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ALGEBRAIC DIFFERENTIAL EQUATIONS OF PERIOD-INTEGRALS

DANIEL BARLET

Abstract. We explain that in the study of the asymptotic expansion at the origin of a period-

integral or of a hermitian period the computation of the Bernstein polynomial of the “fresco”
(filtered differential equation) associated to the pair of germs of a holomorphic function with

a holomorphic volume form gives a better control than the computation of the Bernstein
polynomial of the full Brieskorn module of the germ of f at the origin. Moreover, it is

easier to compute as it has a better functoriality and smaller degree. We illustrate this in

the case where the polynomial f in (n+1) variables has (n+2) monomials and is not quasi-
homogeneous, by giving an explicit simple algorithm to produce a multiple of this Bernstein

polynomial in the case of a monomial holomorphic volume form. Several concrete examples

are given.

1. Introduction

This article simplifies and improves two unpublished papers, see [3] and [2], on the computa-
tion of the Bernstein polynomial associated to a period-integral or to a hermitian period.
The main result of this paper gives a numerical necessary condition in order that the asymptotic
expansion at s = 0 of a hermitian period

1

(2iπ)n

∫
f=s

ρ
ω

df
∧ ω′

df

associated to a pair ω, ω′ of holomorphic volume forms (where ρ ∈ C∞ is identically 1 near 0)

has a non-zero singular term of the type |s|2ξsms̄m′
(Log |s|)p, where ξ ∈]− 1, 0] ∩Q,m,m′ ∈ N,

(we define N as the set of non-negative integers) and p ∈ N (p ≥ 1 when ξ = 0), assuming that
such a term does not exist when ρ is identically 0 near the origin.

Let us be more explicit about this goal. We consider a holomorphic function f : U → C on
an open neighborhood U of the origin in Cn+1 which has a critical point at 0. The singularity
is not assumed to be isolated, but we choose U small enough in order that f(0) = 0 is the only
critical value of f on U1. We are interested, for instance, in the meromorphic extension of the
holomorphic function for ℜ(λ) ≫ |h|:

1

Γ(λ)

∫
U

|f |2λf̄hρω ∧ ω̄′

where ω and ω′ are given holomorphic (n+1)−forms on U , h is in Z and ρ is a C∞
c (U) function

identically 1 near 0.

2010 Mathematics Subject Classification. 32S25-32S40.
Key words and phrases. Period-integral, Hermitian period, Formal Brieskorn Module, Geometric (a,b)-

module, Fresco, Bernstein polynomial.
1Recall that for any holomorphic function f with a critical point at the origin, such a U always exists.
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This is the complex Mellin transform of the hermitian period (see [13]):

s 7→ 1

(2iπ)n

∫
f=s

ρ
ω

df
∧ ω′

df
.

We shall assume that, for a given integer q ≥ 1 and for a given ξ ∈ Q, the meromorphic extension
of

(H(ξ, q))
1

Γ(λ)

∫
U

|f |2λφ

has poles at points in ξ + Z which are of order at most q − 1, for any (n+ 1, n+ 1) differential
form φ ∈ C∞

c (U \ {0}) (so φ ≡ 0 near 0).
For instance, if the singularity of f is isolated at the origin, this hypothesis will always be true
for q = 1 and any ξ ∈ Q.
When the singularity of f is not isolated, this condition will be satisfied for q = 1 if and only
if (thanks to [5]; see also [15]) the local monodromy of f acting on the reduced cohomology of
the Milnor fibre at each point near 0, but distinct of 0, does not present the eigenvalue exp(2iπξ).

In general, this assumption means that any pole of order ≥ q at a point in ξ + Z comes
from the germ of our situation at the origin. But note that even if the eigenvalue exp(2iπξ) of
the local monodromy of f acting on the reduced cohomology of the Milnor fibre at any point
near 0 (including 0) is simple, we may find a pole of order 2 for such an integral because the
phenomenon of “entanglement of consecutive strata” may appear (see [7] for a topological de-
scription and [10] for a description in term of “Brieskorn modules” of this phenomenon).
We shall give in Theorem 3.2.1 and in Corollary 3.2.2 some necessary numerical conditions which
control the order of poles at points in ξ+Z for a given holomorphic (n+1)−form ω which is much
more precise than the “classical condition” asking that the Bernstein polynomial of f at 0 has
at most (q− 1) roots (counting multiplicities) in the set ξ+Z (condition which in fact gives the
result for such an integral when we replace ρω∧ω′ by any differential form φ ∈ C∞

