
Journal of Singularities
Volume 25 (2022), 1-29

Proc. of 16th International Workshop
on Singularities, São Carlos, 2020

DOI: 10.5427/jsing.2022.25a

RIGHT NETWORK-PRESERVING DIFFEOMORPHISMS

FERNANDO ANTONELI AND IAN STEWART

Abstract. In the formal theory of networks of coupled dynamical systems, the topology of

the network and a classification of nodes and arrows into specific types determines a class
of ‘admissible’ ODEs that are compatible with the network structure. In dynamical systems

theory and singularity theory, coordinate changes that preserve appropriate structures play
key roles. Coordinate changes appropriate for network dynamics should, in particular, preserve

admissibility. Such ‘network-preserving diffeomorphisms’ have been characterised completely

for fully inhomogeneous networks, and for five types of action: right, left, contact, vector
field, and conjugacy. Here we characterise right network-preserving diffeomorphisms for an

arbitrary network. Such coordinate changes are, in particular, appropriate for the study

of homeostasis, which occurs in a biological or chemical system when some output variable
remains approximately constant as input parameters vary over some region.

1. Introduction

Changes of coordinates are widely used to analyse dynamical systems and their bifurcations.
These coordinate changes satisfy different conditions, depending on the structure that must
be preserved. Vector field coordinate changes preserve all solution trajectories. Right equiva-
lence and contact equivalence in singularity theory preserve zero sets. In equivariant dynamics,
symmetry conditions must also be imposed to preserve the symmetries of solutions.

There is an analogous theory of network dynamics, [10,15,28]. In this context a network is a
directed graph whose nodes (vertices) and arrows (directed edges) are classified into distinct types
(often called colours in the graph-theoretic literature). In the dynamic interpretation, nodes
represent the variables of the system and arrows represent couplings between these variables.
The network topology determines which variables affect any given variable, and the node- and
arrow-types determine the form of the components of ‘admissible’ systems of ODEs, which
respect the network structure. The crucial feature that distinguishes a network system from a
general dynamical system is the presence of distinguished variables corresponding to the nodes.
This allows the dynamics of nodes to be compared, so that two nodes can meaningfully be said
to be synchronised or related by a phase shift. It also distinguishes variables that play different
roles in the dynamics, which is common in applications.

In this paper we consider coordinate changes in network dynamics, and investigate when these
changes preserve the network structure of admissible differential equations. This problem has
been solved for fully inhomogeneous networks in [12], for five different types of coordinate change:
left, right, contact, vector field, and conjugacy. Both vector field and conjugacy changes require
diffeomorphisms, and the paper assumes throughout that the coordinate change is invertible.
However, the results for left, right, and contact actions do not use invertibility. In this paper,
we work throughout with maps, except in Section 9 where we prove that the inverse of a right
network-preserving diffeomorphism is also right network-preserving.

2000 Mathematics Subject Classification. Primary 05C20; Secondary 05C25, 20B25.
Key words and phrases. Coupled Systems, Right equivalence, Homeostasis, Perfect Adaptation.

http://dx.doi.org/10.5427/jsing.2022.25a

2 FERNANDO ANTONELI AND IAN STEWART

A network is fully inhomogeneous if all nodes and arrows have different types, and the cor-
responding admissible maps are determined by the topology of the network. Here we make a
start on similar questions for general networks. Assume that the state space of the network is a
real vector space V . Then a map Φ : V → V is right network-preserving if, for any admissible
map F : V → V , the right composition F ◦Φ is admissible. We give necessary and sufficient con-
ditions for Φ to be right network-preserving. We also make a few remarks about the analogous
but often very different case of left network-preserving maps, for which Φ◦F is admissible for
any admissible F .

Motivation. This paper was motivated by a potential application, which led directly to a basic
theoretical question.

This question concerns the composition of admissible maps for a network. In equivariant
dynamics, the composition of two equivariant maps is always equivariant. However, the natural
analog of this statement for networks is false. The next example shows that the composition of
two admissible maps need not be admissible, even when they are linear. It also shows that the
inverse of an invertible admissible map need not be admissible.

21 3

Figure 1. 3-node feedforward network.

Example 1.1. Consider the network of Figure 1. This is network number 3 in the classification
of regular 3-node networks of valence ≤ 2 in [18]. The adjacency matrix is

A =

 1 0 0
1 0 0
0 1 0

Assume node spaces are R. The linear admissible maps are those of the form aI + bA where I
is the identity and a, b,∈ R. The square of A is

A2 =

 1 0 0
1 0 0
1 0 0

which is not admissible since its (3, 1) entry is nonzero. Similarly

I +A =

 2 0 0
1 1 0
1 0 1

is admissible and invertible, but its inverse is

(I +A)−1 =

 1
2

0 0
− 1

2
1 0

1
2
−1 1

which is not admissible since its (3, 1) entry is nonzero. 3

This failure of the composition property provides mathematical motivation for determining
the right network-preserving coordinate changes for a general network — and more generally for
other types of network-preserving map. In any area of mathematics, structure-preserving maps
are important. So this issue is a basic problem in the formal theory of network dynamics.

RIGHT NETWORK-PRESERVING DIFFEOMORPHISMS 3

The characterisation of network-preserving maps for fully inhomogeneous networks in [12]
shows that this question can be answered, but the proofs are far from straightforward, involving
some heavy mathematical machinery. The methods do not extend in any obvious manner to
general networks. Moreover, the most obvious necessary conditions, analogous to the fully
inhomogeneous case, turn out to be insufficient. We will see that the general case differs from
the fully inhomogeneous case in subtle and interesting ways.

The potential application is the concept of homeostasis, which is important in biochemistry,
gene regulatory networks, and many other areas. A system exhibits homeostasis if some output
variable remains constant, or almost constant, when an input variable or parameter changes by
a relatively large amount. Homeostasis is inherently a network concept, because it involves three
distinguished types of variable: the input, the output, and everything else. Network dynamics
has been applied to homeostasis [1, 11–13,16,27,30].

Mathematical models of homeostasis are often constructed using a control-theoretic approach,
requiring the output to be constant when the input lies in some interval R. Such models have
perfect homeostasis or perfect adaptation [6,29]. Here the derivative of the input-output function
is identically zero on R. An alternative approach, [11–13], uses an ‘infinitesimal’ notion of
homeostasis — namely, the derivative of the input-output function is zero at an isolated point.
Near such a point, the variation of the output against input is stationary. This notion of
homeostasis makes it possible to apply singularity theory. In [13] it is shown that infinitesimal
homeostasis points of an input-output map are naturally classified by a slight extension of right
equivalence of singularities [7, 8, 19]. In a network approach, it is then natural to consider
coordinate changes that preserve admissibility. A characterisation of right network-preserving
maps leads to a characterisation of allowable coordinate changes for input-output mappings.

An Example. Examples of fully inhomogeneous networks with nontrivial right and left network-
preserving maps are given in [11]. We now give a simple example of a regular network with
nontrivial right and left network-preserving maps.

1 2 3

Figure 2. Regular 3-node feedforward network of valence 2.

Figure 2 is network 31 in the classification of regular 3-node networks of valence ≤ 2 in
[18, Figure 5]. It is regular and feedforward.

Admissible maps for this example have the form

F (x) =

 f(x1, x1, x1)
f(x2, x1, x2)
f(x3, x1, x2)

where the overlies indicate symmetry under a swap and f is an arbitrary smooth map P → P
for a real vector space P .

We claim that for this network, if F and G are admissible, then so is f◦g. Suppose that

G(x) =

 g(x1, x1, x1)
g(x2, x1, x2)
g(x3, x1, x2)

4 FERNANDO ANTONELI AND IAN STEWART

Then

F ◦G(x) = F (G(x))

= F

 g(x1, x1, x1)
g(x2, x1, x2)
g(x3, x1, x2)

=

 f(g(x1, x1, x1), g(x1, x1, x1), g(x1, x1, x1))

f(g(x2, x1, x2), g(x1, x1, x1), g(x2, x1, x2))

f(g(x3, x1, x2), g(x1, x1, x1), g(x2, x1, x2))

This is admissible with

f(u, v, w) = f(g(w, u, v), g(u, u, u), g(v, u, v))

For this example, any admissible map is left and right network-preserving.
This network is an example of what Rink and Sanders [26] call a semigroup network. That

is, the admissible maps form a semigroup under composition. Although the composition of
two admissible maps need not be admissible, it is in this case. This property is related to the
feedforward structure, and in particular the arrow from node 1 to node 3.

Structure of the Paper. Section 2 recalls those features of the basic network formalism
from [15, 28] that we need in this paper. As already remarked, we modify the definition to
remove the consistency condition on head and tail nodes. We discuss domain and pullback
conditions, the groupoid of the network, input sets, state type, input tuples (required by the
multiarrow formalism), admissible maps, and diagonal and strongly admissible maps.

Section 3 defines network-preserving maps for the left and right actions. We discuss a com-
plication concerning the inverse Φ−1 when the map Φ is a diffeomorphism. We define the left
and right cores and skeletons of a network.

Section 4 states without proof the main results of the paper. These characterise right network-
preserving maps Φ for any network via a set of combinatorial conditions on the components φc

of Φ. Although we state these conditions in terms of node coordinates, they are independent of
the choice of node state spaces. We also characterise right and left network-preserving diagonal
maps.

Section 5 Shows how the main theorem can be used to determine right network-preserving
maps for three examples. Each illustrates how general networks differ from fully inhomogeneous
ones.

Section 6 introduces a simplification that makes pullback conditions more tractable, the use
of ‘standard order’ on arrows. This allows us to reduce the study of admissible maps to pullback
conditions defined by generators of the groupoid. Moreover, transition maps in the groupoid can
be assumed to be the identity provided suitable identifications of state spaces are made.

Section 7 proves the main result on right network-preserving maps. Section 8 proves the main
result on right network-preserving diagonal maps. Finally, Section 9 proves that if Φ is a right
network-preserving map, then its inverse Φ−1 is also right network-preserving.

