ALGEBRAIC KNOTS ASSOCIATED WITH MILNOR FIBRATIONS

ARAÚJO DOS SANTOS, RAIMUNDO; SAEKI, OSAMU; SOUZA, TACIANA O.

Abstract

In this paper, after reviewing basic material on Milnor fibrations, we explain topological invariants of algebraic knots associated with isolated singularities of complex hypersurfaces. These invariants have their origins in knot theory and are very important for the classification of isolated singularities of complex hypersurfaces up to certain topological equivalence relations. These relations correspond to isotopy and cobordism of associated knots. We also discuss the existence of non-trivial examples of real Milnor fibrations and the fibered knot conjecture.

1. Introduction

This is a survey paper on the topology of isolated singularities of complex hypersurfaces and related topics on knots in general dimensions. (In fact, the contents of this article are mainly based on the mini-course delivered by the second author: "Topologia das singularidades e teoria de nós" (in Portuguese), IV Encontro de Singularidades no Nordeste, Departamento de Matemática da Universidade Federal da Paraíba, João Pessoa, Brazil, held during November 22-24, 2017.)

It is classically known, as Milnor's fibration theorem [34], that around a singular point of a complex hypersurface in \mathbb{C}^{n+1}, there is a fibration structure, and this is a fundamental material for studying the topology of the singularity. More precisely, if it is an isolated singularity, then the associated link is a codimension two submanifold of a small sphere of dimension $2 n+1$ such that its complement fibers over the circle. Such a $(2 n-1)$-dimensional submanifold is called an algebraic knot associated with the singularity. In this article we survey the study of the topology of such isolated singularities from the viewpoint of knot theory.

In Section 2, we recall Milnor's fibration theorem together with its relation to the topological type of a hypersurface singularity or that of a holomorphic function germ defining the singularity. Then, we recall several results about the decomposability of the algebraic knots. We also consider the case where the algebraic knot is a topological sphere. In Section 3, we recall the classification of algebraic knots up to isotopy by using Seifert forms in the case of $n \geq 3$. In Section 4, we study the topological types of Brieskorn-Pham polynomials using their Alexander polynomials. In Section 5, we introduce the notion of cobordism for algebraic knots, which is a relation weaker than the isotopy. We recall that for hypersurface singularities in \mathbb{C}^{2}, two algebraic knots are cobordant if and only if they are isotopic. However, for isolated hypersurface singularities in \mathbb{C}^{n+1} with $n \geq 3$, this is not true in general. In Section 6 , we recall the notion of algebraic cobordism for Seifert forms. In particular, we give a brief sketch of a proof for the fact that the Seifert forms for cobordant algebraic knots have metabolizers. In Section 7, we present several known results about algebraic knots defined by weighted homogeneous polynomials together with some explicit examples with interesting properties. We also give some related open questions. Finally, in Section 8, we consider Milnor fibrations associated with real polynomial mappings

[^0]Key words and phrases. Knot, Milnor fibration, topological invariant, knot cobordism.
$\mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ with isolated singularities. We consider the problem to determine those dimension pairs (n, p) for which non-trivial examples exist. We also address a conjecture about fibered knots in S^{3}.

2. Algebraic knots associated with complex Milnor fibrations

In [34] Milnor showed that given a non-constant holomorphic function f defined on a small neighborhood U of the origin in \mathbb{C}^{n+1} with $f(0)=0$, there exists a small $\epsilon>0$ such that

$$
\begin{equation*}
\phi_{f}=\frac{f}{|f|}: S_{\epsilon}^{2 n+1} \backslash K_{f} \rightarrow S^{1} \tag{2.1}
\end{equation*}
$$

is the projection of a smooth locally trivial fiber bundle, where $S_{\epsilon}^{2 n+1}$ is the ($2 n+1$)-dimensional sphere in \mathbb{C}^{n+1} centered at the origin with radius ϵ, and

$$
K_{f}=f^{-1}(0) \cap S_{\epsilon}^{2 n+1}
$$

is called the link of the singularity at the origin. We call the fiber bundle ϕ_{f} the Milnor fibration associated with f.

Remark 2.1. It is known that there exists an $\epsilon_{0}>0$ such that for all ϵ with $0<\epsilon \leq \epsilon_{0}$, the above statement holds for ϵ and that the associated fibrations are all smoothly equivalent. Such a positive real number ϵ_{0} is called a Milnor radius for f at the origin.

The link plays a fundamental role in the study of the local topology of the hypersurface $V=f^{-1}(0)$ near the origin. More precisely, we have the following (see Figure 1).
Theorem 2.2 ([34, 16]). The intersection of V with a small ball $B_{\epsilon}^{2 n+2}$ centered at the origin with radius ϵ is homeomorphic to the cone over $K_{f}=V \cap S_{\epsilon}^{2 n+1}$.

Figure 1. The topology of V within $B_{\epsilon}^{2 n+2}$, where $C\left(K_{f}\right)$ denotes the cone over K_{f}.
Let $F_{\theta}=\phi_{f}^{-1}\left(e^{i \theta}\right)$ be the fiber of (2.1), where $e^{i \theta} \in S^{1}$. It is a real $2 n$-dimensional parallelizable manifold. Using Morse theory, Milnor proved that F_{θ} has the homotopy type of a finite CW complex of dimension n and that the link K_{f} is $(n-2)$-connected, that is, $\pi_{j}\left(K_{f}\right)=0$ for all $j \leq n-2$. As the fibers are all diffeomorphic, we sometimes denote a fiber by F_{f} and call it the Milnor fiber associated with f.

Denote by $\Sigma_{f}=\left\{z \in U \subset \mathbb{C}^{n+1} \mid \nabla f(z)=0\right\}$ the set of critical points of f, or the singular locus of f, where

$$
\nabla f=\left(\frac{\partial f}{\partial z_{1}}, \frac{\partial f}{\partial z_{2}}, \ldots, \frac{\partial f}{\partial z_{n+1}}\right) .
$$

In the case that $0 \in \Sigma_{f}$ is an isolated point ${ }^{1}$, Milnor gave further details about the topology of the fiber and the link. More precisely, in such a case the fiber F_{θ} has the homotopy type of a wedge of n-dimensional spheres $S^{n} \vee \cdots \vee S^{n}$, also known as Milnor's bouquet of spheres, with μ_{f} copies of S^{n} attached to a single common point. The number μ_{f} is called the Milnor number of f at the origin. This number is also given by the topological degree of the mapping

$$
\frac{\nabla f}{\|\nabla f\|}: S_{\epsilon}^{2 n+1} \rightarrow S^{2 n+1}
$$

and is also known to be equal to the dimension of

$$
\mathcal{O}_{n+1} /\left(\frac{\partial f}{\partial z_{1}}, \frac{\partial f}{\partial z_{2}}, \ldots, \frac{\partial f}{\partial z_{n+1}}\right)
$$

over \mathbb{C}, where \mathcal{O}_{n+1} denotes the \mathbb{C}-algebra of holomorphic function germs at the origin in \mathbb{C}^{n+1}.
Milnor also proved that for all $\epsilon>0$ small enough, the manifold

$$
\left(f^{-1}(0) \backslash\{0\}\right) \cap B_{\epsilon}^{2 n+2}
$$

transversely intersects $S_{\epsilon}^{2 n+1}$ and thus K_{f} is a $(2 n-1)$-dimensional smooth manifold. The codimension two (oriented) submanifold K_{f} of $S_{\epsilon}^{2 n+1}$ is called the algebraic knot associated with f at the origin. Furthermore, each fiber F_{θ} can be considered as the interior of a smooth compact manifold with boundary $\overline{F_{\theta}}=F_{\theta} \cup K_{f}$. Thus in a neighborhood of the link K_{f} all fibers fit around their common boundary K_{f} like an open book structure, as illustrated in Figure 2. In this sense, the algebraic knot K_{f} is a fibered knot.

Figure 2. Open book structure.

Example 2.3. Consider the polynomial

$$
g\left(z_{1}, z_{2}\right)=z_{1}^{3}-z_{2}^{2}
$$

in two variables, with an isolated critical point at the origin. Then, for $\epsilon>0$, there exist uniquely $r_{1}, r_{2}>0$ such that $r_{1}^{3}=r_{2}^{2}$ and $r_{1}^{2}+r_{2}^{2}=\epsilon^{2}$, and the link

$$
K_{g}=\left\{\left(r_{1} e^{2 \pi i t}, r_{2} e^{3 \pi i t}\right) \mid t \in \mathbb{R}\right\}
$$

is a trefoil knot in the torus $S_{r_{1}}^{1} \times S_{r_{2}}^{1} \subset S_{\epsilon}^{3}$, see Figure 3 .

[^1]

Figure 3. Algebraic knot K_{g} sits on a torus.

In this case the closure of the fiber \bar{F}_{θ} is a Seifert surface of K_{g} and has the homotopy type of a wedge of 1-dimensional spheres with $\mu_{g}=2$. We refer to Figure 4 as an illustration.

Figure 4. Homotopy type of the Milnor fiber.
For topological equivalence relations for isolated complex hypersurface singularities, the following is known.