c (U)n+1,n+1).
The precise result for the Mellin transforms of hermitian periods is given in Theorem 3.2.1 (the
remark following the proof of Corollary 3.2.2 indicates also a variant which can be obtained by
the same method.)
The examples given at the end of this paper show not only that the Bernstein polynomial of the
fresco associated to the pair (f, ω) is much easier to compute than the full Bernstein polynomial
of f , but also that it has, in general, a much smaller number of roots.

The main tool around this kind of technique will be the following generalization of the use
of a Bernstein identity to control the poles of the Mellin transform of a “hermitian period” of
the form

(1) F (λ) :=
1

Γ(λ)

∫
U

|f |2λf̄hω ∧ ψ

where ω is a holomorphic form in Ωn+1(U), ψ ∈ C
∞,(0,n+1)
c (U) is d−closed near 0 and h is in

Z.

Theorem 1.0.1. Let f : U → C be a holomorphic function on a polydisc U with center 0 in
Cn+1 and assume that f(0) = 0 is the only critical value of f on U . For ξ given in Q, assume
that the hypothesis H(ξ, 1) is satisfied (see above).
Let ω be a (n + 1) holomorphic differential form on U . Assume that the class induced by ω in
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En+1
0 is annihilated by the element2

P := (a− λ1b)S1(b) . . . (a− λkb)Sk(b)

in Ã, where for each j ∈ [1, k], Sj ∈ C[[b]] satisfies Sj(0) = 1. Note that this assumption depends
only on the germs at the origin of f and of ω.

Now fix ψ ∈ C
∞,(0,n+1)
c (U) which is d−closed near 0 and assume that for some h ∈ Z the

meromorphic extension of

Fψh (λ)[ω] :=
1

Γ(λ)

∫
U

|f |2λf̄hω ∧ ψ

has a pole of order d ≥ 1 at some point in ξ + Z. Then there exist at least d values of j ∈ [1, k]
such that λj is in ξ + Z.

The algebra Ã is defined in section 2 (see formula (6)) and for the definition of the geomet-
ric (a,b)-module En+1

0 and the notion of the Bernstein polynomial of a fresco, see section 2 below.

Note that the hypothesis of the existence of such a P is always true. But in practice (see
section 4) we may have such a P but we do not know that its initial form in (a,b) corresponds
to the Bernstein polynomial of the fresco associated to ω. It is only a member of the (principal)
left ideal which annihilates the class of ω in En+1

0 .
So, under the hypothesis of this theorem, the Bernstein polynomial of the fresco Fω associated
to the pair (f, ω) (which is the geometric (a,b)-module generated by [ω] in En+1

0 ) divides the
polynomial

B(λ) :=

k∏
j=1

(λ+ λj + j − k).

In the more precise statement given in section 3 (see Theorem 3.1.2) we make precise the
values of these roots of the Bernstein polynomial of Fω from the “jumps” of the orders of poles
in ξ + Z.

We shall give a more precise result in Theorem 3.1.2 and some interesting variants using the
hypothesis H(ξ, q) in Theorem 3.2.1 and Corollary 3.2.2 in section 3.
Remark. Notice that here we use in fact only a “one variable” differential equation (in fact
multiplication by the variable in C and integration relative to this variable) instead of partial
differential operators on Cn+1 as in the Bernstein identity for f at the origin. This is precisely
one of the points of interest of using an (a,b)-module structure in this setting.

So we begin this article by a short overview on geometric (a,b)-modules and frescos intended
for the reader not familiar with the use of Brieskorn modules in the study of the singularities of
a holomorphic function on a complex manifold.
In opposition with the preprint [2] cited above, we let aside the global point of view, that is to say
the study of the global fresco associated to a period-integral in the case of a proper holomorphic
function on a complex manifold, because it uses more heavy tools and very often the local study
presented here would be enough to obtain good information, using a partition of unity.
The reader interested in this global setting may consult the preprint [2] mentioned above and
also the preprint [1].
It is important to notice that we are dealing here with general singularities of a holomorphic

2Compare this hypothesis with Theorem 2.3.1 which is recalled in section 2.
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function (not only the isolated singularity case as in the classical use of the Brieskorn module)
and our illustration in the case of a (not quasi-homogeneous) polynomial in C[x0, . . . , xn] with
n+ 2 monomials does not assume also that the singularity is isolated.
Acknowledgment. I want to thank the referees for their careful readings of the manuscript
and for their attempts to improve my poor English.