2. Network Formalism

Networks. In the literature, the networks that we consider are often referred to as ‘coupled cell
networks’. More recently the ‘coupled cell’ terminology has been dropped, in part because of
potential confusion when the theory is applied to biology, and we do the same here. We therefore
talk of ‘nodes’ rather than ‘cells’, but preserve some of the standard notation for consistency
with the existing literature. We consider only finite networks, and employ a slight modification

RIGHT NETWORK-PRESERVING DIFFEOMORPHISMS 5

of the multiarrow formalism of [15]. This modification, discussed in Remark 2.2, removes the
standard ‘consistency condition’ on head and tail nodes of equivalent arrows, replacing it by the
notion of ‘state equivalence’, which is a consequence of the network architecture. This change
has two useful effects. It resolves an ambiguity in the notion of cell-equivalence (henceforth
node-equivalence), and it permits a wider class of admissible systems without affecting any of
the standard theorems.

Definition 2.1. A network G comprises:

(a) A finite set C of nodes.
(b) An equivalence relation ∼C on C, called node equivalence. The node-type of c ∈ C is its
∼C-equivalence class.

(c) A finite set A of arrows.
(d) An equivalence relation ∼A on A, called arrow-equivalence. The arrow-type of e ∈ A is

its ∼A-equivalence class.
(e) Two maps H : A → C and T : A → C. For e ∈ A we call H(e) the head of e and T (e) the

tail of e. 3

Remarks 2.2. (a) Distinct arrows can have the same heads and/or tails, giving rise to multiple
arrows between the same pair of nodes. Similarly an arrow can have the same head and tail,
giving a self-loop. There are several reasons for allowing these ingredients. The main one is that
the theory of quotient networks is much better behaved if we do, see [15].

(b) We have omitted the traditional consistency condition: equivalent arrows have equivalent
tails and heads. That is,

H(e1) ∼C H(e2) T (e1) ∼C T (e2)
for all e1, e2 ∈ A with e1 ∼A e2. In it space, we introduce the notion of state equivalence,
Definition 2.5. Example 2.9 below shows that removing the consistency condition permits a
wider class of networks. It can be verified that this modification does not change any of the
basic theorems of the subject: even the proofs remain the same [14].

(c) Informally, c ∼C d means that nodes c and d have the same ‘internal dynamic’, and a ∼A b
means that arrows a and b represent the same type of coupling. In contrast, state equivalence
c ∼S d indicates a weaker condition: nodes c and d necessarily have the same state space. By
this we mean that these equalities are required for the admissible maps to make sense. 3

Networks in the sense of Definition 2.1 can be presented in the usual way as diagrams, using
symbols such as circles and squares for nodes, and arrows with various types of shaft (solid,
dashed) and arrowhead (open, closed) to distinguish node- and arrow-types.

Input Sets. Associated with each node c ∈ C is a canonical set of arrows, namely, those that
represent couplings into node c.

Definition 2.3. Let c ∈ C. The input set of c is the finite set of arrows directed to c, that is,

(2.1) I(c) = {e ∈ A : H(e) = c}

The extended input set of c (of tail nodes of arrows) is

(2.2) J(c) = {c} ∪ I(c)

Here we consider node c to be an ‘internal arrow’ with head and tail c.

Definition 2.4. The relation ∼I of input equivalence on C is defined by c ∼I d if and only if
c ∼C d and there exists a bijection β : I(c)→ I(d) such that i ∼A β(i) for every i ∈ I(c).

6 FERNANDO ANTONELI AND IAN STEWART

Any such bijection β is called an input isomorphism from node c to node d. The set B(c, d)
denotes the collection of all input isomorphisms from node c to node d.

The condition c ∼C d ensures that c and d have the same ‘internal dynamic’, so they respond
to isomorphic inputs in the same manner.

A network is homogeneous if all input sets are isomorphic. 3

The union

(2.3) BG =
⋃

c,d∈C

B(c, d)

has the structure of a groupoid [3, 17]. This is an algebraic structure obeying most axioms
for a group, except that composition is not always defined. The groupoid operation on BG is
composition of maps, and in general the composition βα is defined only when α ∈ B(a, b) and
β ∈ B(b, c) for nodes a, b, c. We call BG the groupoid of the network G. When G is clear we write
just B.

State Type. In the formalism of [15, 28], the relation ∼C does double duty. It determines
canonical identifications of node spaces, and it also implies that equivalent nodes have ‘the same
internal dynamic’. The consistency conditions on head and tail nodes of arrows combine these
two roles, which is potentially confusing. It is also superfluous, because the required equalities
of node spaces can be deduced from the network diagram or the admissible ODEs.

23

1

Figure 3. 3-node network with two node-types and two arrow-types.

For example, consider G with three nodes as in Figure 3. There are two node types (square,
circle) and two arrow-types (solid, dashed). The G-admissible maps are those of the form

F (x) =

 f1(x1, x3)
f1(x2, x1)
f3(x3, x2)

Here f1 ≡ f2 because nodes 1 and 2 are input-equivalent, but f3 can be different.

Here f1 appears twice; first as a map f1 : P1×P3 → P1, and second as a map f1 : P2×P1 → P2.
For this to make sense, we need P1 = P2 and P3 = P1. That is, P1 = P2 = P3. In this manner,
the domain and pullback conditions require certain node spaces to be identical: that is, they
have the same ‘state type’, which we define in Definition 2.5 after setting up some preliminary
concepts.

In this example we could retain the consistency condition by requiring node 3 to have the
same node type as nodes 1 and 2. However, we have deduced that all three nodes are state
equivalent without invoking the consistency condition. Example 2.9 shows that removing the
consistency condition permits a wider class of networks.

RIGHT NETWORK-PRESERVING DIFFEOMORPHISMS 7

Input Tuples. The input set consists of arrows, not nodes. When defining admissible maps,
we use input variables that run through the tail nodes of all input arrows to a given node. In the
multiarrow formalism the same node may appear as the tail of several arrows. We must therefore
consider not just input sets of arrows, but input tuples of these tail nodes. (Alternatively, we
can use multisets [15].)

If c ∈ C and I(c) = {e1, . . . , ek} ordered in some manner, we write

T (c) = T (I(c)) = (T (e1), . . . , T (ek))

This is the k-tuple of tail nodes of the input arrows to node c, excluding the ‘internal arrow’ c.
If T (ej) = ij ∈ C, then T (c) = (i1, . . . , ik). With this notation we also define:

xT (c) = (xi1 , . . . , xik)

U(c) = (c, T (c)) = T (J(c))
xU(c) = (xc, xT (c)) = (xc, xi1 , . . . , xik)

We are now ready to define state equivalence:

Definition 2.5. Let i, j ∈ C. We first define a relation ∼̇S by i ∼̇S j if there exists an input
isomorphism β ∈ BG such that either

∃a ∈ J(c) : i = H(a), j = H(β(a))

or

∃a ∈ J(c) : i = T (a), j = T (β(a))

The relation ∼̇S need not be an equivalence relation. We therefore define the transitive closure
∼S by

a ∼S b ⇐⇒ a = a0 ∼̇S a1 ∼̇S . . . ∼̇S ar = b

for suitable nodes a1 . . . ar−1. If i ∼S j, the nodes i, j are state equivalent. 3

The transitive closure combines all of the forced equalities of node spaces. Therefore nodes
are state-equivalent if the conditions for admissibility force them to have the same node space.

Having the same state type must be distinguished from ‘accidental’ equalities of node spaces.
For example, in any network digram we can choose all node spaces equal to R. But only the
equalities forced by domain and pullback conditions are necessary for all such choices.

The definition easily implies:

Proposition 2.6. State equivalence ∼S refines node type ∼C . Indeed, ∼S is the finest equiva-
lence relation compatible with the class of admissible maps determined by the network. □

1 2 3 4

5 6

Figure 4. 6-node network with two arrow-types.

8 FERNANDO ANTONELI AND IAN STEWART

Example 2.7. We illustrate state type using the 6-node network of Figure 4. There are five
node-types and two arrow-types. The input equivalence classes are

{1}, {2}, {3}, {4}, {5, 6}

We claim that all six nodes have the same state type.
There is an input isomorphism that swaps the two solid arrows inputting to node 5, so their

tails are state equivalent: 1 ∼S 2. Similarly 3 ∼S 4. Since nodes 5 and 6 are input isomorphic,
5 ∼S 6. There is an input isomorphism sending the arrow from 1 to 5 to the arrow from 3 to 6,
so 3 ∼S 1. Finally, any input isomorphism I(5) → I(6) maps the dotted arrow from 6 to 5 to
the dotted arrow from 1 to 6, so 1 ∼S 6. Since ∼S is an equivalence relation, all six nodes are
state equivalent. 3

Admissible Maps. We now introduce the class of maps (vector fields) that determine those
ODEs that respect the architecture of a network G.

For each node in C choose a node space Pc, the state space of the corresponding node variable.
We assume that Pc is a nonzero finite-dimensional real vector space. (More generally it could
be a manifold, but we do not pursue this generalisation.) As explained above, we require state
equivalent nodes to have the same state space:

c ∼S d ⇒ Pc = Pd

In this case we employ the same coordinate systems on Pc and Pd. The (total) state space is
then

P =
∏
c∈C

Pc

with a node-based coordinate system

x = (xc)c∈C

If D ⊆ C is any finite set of nodes we write

PD =
∏
d∈D

Pd

and

xD = (xc1 , . . . , xcℓ)

where xc ∈ Pc.
For any β ∈ B(c, d) we define the pullback map

β∗ : PT (d) → PT (c)

by

(2.4) (β∗z)T (i) = zT (β(i))

for all i ∈ I(c) and z ∈ PT (d).
We use pullback maps to relate different components of a map associated with a given network.

Specifically, the class of maps that are encoded by a network is given by the following definition.