Theorem $2.4([29,41,45])$. Let $f, g \in \mathbb{C}\left[z_{1}, z_{2}, \ldots, z_{n+1}\right]$ be polynomials with $f(0)=g(0)=0$ having isolated singularities at the origin. Then, the following statements are all equivalent, where ϕ_{f} and ϕ_{g} are the Milnor fibrations for f and g, respectively.
(1) There exists a homeomorphism germ $h:\left(\mathbb{C}^{n+1}, 0\right) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$ such that

$$
h\left(f^{-1}(0)\right)=g^{-1}(0)
$$

(2) There exist homeomorphism germs $h:\left(\mathbb{C}^{n+1}, 0\right) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$ and $H:(\mathbb{C}, 0) \rightarrow(\mathbb{C}, 0)$ such that $f=H \circ g \circ h$.
(3) $\left(S^{2 n+1}, K_{f}\right)$ and $\left(S^{2 n+1}, K_{g}\right)$ are homeomorphic.
(4) $\left(S^{2 n+1}, K_{f}\right)$ and $\left(S^{2 n+1}, K_{g}\right)$ are diffeomorphic.
(5) There exist homeomorphisms $h^{\prime}:\left(S^{2 n+1}, K_{f}\right) \rightarrow\left(S^{2 n+1}, K_{g}\right)$ and $H^{\prime}: S^{1} \rightarrow S^{1}$ such that the diagram

commutes.
(6) There exist diffeomorphisms $h^{\prime}:\left(S^{2 n+1}, K_{f}\right) \rightarrow\left(S^{2 n+1}, K_{g}\right)$ and $H^{\prime}: S^{1} \rightarrow S^{1}$ such that the diagram

commutes.
Remark 2.5. It is known that a holomorphic function germ with an isolated critical point at the origin is always topologically equivalent to a polynomial function germ (for example, see [18, Proposition (6.39)] or [49]). Therefore, in order to study the topology of an isolated complex hypersurface singularity, we may assume that the hypersurface is defined by a polynomial function.
2.1. Case of $n=1$. In this subsection, let us consider the two variable case. Suppose that $f=f\left(z_{1}, z_{2}\right)$ is locally irreducible at the origin. In this case, f has an isolated singularity at the origin and K_{f} is connected. We can solve the equation $f\left(z_{1}, z_{2}\right)=0$ in the form of the so-called Puiseux expansion:

$$
\left\{\begin{array}{l}
z_{1}=w^{a_{0}}, 0<a_{0} \\
z_{2}=\lambda_{1} w^{a_{1}}+\lambda_{2} w^{a_{2}}+\cdots, \quad 0<a_{1}<a_{2}<\cdots
\end{array}\right.
$$

Based on such a description, Brauner showed the following.
Theorem 2.6 ([13]). If $f=f\left(z_{1}, z_{2}\right)$ is locally irreducible at the origin, then the algebraic knot K_{f} is an iterated torus knot.

In particular K_{f} is a prime knot (see [50]), where a knot is prime if it is not isotopic to the connected sum of two non-trivial knots. A schematic picture explaining what is an iterated torus knot can be found in Figure 5.

Figure 5. Construction of iterated torus knots.
Remark 2.7. It should not be forgotten that Wirtinger has essentially contributed a lot in the topological study of algebraic knots. For details, see [23].

Note that for $n \geq 2$, the following is known.
Theorem 2.8 ([33, 43]). For $n \geq 2$, there exist decomposable algebraic knots.

Note that a knot is decomposable if it is isotopic to the connected sum of two non-trivial knots. A schematic picture of a decomposable knot can be found in Figure 6.

Figure 6. An example of a decomposable knot.
2.2. Case of $n=2$. Let us consider the three variable case, $f=f\left(z_{1}, z_{2}, z_{3}\right)$, with (at most) an isolated singularity at the origin. In this case K_{f} is 3 -dimensional. Then, using resolution of singularities, Mumford showed the following.

Theorem 2.9 ([36]). The fundamental group $\pi_{1}\left(K_{f}\right)$ is trivial if and only if $f^{-1}(0)$ is not singular at the origin.

In particular, for the 3 -dimensional link K_{f}, it is simply connected if and only if it is homeomorphic to S^{3}, which gives the solution to the Poincaré conjecture for algebraic links. Note that in general, the 3-dimensional manifold K_{f} is a so-called Waldhausen graph manifold (for example, see [37]) and this was essential in the above theorem.
2.3. Case of $n \geq 3$. Suppose $n=2 m \geq 4$ and consider

$$
f_{k}=z_{1}^{2}+\cdots+z_{2 m-1}^{2}+z_{2 m}^{3}+z_{2 m+1}^{6 k-1}
$$

for $k \geq 1$. This class of polynomials shows that the situation is quite different from Theorem 2.9 for higher dimensions.

Theorem 2.10 ([14, 26]). The link $K_{f_{k}}$ is homeomorphic to the $(4 m-1)$-dimensional sphere $S^{4 m-1}$. Furthermore, we have

$$
\left\{K_{f_{k}} \mid k=1,2, \ldots\right\}=b P_{4 m}
$$

where $b P_{4 m}$ is the group of $(4 m-1)$-dimensional homotopy spheres which are boundaries of parallelizable manifolds of dimension 4 m .

Note that the group $b P_{4 m}$ is finite cyclic and is non-trivial in general: for example, $b P_{8} \cong \mathbb{Z} / 28 \mathbb{Z}, b P_{12} \cong \mathbb{Z} / 992 \mathbb{Z}, b P_{16} \cong \mathbb{Z} / 8128 \mathbb{Z}$, etc. (see [28]).

3. Classification of algebraic knots

In this section, we discuss several invariants of algebraic knots and their classification up to isotopy.

Suppose that f has an isolated critical point at the origin. As $f^{-1}(0) \cap\left(B_{\epsilon}^{2 n+2} \backslash\{0\}\right)$ is a complex manifold, it has a natural orientation, and K_{f} inherits an orientation as its boundary. Then, the Milnor fiber F_{f} also has a natural orientation so that the oriented boundary of its closure coincides with K_{f}. Note also that $S_{\epsilon}^{2 n+1}$ is also oriented as the boundary of $B_{\epsilon}^{2 n+2}$. Then, we have a natural normal orientation for F_{f} in $S_{\epsilon}^{2 n+1}$.
Definition 3.1. The Seifert form of the fiber F_{f} is the pairing

$$
L_{f}: H_{n}\left(F_{f} ; \mathbb{Z}\right) \times H_{n}\left(F_{f} ; \mathbb{Z}\right) \rightarrow \mathbb{Z}
$$

given by taking the linking number $L_{f}(\alpha, \beta)=\operatorname{lk}\left(a_{+}, b\right)$, where

- a and b are n-cycles representing the homology classes α and β, respectively,
- a_{+}indicates a translate of a in the positive normal direction to F_{f} (see Figure 7).

Figure 7. Translate a_{+}of a in the positive normal direction to F_{f}, where F_{f}^{+} denotes a parallel translate of F_{f} in the positive normal direction.

Example 3.2. Consider $g\left(z_{1}, z_{2}\right)=z_{1}^{3}-z_{2}^{2}$ as in Example 2.3. In this case $H_{1}\left(F_{g} ; \mathbb{Z}\right) \cong \mathbb{Z} \oplus \mathbb{Z}$ has two generators, $\alpha=[a]$ and $\beta=[b]$ (see Figure 8), and the associated matrix of the Seifert form is given by

$$
\left(\begin{array}{ll}
\ell_{11} & \ell_{12} \\
\ell_{21} & \ell_{22}
\end{array}\right)=\left(\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right)
$$

where the entries in the matrix are given by the linking numbers

$$
\ell_{11}=\operatorname{lk}\left(a_{+}, a\right), \ell_{12}=\operatorname{lk}\left(a_{+}, b\right), \ell_{21}=\operatorname{lk}\left(b_{+}, a\right), \ell_{22}=\operatorname{lk}\left(b_{+}, b\right)
$$

(For the linking numbers, see Figure 9.)

Figure 8. 1-cycles representing generators of $H_{1}\left(F_{g} ; \mathbb{Z}\right)$.
We have the following classification theorem of algebraic knots for $n \geq 3$.
Theorem 3.3 ([21, 27]). For $n \geq 3$, two algebraic knots K_{f} and K_{g} are isotopic if and only if their Seifert forms L_{f} and L_{g} are isomorphic, i.e. if and only if there exists an isomorphism $\varphi: H_{n}\left(F_{f} ; \mathbb{Z}\right) \rightarrow H_{n}\left(F_{g} ; \mathbb{Z}\right)$ such that $L_{f}(x, y)=L_{g}(\varphi(x), \varphi(y))$ holds for all $x, y \in H_{n}\left(F_{f} ; \mathbb{Z}\right)$.

Note that for $n=1$, when f and g are locally irreducible, the above theorem also holds.
Theorem 3.3 seems to be very strong: however, the problem is that the computation of the Seifert form for a given isolated singularity of a complex hypersurface is in general extremely difficult. This is the main reason why the above theorem has not been used so far, unfortunately.

Furthermore, for two or three variable case, the above theorem does not hold in general as follows.

Figure 9. Linking numbers.
Theorem 3.4 ([19, 5]). For $n=1,2$, there exist f and g such that L_{f} and L_{g} are isomorphic but that the algebraic knots K_{f} and K_{g} are not isotopic.

When $n=1$ and f is locally irreducible, the following invariant is very effective.
Definition 3.5. Suppose that f has an isolated critical point at the origin in \mathbb{C}^{n+1}. Then, the polynomial $\Delta_{f}(t)=\operatorname{det}\left(t L_{f}+(-1)^{n} L_{f}^{T}\right)$ in t is called the Alexander polynomial of the algebraic knot K_{f}, where L_{f} is identified with the representation matrix of the Seifert form with respect to a fixed basis, and L_{f}^{T} denotes its transpose.

Then, in the two variable case, we have the following.
Theorem 3.6 ([30, 55]). If $n=1$, then we have the following.
(1) Let f and g be locally irreducible. Then, the algebraic knots K_{f} and K_{g} are isotopic if and only if $\Delta_{f}(t)= \pm \Delta_{g}(t)$.
(2) When f is not necessarily locally irreducible, the isotopy class of K_{f} is completely determined by the isotopy classes of the connected components and their linking numbers.

4. Brieskorn-Pham polynomials

In this section, we consider the following restricted class of complex polynomials and give more detailed results.

Definition 4.1. Let $a_{1}, a_{2}, \ldots, a_{n+1}$ be integers greater than or equal to 2 . The polynomial $f\left(z_{1}, z_{2}, \ldots, z_{n+1}\right)=z_{1}^{a_{1}}+z_{2}^{a_{2}}+\cdots+z_{n+1}^{a_{n+1}}$ is called a Brieskorn-Pham polynomial. Note that it has an isolated critical point at the origin in \mathbb{C}^{n+1}. The integers $a_{1}, a_{2}, \ldots, a_{n+1}$ are called the exponents.

Yoshinaga-Suzuki showed the following.
Theorem 4.2 ([53]). Let f and g be Brieskorn-Pham polynomials of $n+1$ variables. Then the following three are equivalent to each other.
(1) The algebraic knots K_{f} and K_{g} are isotopic.
(2) The exponents of f and g coincide up to order.
(3) The Alexander polynomials satisfy $\Delta_{f}(t)= \pm \Delta_{g}(t)$.