2. A short overview on (a,b)-modules and frescos

2.1. Why use an (a, b)−module structure instead of a differential system ? Note first
that in “(a, b)” a is the multiplication by the variable z and b is the primitive vanishing at
z = 0, so b(f)(z) :=

∫ z
0
f(t)dt where f is, for instance, a holomorphic multivalued function with

a possible ramification point at z = 0. So we are working with the non-commutative algebra A
generated by a and b with the commutation relation ab−ba = b2 as unique relation. This relation
corresponds to the usual commutation relation ∂zz − z∂z = 1 in the Weyl algebra C⟨z, ∂z⟩.

Then why not use the usual Weyl algebra ?

The initial motivation comes from the study of germs of isolated singularities of holomorphic
functions (f, 0) : (Cn+1, 0) → (C, 0) initiated at the end of the sixties by Milnor [20], Brieskorn
[16], Deligne [17], Malgrange, [19], Varchenko [24], Kyoji Saito [22], Morihiko Saito [23], ... and
many others.
To my knowledge the first who introduced the “operator” ∂−1

z was Kyoji Saito in the beginning
of the eighties (see [22]). The main reason comes from the fact that, looking at period-integrals
of the type z 7→

∫
γz
ω/df where (f, 0) : (Cn+1, 0) → (C, 0) is a germ of a holomorphic function

with an isolated singularity, ω ∈ Ωn+1
Cn+1,0 is a germ of a holomorphic volume form and (γz, z ∈ H)

is a horizontal family of compact n−cycles in the fibres {f = z} of f , the map H → D∗ being
the universal cover of a small punctured disc D∗ with center 0, the derivation ∂z of such an
integral is given by the following formula

(2) ∂z
( ∫

γz

u
)
=

∫
γz

du/df =

∫
γz

ω/df =

∫
γz

v

where u and v are in ΩnCn+1,0 and satisfy ω = df ∧v = du. But in general it is not possible to find

such a v ∈ ΩnCn+1,0 because writing ω = g(x)dx, the holomorphic germ g is not in the Jacobian

ideal of f . Nevertheless, as the coherent sheaf Ωn+1
/
df ∧Ωn has support inside {f = 0} near 0,

the Nullstellensatz gives a positive integer p such that fp annihilates this sheaf near 0 and we
may find v ∈ f−pΩnCn+1,0 such that ω = df ∧ v and (2) holds. But, of course, this implies that

in formula (2) the derivation in z needs a denominator which is a power of z.
Thanks to the positivity theorem of Malgrange (see [19]) we may write the formula (2) as follows:

(3)

∫ z

0

( ∫
γt

v
)
dt =

∫ z

0

( ∫
γt

ω/df
)
dt =

∫
γz

u

If we begin with ω := du ∈ Ωn+1
Cn+1,0 we see that formula (3) does not need any denominator in z.

Moreover the surjectivity in top degree of the de Rham differential d : Ωn → Ωn+1 shows that
du may be any germ in Ωn+1

Cn+1,0 and we may write

(4) b
( ∫

γz

du/df
)
=

∫
γz

df ∧ u/df =

∫
γz

u

so that the action of b only needs to solve the equation du = ω, and this is always possible with
u ∈ ΩnCn+1,0 without introducing a denominator in f (so no denominator in z downstairs).
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As the action of a is given by the formula :

(5) a
( ∫

γz

du/df
)
= z

( ∫
γz

du/df
)
=

∫
γz

fdu/df
)

because the n−cycle γz is inside the fibre f
−1(z) we see that the A−module structure on the quo-

tient3 Ef := Ωn+1
Cn+1,0

/
d
(
Ker(df)n0

)
does not need to consider meromorphic (n + 1)−differential

forms with poles along the fibre {f = 0}.
Note that in the case of an isolated singularity for f we have the equality

Ker(df)n0 = df ∧ Ωn−1
0

because the partial derivatives of f define a regular sequence at the origin. Also in this case we
find that Ef

/
bEf is equal to the finite dimensional vector space OCn+1,0

/
J(f)0 where J(f) is

the Jacobian ideal of f . So we find the classical “Brieskorn module”.