Definition 2.8. A map F = (fc) : P → P is G-admissible, or just admissible when G is clear, if:

(a) Domain condition: For all c ∈ C the component fc(x) depends only on the node variable

xc and the input variables xT (I(c)). That is, there exists f̂c : Pc×PT (I(c)) → Pc such that

(2.5) fc(x) = f̂c(xc, xT (c))

RIGHT NETWORK-PRESERVING DIFFEOMORPHISMS 9

(b) Pullback condition: For all c, d ∈ C and β ∈ B(c, d)

(2.6) f̂d(xd, xT (d)) = f̂c(xd, β
∗xT (d))

for all x ∈ P . 3

In practice we often omit the hats from the maps f̂c.
In components, we write

F (x) = [f1(x), . . . , fn(x)]
T

where square brackets [] are used for clarity and T appears to save space, because of the
convention that components of admissible maps are shown as column vectors.

The set of smooth G-admissible maps F : P → P , denoted by FG(P), forms a real vector
space.

Example 2.9. We return to example 2.7 to consider its admissible maps, and also to explain why
replacing the consistency condition by state equivalence allows more networks and corresponding
admissible maps.

The admissible maps for this example have the form:

ẋ1 = f1(x1)

ẋ2 = f2(x2)

ẋ3 = f3(x3)

ẋ4 = f4(x4)

ẋ5 = f5(x5, x1, x2, x6)

ẋ6 = f5(x6, x3, x4, x1)

Here the overline indicates symmetry in the corresponding variables (pullback from swapping
the input arrows concerned). Because nodes 5 and 6 are input isomorphic they use the same
function f5. The other component functions are arbitrary, with the specified domains.

If we require the consistency condition, nodes 1, 2, 3, 4 are all forced to have the same node
type, hence also the same function fc. That is, f1 = f2 = f3 = f4. However, the admissible
ODE here is entirely reasonable, and there is no contradiction if we make the fc different for
c = 1, 2, 3, 4. We can also make some of them equal to others. The class of admissible ODEs
changes for each such choice, but all of them make sense and could reasonably occur in a model.

The issue here is that the consistency condition does not just force nodes to have the same
state space; it also forces them to have the same ‘internal dynamic’. This confuses two distinct
roles. 3

Diagonal and Strongly Admissible Maps. There is one general class of maps that compose
both on the left and the right with any admissible map to yield an admissible map. These are
the strongly admissible maps of [15]:

Definition 2.10. (a) A map Φ is diagonal if

Φ(x) = [φ1(x1), . . . , φn(xn)]
T

for suitable maps φc : Pc → Pc.
(b) A map Φ is strongly admissible if it is diagonal, and

3 c ∼C d⇒ φc = φd

If the φj are invertible, it is obvious that the set of all diagonal maps forms a group under
composition.

10 FERNANDO ANTONELI AND IAN STEWART

Proposition 2.11. For a given network G and choice of state space P , let Φ : P → P be strongly
admissible, and let F : P → P be any admissible map. Then both F ◦Φ and Φ◦F are admissible.

Proof. See [15]. The definition of strong admissibility in [15] uses ∼C where we have ∼S . This
is an instance of the ‘dual role’ previously played by node-equivalence. In this case the role of
∼S is the one that is used in the proof. □

In particular, this proposition shows that non-identity maps can be both left and right
network-preserving. So the key question is whether there are any others. As shown in [11],
the answer is affirmative for some networks.

3. Network-Preserving Maps

The precise characterization of network-preserving maps depends on the network, and also
on the type of coordinate change concerned. The paper [12] considers only fully inhomogeneous
networks, for five distinct actions (left, right, contact, conjugacy and vector field). Here we
consider general networks, but only two types of coordinate change: left and right. We focus
mainly on right network-preserving coordinate changes.

Let F : Rn → Rn be a smooth map, and let Φ : Rn → Rn be a map.

(a) The right action of Φ transforms F into G(x) = F ◦Φ(x).
(b) The left action of Φ transforms F into G(x) = Φ◦F (x).

Definition 3.1. Let G be a network and P be a state space for G. Recall that FG(P) is the
space of smooth G-admissible maps.

(a) A right network-preserving map is a map Φ : P → P such that F ◦Φ is admissible for all
F ∈ FG(P). We denote the set of all right network-preserving maps by DR

G (P).
(b) A left network-preserving map is a map Φ : P → P such that Φ◦F is admissible for all

F ∈ FG(P). We denote the set of all left network-preserving maps by DL
G (P).

We often omit the subscript G when the network is clear. 3

The next proposition states a basic property of network-preserving maps. Its proof is trivial,
but it raises a difficult issue.

Proposition 3.2. The sets DR
G (P) and DL

G (P) are semigroups under composition of maps. □

Another obvious but useful result is:

Proposition 3.3. Every right or left network-preserving map is admissible.

Proof. Compose with the identity map, which is admissible. □

Invertibility. Since diffeomorphisms are invertible, it seems plausible that when Φ is a diffeo-
morphism, the semigroups DR

G (P) and DL
G (P) are actually groups. This would be the case if Φ

network-preserving implies Φ−1 network-preserving. However, because the space of admissible
maps is infinite-dimensional, this is not obvious.

There are several ways to get round this issue. In [12] it was proved that, for the five
actions considered there, and for fully inhomogeneous networks, it is enough to assume only the
conditions on Φ. The inverse Φ−1 automatically has the required properties. This was proved
using G-structures, which ‘linearise’ the conditions defining the diffeomorphisms.

An alternative is to build invertibility into the definition of ‘network-preserving’, requiring
both Φ and Φ−1 to be right network-preserving. However, this can cause difficulties because
properties of Φ need not transfer automatically to Φ−1. Also, it excludes non-invertible maps.

RIGHT NETWORK-PRESERVING DIFFEOMORPHISMS 11

We prefer to avoid both of these approaches, because in the right network-preserving case
we can (eventually) prove that when Φ is a diffeomorphism, DR

G (P) is a group, using groupoid
properties and diagram-chasing. See Section 9. However, we do not currently know whether Φ
being left network-preserving implies that Φ−1 is left network-preserving.

Cores, Skeletons and Domain Conditions. Recall [12, Definition 2.1] that a network G is
fully inhomogeneous if distinct arrows and nodes are inequivalent. Three distinguished subnet-
works of any fully inhomogeneous network G are defined in [12]. These determine certain classes
of admissible maps.

Definition 3.4. Let G be a fully inhomogeneous network.

(a) The left core GL is the network whose nodes are the nodes of G and whose arrows are the
arrows j =⇒ i in G that satisfy: for every diagram in G of the form

k
↓
j =⇒ i

there exists an arrow such that
k
↓ ↘
j =⇒ i

(b) The right core GR is the network whose nodes are the nodes of G and whose arrows are the
arrows j =⇒ i in G that satisfy: for every diagram in G of the form

j =⇒ i
↓
k

there exists an arrow such that
j =⇒ i
↘ ↓

k

3

Heuristically, the =⇒ arrow corresponds to Φ and the ↓ arrow corresponds to F . The↘ arrow
corresponds to their composition in the order indicated in the diagram. For the right core, this
is F ◦Φ, and admissibility requires the ↘ to exists to obtain the correct domain condition. For
the left core the same goes for Φ◦F .

In the language of cores, we can restate the main result [12, Theorem 3.4] on right and left
network-preserving maps as:

Theorem 3.5. Let G be fully inhomogeneous. The left network-preserving maps for G are
precisely the admissible maps for GL. The right network-preserving maps for G are precisely the
admissible maps for GR. □

(The cited paper assumes that Φ is a diffeomorphism, but this property is not used in the
proofs.)

We can characterise the domain conditions for both right and left network-preserving maps
in terms of the corresponding cores for a related fully inhomogeneous network, which we now
define.

Definition 3.6. Let G be any network.

(a) The skeleton G3 of G is the network with the same nodes as G, but with all self-loops deleted,
the set of all arrows from i to j replaced by a single arrow (for each pair i, j of distinct nodes),
and all nodes and arrows are deemed to have different types.
It is fully inhomogeneous. Therefore we can also define:

(b) The right skeleton G3R is the right core of the skeleton of G; that is, (G3)R.
(c) The left skeleton G3L is the left core of the skeleton of G; that is, (G3)L. 3

Figure 5 shows a 6-node network and its right skeleton.

12 FERNANDO ANTONELI AND IAN STEWART

1 2 3 4

5 6

1 3 4

5 6

2

Figure 5. (Left) A 6-node network with two input types and nontrivial vertex
symmetries. (Right) its right skeleton. All arrows are by definition distinct.
Nodes 1, 2, 3, 4 are state-equivalent but not node-equivalent.

4. Main Results

Now we are ready to state the main results of this paper. Some definitions are given later, as
are all proofs. We consider only the right action of the map Φ. We start with a characterisation
of the domain condition for right network-preserving maps.

Henceforth we omit the composition sign ◦ when composing maps.

Theorem 4.1. Let G be any network and let Φ : P → P . Then the following are equivalent:

(a) For all G-admissible F the map FΦ satisfies the domain conditions for G-admissibility.
(b) Φ is G3R-admissible.

Corollary 4.2. Every right network-preserving map is both G-admissible and G3R-admissible.

Remark 4.3. The analogue of Theorem 4.1 for left network-preserving maps and the left core
is also valid. The proof is quite different, and will not be given here. 3

We write ≍ to indicate equality of B∗(c, c)-orbits, where the group B∗(c, c) consists of all
β∗ for β ∈ B(c, c) acting on U(c). This group is anti-isomorphic to B(c, c). We can use it to
characterise right network-preserving maps precisely:

Theorem 4.4. A map Φ is right network-preserving if and only if it is G3R-admissible and, for
every pair of nodes c ∼I d, every β ∈ B(c, d), and every xU(d) ∈ PU(d),

(4.1) β∗Φ̂U(d)(xU(d)) ≍ Φ̂U(c)β
∗(xU(d)) ∀xU(d) ∈ PU(d)

Equivalently, if variables are in standard order, then for c ̸= d

(4.2) Φ̂U(d)(xU(d)) ≍ Φ̂U(c)(xU(d)) ∀xU(d) ∈ PU(d)

but when d = c we also require

(4.3) α∗Φ̂U(c)(xU(c)) ≍ Φ̂U(c)α
∗(xU(c)) ∀xU(c) ∈ PU(c)

for every α∗ ∈ B∗(c, c).