For Brieskorn-Pham polynomials, their Seifert forms have been calculated (see [48]). We have $L_{f}=A_{a_{1}} \otimes A_{a_{2}} \otimes \cdots \otimes A_{a_{n+1}}$, where for an integer $a \geq 2, A_{a}$ is the integral bilinear form on the free abelian group of rank $a-1$, which is represented by the following $(a-1) \times(a-1)$ matrix:

$$
A_{a}=\left(\begin{array}{cccccc}
1 & 0 & 0 & \ldots & 0 & 0 \\
-1 & 1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & -1 & 1
\end{array}\right)
$$

In Section 7, we will give explicit examples of polynomials which are not topologically equivalent to Brieskorn-Pham polynomials. We will also give more results and examples of BrieskornPham polynomials there.

For the classification of Seifert forms over the real numbers, we refer to [12].

5. Cobordism of algebraic knots

In the following, an m-dimensional knot refers to a smooth closed oriented m-dimensional manifold embedded in S^{m+2}. Two such knots K and K^{\prime} are considered to be equivalent if they are orientation preservingly isotopic to each other. In this case, we write $K \sim_{\text {iso }} K^{\prime}$. In this section, we consider a weaker relation as follows.

Definition 5.1 ([24]). Let K_{0} and K_{1} be m-dimensional knots in S^{m+2}. We say that K_{0} and K_{1} are cobordant if there exists a compact oriented $(m+1)$-dimensional submanifold X of $S^{m+2} \times[0,1]$ such that the following conditions are satisfied.
(1) The manifold X is diffeomorphic to $K_{0} \times[0,1]$.
(2) The manifold X intersects $S^{m+2} \times\{0,1\}$ transversely and we have

$$
X \cap\left(S^{m+2} \times\{0,1\}\right)=\partial X=\left(K_{0} \times\{0\}\right) \cup\left(-K_{1} \times\{1\}\right)
$$

where $-K_{1}$ denotes the knot K_{1} with the orientation reversed.
In this case, we write $K_{0} \sim_{\text {cob }} K_{1}$. The embedded manifold X is called a cobordism between K_{0} and K_{1}. For a schematic picture, we refer to Figure 10.

Remark 5.2. If K_{0} and K_{1} are isotopic, then they are cobordant (see Figure 11). In general, the converse is not valid: Figure 12 illustrates this situation schematically.

Suppose that f and g have isolated singularities at the origin. In general, if the algebraic knots K_{f} and K_{g} are cobordant, then the topology of the singularities of f and g are somehow related (see Figure 13).

Figure 10. A cobordism.

Figure 11. Isotopy trace gives a cobordism.
For example, suppose that $f_{t}, t \in[0,1]$, is a μ-constant family of holomorphic functions with isolated singularities at the origin in \mathbb{C}^{n+1}. This means that the Milnor number $\mu_{f_{t}}$ of f_{t} at the origin is independent of t. Then, we have the following.
Proposition 5.3. The algebraic knots $K_{f_{0}}$ and $K_{f_{1}}$ are cobordant to each other, provided that $n \neq 2$.

Proof. We have only to show that for each $T \in[0,1]$, there exists a $\delta>0$ such that $K_{f_{t}}$ are all cobordant for $t \in[0,1] \cap[T-\delta, T+\delta]$.

Let $\epsilon>0$ be a Milnor radius for f_{T}. Then, there exists a $\delta>0$ such that the sphere $S_{\epsilon}^{2 n+1}$ intersects $\left(f_{t}\right)^{-1}(0)$ transversely for all $t \in[0,1] \cap[T-\delta, T+\delta]$. For such a fixed t, let $\epsilon^{\prime}>0$ be a Milnor radius for f_{t} such that $0<\epsilon^{\prime}<\epsilon$. Then, we see that the knots $K_{f_{T}}$ and $K_{f_{t}}^{\prime}=\left(f_{t}\right)^{-1}(0) \cap S_{\epsilon}^{2 n+1}$ are isotopic to each other. Furthermore, we see that

$$
X=\left(f_{t}\right)^{-1}(0) \cap\left(B_{\epsilon}^{2 n+2} \backslash \operatorname{Int} B_{\epsilon^{\prime}}^{2 n+2}\right)
$$

gives a cobordism between $K_{f_{t}}^{\prime}$ and $K_{f_{t}}$. This can be seen by an argument as in [31]. We refer to Figure 14. Hence, $K_{f_{t}}$ and $K_{f_{T}}$ are cobordant to each other.

Figure 12. Knots K_{0} and K_{1} are cobordant, but are not isotopic. Here, K_{1} is the connected sum of a trefoil knot and its mirror image, \mathbb{R}_{+}^{N} (resp. \mathbb{R}_{-}^{N}) denotes the upper (resp. lower) half space of \mathbb{R}^{N}, the cobordism is embedded in $\mathbb{R}^{3} \times[0,1] \subset \mathbb{R}_{+}^{4}$, and \mathbb{R}^{3} is assumed to be embedded in S^{3}.

Figure 13. Isolated hypersurface singularities whose associated algebraic knots are cobordant.

Note that according to [31], $K_{f_{0}}$ and $K_{f_{1}}$ are, in fact, isotopic for $n \neq 2$. When $n=2$, the problem is still open as far as the authors know. One of the strategies for a positive solution would be to first show that $K_{f_{0}}$ and $K_{f_{1}}$ are cobordant using results of [8,37] and then show that $K_{f_{0}}$ and $K_{f_{1}}$ are isotopic (see Remark 5.9). Here, we note that for $n=2$, it is still an open question whether $K_{f_{0}}$ and $K_{f_{1}}$ are diffeomorphic or not: we still do not even know if they have isomorphic fundamental groups or not.
5.1. Case of $n=1$. Suppose that $f\left(z_{1}, z_{2}\right)$ is locally irreducible at the origin. Note that then, it has an isolated singularity at the origin. For the Milnor fibration as in (2.1), we have a smooth one parameter family of diffeomorphisms $h_{t}: \phi_{f}^{-1}(1) \rightarrow \phi_{f}^{-1}\left(e^{2 \pi i t}\right)$ between the Milnor fibers, $0 \leq t \leq 1$. Note that h_{0} is the identity and h_{1} is called a geometric monodromy of the Milnor fibration.

Figure 14. $K_{f_{t}} \sim_{\text {cob }} K_{f_{t}}^{\prime} \sim_{\text {iso }} K_{f_{T}}$

Proposition 5.4 ([34]). We have $\Delta_{f}(t)= \pm \operatorname{det}\left(t I_{\mu}-\left(h_{1}\right)_{*}\right)$, where μ is the Milnor number, I_{μ} is the $\mu \times \mu$ identity matrix, and $\left(h_{1}\right)_{*}: H_{1}\left(F_{0} ; \mathbb{Z}\right) \rightarrow H_{1}\left(F_{0} ; \mathbb{Z}\right)$ is the isomorphism induced by the geometric monodromy on $F_{0}=\phi_{f}^{-1}(1)$.
Theorem 5.5 ([30]). Suppose that $f\left(z_{1}, z_{2}\right)$ and $g\left(z_{1}, z_{2}\right)$ are locally irreducible at the origin. Then, the following three are equivalent to each other.
(1) The algebraic knots K_{f} and K_{g} are isotopic.
(2) The algebraic knots K_{f} and K_{g} are cobordant.
(3) They have the same Alexander polynomials up to sign: $\Delta_{f}(t)= \pm \Delta_{g}(t)$.

We give a brief sketch of the proof of Theorem 5.5. As explained before, K_{f} and K_{g} are iterated torus knots and their types are completely characterized by their Puiseux pairs. According to [30], one can show that the Alexander polynomial of K_{f} (or K_{g}) determines the associated Puiseux pairs of f (resp. g). Thus, if $\Delta_{f}(t)= \pm \Delta_{g}(t)$, then K_{f} and K_{g} are isotopic. The converse is also true, since the Alexander polynomial is a topological invariant.

If K_{f} and K_{g} are isotopic, then they are obviously cobordant as explained before. Now, if K_{f} and K_{g} are cobordant, then according to Fox-Milnor [25], we have

$$
\Delta_{f}(t) \cdot \Delta_{g}(t)= \pm t^{m} p(t) p\left(t^{-1}\right)
$$

for some integer m and some polynomial $p(t)$. Using the fact that the Alexander polynomial of an algebraic knot is a product of cyclotomic polynomials and that some of their zeros are simple, one can then show that $\Delta_{f}(t)= \pm \Delta_{g}(t)$. Hence K_{f} and K_{g} are isotopic.
Remark 5.6. By Theorems 3.6 and 5.5 , for $n=1$, even for hypersurface singularities which may not necessarily be locally irreducible, two algebraic knots are isotopic if and only if they are cobordant.
5.2. Case of $n \geq 3$. Suppose that f and g have isolated singularities at the origin in \mathbb{C}^{n+1}. In this subsection, we assume that $n \geq 3$.

Question 5.7 ([22]). Let K_{f} and K_{g} be homeomorphic to $S^{2 n-1}$. If K_{f} and K_{g} are cobordant, then are K_{f} and K_{g} isotopic?

The answer to the above question is negative as follows.
Theorem $5.8([20])$. For all $n \geq 3$, there exist f and g such that K_{f} and K_{g} are homeomorphic to $S^{2 n-1}$, and that they are cobordant but are not isotopic.

Remark 5.9. For $n=2$, Question 5.7 does not make sense (see Theorem 2.9). If we do not assume that the algebraic links are topological spheres, then we do not know if a result like Theorem 5.8 holds or not for $n=2$.

6. Algebraic cobordism

In this section, we introduce the notion of algebraic cobordism for Seifert forms which corresponds to that of (geometric) cobordism of knots.

Let G_{i} be a free abelian group with finite rank, $i=0,1$. Let

$$
L_{i}: G_{i} \times G_{i} \rightarrow \mathbb{Z}
$$

be a bilinear form over \mathbb{Z}. We put

$$
L=L_{0} \oplus\left(-L_{1}\right): G \times G \rightarrow \mathbb{Z}
$$

where $G=G_{0} \oplus G_{1}$.
Definition 6.1. Suppose that $m=\operatorname{rank} G$ is an even integer. A direct summand $M \subset G$ is called a metabolizer if M has rank equal to $m / 2$ and L vanishes on M, that is $L(x, y)=0$ for all $x, y \in M$.