But why is this presentation interesting if, at the end, we are compelled to introduce
denominators in f (or in z working downstairs) to reach an ordinary differential system (or a
differential equation ) ?

The answer comes from the following considerations:
If you keep a module structure over the algebra A as a substitute for a differential system
you have a richer structure (so more precise information) than a structure of module over the
localized Weyl algebra C⟨z, z−1, ∂z⟩ associated to your differential system. This comes from the
fact that the commutation relation ab− ba = b2 is homogeneous of degree 2 in (a, b) and implies
the existence of the decreasing sequence of two-sided ideals in A given by bmA = Abm,∀m ∈ N.
So any A−module E is endowed with a “natural filtration” (bmE)m∈N by sub−A−modules. For
instance Varchenko [24] proves that in the case of an isolated singularity this filtration defines
the Hodge filtration of the mixed Hodge structure on the cohomology of the Milnor fibre of f .

exercise. Show that abm = bma+mbm+1,∀m ∈ N is a consequence of the commutation relation
corresponding to m = 1.
Note that this relation implies that a and bm commute modulo bm+1A.

Also, looking at the “natural action” of A on C[[z]] which is given by a(zm) = zm+1 and
b(zm) = zm+1/(m + 1), you will see that bmC[[z]] = zmC[[z]],m ∈ N so the b−filtration is the
filtration defined by the valuation in z.

Another simple remark may also help to convince the reader that a module structure over A
is interesting:

Lemma 2.1.1. Let E := ⊕kj=1C[b]ej be a free C[b]−module with basis e1, . . . , ek and let x1, . . . , xk
be any given collection of elements in E. Then there exists a unique A−module structure on E
such that

a) The action of a is defined by aej = xj for each j ∈ [1, k].
b) The action of b is given by the C[b]−structure of E.

The proof of this lemma is easily deduced from the following formula which is an easy conse-
quence of the exercise above:

a(S(b)ej) = S(b)xj + b2S′(b)ej ∀j ∈ [1, k]

3This quotient allows us to define b[ω] = [df ∧ u] independently of the choice of u ∈ Ωn
0 such that ω = du

because when ω is in d(Ker(df)n0 ) the period-integral is identically 0 near z = 0.
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where S′(b) is the “usual” derivative of the polynomial S ∈ C[b].

In fact, the presence of the filtration by the two-sided ideals bmA of the algebra A and the
lemma above lead to the following considerations

• The “fundamental” operation4 in the action of A is b !
• It seems convenient, as we are interested in the asymptotic expansions of the period-
integrals

∫
γz
ω/df when z → 0, to complete the algebra A for the uniform structure

defined by the filtration bmA,m ∈ N.
Note that for the “obvious” action of A on formal power series in z this filtration is
associated to the valuation in z (see the remark following the exercise above).

This means that we shall work with the algebra

(6) Ã :=
{∑
ν≥0

Pν(a)b
ν , Pν ∈ C[a] ∀ν ∈ N

}
.

The initial idea of Kyoji Saito was to add some convergence conditions in order that such series
act on convergent (multivalued) series likes∑

r∈R,j∈[0,N ]

C{z}zr(Log z)j

where R is a finite subset in Q and N is a non-negative integer, which are the kind of asymptotic
expansions which are valid for our period-integrals.
But thanks to the regularity of the Gauss-Manin connection, we do not lose any information by
staying at the formal series level and this avoids a lot of painful (standard) estimates !

Remark also that the construction given in the lemma above is also valid for the algebra Ã and,
moreover, that a module E over Ã without b−torsion is of finite type over C[[b]] if and only if
the complex vector space E/bE is finite dimensional.
So, our definition of an (a, b)-module is:

• An (a,b)-module is a left Ã−module which is a free and finite type module

over the (commutative) sub-algebra C[[b]] ⊂ Ã.

Examples.