Remarks 4.5. (a) For each c, d, the above conditions impose conditions on the components
φc, φd on possibly overlapping tuples of nodes U(c), U(d). The necessary and sufficient con-
dition for Φ to be right network-preserving is that all of these conditions on its components
are simultaneously satisfied. Disentangling the combinatorial implications of those conditions is
not entirely straightforward, because invariance under the appropriate vertex groups introduces
equalities up to the vertex group action, denoted ≍. Examples are given in Section 5 to show
that the computations are routine in any specific case.

(b) Conditions (4.1), (4.2),and (4.2) are stated in terms of input tuples xU(c), xU(d). However,
they are independent of the choice of node spaces and are thus intrinsic to the network.

RIGHT NETWORK-PRESERVING DIFFEOMORPHISMS 13

(c) A natural question is whether a purely graph-theoretic characterisation of right network-
preserving maps exists, analogous to the right core characterisation for fully inhomogeneous
networks. Given a network G, does there exist a related network G∗ whose admissible maps are
precisely the network-preserving maps for G? In our examples, the answer is affirmative, but
this question remains open in general. 3

Theorem 4.6. If Φ is right network-preserving then Φ−1 is right network-preserving.

A similar characterisation for the left action has not yet been investigated. Nevertheless, we
can fully characterize the right and left network-preserving diagonal maps.

Theorem 4.7. A diagonal map Φ is right network-preserving if and only if

(4.4) c ∼S d =⇒ φc = φd

Equivalently, a diagonal map is right network-preserving if and only if it is strongly admissible.

The left network-preserving case is different:

Theorem 4.8. A diagonal map Φ is left network-preserving if and only if

(4.5) c ∼I d =⇒ φc = φd

Remark 4.9. One reason why these cases differ is the role of vertex groups. Suppose that F
is invariant under a group action and Φ is diagonal. Then ΦF is also invariant under the group
action, but FΦ need not be, unless the components of Φ are identical on group orbits. However,
this is not the full story. 3

5. Three Examples

Before proceeding to the proofs of the above results, we use equation (4.1) in the equiva-
lent form (4.2) + (4.3) to perform calculations in examples. These examples show how to use
Theorem 4.4 to characterise right network-preserving maps for specific networks.

Three-Node Example. Consider G with three nodes as in Figure 3. There are two arrow-
types. Every G-admissible map takes the form

F (x) =

 f1(x1, x3)
f1(x2, x1)
f3(x3, x2)

Here f1 ≡ f2 because nodes 1 and 2 are input-equivalent.

The right skeleton G3R is trivial, comprising only the nodes (and their tacit internal ‘arrows’).
Therefore the G3R-admissible maps have the form

(5.1) Φ(x) =

 φ1(x1)
φ2(x2)
φ3(x3)

The intersection of these two spaces (sufficient condition as in Corollary 7.2) consists of all

Φ(x) =

 φ1(x1)
φ1(x2)
φ3(x3)

We now show these conditions are not sufficient. This can be seen by direct calculation, but

we use the general characterisation above.
A set of representatives is R = {1, 3}.

14 FERNANDO ANTONELI AND IAN STEWART

All vertex groups are trivial, so ‘same orbit’ ≍ becomes equality for all values of the variables;
that is, ≡.

There is one nontrivial input isomorphism; namely

β : J(2)→ J(1)

with ‘partial permutation’ formula (
1 2
2 3

)
and we use this to identify PJ(2) with PJ(1).

Condition (4.3) is trivial since α = id.
Condition (4.2) becomes:

Φ̂J(2)(xJ(2)) = Φ̂J(1)(xJ(2))

That is, [
φ2(x2, x1)
φ1(x2, x1)

]
≡

[
φ1(x2, x1)
φ3(x2, x1)

]
Here we have not used the extra information on the domains of the φj stated in (5.1) in order
to illustrate how the general formalism works here.

Since ≍ has become ≡ in this example it follows that

φ1 = φ2 = φ3

and

Φ(x) =

 φ1(x1)
φ1(x2)
φ1(x3)

This example motivates a general theorem characterising diagonal maps right network-preserving

maps. See Section 8. When G3R is trivial (as is common) this characterises the right network-
preserving diffeomorphisms.

Four-Node Example. The network of Figure 6 has 4 nodes, is all-to-all connected (so the
right skeleton is also all-to-all connected but has distinct arrow types). It is homogeneous, with
two arrow-types, and B∗(c, c) = Z2 × 1. This complicates the calculations but introduces some
features of the effect of vertex symmetries.

Figure 6. 4-node network.

The G-admissible maps F and right skeleton maps Φ have the form

F (x) =

f(x1, x2, x3, x4)
f(x2, x3, x4, x1)
f(x3, x1, x4, x2)
f(x4, x1, x3, x2)

 Φ(x) =

φ1(x1, x2, x3, x4)
φ2(x1, x2, x3, x4)
φ3(x1, x2, x3, x4)
φ4(x1, x2, x3, x4)

RIGHT NETWORK-PRESERVING DIFFEOMORPHISMS 15

By Corollary 4.2, every right network-preserving map is both G-admissible and G3R-admissible,
so we can write

Φ(x) =

φ(x1, x2, x3, x4)
φ(x2, x3, x4, x1)
φ(x3, x1, x4, x2)
φ(x4, x1, x3, x2)

for a single function φ.

In the standard order used in (5.2), the extended input tuples are:

J(1) = (1, 2, 3, 4)

J(2) = (2, 3, 4, 1)

J(3) = (3, 1, 4, 2)

J(4) = (4, 1, 3, 2)

There is one ∼I class, namely {1, 2, 3, 4} because the network is homogeneous.
The groups B∗(c, c) are all Z2, interchanging the second and third nodes in the tuple. (They

are all conjugate under the groupoid.)
We take R = {1}. Now B∗(1, 1) is generated by

α =

(
1 2 3 4
1 3 2 4

)
acting via α∗ on PJ(1).

The identification maps are

β2 = β : J(1)→ J(2)

(
1 2 3 4
2 3 4 1

)
β3 = γ : J(1)→ J(3)

(
1 2 3 4
3 1 4 2

)
β4 = δ : J(1)→ J(4)

(
1 2 3 4
4 1 3 2

)
First we deal with α∗. The condition is:

α∗Φ̂U(1)(xU(1)) ≍ Φ̂U(1)α
∗(xU(1))

We have
xJ(1) = (x1, x2, x3, x4) α∗xJ(1) = (x1, x3, x2, x4)

Therefore

Φ̂J(1)(xJ(1)) =

φ(x1, x2, x3, x4)
φ(x1, x2, x3, x4)
φ(x1, x2, x3, x4)
φ(x1, x2, x3, x4)

α∗Φ̂J(1)(xJ(1)) =

φ(x1, x2, x3, x4)
φ(x1, x2, x3, x4)
φ(x1, x2, x3, x4)
φ(x1, x2, x3, x4)

Φ̂J(1)(α
∗xJ(1)) =

φ(x1, x3, x2, x4)
φ(x1, x3, x2, x4)
φ(x1, x3, x2, x4)
φ(x1, x3, x2, x4)

16 FERNANDO ANTONELI AND IAN STEWART

Therefore either

(5.2) φ(x1, x2, x3, x4) = φ(x1, x3, x2, x4)

or, because of ≍:

(5.3) φ(x1, x2, x3, x4) = φ(x1, x3, x2, x4)

These equations just tell us that φ is symmetric in its second and third variables, which we
already know.

Next we deal with β∗. The condition is:

β∗Φ̂U(2)(xU(2)) ≍ Φ̂U(1)β
∗(xU(1))

In the same manner, this condition leads to

φ(x2, x3, x4, x1) ≡ φ(x2, x3, x4, x1)

which is trivially true.
Similar calculations can for γ∗, δ∗ add no new information. We omit these.
The final result, putting all case and alternatives together, is that in this instance Φ is right

network-preserving if and only if φ has the form (5.2). That is, Φ is both G-admissible and
G3R-admissible. So for this network, the necessary condition of Corollary 7.2 is also sufficient.

Remark 5.1. In the terminology of [20,25], this network of Figure 6 is a semigroup network. In
such networks, composition of admissible maps always yields an admissible map. The context for
semigroup networks is the work of Rink, Sanders, and Nijholt [20,21,24–26], who have developed
an elegant approach to dimension reduction methods for network bifurcations, notably Liapunov–
Schmidt, centre manifold, and Poincaré–Birkhoff normal form reduction. Their approach is based
on graph fibrations (Boldi and Vigna [2], Deville and Lerman [5]) which are equivalent to forming
quotient networks [15,28]. They focus on semigroup equivariance, in which there is a semigroup
whose action preserves solutions of admissible ODEs.

The central idea is that instead of trying to preserve admissible maps, we can use more general
coordinate changes while requiring them to preserve specific features of admissible maps. In some
types of network, admissible maps are semigroup-equivariant, and the composition of semigroup-
equivariant maps is always semigroup-equivariant. Nijholt et al. [23] have formulated a sweeping
generalization using quivers. A quiver is a directed graph with multiple arrows and self-loops
permitted, Derksen and Wayman [4]. A representation of a quiver associates a vector space to
each node and a linear map between the corresponding vector spaces to each arrow. Quivers
have led to major advances in representation theory. The key idea for network dynamics is
‘quiver equivariance’. Admissible maps are quiver equivariant (though the converse is generally
false), and quiver equivariant maps compose to give quiver equivariant maps. Thus, although
composition does not preserve admissibility, it can preserve some useful features of admissible
maps, which constrain the form of reduced bifurcation equations. 3

Six-Node Example. As a final example, we consider the 6-node network of Figure 5 (left).
This example illustrates the effect of vertex symmetries. This has a nontrivial right skeleton. Its
right network-preserving maps are nontrivial but have equalities of components not required by
either G- or G3R-admissibility: see (5.7).