Now, suppose that f and g have isolated singularities at the origin in \mathbb{C}^{n+1}. For the associated algebraic knots, we have the following.

Proposition 6.2 ([7]). If K_{f} and K_{g} are cobordant, then there exists a metabolizer M for $L=L_{f} \oplus\left(-L_{g}\right)$.
Proof. Let $X \subset S^{2 n+1} \times[0,1]$ be a cobordism between

$$
K_{f} \subset S^{2 n+1} \times\{0\} \quad \text { and } \quad K_{g} \subset S^{2 n+1} \times\{1\}
$$

Then, we can show that there exists a compact orientable $(2 n+1)$-dimensional manifold $V \subset S^{2 n+1} \times[0,1]$ such that $\partial V=\left(F_{f} \times\{0\}\right) \cup X \cup\left(\left(-F_{g}\right) \times\{1\}\right)$ (see Figure 15). This can be constructed by a standard argument as follows. By computing the 1st cohomology group, we can show that there exists a smooth map

$$
\left(S^{2 n+1} \times(-\varepsilon, 1+\varepsilon)\right) \backslash\left(\left(F_{f} \times\{0\}\right) \cup X \cup\left(\left(-F_{g}\right) \times\{1\}\right)\right) \rightarrow S^{1}
$$

which is standard near the submanifold for some $\varepsilon>0$. Then, we take an appropriate regular value of this smooth mapping and consider its inverse image by the map. Its closure gives V as desired.

Figure 15. The manifold V.

Since F_{f} and F_{g} are $(n-1)$-connected and $K_{f} \cong K_{g}$ are $(n-2)$-connected, we can show that ∂V is $(n-1)$-connected.

In the following, homology groups are with integer coefficients. Consider the homology exact sequence of the pair $(V, \partial V)$:

$$
0 \rightarrow H_{2 n+1}(V) \rightarrow H_{2 n+1}(V, \partial V) \rightarrow H_{2 n}(\partial V) \rightarrow \cdots \rightarrow H_{n+1}(V, \partial V) \rightarrow \operatorname{Ker} j \rightarrow 0,
$$

where $j: H_{n}(\partial V) \rightarrow H_{n}(V)$ is the homomorphism induced by the inclusion $\partial V \hookrightarrow V$. Then, by considering the alternating sum of the ranks of the above groups, which vanishes, together with the Poincaré duality, we obtain $\operatorname{rank}(\operatorname{Ker} j)=b_{n}(\partial V) / 2$, where b_{n} denotes the n-th Betti number.

Consider

$$
H_{n}\left(F_{f}\right) \oplus H_{n}\left(-F_{g}\right) \xrightarrow{\lambda} H_{n}(\partial V) \xrightarrow{j} H_{n}(V),
$$

where λ is the homomorphism induced by the inclusions. Let us consider the subgroup

$$
\lambda^{-1}\left((\operatorname{Ker} j)^{\wedge}\right) \subset H_{n}\left(F_{f}\right) \oplus H_{n}\left(-F_{g}\right),
$$

where $(\operatorname{Ker} j)^{\wedge}$ is the smallest direct summand of $H_{n}(\partial V)$ that contains $\operatorname{Ker} j$. (In other words, $(\operatorname{Ker} j)^{\wedge}$ is the smallest primitive subgroup containing $\operatorname{Ker} j$.) Let $\alpha=[a]$ and $\beta=[b]$ be elements of $\lambda^{-1}\left((\operatorname{Ker} j)^{\wedge}\right)$, where a and b are n-cycles representing α and β, respectively. We may assume that both a and b are n-cycles of $F_{f} \cup\left(-F_{g}\right)$. Then, as a non-zero integral multiple of $\lambda(a)$ (resp. $\lambda(b))$ bounds an $(n+1)$-chain \tilde{a} (resp. $\tilde{b})$ in V, we can show that $1 \mathrm{k}\left(a_{+}, b\right)=0$ by using \tilde{a}_{+}and \tilde{b} as they do not intersect with each other (see Figure 16), where \tilde{a}_{+}is a translate of \tilde{a} in the positive normal direction to V. Hence, we have $L(\alpha, \beta)=0$.

Figure 16. The $(n+1)$-chains \tilde{a}_{+}and \tilde{b} do not have intersections.
Then, by a bit more effort, we can find a metabolizer $M \subset \lambda^{-1}\left((\operatorname{Ker} j)^{\wedge}\right)$ (for details, see [7]). This completes the proof.
Definition 6.3. Suppose that f and g have isolated singularities at the origin in \mathbb{C}^{n+1} and consider the associated Seifert forms L_{f} and L_{g} of K_{f} and K_{g}, respectively. In the following, we set $G=H_{n}\left(F_{f} ; \mathbb{Z}\right) \oplus H_{n}\left(-F_{g} ; \mathbb{Z}\right), G^{*}=\operatorname{Hom}_{\mathbb{Z}}(G, \mathbb{Z}), L=L_{f} \oplus\left(-L_{g}\right), S_{f}=L_{f}+(-1)^{n} L_{f}^{T}$, $S_{g}=L_{g}+(-1)^{n} L_{g}^{T}$, and $S=L+(-1)^{n} L^{T}$. Furthermore, for the adjoint $S^{*}: G \rightarrow G^{*}$ of \underline{S}, we consider the quotient map $q: G \rightarrow \bar{G}=G / \operatorname{Ker} S^{*}$, and for a subgroup $M \subset G$, we set $\bar{M}=q(M) \subset \bar{G}$. We say that L_{f} and L_{g} are algebraically cobordant if there exists a metabolizer $M \subset H_{n}\left(F_{f} ; \mathbb{Z}\right) \oplus H_{n}\left(-F_{g} ; \mathbb{Z}\right)$ for $L=L_{f} \oplus\left(-L_{g}\right)$ satisfying the conditions (i) and (ii) below.
(i) The subgroup \bar{M} is pure (and hence primitive) in \bar{G}, that is, \bar{G} / \bar{M} is torsion-free.
(ii) There exist isomorphisms

$$
\varphi: \operatorname{Ker} S_{f}^{*} \rightarrow \operatorname{Ker} S_{g}^{*} \text { and } \theta: \operatorname{Tors}\left(\operatorname{Coker} S_{f}^{*}\right) \rightarrow \operatorname{Tors}\left(\operatorname{Coker} S_{g}^{*}\right)
$$

such that
(ii-1) $M \cap \operatorname{Ker} S^{*}=\left\{(x, \varphi(x)) \mid x \in \operatorname{Ker} S_{f}^{*}\right\}$,
(ii-2) for the projection $d: G^{*} \rightarrow \operatorname{Coker} S^{*}=G^{*} / \operatorname{Im} S^{*}$, we have

$$
d\left(S^{*}(M)^{\wedge}\right)=\left\{(x, \theta(x)) \mid x \in \operatorname{Tors}\left(\operatorname{Coker} S_{f}^{*}\right)\right\}
$$

where S_{f}^{*} and S_{g}^{*} are the adjoints of S_{f} and S_{g}, respectively, and $S^{*}(M)^{\wedge}$ is the smallest direct summand of G^{*} containing $S^{*}(M)$.

The notion of algebraic cobordism is very important as the following theorem shows.
Theorem 6.4 ([7]). If $n \geq 3$, then K_{f} and K_{g} are cobordant if and only if the Seifert forms L_{f} and L_{g} associated with K_{f} and K_{g}, respectively, are algebraically cobordant.

However, the practical problem is that it is usually very difficult to tell if two given Seifert forms are algebraically cobordant or not. In this sense, the following weaker notion sometimes plays an important role.
Definition 6.5. We say that Seifert forms L_{f} and L_{g} are Witt equivalent over \mathbb{R} if there exists a metabolizer for $\left(L_{f} \otimes \mathbb{R}\right) \oplus\left(-L_{g} \otimes \mathbb{R}\right)$, where the notion of a metabolizer for forms over \mathbb{R} can be defined in the same way as in the case of integral bilinear forms (see Definition 6.1).

According to Proposition 6.2, we obviously have the following.
Proposition 6.6. If two algebraic knots K_{f} and K_{g} are cobordant, then the Seifert forms L_{f} and L_{g} are Witt equivalent over \mathbb{R}.

In the following section, we will see that Proposition 6.6 is useful for certain purposes.

7. Weighted homogeneous polynomials

In this section, we present some results about the topology of the following important class of polynomials.
Definition 7.1. A polynomial $f \in \mathbb{C}\left[z_{1}, z_{2}, \ldots, z_{n+1}\right]$ is weighted homogeneous if there exist positive rational numbers $\left(w_{1}, w_{2}, \ldots, w_{n+1}\right)$, called weights, such that for every monomial $c z_{1}^{k_{1}} z_{2}^{k_{2}} \cdots z_{n+1}^{k_{n+1}}, c \neq 0$, of f, we have $\sum_{j=1}^{n+1} \frac{k_{j}}{w_{j}}=1$.
Example 7.2. Here are some explicit examples of weighted homogeneous polynomials, together with their weights.
(1) $z_{1}^{a_{1}}+z_{2}^{a_{2}}+\cdots+z_{n+1}^{a_{n+1}}$, with weights $\left(a_{1}, a_{2}, \ldots, a_{n+1}\right)$. (This is also called a BrieskornPham polynomial. See Definition 4.1.)
(2) $z_{1}^{a_{1}}+z_{2}^{a_{2}}+z_{2} z_{3}^{a_{3}}$, with weights $\left(a_{1}, a_{2}, a_{2} a_{3} /\left(a_{2}-1\right)\right)$.
(3) $f\left(z_{1}, z_{2}\right)=z_{1}^{2} z_{2}+z_{1} z_{2}^{6}$ and $g\left(z_{1}, z_{2}\right)=z_{1}^{3} z_{2}+z_{1} z_{2}^{4}$, with weights $(11 / 5,11)$ and $(11 / 3,11 / 2)$, respectively. (They have distinct weights, while it is known that they have the same Alexander polynomials: $\Delta_{f}(t)=\Delta_{g}(t)=(t-1)\left(t^{11}-1\right)$ [54].)
(4) Consider the weighted homogeneous polynomials

$$
\begin{aligned}
& F\left(z_{1}, z_{2}, \cdots, z_{n+1}\right)=z_{1}^{2} z_{2}+z_{1} z_{2}^{6}+z_{3}^{3}+z_{4}^{13}+z_{5}^{2}+\cdots+z_{n+1}^{2} \\
& G\left(z_{1}, z_{2}, \ldots, z_{n+1}\right)=z_{1}^{3} z_{2}+z_{1} z_{2}^{4}+z_{3}^{3}+z_{4}^{13}+z_{5}^{2}+\cdots+z_{n+1}^{2}
\end{aligned}
$$