(1) Let (f, 0) : (Cn+1, 0) → (C, 0) be a germ of a holomorphic function with an isolated

singularity. Let Ω̂p0 be the formal completion at the origin of ΩpCn+1,0. The quotient

Êf := Ω̂n+1
0

/(
df ∧ d(Ω̂n−1

0 )
)
endowed with the actions of a := ×f and b := df ∧ d−1 is

an (a,b)-module (note that the absence of b−torsion is a theorem; see [21] or [9]).

(2) Let E := C[[b]]e0⊕C[[b]]e1 be the Ã−module defined by ae0 := be0 and ae1 := be1+be0.
Then it is an easy exercice to show that E is isomorphic to

C[[z]]⊕ C[[z]Log z

where a := ×z and b :=
∫ z
0
.

Determine the filtration (bmE)m∈N in this example and compare it with the filtration
by the (amE)m∈N.
Compute the module over the Weyl algebra generated by Log z and compare with E.

4This is psychologically the most difficult fact to accept after a standard education in maths.
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2.2. Geometric (a,b)-modules. The (a,b)-modules which appear in singularity theory of a
function are special. They correspond to regular differential systems and the notion of regular-
ity is easy to define for an (a,b)-module:
First we say that the (a,b)-module E has a simple pole when aE ⊂ bE. When it is the case,
−b−1a acts on the (finite dimensional) vector space E/bE and its minimal polynomial is called
the Bernstein polynomial of E.
For a general (a,b)-module the saturation E♯ of E by the action of b−1a is not always a finite
type C[[b]]−module. When E♯ is of finite type over C[[b]], E♯ is an (a,b)-module (with simple
pole) with the same rank over C[[b]] as the rank of E.
We say in this case that E is regular. This is equivalent to the fact that E can be embedded
in an (a,b)-module having a simple pole.
Then we defined the Bernstein polynomial of a regular (a,b)-module E as the Bernstein poly-
nomial of its saturation E♯ by b−1a.

There is one more specific property for the (regular) (a,b)-modules coming from the singu-
larity of a function f , which reflects the fact that the monodromy of f is quasi-unipotent and
the positivity theorem of Malgrange: the fact that the roots of the Bernstein polynomial are
negative rational numbers (compare with the famous theorem of Kashiwara [18]). So we call
geometric a regular (a,b)-module whose Bernstein polynomial has negative rational roots.
Example. In the previous example 2 the (a,b)-module has a simple pole and its Bernstein
polynomial is, by definition, the minimal polynomial of the matrix(

−1 −1
0 −1

)
so its Bernstein polynomial is (λ+ 1)2. Compare with the Bernstein type identity(

(2λ+ 1)∂z − z∂2z
)
(zλ+1Log z) = (λ+ 1)2zλLog z.

The following easy proposition will be needed in the sequel. Although it is rather standard,
we shall sketch the proof for the convenience of the reader.

Recall that a sub-(a,b)-module F of a (a,b)-module E is normal when for each x ∈ E such
that bx is in F , then x is in F . This is the necessary and sufficient condition for the quotient E/F
to be without b−torsion. It is a necessary and sufficient condition for E/F to be an (a,b)-module.

Proposition 2.2.1. Let E be a geometric (a,b)-module and F any sub−Ã−module in E. Then
F is a geometric (a,b)-module. When F is normal, the quotient E/F is again a geometric
(a,b)-module.

proof. To prove the first point, thanks to the regularity of E, we may assume that E is a simple
pole module (i.e. aE ⊂ bE). Then the Bernstein polynomial of E is the minimal polynomial
of the action of −b−1a on the finite dimensional vector space E/bE. As F is a C[[b]] sub-module
of E which is free and of finite rank on C[[b]], F is also free and of finite rank on C[[b]] and stable
by a. So F is an (a,b)-module. Its saturation by b−1a is again contained in E and so it is also
free of finite type on C[[b]]. This gives the regularity of F . The last point to prove is the fact
that the Bernstein polynomial of F has negative rational roots (i.e. F is geometric) and the fact
that when F is normal E/F is also geometric. We shall argue by induction on the rank of F .
In the rank 1 case let e be a generator of F over C[[b]] such that ae = λbe (see the classification
of rank 1 regular (a,b)-modules in [B.93], Lemma 2.4). Let ν in N be maximal such that b−νe
lies in E. Then C[[b]]b−νe = b−νF is a normal sub-module of E and we have an exact sequence
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of simple poles (a,b)-modules
0 → b−νF → E → Q→ 0

and also an exact sequence of (−b−1a) finite dimensional vector spaces

0 → Cb−νe→ E/bE → Q/bQ→ 0.

