2 the notation ]{A} means the number of elements of A. For
an analytic set (or germ of analytic set) W ⊂ Cn the notation ]{Irred(W )} means the number
of irreducible components of W (or the germ (W, 0)). As a direct consequence of Theorem 3.2
we have the following bound:

]{Irred(C5(X, 0))} ≤

 ∑
i∈S(X)

(m(i) − 1)

+


∑

(i, j) ∈ T (X)
m(j) ≤ m(i)

m(j)

+ ]{NT (X)}.

However, Krasińsky proved in [10, Cor. 3.6] that for a pair of tangent branches (X, 0) and
(Y, 0) the amount of planes of the C5-cone arising from taking sequences in different branches is
bounded above by the greatest common divisor of the multiplicities of the branches. This gives
us the following bound.

Corollary 5.1. (Upper bound 1) Let (X, 0) = (X1 ∪ · · · ∪Xr, 0) be a germ of singular curve
in (Cn, 0). Then:

]{Irred(C5(X, 0))} ≤

 ∑
i∈S(X)

(m(i) − 1)

+

 ∑
(i,j)∈T (X)

gcd
(
m(i),m(j)

)+ ]{NT (X)}.

In particular, if (X, 0) is irreducible, then ]{Irred(C5(X, 0))} ≤ m(X, 0)− 1.

In the irreducible case, the following lemma shows both, this upper bound and the C5-
procedure can be improved.

Lemma 5.2. Let (X, 0) be an irreducible germ of singular curve with multiplicity m and take
θp, θq ∈ Gm \ {1}. If ord(θp) = ord(θq), then the planes Hθp and Hθq are the same (as complex
vector spaces).

Proof. Let ϕ be a Puiseux parametrization of (X, 0) defined by:

ϕ(u) :=

(
um,

∑
i>m

a1,iu
i ,
∑
i>m

a2,iu
i, · · · ,

∑
i>m

an,iu
i

)
.

For θp ∈ Gm \ {1}, the auxiliary parametrization φθp has the following form:
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φθp(u) =0, a2,kp(1− θkpp )ukp +
∑
i>kp

a2,i(1− θip)ui , · · · , an,kp(1− θkpp )ukp +
∑
i>kp

an,i(1− θip)ui
,

where kp = min{ i | there exists j with aj,i(1− θip) 6= 0}. In particular, aj,kp 6= 0 for some j.

Hence, the C3(Aθp(X), 0) is generated by the vector vθp := (0, a2,kp(1−θkpp ), · · · , an,kp(1−θkpp )).
Since ord(θp) = ord(θq), θ

s
p = 1 if and only if θsq = 1. Therefore, we have that:

kp = min{ i | ∃j with aj,i 6= 0 and θip 6= 1} = min{ i | ∃j with aj,i 6= 0 and θiq 6= 1}.

Hence, the vectors vθp and vθq have the same direction. It follows that Hθp and Hθq are the
same plane. �

For our next bound we will use the following notation. We say that a sequence of positive
integers:

d1 = n, d2, d3, · · · , ds = 1,

such that di+1 divides di is a sequence of nested divisors of n.
Consider the function σ : N \ {0} → N \ {0} defined as

σ(n) = the maximum length of sequences of nested divisors of n.

Remark 5.3. If (X, 0) is a germ of irreducible plane curve of multiplicity m, then σ(m) is the
maximum number of characteristic exponents that (X, 0) can have. Recall that if θ ∈ Gm and
ord(θ) = d, then d is a (positive) divisor of m. Since Gm is a cyclic group, the converse is also
true, that is, if d is a positive divisor of m, then there exists θ ∈ Gm such that ord(θ) = d.
Hence, we have another upper bound for ]{Irred(C5(X, 0))} which improves Upper bound 1.

Proposition 5.4. (Upper bound 2) Let (X, 0) = (X1∪· · ·∪Xr, 0) be a germ of singular curve
in (Cn, 0). Then

]{Irred(C5(X, 0))} ≤

 ∑
i∈S(X)

σ(m(i))− 1

+

 ∑
(i,j)∈T (X)

gcd
(
m(i),m(j)

)+ ]{NT (X)}.