$n \geq 3$, with weights
$(11 / 5,11,3,13,2, \ldots, 2)$ and $(11 / 3,11 / 2,3,13,2, \ldots, 2)$,
respectively. Since they are the same type of suspensions of the polynomials as in (3) above, they have the same Alexander polynomials. More precisely, by using a formula due to Milnor and Orlik [35], we get

$$
\begin{aligned}
\Delta_{F}(t) & =\Delta_{G}(t) \\
& =\frac{\left(t^{286}+(-1)^{n+1} t^{143}+1\right)\left(t^{26}+(-1)^{n+1} t^{13}+1\right)}{\left(t^{22}+(-1)^{n+1} t^{11}+1\right)\left(t^{2}+(-1)^{n+1} t+1\right)} .
\end{aligned}
$$

Then, since we have $\Delta_{F}(1)=\Delta_{G}(1)= \pm 1$, we see that both K_{F} and K_{G} are homeomorphic to $S^{2 n-1}$ [34]. However, using a result of Steenbrink [52], we see that the signatures of the intersection forms of their Milnor fibers are distinct. Therefore, F and G do not have the same topological type and also at least one of them does not have the topological type of a Brieskorn-Pham polynomial (see [44]). Note that this kind of an example does not exist for the cases of 2 and 3 variables. More precisely, if f is a weighted homogeneous polynomial with an isolated singularity at the origin in \mathbb{C}^{2} or \mathbb{C}^{3} such that K_{f} is a circle or a homology 3 -sphere, i.e. $\Delta_{f}(1)= \pm 1$, then f is topologically equivalent to a Brieskorn-Pham polynomial ([54, 44]).
(5) The weighted homogeneous polynomials

$$
f\left(z_{1}, z_{2}, z_{3}\right)=z_{1}^{5}+z_{2}^{31}+z_{2} z_{3}^{75} \quad \text { and } \quad g\left(z_{1}, z_{2}, z_{3}\right)=z_{1}^{7}+z_{2}^{11}+z_{3}^{154}
$$

have weights $(5,31,155 / 2)$ and $(7,11,154)$, respectively. Then, by using results of [39], we can compute the Seifert invariants of the 3 -dimensional manifolds K_{f} and K_{g}, and then we see that they are diffeomorphic to each other. Furthermore, by using a formula obtained in [35], we have that the Milnor numbers of f and g coincide. We also see that the signatures of their Milnor fibers coincide by using a formula obtained in [52]: however, K_{f} and K_{g} are not cobordant. In fact, the Alexander polynomials $\Delta_{f}(t)$ and $\Delta_{g}(t)$, which can be computed by using a result obtained in [35], do not satisfy the Fox-Milnor condition.

The following shows that the weights are analytic invariants of weighted homogeneous singularities.

Proposition 7.3 ([47]). Suppose that f is a weighted homogeneous polynomial with an isolated singularity at the origin in \mathbb{C}^{n+1}. Then, the weights $\left(w_{1}, w_{2}, \ldots, w_{n+1}\right)$ can be chosen so that $w_{j} \geq 2$ for all j. Furthermore, under this condition, the weights are invariant under analytic change of coordinates up to order.

Let f be a weighted homogeneous polynomial with an isolated singularity at the origin in \mathbb{C}^{n+1} with weights $\left(w_{1}, w_{2}, \ldots, w_{n+1}\right)$ such that $w_{j} \geq 2$ for all j. We define

$$
P_{f}(t)=\prod_{j=1}^{n+1} \frac{t-t^{1 / w_{j}}}{t^{1 / w_{j}}-1}
$$

which is known to be a polynomial in $\mathbb{Z}\left[t^{1 / m}\right]$ for some m [51]. The following proposition shows that $P_{f}(t)$ encodes all the information on the weights.

Proposition 7.4 ([51]). Suppose that f and g are weighted homogeneous polynomials with isolated singularities at the origin in \mathbb{C}^{n+1}. Then, f and g have the same weights up to order if and only if $P_{f}(t)=P_{g}(t)$.

Related to the cobordism of algebraic knots defined by weighted homogeneous polynomials, the following is known.

Theorem 7.5 ([9]). Suppose that f and g are weighted homogeneous polynomials with isolated singularities at the origin in \mathbb{C}^{n+1}. Then, their Seifert forms L_{f} and L_{g} are Witt equivalent to each other over \mathbb{R} if and only if $P_{f}(t) \equiv P_{g}(t) \bmod t+1$.

Here we give a sketch of proof of the above theorem.
By considering the suspensions $f(z)+z_{n+2}^{2}$ and $g(z)+z_{n+2}^{2}$ if necessary, we may assume that n is even. For the Milnor fiber F_{f} of f, let us consider the decomposition

$$
H^{n}\left(F_{f} ; \mathbb{C}\right)=\bigoplus_{\lambda} H^{n}\left(F_{f} ; \mathbb{C}\right)_{\lambda}
$$

where $H^{n}\left(F_{f} ; \mathbb{C}\right)_{\lambda}$ is the eigenspace of the algebraic monodromy h^{*} for the eigenvalue λ and $h: F_{f} \rightarrow F_{f}$ is the geometric monodromy. Recall that for the Seifert form L_{f} for the algebraic knot $K_{f}, S_{f}=L_{f}+L_{f}^{T}$ gives the intersection form for F_{f}. Furthermore, the intersection form on $H^{n}\left(F_{f} ; \mathbb{C}\right)$ decomposes as the orthogonal direct sum of $\left.S_{f}\right|_{H^{n}\left(F_{f} ; \mathbb{C}\right)_{\lambda}}$. For each λ, we set $\sigma_{\lambda}(f)=a_{\lambda}-b_{\lambda}$, which is called the equivariant signature, where a_{λ} and b_{λ} are the numbers of positive and negative eigenvalues, respectively, of $\left.S_{f}\right|_{H^{n}\left(F_{f} ; \mathbb{C}\right)_{\lambda}}$.
Lemma 7.6 ([51]). The Seifert forms L_{f} and L_{g} are Witt equivalent over \mathbb{R} if and only if $\sigma_{\lambda}(f)=\sigma_{\lambda}(g)$ for all λ.

Now, suppose that L_{f} and L_{g} are Witt equivalent over \mathbb{R}. We have $P_{f}(t)=P_{f}^{0}(t)+P_{f}^{1}(t)$, where for $P_{f}(t)=\sum c_{\alpha} t^{\alpha}$, we set

$$
\begin{aligned}
P_{f}^{0}(t) & =\sum_{\lfloor\alpha\rfloor: \text { even }} c_{\alpha} t^{\alpha}, \\
P_{f}^{1}(t) & =\sum_{\lfloor\beta\rfloor: \text { odd }} c_{\beta} t^{\beta},
\end{aligned}
$$

where for $x \in \mathbb{R},\lfloor x\rfloor$ denotes the largest integer not exceeding x. Similarly, we also have $P_{g}(t)=P_{g}^{0}(t)+P_{g}^{1}(t)$. According to [51], we have

$$
\sigma_{\lambda}(f)=\sum_{\substack{\lambda=\exp (-2 \pi i \alpha) \\\lfloor\alpha\rfloor: \text { even }}} c_{\alpha}-\sum_{\substack{\lambda=\exp (-2 \pi i \alpha),\lfloor\alpha\rfloor: \text { odd }}} c_{\alpha}
$$

for $\lambda \neq 1$, and a similar formula holds also for $\sigma_{\lambda}(g)$. Since $\sigma_{\lambda}(f)=\sigma_{\lambda}(g)$, we have

$$
\begin{aligned}
& t P_{f}^{0}(t)-P_{f}^{1}(t) \equiv t P_{g}^{0}(t)-P_{g}^{1}(t) \quad \bmod t^{2}-1 \\
& t P_{f}^{1}(t)-P_{f}^{0}(t) \equiv t P_{g}^{1}(t)-P_{g}^{0}(t) \\
& \bmod t^{2}-1
\end{aligned}
$$

Thus, we have $(t-1) P_{f}(t) \equiv(t-1) P_{g}(t) \bmod t^{2}-1$ and therefore, we have $P_{f}(t) \equiv P_{g}(t)$ $\bmod t+1$.

Conversely, if $P_{f}(t) \equiv P_{g}(t) \bmod t+1$, then we have $(t-1) P_{f}(t) \equiv(t-1) P_{g}(t) \bmod t^{2}-1$. Then, we can show that $\sigma_{\lambda}(f)=\sigma_{\lambda}(g)$ for all λ, and by Lemma 7.6, the Seifert forms L_{f} and L_{g} are Witt equivalent over \mathbb{R}. This completes the proof of Theorem 7.5.
Remark 7.7. It is known that $L_{f} \otimes \mathbb{R} \cong L_{g} \otimes \mathbb{R}$ over \mathbb{R} if and only if $P_{f}(t) \equiv P_{g}(t) \bmod t^{2}-1$ [46].