Then the minimal polynomial BE of the action of −b−1a on E/bE is either equal to the minimal
polynomial BQ of the action of −b−1a on Q/bQ, and in this case x+ (λ− ν) divides BQ = BE ,
or we have BE [x] = (x+ (λ− ν))BQ[x].
In both cases, as E is geometric, we obtain that −(λ− ν) is a negative rational number, and so
is −λ. Moreover, in both cases, Q is also geometric.
The induction step follows easily by considering a rank 1 normal sub-module G in F , using the
following lemma and the fact which was already proved above that a quotient of a geometric
(a,b)-module by a normal rank 1 sub-module is again a geometric (a,b)-module. ■

For a proof of the following lemma see for instance Remark 1.2 following Proposition 1.3 in
[12].

Lemma 2.2.2. Let E be a regular (a,b)-module and let F ⊂ E be a sub-(a,b)-module. Assume
that λ is a root of the Bernstein polynomial BF of F . Then there exists λ′ ∈ λ+N such that λ′

is a root of the Bernstein polynomial BE of E. ■

As we want to consider, in the non-isolated singularity case, a sheaf of geometric (a,b)-
modules along the singular set {df = 0} of the zero set {f = 0} of a holomorphic function on a
complex manifold M , we have to replace the completion used in the classical case of an isolated
singularity by an f−completion which is in fact the z−completion downstairs. This will not
change seriously the considerations above, thanks to the following easy proposition which implies
that any geometric (a,b)-module is in fact a module over the algebra Â := {

∑
p,q≥0 cp,qa

pbq}
which contains both C[[b]] and C[[a]].

Proposition 2.2.3. Any geometric (a,b)-module is complete for the decreasing filtration by the
C[a]−sub-modules (amE)m∈N (they are not stable by b in general).

This result is an obvious consequence of the existence, for any regular (a,b)-module E, of a
positive integer N such that aNE ⊂ bE (see [12]). Then C[[a]] acts on any regular (a,b)-module
E. Note that the hypothesis “geometric” ensures that a is injective (this is not the case if we
assume only the regularity).

2.3. Frescos. We have seen that the (a,b)-module structure may be an interesting way to
study the differential system associated to period-integrals for a germ of a holomorphic function
(f, 0) : (Cn+1, 0) → (C, 0). It is given by the (a,b)-module Êf which is the completion of the

Brieskorn module Ωn+1
0

/
df ∧ dΩn−1

0 in the isolated singularity case. It gives in fact a filtered
version of the differential system satisfied by all the period-integrals associated to the germ
(f, 0).
But if we are interested by the period-integrals corresponding to a specific holomorphic differen-
tial form, it is clear that such a differential system, that is to say the (a,b)-module Êf , does not
give very precise information. In terms of differential system, we would prefer to have a specific
differential equation satisfied by the integral-periods

∫
γz
ω/df for our choice of ω rather than

the differential system satisfied by all period-integrals, so associated to all choices of ω ∈ Ωn+1
0 .

The analogue of the differential equation in terms of (a,b)-modules is the notion of “fresco”.

A fresco is, by definition, a geometric (a,b)-module which is generated, as a Ã−module, by
one generator. For instance, in the previous situation, we shall consider the fresco given by
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Ã[ω] ⊂ Êf and we shall call it the fresco of the pair (f, ω) at the origin. The following
structure theorem describes in a very simple way such a fresco (see [8]).

Theorem 2.3.1. Any rank k fresco5 F with generator e is isomorphic (as a left Ã−module) to

a quotient Ã
/
ÃΠ, the isomorphism F → Ã

/
ÃΠ being defined by sending the generator e of F

to the class of 1. We may choose Π having the following form

(7) Π := (a− λ1b)S
−1
1 (a− λ2b)S

−1
2 . . . S−1

k−1(a− λkb)S
−1
k

where the numbers −(λj + j − k) are the roots of the Bernstein polynomial of F and where Sj
are in C[b] and satisfy Sj(0) = 1 (so each Sj is invertible in C[[b]]).