RIGHT NETWORK-PRESERVING DIFFEOMORPHISMS 17

The G-admissible maps F and G3R-admissible maps Φ have the forms:

(5.4) F (x) =

f1(x1)
f2(x2)
f3(x3)
f4(x4)

f5(x5, x1, x2, x6)
f5(x6, x3, x4, x1)

 Φ(x) =

φ1(x1)
φ2(x2)
φ3(x3)
φ4(x4)

φ5(x5, x1, x2, x6)
φ6(x6, x1)

Any right network-preserving map must be both G- and G3R-admissible, so

(5.5) Φ(x) =

φ1(x1)
φ2(x2)
φ3(x3)
φ4(x4)

φ5(x5, x1, x2, x6)
φ5(x6, x1)

In the standard order used in (5.4), the extended input tuples are:

J(1) = (1) J(2) = (2) J(3) = (3) J(4) = (4)

J(5) = (5, 1, 2, 6) J(6) = (6, 3, 4, 1)

The ordering in J(5), J(6) respects the action of β ∈ B∗(5, 6) and is standard.
Both B∗(5, 5) and B∗(6, 6) ∼= Z2, acting on the second and third nodes in the tuple. All other

B∗(c, c) = 1.
We take ∼I representatives R = {1, 2, 3, 4, 5}. The only nontrivial vertex group for these is

B∗(5, 5) generated by the transposition

α =

(
5 1 2 6
5 2 1 6

)
We also need β = β6 : J(5)→ J(6), for which

β =

(
5 1 2 6
6 3 4 1

)
First, consider α∗ : PU(5) → PU(5). We require

α∗Φ̂U(5)xU(5) ≍ Φ̂U(5)α
∗xU(5)

That is,
φ5(x5, x1, x2, x6)

φ2(x5)
φ1(x5)

φ6(x5, x6)

 ≍

φ5(x5, x2, x1, x6)

φ1(x5)
φ2(x5)

φ6(x5, x6)

The first and last rows are redundant by B∗(5, 5)-invariance, so we require

(5.6) φ1 = φ2

We must also consider the effect of β. Using (4.2):

Φ̂6(xJ(6)) ≍ Φ̂5(xJ(6))

18 FERNANDO ANTONELI AND IAN STEWART

That is:
φ5(x6, x3, x4, x1)

φ3(x6)
φ4(x6)
φ1(x6)

 ≍

φ5(x6, x3, x4, x1)

φ1(x6)
φ2(x6)
φ6(x6)

The first row is an identity. Since B∗(5, 5) swaps the second and third rows, the other rows tell
us that either

φ1 = φ3 = φ6 φ2 = φ4

or, considering B∗(5, 5)-orbits (the relation ≍):

φ1 = φ4 = φ6 φ2 = φ3

But φ1 = φ2 by (5.6), so in either case all φi except φ5 are equal, say

φ1 = φ2 = φ3 = φ4 = φ6 = φ φ5 = ψ

and

(5.7) Φ(x) =

φ(x1)
φ(x2)
φ(x3)
φ(x4)

ψ(x5, x1, x2, x6)
φ(x6)

6. Standard Order and Admissibility

Before moving on to the the proofs of the results stated in Section 4, we must establish some
preparatory results that simplify computations and make the problem more tractable.

Setting d = c in the pullback condition

(6.1) fd(xd, xT (d)) ≡ fc(xd, β∗
dxT (d))

implies that fc(xc, xT (c)) is B(c, c)-invariant, where the vertex group B(c, c) acts trivially on the
node coordinate xc and permutes the coordinates of xT (c) according to the pullback maps. The
action of β is:

(6.2) (xc, xT (c)) 7→ (xc, β
∗xT (c))

It is convenient to consider β as an arrow-type preserving bijection on the extended input set:
β : J(c)→ J(d). The corresponding pullback map then takes the form

(6.3) β∗ : PU(d) → PU(c)

where, PU(d) = PT (J(d)), is defined by

(β∗x)i = xβ(i) i ∈ J(c), x ∈ PU(d)

In particular, if c = d then β ∈ B(c, c) and β∗ : PU(c) → PU(c). Also β(c) = d.
The pullback condition (6.1) becomes:

(6.4) fd(xU(d)) ≡ fd′(β∗
dxU(d))

It is also useful to make a distinction:

Definition 6.1. If c ∈ C then the group

3 B∗(c, c) = {β∗ : β ∈ B(c, c)}

RIGHT NETWORK-PRESERVING DIFFEOMORPHISMS 19

This is anti-isomorphic to B(c, c) because (αβ)∗ = β∗α∗. Using inverses would make it an
isomorphism, but we prefer not to do this.

We now state a well known characterisation of admissible maps, based on a specific ordering
of coordinates in the domains of component maps fc, which is more convenient for the purposes
of this paper. See [28, Proposition 4.6].

Choose a total order on arrow-types, so that arrows of a given type occur as a consecutive
block; then order arrows arbitrarily within each block. The internal arrow-types specified by
∼C are placed before all others in this order. (Each internal arrow-type occurs once for the
corresponding component fc.) Call this a standard order. Unless, for all c ∈ C, the input set
I(c) has at most one arrow of any given type, standard order is not unique.

It is well known and easy to prove that the groupoid B is generated by a single transition
map βcd : I(c) → I(d) for each c ̸= d with c ∼I d, together with a suitable subset of the vertex
symmetry groups B(c, c). It is enough to let c run through any set of representativesR of the ∼I -
equivalence classes. (In groupoid terminology, these classes determine the connected components
of B; see for example Higgins [17, Corollaries 1 and 2, page 47].) In standard order, if c ∼I d then
we can identify Pc × PT (c) with Pd × PT (d), so that some transition map βcd ∈ B(c, d) satisfies
β∗
cd = id. This is why the usual way to represent symmetries of components using overlines on

the relevant blocks of input variables (see [15, 28]) is possible. These overlines collect together
all tail variables for a given arrow-type in a consecutive block. This gives the identity transition
map PT (d) → PT (c) when these spaces are identified to preserve standard order.

The group B(c, c) acts on the input set set I(c) by permuting arrows and preserving arrow-
type, so it preserves blocks of arrows in standard order. It acts trivially on the distinguished first
coordinate xc, so the action is as in (6.2). We can now characterise admissible maps in terms of
B(c, c)-invariance, avoiding explicit reference to pullback maps. We now omit the hats in (2.5),

so f̂c is replaced by fc.

Proposition 6.2. A map F = (fc) : P → P is admissible if and only if, in standard order, and
with the appropriate identifications:

(a) The map fc depends only on the coordinates xc and xT (c), so we can assume that

fc : Pc × PT (c) → Pc

(b) For each c ∈ R, the map fc is invariant under the action (6.2) of B(c, c).
(c) If c ∼I d then fc = fd.

Proof. This follows from [28, Lemma 4.5 and Proposition 4.6], with the extra observation that
when the inputs are in standard order, each transition map βcd can be taken to be the appropriate
identity map. □

The groupoid BG is generated by the B(c, c) for c ∈ R and the βd. Thus to prove admissibility
we can consider only condition (b), namely B(c, c)-invariance, for each c ∈ R, together with
condition (c) for c ̸= d where both c, d ∈ R.

Crucially, a similar remark holds for right network-preserving maps, as proved in Lemma 7.9.
Therefore to check FΦ for (1) we can consider just those c ∈ R. (Note that (1) is automatic if
B(c, c) = 1 for all c — the vertex-trivial case.) To check (2) we must also consider the βd. So
we only need to check (4.1) for this set of generators. Each generator imposes conditions on Φ,
and we have to work out the consequences of all of these conditions.

Finally, we can construct a coordinate system on PU(c) using a set of representatives
R = {c1, . . . , cr} to ∼I and defining βd as above. For each c ∈ R choose a coordinate sys-
tem on PU(c) defined by the input nodes J(c), and assume standard order. Now we can and do

20 FERNANDO ANTONELI AND IAN STEWART

take β∗
d to be the identity. When d ̸= c (and only then) equation (4.1) therefore reduces to (4.2)

and (4.3).

7. Proofs of the Main Results

We now prove the results in Section 4.
Throughout let F = (f1, . . . , fn) be any admissible map for a network G with nodes

C = {1, . . . , n} and let Φ be a right network-preserving map. Let P = ⊕Pc be the state space.
For simplicity assume Pc = R for all c.

For any G : P → P with G(x) = [g1(x), . . . , gn(x)], and any tuple u = (u1, . . . , uk) where all
uj ∈ C, we define

xu = (xu1 , . . . , xuk
)

Gu = (gu1 , . . . , guk
)

Symmetry Lemma. We begin with a technical lemma that helps to deal with vertex symme-
tries.

Lemma 7.1. Let yj = φj(xij) for 1 ≤ j ≤ k where the functions φj are not constant. Suppose
that for every Sk-invariant function f(y1, . . . , yk) the function

g(xi1 , . . . , xik) = f(φi1(xi1), . . . , φik(xik))

is invariant under the action of Sk on the indices (i1, . . . , ik) of the xij , but leaving the indices
of the φij fixed. Then

φi1 = φi2 = · · · = φik

Proof. If all indices ij are equal there is nothing to prove. Otherwise let 1 ≤ l < m ≤ k be such
that il ̸= ik, so that the corresponding variables xil and xim are independent.

Let τ = (lm) ∈ Sk be the transposition that swaps l and m. Then for all Sk-invariant f , we
have

f(φi1(xi1), . . . ;φil(xil); . . . ;φim(xim); . . . φik(xik)) ≡
f(φi1(xi1), . . . ;φil(xim); . . . ;φim(xil); . . . φik(xik))

Let

f(y) = y1 + · · ·+ yk

Cancelling common terms, we obtain:

φil(xil) + φim(xim) ≡ φil(xim) + φim(xil)

To simplify notation set

xil = u xim = v φil = φ φim = ψ

so that

φ(u) + ψ(v) ≡ φ(v) + ψ(u)

Therefore

φ(u)− ψ(u) ≡ φ(v)− ψ(v)
Since u, v are independent variables, both of these expressions must be a constant c ∈ R. That
is,

(7.1) ψ(u) ≡ φ(u) + c ψ(v) ≡ φ(v) + c

We claim that c = 0. To prove this, set

f(y) = y1y2 + y2y3 + · · ·+ yk−1yk

RIGHT NETWORK-PRESERVING DIFFEOMORPHISMS 21

and again consider the transposition τ . Substituting yj = φij (xij) in f and cancelling common
terms we find that

cφ(u) ≡ cφ(v)
But u, v are independent variables, and φ is not constant, so c = 0. By (7.1), φ = ψ.