As a consequence of Theorem 7.5, we have the following.
Corollary 7.8 ([9]). Consider the Brieskorn-Pham polynomials

$$
\begin{aligned}
& f\left(z_{1}, z_{2}, \ldots, z_{n+1}\right)=z_{1}^{a_{1}}+z_{2}^{a_{2}}+\cdots+z_{n+1}^{a_{n}+1} \text { and } \\
& g\left(z_{1}, z_{2}, \ldots, z_{n+1}\right)=z_{1}^{b_{1}}+z_{2}^{b_{2}}+\cdots+z_{n+1}^{b_{n}+1}
\end{aligned}
$$

with $a_{j} \geq 2$ and $b_{j} \geq 2$ for all j. Then, the Seifert forms L_{f} and L_{g} are Witt equivalent over \mathbb{R} if and only if

$$
\prod_{j=1}^{n+1} \cot \left(\frac{\pi \ell}{2 a_{j}}\right)=\prod_{j=1}^{n+1} \cot \left(\frac{\pi \ell}{2 b_{j}}\right)
$$

for all odd integers ℓ.
Proof. There exists a positive integer m such that $P_{f}(t)=Q_{f}(s)$ and $P_{g}(t)=Q_{g}(s)$ for some polynomials $Q_{f}(s)$ and $Q_{g}(s)$ in $s=t^{1 / m}$. We have that $P_{f}(t) \equiv P_{g}(t) \bmod t+1$ if and only if $Q_{f}(\xi)=Q_{g}(\xi)$ for all $\xi \in \mathbb{C}$ with $\xi^{m}=-1$. Note that $\xi=\exp (\pi i \ell / m)$ for odd integers ℓ, and we have

$$
\frac{-1-\exp \left(\pi i \ell / a_{j}\right)}{\exp \left(\pi i \ell / a_{j}\right)-1}=i \cot \left(\frac{\pi \ell}{2 a_{j}}\right)
$$

Then, the result easily follows.
Question 7.9. If we have

$$
\prod_{j=1}^{n+1} \cot \left(\frac{\pi \ell}{2 a_{j}}\right)=\prod_{j=1}^{n+1} \cot \left(\frac{\pi \ell}{2 b_{j}}\right)
$$

for all odd integers ℓ, do we have $a_{j}=b_{j}$ for all j up to order?
This question has an affirmative answer for $n=1$ and $n=2$ (see [9]). More precisely, for $n=1$, we have the following.

Proposition 7.10 ([9]). Let f and g be weighted homogeneous polynomials with isolated singularities at the origin in \mathbb{C}^{2}. Then, the Seifert forms L_{f} and L_{g} are Witt equivalent over \mathbb{R} if and only if f and g have the same weights up to order.

For $n=2$, we have the following.
Proposition 7.11 ([9]). Consider the Brieskorn-Pham polynomials $f\left(z_{1}, z_{2}, z_{3}\right)=z_{1}^{a_{1}}+z_{2}^{a_{2}}+z_{3}^{a_{3}}$ and $g\left(z_{1}, z_{2}, z_{3}\right)=z_{1}^{b_{1}}+z_{2}^{b_{2}}+z_{3}^{b_{3}}$ in 3 variables with $a_{j} \geq 2$ and $b_{j} \geq 2$ for all j. Then, the Seifert forms L_{f} and L_{g} are Witt equivalent over \mathbb{R} if and only if $a_{j}=b_{j}$ for all j up to order.

These results lead to the following question.
Question 7.12. Are the exponents of Brieskorn-Pham polynomials cobordism invariants? Compare this with Theorem 4.2.

In some special cases, the answer is affirmative as follows.
Theorem 7.13 ([9]). Let f and g be Brieskorn-Pham polynomials with isolated singularities in \mathbb{C}^{n+1}. We assume that for each of f and g, no exponent is a multiple of the other. Then K_{f} and K_{g} are cobordant if and only if they have the same exponents up to order.
Definition 7.14. Let f be a polynomial in $\mathbb{C}\left[z_{1}, z_{2}, \ldots, z_{n+1}\right]$ with $f(0)=0$. Then, the minimum degree of the monomials in f is called the multiplicity of f at 0 , denoted by $\mathrm{m}(f)$.

Example 7.15. For example, for $f\left(z_{1}, z_{2}, \ldots, z_{n+1}\right)=z_{1}^{a_{1}}+z_{2}^{a_{2}}+\cdots+z_{n+1}^{a_{n+1}}$, we have $\mathrm{m}(f)=\min \left\{a_{1}, a_{2}, \ldots, a_{n+1}\right\}$.

The following is well known as the Zariski Conjecture.
Conjecture 7.16 ([55]). Suppose that f and g have isolated singularities at the origin in \mathbb{C}^{n+1}. If K_{f} and K_{g} are isotopic, then $\mathrm{m}(f)=\mathrm{m}(g)$. In other words, the multiplicity is a topological invariant for isolated complex hypersurface singularities.

We can also ask the following question, which is still open as far as the authors know.
Question 7.17. Suppose that f and g have isolated singularities at the origin in \mathbb{C}^{n+1}. If K_{f} and K_{g} are cobordant, then do we have $\mathrm{m}(f)=\mathrm{m}(g)$?

If f and g are Brieskorn-Pham polynomials, the answer to Question 7.17 is affirmative in some cases as follows.

Proposition 7.18 ([9]). Consider the Brieskorn-Pham polynomials

$$
\begin{aligned}
f\left(z_{1}, z_{2}, \ldots, z_{n+1}\right) & =z_{1}^{a_{1}}+z_{2}^{a_{2}}+\cdots+z_{n+1}^{a_{n+1}} \text { and } \\
g\left(z_{1}, z_{2}, \ldots, z_{n+1}\right) & =z_{1}^{b_{1}}+z_{2}^{b_{2}}+\cdots+z_{n+1}^{b_{n+1}}
\end{aligned}
$$

such that $a_{j} \geq 2, b_{j} \geq 2$ for all j and that $a_{j} \neq a_{k}$ and $b_{j} \neq b_{k}$ for $j \neq k$. If K_{f} and K_{g} are cobordant, then we have $\mathrm{m}(f)=\mathrm{m}(g)$.

8. Real Milnor fibrations

In the real setting, Milnor considered a real polynomial mapping $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ with $f(0)=0, n \geq p \geq 2$ such that in some open neighborhood U of the origin $0 \in \mathbb{R}^{n}$, we have $\Sigma_{f} \cap U=\{0\}$, where

$$
\Sigma_{f}=\{x \in U \mid \operatorname{rank} J f(x) \text { fails to be maximal }\}
$$

and $J f(x)$ denotes the Jacobian matrix of f at x. This means that 0 is an isolated singular point of the mapping f.

Milnor showed the existence of fiber bundle structures for real maps with isolated singular points as follows.

Theorem 8.1 ([34, Theorem 11.2]). There exists an $\epsilon_{0}>0$ small enough such that for all ϵ with $0<\epsilon \leq \epsilon_{0}$, there exists an η_{0} with $0<\eta_{0} \ll \epsilon$ such that the restriction map

$$
\begin{equation*}
f_{\mid}: f^{-1}\left(S_{\eta}^{p-1}\right) \cap B_{\epsilon}^{n} \rightarrow S_{\eta}^{p-1} \tag{8.1}
\end{equation*}
$$

is the projection of a smooth locally trivial fiber bundle for all η with $0<\eta \leq \eta_{0}$, where B_{ϵ}^{n} denotes the n-dimensional closed ball centered at the origin of radius ϵ in \mathbb{R}^{n}, and S_{η}^{p-1} denotes the sphere of radius η centered at the origin in \mathbb{R}^{p}.

We denote by $K_{f}=f^{-1}(0) \cap S_{\epsilon}^{n-1}$, the link of the singularity at the origin, where S_{ϵ}^{n-1} is the sphere of radius ϵ centered at the origin in \mathbb{R}^{n}. The isotopy class of the oriented submanifold K_{f} of S^{n-1} is called the real algebraic knot associated with f at the origin.

Remark 8.2 ([34, p. 99]). The complement $S_{\epsilon}^{n-1} \backslash K_{f}$ also fibers over S_{η}^{p-1}, each fiber F_{f} being the interior of a compact manifold \bar{F}_{f} bounded by K_{f}. In fact, Milnor showed that $f^{-1}\left(B_{\eta}^{p}\right) \cap B_{\epsilon}^{n}$ is diffeomorphic to an n-dimensional ball and that $S_{\epsilon}^{n-1} \backslash K_{f}$ is diffeomorphic to $\partial\left(f^{-1}\left(B_{\eta}^{p}\right) \cap B_{\epsilon}^{n}\right) \backslash K_{f}$, after smoothing the corners. Milnor also showed that F_{f} is $(p-2)$ connected, provided that the link K_{f} is not empty.

As Milnor points out, it is difficult to find explicit examples of polynomial mappings with an isolated singular point at the origin as above. Then, Milnor in [34, p.100] posed the following question.

Question 8.3. For which dimensions $n \geq p \geq 2$ do non-trivial examples exist?
According to Milnor, the projection $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ is trivial. In general, for a map $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}, n \geq p \geq 2$, with an isolated singular point at the origin, Milnor
proposed the following definition: "An example will be called trivial if the fiber \bar{F}_{f} of (8.1) is diffeomorphic to the closed ball $B^{n-p "}$.

In [17] Church and Lamotke answered Milnor's question (Question 8.3) in most cases in the following way.

Theorem 8.4 ([17, p. 149]).
(a) For $0 \leq n-p \leq 2$, non-trivial examples occur precisely for the dimensions (n, p) in the set $\{(2,2),(4,3),(4,2)\}$.
(b) For $n-p \geq 4$, non-trivial examples occur for all (n, p).
(c) For $n-p=3$, all examples are trivial except for $(n, p)=(5,2),(8,5)$ and possibly $(6,3)$.

For the pair $(5,2)$ we have the following characterization of triviality.
Proposition 8.5. Let $f:\left(\mathbb{R}^{5}, 0\right) \rightarrow\left(\mathbb{R}^{2}, 0\right)$ be a real polynomial map germ with an isolated singularity at origin. Then, f is trivial if and only if the associated real algebraic knot is an unknotted 2-sphere in S^{4}.

Proof. If f is trivial, then the knot K_{f}, which is isotopic to the boundary $\partial \bar{F}_{f}$ of the closure of the Milnor fiber F_{f}, which is diffeomorphic to B^{3}, must be an unknotted 2-sphere.