In particular, if (X, 0) is irreducible, then ]{Irred(C5(X, 0))} ≤ σ(m(X, 0))− 1.

Proof. The proof follows by Corollary 5.1, Lemma 5.2, Remark 5.3 and Proposition 4.10. �

Example 5.5. (a) Consider the germ of curve (X, 0) of Example 2.8, which is parametrized by
u 7→ (u4, u6, u7). The cone C5(X, 0) is made of two planes, and the upper bound two, in this
case, is 2.

(b) Similarly to what we did in Lemma 5.2, a natural question is: if ord(θp) = ord(θq), are the

planes H
(1,2)
θp

and H
(1,2)
θq

the same? Unfortunately, we will see in the following example that the

answer to this question is negative.
In fact, consider the germ of curve (X, 0) = (X(1) ∪X(2), 0) ⊂ (C5, 0) defined by:

ϕ(1)(u) = (u3, θ1u
4, θ2u

4, u4, u5) and ϕ(2)(u) = (u3, u4, u4, u4, u7),

where {θ0 = 1, θ1, θ2} are the 3-roots of unity.

Following the C5-procedure, we obtain that C5(X, 0) = H
(1)
θ1
∪H(2)

θ1
∪H(1,2)

θ0
∪H(1,2)

θ1
∪H(1,2)

θ2
,

where:
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H
(1)
θ1

:= V (x5, x2 − θ1x4, x3 − θ2x4), H
(2)
θ1

:= V (x5, x2 − x4, x3 − x4),

H
(1,2)
θ0

:= V (x4, x5, (θ2 − 1)x2 − (θ1 − 1)x3), H
(1,2)
θ1

:= V (x2, x5, (1− θ1)x3 − (θ2 − θ1)x4)

and H
(1,2)
θ2

:= V (x3, x5, (1− θ2)x2 − (θ1 − θ2)x4).

In particular, note that ord(θ1) = ord(θ2), however H
(1,2)
θ1

6= H
(1,2)
θ2

.

Note also that the number of planes in C5(X, 0) is exactly 5, showing that the upper bound 2
is sharp.

(c) Consider the germ of curve (X, 0) ⊂ (C200, 0) parametrized by the following map:

ϕ(u) := (u2017, u2018, u2019, · · · , u2216).

Note 2017 is a prime number (unfortunately 2021 is not). So the order of all elements
θ ∈ G2017 \ {1} is 2017.

Hence, by Lemma 5.2, it is enough to test only one θ in C5-procedure. In this case, C5(X, 0)
is the plane x1x2, that is, C5(X, 0) = V (x3, x4, · · · , x200), where (x1, x2, · · · , x200) are the local
coordinates of C200. Note that without the use of Lemma 5.2, following Theorem 3.2 we would
need to use all the 2016-roots of unity distinct from 1.

The last example motivates the following corollary:

Corollary 5.6. If (X, 0) is irreducible and m(X, 0) is a prime number, then C5(X, 0) is irre-
ducible.

To calculate the bound of proposition 5.4 all you need to know are the multiplicities of the
branches. However, for an irreducible curve (X, 0) you can sharpen the bound if you know the
set of characteristic auxiliary multiplicities ChAM(X, 0).

Proposition 5.7. (Upper bound 3) Let (X, 0) = (X1∪· · ·∪Xr, 0) be a germ of singular curve
in (Cn, 0). Then:

]{Irred(C5(X, 0))} ≤ ∑
i∈S(X)

]{ChAM(X(i), 0)} − 1

+

 ∑
(i,j)∈T (X)

gcd
(
m(i),m(j)

)+ ]{NT (X)}.

In particular, if (X, 0) is irreducible, then ]{Irred(C5(X, 0))} ≤ ]{ChAM(X, 0)} − 1.