Since this equality holds for all pairs l,m such that il ̸= im, the result follows. □

Domain Conditions for Right Network-Preserving Maps. Now we prove the main result
about domain conditions.

Proof of Theorem 4.1.
First we prove that (b) implies (a). This follows from the analogous result for fully inho-

mogeneous networks, because every G-admissible map is G3-admissible. ‘Satisfies the domain
conditions for G-admissibility’ is the same as ‘G3-admissible’. And G3 is fully inhomogeneous.

We can also give a simple self-contained proof, as follows. For all nodes c ∈ C define

K(c) = {d ∈ C : ∂φc

∂xd
̸≡ 0}

That is, ‘those d for which φc depends on xd.
If W ⊆ C, write

K(W) = ∪c∈WK(c)

In the skeleton, U(c) can be identified with the usual extended input set J(c), which can be
considered as a set of nodes.

The statement that Φ is G3R-admissible is equivalent to:

(7.2) K(T (c)) ⊆ T (c) ∀c ∈ C
by the definition of the right core. Assume (7.2). Since F is G-admissible,

(FΦ)c(x) = fc(Φ(x)) = f̂c(Φ(xT (c)))

for some f̂ . Let T (c) = {i1, . . . , im}. Then

(FΦ)c(x) = fc(Φ(x)) = f̂c(φc(x), φi1(x), . . . , φim(x)))

Now φc(x) = φ̂c(xU(c)) by admissibility, and

φik(x) = φ̂ik(xK(ik))

So (FΦ)c(x) is a function of xl where l ∈ K(T (c)) ⊆ T (c). That is, FΦ satisfies the domain
condition for G-admissibility for component c. Since this holds for all c ∈ C, we have proved (a).

Next we prove that (a) implies (b). Initially we assume node spaces are 1-dimensional, for
simplicity. Then we explain how to modify the proof for higher-dimensional nodes.

By Proposition 6.2 we can define a G-admissible map uniquely by choosing a representative
c for each input-equivalence class, and defining fc to have the correct domain and to be B(c, c)-
invariant. All other fd are then defined by pullback. We use this on one specific node c.

Suppose that (a) is true but (b) is false. Then there exist nodes c, d with

d ∈ K(T (c)) d ̸∈ T (c)
Since d ∈ K(T (c)) there is some node i such that i ∈ T (c) and d ∈ K(i).

Since i ∈ T (c) there exists some arrow e1 with H(e1) = c, T (e1) = i. (That is, e1 links i→ c.)
Let e2, . . . , ep be all the other input arrows to c with the same arrow-type as e1. Formally,

H(eq) = c eq ∼e e1 2 ≤ q ≤ p
By G-admissibility, fc is Sp-invariant where the action of Sp is induced by permuting the input
arrows e1, e2, . . . , ep (and then taking tail nodes).

22 FERNANDO ANTONELI AND IAN STEWART

Let T (ej) = ij ∈ C. Observe that i1 = i.
Choose fc to depend only on the tail nodes of these arrows, via these arrows. That is,

f̂c(x) = g(xU(e1), . . . , xU(ep)) where g = g(y1, . . . , yp) is Sp-invariant. The other direct factors of
the vertex group act trivially.

This g is one component of a special type of G-admissible map. The other components are
defined by pullback using Proposition 6.2 for all nodes input-equivalent to c. For the other
nodes, we can use any arbitrary G-admissible map, for example zero. Let

θr = T (er) 1 ≤ r ≤ p
The appropriate direct factor Sp of B(c, c) acts on the er by permuting them arbitrarily. If we

can find some Sp-invariant g such that ∂g
∂xd
̸= 0 we get a contradiction. So we may assume (for

a contradiction) that ∂g
∂xd
≡ 0 for all Sp-invariant g.

Let t be a new indeterminate and consider the polynomial

µ(t) = (t− φθ1(x)) . . . (t− φθp(x)) ∈ C∞(R)[t]
where C∞(R) is the ring of R-valued smooth functions on Rn. Clearly µ(t) is Sp-invariant (for
any t ∈ R, or formally as a polynomial).

By assumption, the xd-partial derivative of any Sp-invariant function g of the φθr is identically

zero. Since t is an indeterminate, ∂t
∂xd

= 0. Therefore ∂µ(t)
∂xd

≡ 0. Removing a minus sign,

p∑
r=1

∏
s̸=r

(t− φθs(x)) ≡ 0

Substitute t = φθ1(x) to deduce that

∂φθ1

∂xd
(φθ1(x)− φθ2(x)) · · · (φθ1(x)− φθp(x)) ≡ 0

When x ∈ U we have
∂φθ1

∂xd
̸= 0, so

(φθ1(x)− φθ2(x)) · · · (φθ1(x)− φθp(x)) = 0 ∀x ∈ U
Therefore Φ(U) is contained in a nontrivial union of proper hyperplanes, so not an open set.
Contradiction.

This prove the result when node spaces are 1-dimensional. For higher-dimensional node spaces
we replace the φθi by their projections onto 1-dimensional subspaces of the Pi and use the same
argument. □

A simple corollary to Theorem 4.1 is:

Corollary 7.2. The following conditions are necessary for Φ to be right network-preserving for
G:
(a) Φ is G-admissible.
(b) Φ is G3R-admissible.

There are many examples for which (a) and (b) determine the right network-preserving maps.
However, the first example in Section 5 shows that in general (a) and (b) are not sufficient for
Φ to be right network-preserving.

Characterisation of Right Network-Preserving Maps. In this section we write down a
formal statement of the conditions that must be satisfied by Φ in order for it to be right network-
preserving.

It remains to understand what the pullback conditions imply about Φ. We now investigate
these.

RIGHT NETWORK-PRESERVING DIFFEOMORPHISMS 23

Notation. We introduce the notation j < j to mean that ‘j is a component of j = (j1, . . . , jk).
Also, we write

ΦU(c) = (φc, φi1 , . . . , φik)

when T (c) = (i1, . . . , ik). We also write points in P and maps P → P as column vectors when
this is more convenient typographically.

Theorem 4.1 leads to a useful lemma:

Lemma 7.3. For every node c ∈ C we have

ΦU(c)(x) = Φ̂U(c)(xU(c))

where

(7.3) Φ̂U(c) : PU(c) → PU(c)

Proof. First we show that if j < J(c) then φ̂j depends only on the components xU(c). More
precisely, it is independent of xL(c) where L(c) = C \ J(c). Therefore φ̂j(xU(c)) is well defined,
and φ̂j(xU(c)) ∈ Pj ⊆ PU(c).

By Theorem 4.1:
φj(x) = φ̂j(xK(j))

where K(j) is the input set of j in G3R. But K(j) ⊆ J(c) by the transitivity property defining
the right core. Therefore φ̂j(x) is independent of variables xp with p ∈ C\K(j) ⊇ C\J(c) = L(c).
So φ̂j(xU(c)) is well defined as claimed.

We can therefore naturally interpret φ̂j as a map

φ̂j : PU(c) → Pj

(we avoid introducing new notation such as φ̃j). But this is true for every j < J(c), which run
through the indices of the components of ΦU(c). So

Φ̂U(c) : PU(c) →
⊕

j<J(c)

Pj = PU(c) □

Equation (7.3) shows that the group B∗(c, c) acts on U(c). When d ∼I c, we have see the
transition map βcd to identify U(d) with U(c). Now βcd = id, so B∗(c, c) acts on U(d) and is
identified with B∗(d, d).

Lemma 7.3 is the key to the main result of this section, the basic characterisation of right
network-preserving maps Theorem 4.4. The proof will be given after some remarks and a lemma.

Remark 7.4. The groups B(c, c) are all finite, so each condition (4.1) is equivalent to a finite
set of conditions

(7.4) β∗Φ̂U(d)(xU(d)) = γ∗Φ̂U(c)β
∗(xU(d)) ∀xU(d) ∈ PU(d) and some γ ∈ B(c, c)

Remark 7.5. Equation (7.4) is a kind of groupoid-equivariance condition. Although we use
nothing deep about groupoids, they play a useful role in organising the calculations.

Compositions of maps make sense because of (6.3) and Lemma 7.3. The proof implicitly
shows that if Φ is network-preserving then those compositions have to make sense, which is
what drives the proof of Theorem 4.1.

The equivalent conditions (4.1) and (4.2) do not involve F and express Φ̂U(d) in terms of

Φ̂U(c) and BG . They therefore characterise right network-preserving maps in terms of network
architecture.

However, when B(c, c) ̸= 1, equality of orbits introduces complications in examples since
there are alternative possibilities: see Section 5. To obtain a more explicit characterisation of
the components φ̂c we have to sort out the effect of all the conditions on equation (4.2). The same

24 FERNANDO ANTONELI AND IAN STEWART

component can be affected by several different conditions here, the B∗(c, c) symmetries come
into play in interpreting the effect of these conditions, and Φ being G3R-admissible imposes
important and useful constraints. The key point is that the characterisation pulls apart into
conditions on the subspaces PU(c). 3

Remark 7.6. From now on we omit the hats on the φ. We have established conditions on
domains that makes this possible without ambiguity. In general φc(xu) makes sense as long as
u includes the domain of φ̂c: just project xu onto that domain. 3

Before giving the proof of the Theorem 4.4, we state a lemma that is useful whenever the
vertex group B(c, c) ̸= 1. It is well-known (‘invariants separate orbits’) but we give a short proof
for completeness.

Lemma 7.7. Suppose that a finite group Γ acts on Rn. Then the following are equivalent:

(a) x, y ∈ Rn lie in the same Γ-orbit.
(b) ψ(x) = ψ(y) for all Γ-invariant functions ψ : Rn → R.

Proof. (a) ⇒ (b) is trivial.
For the converse, assume (b). Consider x as fixed and define

ψ(y) =
∏

γ ̸=δ∈Γ

∥γy − δx∥2

This is Γ-invariant. By (b)

ψ(y) = ψ(x) = 0

Therefore γy = δx for some γ, δ. Thus y = γ−1δx, in the same orbit as x. □

Corollary 7.8. Let y, z ∈ PU(c). The equation

f̂c(y) = f̂c(z) ∀ G-admissible f̂c

holds if and only if y and z are in the same B∗(c, c)-orbit.