Conversely, suppose that K_{f} is an unknotted 2-sphere. Consider the following piece of the homotopy long exact sequence of the Milnor fibration $F_{f} \hookrightarrow S^{4} \backslash K_{f} \rightarrow S^{1}$:

$$
\begin{equation*}
\pi_{2}\left(S^{1}\right) \rightarrow \pi_{1}\left(F_{f}\right) \rightarrow \pi_{1}\left(S^{4} \backslash K_{f}\right) \rightarrow \pi_{1}\left(S^{1}\right) \rightarrow \pi_{0}\left(F_{f}\right) \tag{8.2}
\end{equation*}
$$

Note that \bar{F}_{f} and F_{f} have the same homotopy type. Therefore, $\pi_{0}\left(\bar{F}_{f}\right) \cong \pi_{0}\left(F_{f}\right)$ vanishes, since F_{f} is connected. Moreover, since K_{f} is an unknotted 2-sphere, we have $\pi_{1}\left(S^{4} \backslash K_{f}\right) \cong \mathbb{Z}$. Thus we can write (8.2) as follows:

$$
0 \rightarrow \pi_{1}\left(F_{f}\right) \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow 0
$$

Then, we have that $\pi_{1}\left(F_{f}\right)$ vanishes and therefore F_{f} is simply connected.
Let $N=\bar{F}_{f} \cup_{K_{f}} B^{3}$ be the 3-dimensional closed manifold obtained by attaching a 3-ball to \bar{F}_{f} along the 2 -sphere boundary. We have, by the van Kampen theorem, $\pi_{1}(N) \cong \pi_{1}\left(\bar{F}_{f}\right) \cong \pi_{1}\left(F_{f}\right)$, which vanishes. Then, by the Poincaré conjecture (proved by Perelman), we conclude that N is diffeomorphic to the 3 -sphere and consequently \bar{F}_{f} is diffeomorphic to a 3-ball, and hence, f is trivial.

According to Church-Lamotke's Theorem (Theorem 8.4), if $n-p=3$ Milnor's question (Question 8.3) remained open only for the dimension pair $(n, p)=(6,3)$. The answer to this case was given in [3, Section 3] as follows.

Theorem 8.6 ([3]). For each integer $r>0$, there exists a polynomial mapping

$$
f:\left(\mathbb{R}^{6}, 0\right) \rightarrow\left(\mathbb{R}^{3}, 0\right)
$$

with an isolated singularity at the origin such that the link K_{f} has $2 r+1$ connected components. In particular, f is non-trivial.

It is an interesting but difficult problem to find an explicit example of polynomials as in the above theorem.

Now let us consider the realization problem of fibered knots.
Definition 8.7. A closed oriented submanifold M of dimension $n-p-1$ of S^{n-1} is called a fibered knot if the following conditions hold.
(1) The normal disk bundle $N(M)$ of M in S^{n-1} is trivial and we have a trivialization $\tau: N(M) \rightarrow M \times D^{p}$.
(2) There is a smooth locally trivial fiber bundle $\pi: S^{n-1} \backslash M \rightarrow S^{p-1}$ such that $\left.\pi\right|_{N(M) \backslash M}$ coincides with the composition

$$
N(M) \backslash M \xrightarrow{\left.\tau\right|_{N(M) \backslash M}} M \times\left(D^{p} \backslash\{0\}\right) \xrightarrow{p_{2}} D^{p} \backslash\{0\} \xrightarrow{\rho} S^{p-1}
$$

where ρ is the radial projection defined by $\rho(x)=x /\|x\|, x \in D^{p} \backslash\{0\}$, and p_{2} is the projection to the second factor.
Such a structure is often called an open book structure or a spinnable structure as well in the literature. The manifold pair $\left(S^{n-1}, M\right)$ is often called an $N S$-pair, where "NS" stands for Neuwirth-Stallings.

Note that by Theorem 8.1, a real polynomial mapping with an isolated singular point at the origin gives rise to a fibered knot. Then, we have the following natural problem.

Problem 8.8. Characterize those fibered knots which arise as real algebraic knots.
Related to the above problem, the following is known.
Theorem 8.9 ([2]). Let M be an arbitrary ($n-p-1$)-dimensional closed submanifold of S^{n-1} with $n \geq p \geq 2$. We assume that it bounds a compact $(n-p)$-dimensional submanifold of S^{n-1} with trivial normal bundle. Then, there exists a polynomial mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ with $f(0)=0$ such that $f^{-1}(0) \cap S_{\epsilon}^{n-1}$ is isotopic to M for sufficiently small $\epsilon>0$ and that $f^{-1}(0)$ has an isolated singular point at the origin.

Note that in the above theorem, in $f^{-1}(0) \cap \Sigma_{f}$, the origin is isolated. Therefore, f may not have an isolated singular point.

We have the following conjecture.
Conjecture 8.10 ([6]). Every fibered knot in S^{3} is realized as the algebraic knot associated with a polynomial mapping $\mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ with an isolated singular point at the origin.

As far as the authors know, the above conjecture is still open. Let us present below a very short account of the conjecture that may motivate the reader's interest. The authors would like to apologize if some important contributions are not cited or mentioned here in this short review.

In [32] Looijenga introduced a topological construction aiming to answer Milnor's questions concerning the existence of non-trivial examples, as described in the paragraph just after Question 8.3 , and the existence of real polynomial map germs $\left(\mathbb{R}^{2 m}, 0\right) \rightarrow\left(\mathbb{R}^{2}, 0\right)$ that are not topologically equivalent to holomorphic function germs.

With this purpose he started with an $(\ell-q-1)$-dimensional fibered knot K in S^{ℓ} and considered the connected sum $\left(S^{\ell}, K\right) \sharp\left((-1)^{\ell-1} S^{\ell},(-1)^{\ell-q} K\right)$, which was shown to be associated with a real polynomial mapping $f: \mathbb{R}^{\ell+1} \rightarrow \mathbb{R}^{q+1}$ with an isolated singularity at the origin, up to isotopy. He then applied the construction to the figure eight knot K, and obtained a real polynomial map $\mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ with an isolated singularity at origin whose associated real algebraic knot is isotopic to $K \sharp K$. It turns out that $K \sharp K$ cannot appear as the algebraic knot associated with a holomorphic function germ, since its Alexander polynomial is not a product of cyclotomic polynomials (see [15]). Furthermore, he showed the existence of such examples in higher dimensions by performing the spinning construction for K an even number of times and then by using the connected sum construction as above. This guarantees the existence of a real polynomial map germ $\left(\mathbb{R}^{2 m}, 0\right) \rightarrow\left(\mathbb{R}^{2}, 0\right)$ with an isolated singularity at the origin, for each $m \geq 2$, which is not topologically equivalent to a holomorphic function germ $\left(\mathbb{C}^{m}, 0\right) \rightarrow(\mathbb{C}, 0)$.

Since the fibered knots constructed in this way are all real algebraic knots, one might consider them as the first examples toward Conjecture 8.10, even before it was stated.

A'Campo [1] proved the vanishing of the Lefschetz number for the geometric monodromy of the fibered knot associated with a holomorphic function germ with an isolated singularity. He calculated the Lefschetz number for the real polynomial

$$
f\left(u, v, z_{1}, z_{2}, \ldots, z_{m}\right)=u v(\bar{u}+\bar{v})+z_{1}^{2}+z_{2}^{2}+\cdots+z_{m}^{2}
$$

and concluded that f cannot be topologically equivalent to a holomorphic function germ from $\left(\mathbb{C}^{m+2}, 0\right)$ to $(\mathbb{C}, 0)$.

It seems that the concept of real algebraic knots as currently used today was introduced by Perron in [40], where it is shown that the figure eight knot admits a realization as the real algebraic knot K_{f} associated with a polynomial map $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ with an isolated singularity at the origin. The construction of such an f, however, was done in a non-standard way. Rudolph [42] exhibited the complex (but not holomorphic) polynomial

$$
f(u, v)=u^{3}-3(v \bar{v})^{2}\left(1+v^{2}-\bar{v}^{2}\right) u-2\left(v^{2}+\bar{v}^{2}\right)
$$

with an isolated singularity at the origin such that the associated real algebraic knot is also the figure eight knot.

Surprisingly, these complex polynomials as presented by A'Campo and Rudolph are included in a wider class of polynomials later called mixed polynomials and studied extensively by Oka [38]. This class was also studied by other mathematicians including Seade, Cisneros-Molina, Ruas, Pichon, Tibăr, Chen, Ribeiro, etc.

More recently Bode and Dennis [11, 10] built a family of mixed polynomials related to braid parametrizations of links in S^{3}, where the idea for the construction is similar to that by Perron [40, pp. 443-445]. Their construction shows, in a direct way, a close relationship between links in S^{3} and links of mixed semi-algebraic singularities with special properties, like radial actions. In particular, under good conditions, their family gives polynomial mappings with an isolated singularity at the origin, providing in this way a partial answer to Conjecture 8.10.

Finally, Araújo dos Santos and Sanchez Quiceno [4] addressed the question of clarifying the connection between certain classes of mixed singularities and Conjecture 8.10. For this purpose, they considered the product $p=f g$ of mixed polynomials f and $g: \mathbb{C}^{2} \rightarrow \mathbb{C}$, and under general conditions they studied conditions for p to have an isolated singularity at the origin, even when the link K_{f} or K_{g} associated with f or g, respectively, is not fibered. See [4, Example 3.7] for details. These studies suggest that Conjecture 8.10 may be approached by mixed polynomial singularities.

Acknowledgment

The second author would like to express his deep gratitude to the organizers of "IV Encontro de Singularidades no Nordeste" held at Departamento de Matemática da Universidade Federal da Paraíba, João Pessoa, Brazil, during November 22-24, 2017, for giving him an opportunity to give a mini-course on the topology of algebraic knots. The third author would like to thank the Organizing Committee of the 16th International Workshop on Real and Complex Singularities for giving her the opportunity to give a talk on the Milnor fibration and its topology. The authors would like to express thanks to the anonymous referee for important comments which drastically improved the presentation of the paper. They would also like to thank Eder Leandro Sanchez Quiceno for helpful discussions. The first author thanks Fapesp/Tematic project process: 2019/21181-0. The second author has been supported by JSPS KAKENHI Grant Number JP17H06128.