To prove this proposition it is convenient to recall the Lipschitz saturation (XS , 0) of a branch.
Let OX,0 be the analytic algebra associated to the branch (X, 0). Algebraically, the Lipschitz
saturation OS(X,0) is the ring of meromorphic functions on (X, 0) which are locally Lipschitz with

respect to the ambient metric; it is contained in the normalization OX,0 ∼= C{u}. The inclusion
map:

OX,0 ↪→ OSX,0
has a geometric counterpart:

ζ : (XS , 0)→ (X, 0)

that can be realized as the restriction to XS of a C5-generic linear projection, in the sense that
its kernel is transversal to C5(XS , 0), see [7, Proposition 8.5.20 and Corollary 8.5.22]. The map
ζ is then a bi-Lipschitz homeomorphism. Moreover, the analytic curve (XS , 0) is a monomial
curve that (determines and) is completely determined by ChAM(X, 0) = {m,β1, . . . , βg}. It is
isomorphic to the monomial curve with analytic algebra:

OS
X,0
∼= C{um, u2m, . . . , uβ1 , uβ1+e1 , . . . , uβ2 , uβ2+e2 , . . . , uβ3 , . . . , uβg , uβg+1, . . .}.
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A fairly detailed account of all of this can be found in [7, Sec. 8.5.2].

Example 5.8. Let (X, 0) ⊂ (C2, 0) be the plane branch with normalization map:

η : (C, 0) −→ (X, 0)

u 7→ (u4, u6 + u7).

Then ChAM(X, 0) = {4, 6, 7} and:

OSX,0
∼= C{u4, u6, u7, u8, u9, · · · }

and so we have the normalization map for the Lipschitz saturation (XS , 0) ⊂ (C4, 0) given
by:

ηs : (C, 0) −→ (XS , 0)

u 7→ (u4, u6, u7, u9).

By making the change of coordinates in (C4, 0), (x, y, z, w) 7→ (x, y + z, z, w) we can view the
Lipschitz saturation map:

ζ : (Xs, 0)→ (X, 0)

as the projection on the first two coordinates. Note that

C5(XS , 0) = V (z3, z4) ∪ V (z2, z4),

which shows that the upper bound 3 is sharp, at least for curves with one branch.

Proof. (Of Proposition 5.7)
Let (X, 0) ⊂ (Cn, 0) be an irreducible curve with ChAM(X, 0) = {m,β1, . . . , βg}. Since:

OS
X,0
∼= C{um, u2m, . . . , uβ1 , uβ1+e1 , . . . , uβ2 , uβ2+e2 , . . . , uβ3 , . . . , uβg , uβg+1, . . .},

we have that the normalization map for the Lipschitz saturation is of the form:

ηs : (C, 0) −→ (XS , 0) ⊂ (CN , 0)

u 7→ (um, uβ1 , . . . , uβg , uj1 , . . . , ujs),

where ji is of the form βk + rek for some k ∈ {1, . . . , g}. This implies that:

C5(XS , 0) = V (z3, . . . , zN ) ∪ V (z2, z4, . . . , zN ) ∪ · · · ∪ V (z2, . . . , zg−1, zg+1, . . . , zN ),

and therefore:

]{Irred(C5(XS , 0))} = ]{ChAM(X, 0)} − 1.

But since the saturation map ζ : (XS , 0) → (X, 0) is a bi-Lipschitz homeomorphism and a
C5-generic projection, it induces a surjective map:

ζ : C5(XS , 0)→ C5(X, 0),

sending each irreducible component of C5(XS , 0) surjectively onto an irreducible component of
C5(X, 0). In particular:

]{Irred(C5(X, 0))} ≤ ]{ChAM(X, 0)} − 1,

which implies the required inequality in Proposition 5.7 �
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6. The number of planes of C5(X, 0) is not a bi-Lipschitz invariant

In this section we would like to take a quick look at the behavior of the C5-cone in a
family of equisingular curves. We refer to [6, Sec. 2] for most of the concepts on equisingularity
mentioned in this section.