Proof of Theorem 4.4. We chase diagrams. By (6.1), F is G-admissible if and only if, for all
c, d, β ∈ B(c, d), the following diagram commutes:

(7.5)

PU(c)
fc−−−−→ Pcxβ∗

∥∥∥
PU(d)

fd−−−−→ Pd

Extend it to the following diagram to compose with the relevant components of Φ:

(7.6)

PU(c)

Φ̂U(c)−−−−→ PU(c)
fc−−−−→ Pcxβ∗

xβ∗
∥∥∥

PU(d)

Φ̂U(d)−−−−→ PU(d)
fd−−−−→ Pd

Now (FΦ)c(x) = fc(Φ(x)) so (FΦ)c = fcΦ. Therefore FΦ is G-admissible if and only if the
outer rectangle in the diagram (7.6) commutes for all fc, fd.

The right-hand square (7.5) commutes. Therefore the outer rectangle commutes if and only
if the left-hand square commutes (once acted on by fc, fd). More precisely, the left-hand square
is

RIGHT NETWORK-PRESERVING DIFFEOMORPHISMS 25

(7.7)

PU(c)

Φ̂U(c)−−−−→ PU(c)xβ∗
xβ∗

PU(d)

Φ̂U(d)−−−−→ PU(d)

By Lemma 7.7, this must commute modulo the action of B∗(c, c) at the top right-hand corner.
That is, equality up to B∗(c, c)-orbits. This diagram is independent of fc, fd, so it commutes
modulo B∗(c, c) if and only if (4.1) is valid. □

For later use, we note:

Lemma 7.9. If (7.6) holds for all β in a set of generators for BG, then it holds for all β ∈ BG.

Proof. The main step is this. Let γ ∈ B(d, e)for a node e. Then

(7.8)
γ∗ : PJ(e) → PJ(e)

β∗γ∗ = (γβ)∗

The diagram

(7.9)

PU(c)

Φ̂U(c)−−−−→ PU(c)
fc−−−−→ Pcxβ∗

xβ∗
∥∥∥

PU(d)

Φ̂U(d)−−−−→ PU(d)
fd−−−−→ Pdxγ∗

xγ∗
∥∥∥

PJ(e)

Φ̂J(e)−−−−→ PJ(e)
fe−−−−→ Pe

commutes. Composing vertical arrows and using (7.8), the diagram

(7.10)

PU(c)

Φ̂U(c)−−−−→ PU(c)
fc−−−−→ Pcx(γβ)∗

x(γβ)∗
∥∥∥

PJ(e)

Φ̂J(e)−−−−→ PJ(e)
fe−−−−→ Pe

commutes. □

Now we show how to extract useful information from (4.1), so that we can calculate examples.
Such calculations require choices of coordinates on the spaces PU(c). Everything becomes much
simpler if this is done systematically using a suitable generating set for BG and appealing to
Lemma 7.9. In standard order, we can and do take β∗

d to be the identity. Now equation (4.1)
reduces to (4.2) and (4.3).

8. Diagonal Maps

In this section we prove Theorems 4.7 and 4.8, characterise the diagonal right network-
preserving maps for any network G (without self-loops and multiple arrows). ‘Diagonal’ is
defined in Definition 2.10.

26 FERNANDO ANTONELI AND IAN STEWART

Proof of Theorem 4.7. We must show that a diagonal map Φ is right network-preserving if
and only if

i ∼S j =⇒ φi = φj

We apply Theorem 4.4 in the version that uses (4.2) and (4.3). We restate them for conve-
nience:

For all α ∈ B(c, c):

(8.1) α∗Φ̂U(c)(xU(c)) ≍ Φ̂U(c)α
∗(xU(c)) ∀xU(c) ∈ PU(c)

and when d ̸= c, for all β ∈ B(c, d):

(8.2) Φ̂U(d)(xU(d)) ≍ Φ̂U(c)(xU(d)) ∀xU(d) ∈ PU(d)

Further, recall Lemma 7.9: it is necessary and sufficient to verify these conditions for gener-
ators of BG .

When Φ is diagonal these conditions simplify. We can replace xJ(i) by xi, and Φ̂J(j) by φj .
First consider (8.1). This becomes

α∗φc(xc) ≍ φcα
∗(xc) ∀xc ∈ Pc

However, B(c, c) acts trivially on the distinguished node variable, so α∗(xc) = xc. By definition,

α∗φc(xc) = φα(c)(xc)

So conditions (8.1) and (8.2) are equivalent to: For all α ∈ B(c, c) and β = βd (so d ∼I c)

φα(c)(xc) = φc(xc) ∀xc ∈ Pc(8.3)

φd(xd) = φc(xd) ∀xd ∈ Pd(8.4)

First, suppose that Φ is right network-preserving. Equations (8.4) and (8.4) are equivalent
to the condition: if d∼̇Sc then φd = φc. Because ∼S is the transitive extension of ∼̇S , it follows
that if d ∼S c then φd = φc.

Conversely, suppose that if d ∼S c then φd = φc. In particular, if if d∼̇Sc then φd = φc. But,
as previously remarked, equation (8.4) is equivalent to the condition: if d∼̇Sc then φd = φc.
Therefore (8.4) is valid.

It remains to verify (8.3). Suppose that i, j < J(c) and α ∈ B(c, c). Then i∼̇Sj, so
φ(i) = φ(j). Now (8.3) is valid. □

Corollary 8.1. Suppose that G3R is trivial (that is, it has no arrows, only nodes). Then the right
network-preserving maps are precisely the diagonal maps Φ = [φ1, . . . , φn]

T such that φi = φj

whenever i ∼S j.

Proof of Theorem 4.8.
We must prove that a diagonal map

Φ(x) = (φ1(x1), . . . , φn(xn))

is left network-preserving if and only if

(8.5) c ∼I d =⇒ φc = φd

Suppose Φ is left network-preserving. Then it is G-admissible so (4.5) holds.
Conversely, suppose (4.5) holds. We must verify the pullback conditions

(ΦF)d(xJ(d)) = (ΦF)c(β
∗xJ(d))

RIGHT NETWORK-PRESERVING DIFFEOMORPHISMS 27

for all β ∈ B(c, d). Since B(c, d) ̸= ∅ we have c ∼I d, so by (4.5) we have φc = φd. But now

(ΦF)d(xJ(d)) = φd(fd(xJ(d))

= φd(fc(β
∗xJ(d)))

= φc(fc(β
∗xJ(d)))

= (ΦF)c(β
∗xJ(d))

as required. □

Remarks 8.2. (a) These are precisely the diagonal maps that are also G-admissible.
(b) This differs from the right network-preserving case, where we have ∼S in place of ∼I . In

general ∼I refines ∼S (∼S equivalence classes are unions of ∼I classes). 3

9. Inverses for Diffeomorphisms

For the 3-node and 6-node examples in Section 5, it is easy to check that if Φ is right network-
preserving and the inverse Φ−1 exists — that is, Φ is a diffeomorphism — then Φ−1 is also right
network-preserving. However, it is not so obvious for the 4-node example, showing that the fact
that DR

G (P) is a group is not trivial.

We end by proving this result in general. Theorem 4.4 implies that if Φ ∈ DR
G (P) is a

diffeomorphism, then its inverse Φ−1 ∈ DR
G (P). That is, the semigroup DR

G (P) is actually a
group. The proof is mostly straightforward diagram-chasing, but some care is needed.

Motivation: The basic idea is to invert the maps in (7.7), obtaining:

(9.1)

PU(c)

Φ̂−1
U(c)←−−−− PU(c)yβ∗−1

yβ∗−1

PU(d)

Φ̂−1
U(d)←−−−− PU(d)

and observe that this diagram must now commute modulo the group action at the bottom left
corner. This is B(d, d), not B(c, c). (They are conjugate in BG , and the conjugacy transfers the
action from PU(c) to PU(d).) Swapping c and d we get the same condition for Φ−1 since β−1

runs through the groupoid when β does.
We also need Lemma 7.9.

Proof of Theorem 4.6. Suppose Φ is right network-preserving. Then Φ is GDR-admissible.
Therefore by [12], Φ−1 is GDR-admissible. This deals with the domain condition.

For the pullback condition, we use Theorem 4.4. Equation (4.1) is valid. We deduce the
corresponding equation(s) for Φ−1 in two steps: c = d and c ̸= d.
Step 1: Set d = c. Then (with all maps acting on PJ(c) we have

(9.2) β∗Φ̂U(c) ≍ Φ̂U(c)β
∗

To simplify notation let Ψ = Φ̂U(c), so that (9.2) becomes β∗Ψ ≍ Ψβ∗, and let B = B∗(c, c),
which is (anti)-isomorphic to B(c, c), hence is a finite group. Recall that ≍ denotes ‘same
B(c, c)∗-orbit’. That is, there exists α∗ ∈ B (which may depend on β∗) such that

(9.3) β∗Ψ = α∗Ψβ∗

Therefore Ψβ∗Ψ−1 = α∗−1β∗ ∈ B so

(9.4) Ψβ∗Ψ−1 ∈ B

28 FERNANDO ANTONELI AND IAN STEWART

Equation (9.4) is equivalent to (9.3). To show that a similar equation holds for (Φ̂U(c))
−1, we

must show that

(9.5) Ψ−1β∗Ψ ∈ B
Clearly ΨBΨ−1 ⊆ B. This is almost the definition of the normaliser of B, but that requires

equality. We can obtain equality because B is finite. For fixed Ψ the map B → B defined by
β∗ 7→ Ψβ∗Ψ−1 is injective. Since B is finite, the map is surjective, so ΨBΨ−1 = B. Therefore
B = Ψ−1BΨ, and this implies the required equation (9.5).
Step 2: Now let d ̸= c.