References

[1] N. A'Campo, Le nombre de Lefschetz d'une monodromie, Indag. Math. 35 (1973), 113-118.
[2] S. Akbulut and H.C. King, All knots are algebraic, Comm. Math. Helv. 56 (1981), 339-351.
[3] R. Araújo dos Santos, M.A.B. Hohlenwerger, O. Saeki and T.O. Souza, New examples of NeuwirthStallings pairs and non-trivial real Milnor fibrations, Annales de l'Institut Fourier (Grenoble) 66 (2016), 83-104. DOI: 10.5802/aif. 3006
[4] R. Araújo dos Santos and E.L. Sanchez Quiceno, On real algebraic links in the 3-sphere associated with mixed polynomials, preprint, arXiv:2011.11206 [math.GT].
[5] E. Artal-Bartolo, Forme de Seifert des singularités de surface, C.R. Acad. Sci., Paris, Sér. I 313 (1991), 689-692.
[6] R. Benedetti and M. Shiota, On real algebraic links in S^{3}, Bolletino dell'Unione Mathematica Italiana, Serie 8, Volume 1B 3 (1998), 585-609.
[7] V. Blanlœil and F. Michel, A theory of cobordism for non-spherical links, Comment. Math. Helv. 72 (1997), 30-51. DOI: 10.1007/pl00000365
[8] V. Blanlœil and O. Saeki, Theory of concordance for non-spherical 3-knots, Trans. Amer. Math. Soc. 354 (2002), 3955-3971. DOI: 10.1090/s0002-9947-02-03024-6
[9] V. Blanlœil and O. Saeki, Cobordism of algebraic knots defined by Brieskorn polynomials, Tokyo J. Math. 34 (2011), 429-443. DOI: 10.3836/tjm/1327931395
[10] B. Bode, Constructing links of isolated singularities of polynomials $\mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$, J. Knot Theory Ramifications 28 (2019), no. 1, 1950009, 21 pp. DOI: 10.1142/s0218216519500093
[11] B. Bode and M.R. Dennis, Constructing a polynomial whose nodal set is any prescribed knot or link, J. Knot Theory Ramifications 28 (2019), no. 1, 1850082, 31 pp. DOI: 10.1142/s0218216518500827
[12] M. Borodzik and J. Zarzycki, Real Seifert forms, Hodge numbers and Blanchfield pairings, in "Singularities and Their Interaction with Geometry and Low Dimensional Topology", In Honor of András Némethi, eds. Javier Fernández de Bobadilla, Tamás László and András Stipsicz, pp. 53-72, Trends in Math., Birkhäuser, 2021. DOI: 10.1007/978-3-030-61958-9_4
[13] K. Brauner, Zur Geometrie der Funktionen zweier komplexen Veränderlichen II, III, IV, Abh. Math. Sem. Hamburg 6 (1928), 8-54.
[14] E. Brieskorn, Beispiele zur Differentialtopologie von Singularitäten, Invent. math. 2 (1966), 1-14. DOI: 10.1007/bf01403388
[15] E. Brieskorn, Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta Math. 2 (1970), 103-161. DOI: 10.1007/bf01155695
[16] D. Burghelea and A. Verona, Local homological properties of analytic sets, Manuscripta Math. 7 (1972), 55-66. DOI: 10.1007/bf01303536
[17] P.T. Church and K. Lamotke, Non-trivial polynomial isolated singularities, Nederl. Akad. Wetensch. Proc. Ser. A 78 (Indag. Math. 37) (1975), 149-154. DOI: 10.1016/1385-7258(75)90027-x
[18] A. Dimca, Topics on Real and Complex Singularities, Advanced Lectures in Mathematics, Friedr. Vieweg \& Sohn, Braunschweig, 1987. DOI: 10.1007/978-3-663-13903-4
[19] P. Du Bois and F. Michel, Sur la forme de Seifert des entrelacs algébriques, C.R. Acad. Sci., Paris, Sér. I 313 (1991), 297-300.
[20] P. Du Bois and F. Michel, Cobordism of algebraic knots via Seifert forms, Invent. math. 111 (1993), 151-169. DOI: 10.1007/bf01231284
[21] A. Durfee, Fibered knots and algebraic singularities, Topology 13 (1974), 47-59. DOI: 10.1016/0040-9383(74)90037-8
[22] A. Durfee, Knot invariants of singularities, Algebraic Geometry (Arcata, 1974, Proc. Sympos. Pure Math., 29, Amer. Math. Soc., Providence, R.I.) (1975), 441-448. DOI: 10.1090/pspum/029/0375336
[23] M. Epple, Branch points of algebraic functions and the beginnings of modern knot theory, Historia Math. 22 (1995), 371-401. DOI: 10.1006/hmat.1995.1031
[24] R.H. Fox and J.W. Milnor, Singularities of 2 -spheres in 4-space and equivalence of knots, Bull. Amer. Math. Soc. 63 (1957), 406.
[25] R.H. Fox and J.W. Milnor, Singularities of 2 -spheres in 4-space and cobordism of knots, Osaka J. Math. 3 (1966), 257-267.
[26] F. Hirzebruch, Singularities and exotic spheres, Séminaire N. Bourbaki, 1966-1968, exp. no 314, 13-32. DOI: 10.2969/jmsj/02630454
[27] M. Kato, A classification of simple spinnable structures on a 1-connected Alexander manifold, J. Math. Soc. Japan 26 (1974), 454-463.
[28] M.A. Kervaire and J.W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504-537. DOI: 10.2307/1970128
[29] H. King, Topological type of isolated critical points, Ann. of Math. 107 (1978), 385-397.
[30] Lê Dũng Tráng, Sur les nœuds algébriques, Comp. Math. 25 (1972), 281-321.
[31] Lê Dũng Tráng and C.P. Ramanujam, The invariance of Milnor's number implies the invariance of the topological type, Amer. J. Math. 98 (1976), 67-78. DOI: 10.2307/2373614
[32] E. Looijenga, A note on polynomial isolated singularities, Nederl. Akad. Wetensch. Proc. Ser. A 74 (Indag. Math. 33) (1971), 418-421. DOI: 10.1016/s1385-7258(71)80049-5
[33] F. Michel and C. Weber, Nœuds algébriques décomposables, C.R. Acad. Sci. Paris Sér. A-B 294 (1982), 493-496.
[34] J. Milnor, Singular points of complex hypersurfaces, Ann. of Math. Studies, Vol. 61, Princeton University Press, 1968.
[35] J. Milnor and P. Orlik, Isolated singularities defined by weighted homogeneous polynomials, Topology 9 (1970), 385-393. DOI: 10.1016/0040-9383(70)90061-3
[36] D. Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Publications mathématiques de IHES 9 (1961), 5-22. DOI: 10.1007/bf02698717
[37] W.D. Neumann, A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981), 299-343. DOI: 10.1090/s0002-9947-1981-0632532-8
[38] M. Oka, Non-degenerate mixed functions, Kodai Math. J. 33 (2010), 1-62. DOI: 10.2996/kmj/1270559157
[39] P. Orlik and P. Wagreich, Isolated singularities of algebraic surfaces with \mathbb{C}^{*} action, Ann. of Math. (2) 93 (1971), 205-228. DOI: 10.2307/1970772
[40] B. Perron, Le nœud "huit" est algébrique réel, Invent. math. 65 (1982), 441-451. DOI: 10.1007/bf01396628
[41] B. Perron, Conjugaison topologique des germes de fonctions holomorphes à singularité isolée en dimension trois, Invent. math. 82 (1985), 27-35. DOI:
[42] L. Rudolph, Isolated critical points of mappings from \mathbb{R}^{4} to \mathbb{R}^{2} and a natural splitting of the Milnor number of a classical fibered link. I. Basic theory; examples, Comment. Math. Helv. 62 (1987), 630-645. DOI: 10.1007/bf02564467
[43] O. Saeki, On simple fibered knots in S^{5} and the existence of decomposable algebraic 3-knots, Comment. Math. Helv. 62 (1987), 587-601. DOI: 10.1007/bf02564464
[44] O. Saeki, Knotted homology spheres defined by weighted homogeneous polynomials, J. Fac. Sci. Univ. Tokyo 34 (1987), 43-50.
[45] O. Saeki, Topological types of complex isolated hypersurface singularities, Kodai Math. J. 12 (1989), 23-29. DOI: $10.2996 / \mathrm{kmj} / 1138038986$
[46] O. Saeki, Real Seifert form determines the spectrum for semiquasihomogeneous hypersurface singularities in \mathbb{C}^{3}, J. Math. Soc. Japan 52 (2000), 409-431. DOI: 10.2969/jmsj/05220409
[47] K. Saito, Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. math. 14 (1971), 123-142. DOI: 10.1007/bf01405360
[48] K. Sakamoto, The Seifert matrices of Milnor fiberings defined by holomorphic functions, J. Math. Soc. Japan 26 (1974), 714-721. DOI: 10.2969/jmsj/02640714
[49] P. Samuel, Algébricité de certains points singuliers algébrö̈des, Math. Pures Appl. (9) 35 (1956), 1-6.
[50] H. Schubert, Knoten und Vollringe, Acta Math. 90 (1953), 131-286. DOI: 10.1007/bf02392437
[51] J.H.M. Steenbrink, Mixed Hodge structure on the vanishing cohomology, in "Real and complex singularities (P. Holm, ed.)", Stijthoff-Noordhoff, Alphen a/d Rijn, 1977, pp. 525-563. DOI: 10.1007/978-94-010-1289-8_15
[52] J.H.M. Steenbrink, Intersection form for quasihomogeneous singularities, Compositio Math. 34 (1977), 211-223.
[53] E. Yoshinaga and M. Suzuki, On the topological types of singularities of Brieskorn-Pham type, Sci. Rep. Yokohama Nat. Univ., Sect. I (1978), 37-43.
[54] E. Yoshinaga and M. Suzuki, Topological types of quasihomogeneous singularities in \mathbb{C}^{2}, Topology 18 (1979), 113-116. DOI: 10.1016/0040-9383(79)90029-6
[55] O. Zariski, Some open questions in the theory of singularities, Bull. Amer. Math. Soc. 77 (1971), 481-491. DOI: 10.1090/s0002-9904-1971-12729-5

[^0]: 2010 Mathematics Subject Classification. Primary 32S55, Secondary 57Q45, 57M25.

[^1]: ${ }^{1}$ In this case we say that 0 is an isolated singularity, or an isolated critical point, of f.