Consider a flat family of reduced curves p : (X, 0) → (C, 0) and let p : X → T be a
good representative (see [2, p. 248], see also [14, Def. 2.2]). We denote the fibers of p by
Xt := p−1(t), t ∈ T . Recall that when p : X → T is bi-Lipschitz equisingular, then for each
t, there exists a bi-Lipschitz homeomorphism from X0 to Xt. It has been proved that in bi-
Lipschitz equisingular families of curves, the number of irreducible components of the C3-cone
is constant, see [6] and also [13] for a more general situation. This implies that C3(X0, 0) and
C3(Xt, 0) are homeomorphic. It is thus natural to address the following:

Question: If p : X→ T is a bi-Lipschitz equisingular family of reduced curves, are the cones
C5(Xt, 0), t 6= 0, and C5(X0, 0) homeomorphic?

Let us first remark that this question can also be formulated for a pair of curves. Consider
for instance the curve (X, 0) of Example 2.8. By Theorem 4.12 and Proposition 4.10 (X, 0) and

its C5-generic projection (X̃, 0) are bi-Lipschitz equivalent. The cones C5(X, 0) and C5(X̃, 0)

are not homeomorphic, since C5(X, 0) is composed of two (distinct) planes, while C5(X̃, 0) is

the plane that contains (X̃, 0).
We will see in the following example that the answer to this question is negative even for

families of reduced curves.

Example 6.1. Consider the germ of reduced analytic surface (X, 0) in (C4, 0) given as the image
of the map germ ϕ : (C2, 0)→ (X, 0), ϕ(u, t) = (ϕt(u), t), where ϕt(u) is defined as:

(1) ϕt(u) = (u6, u9 + u10, u11 + tu10).

Consider the canonical projection p : (C4, 0) → (C, 0) to the last factor, where x, y, z, t are
local system of coordinates in C4. Using Singular [9], one can find the reduced structure of
(X, 0) and check that it is a Cohen-Macaulay surface and its singular locus is the t-axis.

Consider the restriction of the projection to a good representative p : X → T . It is a bi-
Lipschitz equisingular family of reduced curves. In fact, note that ϕ−1((0, 0, 0, t)) = (0, t) for all
t ∈ T . Since ϕ is the normalization of X, the fiber Xt is irreducible for all t ∈ T . Since X is
Cohen-Macaulay, then Xt is reduced for all t. Therefore, ϕt is a Puiseux parametrization of Xt.
Note that ChAM(Xt, (0, 0, 0, t)) = {6, 9, 10} for all t ∈ T , thus by Proposition 4.10 the family of

C5-generic plane projections X̃t is a topologically trivial family of plane curves, the bi-Lipschitz
equisingularity of p : X→ T follows from [6, Cor. 3.6].

Now note that for t 6= 0 C5(Xt, (0, 0, 0, t)) is composed of two (distinct) planes, while C5(X0, 0)
is only a plane. We conclude that the number of irreducible components of the C5-cone is not a
bi-Lipschitz invariant, not even in family.

We finish with a remark on the analytic equivalence between curves.

Remark 6.2. The C5-cone of an arbitrary analytic set is invariant under biholomorphic trans-
formations (see [3], p. 92). In the case of curves, the number of planes of C5 is then an analytic
invariant. In this sense, we can use this criterion to construct irreducible curves which are bi-
Lipschitz equivalent but are not analytic equivalent. For instance, Table 3 shows four curves
which are two by two bi-Lipschitz equivalent, each of them with a different number of planes in
its C5-cone. Then, these four curves have distinct analytic types.
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We should say that people already knew how to generate examples of reducible curves which
are bi-Lipschitz equivalent but not analytic by playing with the invariance of the cross-ratio
under biholomorphic transformations.

Table 3. Distinct analytic types of bi-Lipschitz equivalent germs of curves in (C3, 0)

Name Parametrization of (X(i), 0) ]{Irred(C5(X
(i), 0))} Equation of C5(X

(i), 0)

(X(1), 0) (u16, u57, u24 + u36 + u54 + u55) 1 V (y)

(X(2), 0) (u16, u24 + u57, u36 + u54 + u55) 2 V (yz)

(X(3), 0) (u16, u24 + u36 + u57, u36 + u54 + u55) 3 V (yz(y − z))

(X(4), 0) (u16, u24 + u36 − u54 + u57, u36 + u54 + u55) 4 V (yz(y − z)(y + z))
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