By (4.1), for β ∈ B(c, d), we have β∗Φ̂U(d) ≍ Φ̂U(c)β
∗, so there exists α ∈ B(c, c) such that

(9.6) β∗Φ̂U(d) = α∗Φ̂U(c)β
∗

Observe that β−1 ∈ B(d, c). The conjugate β∗−1α∗β∗ lies in B∗(d, d), so by Step 1 of the proof
applied at node d we get

(9.7) Φ̂−1
U(d)(β

∗−1α∗β∗) = γ∗Φ̂−1
U(d)

for some γ∗ ∈ B(d, d)∗. Therefore

(9.8) Φ̂−1
U(d)β

∗−1α∗ = γ∗Φ̂−1
U(d)β

∗−1

Inverting (9.6) we obtain

(9.9) Φ̂−1
U(d)β

∗−1 = β∗−1Φ̂−1
U(c)α

∗−1

Substitute from (9.8) and then (9.9) to get:

γ∗Φ̂−1
U(d)β

∗−1 = Φ̂−1
U(d)β

∗−1α∗ = β∗−1Φ̂−1
U(c)α

∗−1α∗ = β∗−1Φ̂−1
U(c)

so
Φ̂−1

U(d)β
∗−1 = γ∗−1β∗−1Φ̂−1

U(c)

Therefore
Φ̂−1

U(d)β
∗−1 ≍ β∗−1Φ̂−1

U(c)

and the inverted diagram commutes up to B∗(d, d)-orbits.
There is a potential issue because α depends on β. However, by Lemma 7.9 a single element

of B∗(c, d) for each c ̸= d suffices, because BG is generated by the vertex groups B(c, c) and a
single element from each B∗(c, d).

We have β−1 ∈ B(d, c). Therefore, by Theorem 4.4, the inverse Φ−1 also satisfies the pullback
conditions, so it is G-admissible. □

Acknowledgements. We thank Marty Golubitsky for encouragement, inspiration, and helpful
conversations. The work of FA is partially supported by FAPESP grant 2019/12247-7.

References

[1] F. Antoneli, M. Golubitsky and I. Stewart. Homeostasis in a feed forward loop gene regulatory network

motif. J. Theoretical Biology 445 (2018) 103–109. DOI: 10.1016/j.jtbi.2018.02.026
[2] P. Boldi and S. Vigna. Fibrations of graphs. Discrete Math. 243 (2002) 21–66.

DOI: 10.1016/s0012-365x(00)00455-6

[3] R. Brown. From groups to groupoids: a brief survey. Bull. London Math. Soc. 19 (1987) 113–134.
[4] H. Derksen and J. Weyman. Quiver representations. Notices Amer. Math. Soc. 52 (2005) 200–206.

[5] L. DeVille and E. Lerman. Modular dynamical systems on networks. J. Eur. Math. Soc. 17 (2013) 2977–

3013. DOI: 10.4171/jems/577
[6] J.E. Ferrell. Perfect and near perfect adaptation in cell signaling. Cell Systems 2 (2016) 62–67.

DOI: 10.1016/j.cels.2016.02.006

[7] C. Gibson. Singular Points of Smooth Mappings. Research Notes in Mathematics 25, Pitman, London 1979.

https://doi.org/10.1016/j.jtbi.2018.02.026
https://doi.org/10.1016/s0012-365x(00)00455-6
https://doi.org/10.4171/jems/577
https://doi.org/10.1016/j.cels.2016.02.006

RIGHT NETWORK-PRESERVING DIFFEOMORPHISMS 29

[8] M. Golubitsky and V. Guillemin. Stable Mappings and Their Singularities. Graduate Texts in Mathematics

14, Springer, New York 1973. DOI: 10.1007/978-1-4615-7904-5 3
[9] M. Golubitsky, M. Pivato, and I. Stewart. Interior symmetry and local bifurcation in coupled cell networks.

Dyn. Sys. 19 (2004) 389–407. DOI: 10.1080/14689360512331318006

[10] M. Golubitsky and I. Stewart. Nonlinear dynamics of networks: the groupoid formalism. Bull. Amer. Math.
Soc., 43 (2006) 305–364. DOI: 10.1090/s0273-0979-06-01108-6

[11] M. Golubitsky and I. Stewart. Homeostasis, singularities, and networks. J. Mathematical Biology 74 (2017)

387–407. DOI: 10.1007/s00285-016-1024-2
[12] M. Golubitsky and I. Stewart. Coordinate changes for network dynamics. Dynamical Systems 32 (2017)

80–116. [Equivariance and Beyond: M. Golubitsky’s 70th Birthday.] DOI: 10.1080/14689367.2016.1235136
[13] M. Golubitsky and I. Stewart. Homeostasis with multiple inputs. SIAM J. Applied Dynamical Systems 17

(2018) 1816–1832. DOI: 10.1137/17m115147x

[14] M. Golubitsky and I. Stewart. Dynamics and Bifurcation in Networks. In preparation 2021.
[15] M. Golubitsky, I. Stewart, and A. Török. Patterns of synchrony in coupled cell networks with multiple

arrows. SIAM J. Appl. Dynam. Sys. 4 (2005) 78–100. DOI: 10.1137/040612634

[16] M. Golubitsky and Y. Wang. Infinitesimal homeostasis in three-node input-output networks. J. Math. Biol.
80 (2020) 1163–1185. DOI: 10.1007/s00285-019-01457-x

[17] P.J. Higgins. Notes on Categories and Groupoids. Van Nostrand Reinhold Mathematical Studies 32, Van

Nostrand Reinhold, London 1971.
[18] M.C.A. Leite and M. Golubitsky. Homogeneous three-cell networks. Nonlinearity 19 (2006) 2313–2363.

DOI: 10.1088/0951-7715/19/10/004

[19] J. Martinet. Singularities of Smooth Functions and Maps (transl. C. Simon). London Math. Soc. Lect.
Notes 58, Cambridge University Press, Cambridge 1982.

[20] E. Nijholt. Bifurcations in Network Dynamical Systems. PhD thesis, Vrije Universiteit Amsterdam 2018.
[21] E. Nijholt, B. Rink, and J. Sanders. Graph fibrations and symmetries of network dynamics. J. Diff. Eq.

261 (2016) 4861–4896. DOI: 10.1016/j.jde.2016.07.013

[22] E. Nijholt, B. Rink, and J. Sanders. Center manifolds of coupled cell networks. SIAM J. Math. Anal. 49
(2017) 4117–4148. DOI: 10.1137/16m106861x

[23] E. Nijholt, B. Rink, and S.Schwenker. Quiver representations and dimension reduction in dynamical systems.

SIAM J. Appl. Dyn. Syst. 19 (4) (2020) 2428–2468. DOI: 10.1137/20m1345670
[24] B. Rink and J. Sanders, Amplified Hopf bifurcations in feed-forward networks. SIAM J. Appl. Dyn. Syst.

12 (2) (2013) 1135–1157. DOI: 10.1137/120899649

[25] B. Rink and J. Sanders, Coupled cell networks and their hidden symmetries. SIAM J. Math. Anal. 46 (2)
(2014) 1577–1609. DOI: 10.1137/130916242

[26] B. Rink and J. Sanders, Coupled cell networks: semigroups, Lie algebras and normal forms. Trans. Amer.

Math. Soc. 367 (5) (2015) 3509–3548. DOI: 10.1090/s0002-9947-2014-06221-1
[27] M. Reed, J.Best, M. Golubitsky, I. Stewart, and F. Nijhout. Analysis of homeostatic mechanisms in bio-

chemical networks. Bull. Math. Biology 79 (2017) 2534–2557. DOI: 10.1007/s11538-017-0340-z
[28] I. Stewart, M. Golubitsky, and M. Pivato. Symmetry groupoids and patterns of synchrony in coupled cell

networks. SIAM J. Appl. Dynam. Sys. 2 (4) (2003) 609–646. DOI: 10.1137/s1111111103419896

[29] Z.F. Tang and D.R. McMillen. Design principles for the analysis and construction of robustly homeostatic
biological networks. J. Theor. Biol. 408 (2016) 274–289. DOI: 10.1016/j.jtbi.2016.06.036

[30] Y. Wang, Z. Huang, F. Antoneli, and M. Golubitsky. The structure of infinitesimal homeostasis in input-

output networks. J. Math. Biol. 82 (2021) 62. DOI: 10.1007/s00285-021-01614-1

Fernando Antoneli, Centro de Bioinformática Médica, Universidade Federal de São Paulo, São
Paulo SP 04023-062, Brazil

Ian Stewart, Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK

https://doi.org/10.1007/978-1-4615-7904-5_3
https://doi.org/10.1080/14689360512331318006
https://doi.org/10.1090/s0273-0979-06-01108-6
https://doi.org/10.1007/s00285-016-1024-2
https://doi.org/10.1080/14689367.2016.1235136
https://doi.org/10.1137/17m115147x
https://doi.org/10.1137/040612634
https://doi.org/10.1007/s00285-019-01457-x
https://doi.org/10.1088/0951-7715/19/10/004
https://doi.org/10.1016/j.jde.2016.07.013
https://doi.org/10.1137/16m106861x
https://doi.org/10.1137/20m1345670
https://doi.org/10.1137/120899649
https://doi.org/10.1137/130916242
https://doi.org/10.1090/s0002-9947-2014-06221-1
https://doi.org/10.1007/s11538-017-0340-z
https://doi.org/10.1137/s1111111103419896
https://doi.org/10.1016/j.jtbi.2016.06.036
https://doi.org/10.1007/s00285-021-01614-1

	1. Introduction
	Motivation
	An Example
	Structure of the Paper

	2. Network Formalism
	Networks
	Input Sets
	State Type
	Input Tuples
	Admissible Maps
	Diagonal and Strongly Admissible Maps

	3. Network-Preserving Maps
	Invertibility
	Cores, Skeletons and Domain Conditions

	4. Main Results
	5. Three Examples
	Three-Node Example
	Four-Node Example
	Six-Node Example

	6. Standard Order and Admissibility
	7. Proofs of the Main Results
	Symmetry Lemma
	Domain Conditions for Right Network-Preserving Maps
	Characterisation of Right Network-Preserving Maps

	8. Diagonal Maps
	9. Inverses for Diffeomorphisms
	Acknowledgements

	References