Note that the initial form in (a,b) of Π is PF := (a − λ1b) . . . (a − λkb). It is called the
Bernstein element of the fresco F . It does not depend on the choice of the generator of F
over Ã (choice which determines Π) and is related to the Bernstein polynomial BF ∈ C[λ] of
F by the following relation in the ring A[b−1]:

(8) (−b)kBF (−b−1a) = PF , where k := rk(F ).

In the case of a fresco F the Bernstein polynomial BF is equal to the characteristic poly-
nomial of the action of −b−1a on F ♯/bF ♯ where F ♯ is the saturation of F by b−1a (see [8]
Theorem 3.2.1). This makes the computation of the Bernstein polynomial of a fresco easier than
for a general geometric (a,b)-module, for instance by the use of the following remark:
If 0 → F → G → H → 0 is an exact sequence of frescos we have the relation PG = PFPH
(product in A) between the Bernstein elements and this gives the relation (see [8] Proposition
3.4.4):

BG(x) = BF
(
x+ rk(H)

)
BH(x)

between the Bernstein polynomials.

Recall that any element P in the algebra A which is homogeneous of degree k in (a,b) and
monic in a may be written P = (a − r1b) . . . (a − rkb) where r1, . . . , rk are complex numbers.
This equality is not unique but the sequence rj + j − k, j ∈ [1, k] depends only on P (see [8]
Proposition 2.0.2).

Our next proposition will be useful in our computations of examples.

Proposition 2.3.2. Let F be a rank k fresco with generator e. Assume that Q ∈ Â has the
following properties:

i) The initial form Q of Q in (a, b) has degree d and is monic in a.
ii) Q[e] = 0 in F .

Then Q is a left multiple in A of PF , the Bernstein element of F .
If moreover we have d = k, then Q is the Bernstein element of F .

Proof. Using the structure theorem of [8] recalled in Theorem 2.3.1 above, we have an isomor-

phism F ≃ Ã
/
ÃΠ where the initial form in (a,b) PF of Π is the Bernstein element of F . As F

is a Â−module (see Proposition 2.2.3) we have also an isomorphism F ≃ Â
/
ÂΠ of Â−modules

and our hypothesis ii) implies that there exists Z ∈ Â such that

Q = ZΠ.

This gives Q = in(Z)PF where in(Z) is the initial form in (a,b) of Z. This already implies that
d ≥ k and that in(Z) is of degree d− k. In the case d = k we have in(Z) = 1 and Q = PF . ■

5Recall that we consider the rank as a C[[b]]−module, where C[[b]] ⊂ Ã.
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2.4. A general existence theorem. Now consider a germ f : (Cn+1, 0) → (C, 0) such that

{f = 0} is reduced. Let Ω̂• be the formal f−completion of the sheaf of holomorphic differential

forms on (Cn+1, 0) and let K̂er df• be the kernel of the map

∧df : Ω̂• −→ Ω̂•+1.

Then for any p ≥ 2 the p−th cohomology sheaf of the complex (K̂er df•, d•) has a natural

structure of left Â−module, where the action of a is given by multiplication by f and the action
of b is (locally) given by df ∧ d−1.

The following result is known (see [9], [14] and [10])

Theorem 2.4.1. For each integer p the germ at 0 of the p−th cohomology sheaf of the complex
(K̂er df•, d•) (modified for p = 1)6, denoted by Ep0 , satisfies the following properties:

i) We have in Ep0 the commutation relation ab− ba = b2.

ii) Ep0 is b-separated and b-complete (so also a-complete). Then it is a Ã−module (and also a

Â−module).
iii) There exists an integer m ≥ 1 such that amEp0 ⊂ bEp0 .
iv) We have B(Ep0 ) = A(Ep0 ) = Ã(Ep0 ) and there exists an integer N ≥ 1 such that aNA(Ep0 ) = 0

and b2NB(Ep0 ) = 0.
v) The quotient Ep0 := Ep0

/
B(Ep0 ) is a geometric (a,b)-module.

Recall that B(E0) is the b-torsion in E0, A(E0) the a-torsion of E0 and Ã(E0) the C[b]−module
generated by A(E0) in E0.

We shall mainly use this result in the case where ω is an (n + 1)−holomorphic differential
form in an open neighborhood U of the origin in Cn+1; note that the condition df ∧ω = dω = 0
is automatic in this case. So it defines a class [ω] in En+1

0 and generates the fresco

Fω := Ã[ω] ⊂ En+1
0

thanks to Proposition 2.2.1 and property v) of the previous theorem.

Definition 2.4.2. We shall denote by Bω ∈ C[x] and by Pω ∈ A respectively the Bernstein
polynomial and the Bernstein element of the fresco Fω.

We shall study several examples in section 4.

3. Mellin transform of hermitian periods

3.1. The main result. We consider now a holomorphic function on an open polydisc U centered
at the origin in Cn+1 such that f(0) = 0 is the only critical value of f on U . Let ω be
a holomorphic (n + 1)−differential form on U . Then let ψ be a C∞ differential form with
compact support in the polydisc U of type (0, n + 1) which satisfies dψ ≡ 0 near 0. For any
h ∈ Z define, at least for ℜ(λ) large enough, the holomorphic function

(9) λ 7→ Fψh (λ)[ω] =
1

Γ(λ)

∫
U

|f |2λf̄hω ∧ ψ.

Note that the existence of a Bernstein identity for f in a neighborhood of 0 ensures that for U
small enough and any differential form φ ∈ C∞

c (U)(n+1,n+1) the holomorphic function defined by∫
U
|f |2λφ has a meromorphic extension to the whole complex plane with a finite series of poles of

6For p = 1 we have to replace K̂er df1 by a quotient ; see [10].
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order at most n+1 at points of the form ξj−N where ξj are negative rational numbers (see [18]).

We shall make the following hypothesis, which we shall denote by H(ξ, 1):

• For a given ξ ∈ Q the local monodromy of f acting on the reduced cohomology of the
Milnor fibre of f at any point distinct from 0 does not admit the eigenvalue exp(2iπξ).

Proposition 3.1.1. We assume the hypothesis H(ξ, 1). Let ω be a holomorphic (n+1)−differ-
ential form on U and let ψ be a C∞ differential form with compact support in U of type (0, n+1)
which satisfies dψ ≡ 0 near 0. We have the following formulas in En+1

0 (recall that the geomet-
ric (a,b)-module En+1

0 is defined in the theorem 2.4.1 above and that the action of a and b are
defined by: a[ω] = [fω], b[ω] = [df ∧ u] where u ∈ Ωp(U) satisfies du = ω7).

i) If there exists v ∈ Ωn(U) satisfying df ∧ v ≡ 0 and dv = ω on U , then Fψh [ω] has no pole in
ξ + Z for any h and any ψ.

ii) Fψh (λ)[aω]− (λ+ 1)Fψh−1(λ+ 1)[ω] has no pole in ξ + Z.
iii) Fψh (λ)[bω] + Fψh−1(λ+ 1)[ω] has no pole in ξ + Z.
iv) So for any µ ∈ C the meromorphic function

Fψh (λ)[(a− µb)ω]− (λ+ µ+ 1)Fψh−1(λ+ 1)[ω]

has no pole in ξ + Z, combining ii) and iii).

Of course, the simplest example of such a ψ is given by ψ := ρω̄′ where ρ is a C∞ function
with compact support such that ρ ≡ 1 in a neighborhood of 0 and where ω′ is a holomorphic
(n+ 1)−differential form in U .
proof. Write ω = du on U with u ∈ Ωn(U). This is always possible as U is a polydisc so Stein
and contractible. Then for ℜ(λ) > 1+ |h| the differential form α := |f |2λf̄hu∧ψ is C 1 in U and
has compact support. So we have:

dα = |f |2λf̄hdu ∧ ψ + λ|f |2(λ−1)f̄h+1df ∧ u ∧ ψ + (−1)n|f |2λf̄hu ∧ dψ.

Stokes’ formula gives, as dψ vanishes near 0,

1

Γ(λ)

∫
U

dα = 0 = Fψh (λ)[ω] + Fψh+1(λ− 1)[bω] +G(λ)

where G(λ) is a meromorphic function on C which has no pole in ξ+Z thanks to our hypothesis
H(ξ, 1). This implies i) and iii) using Γ(λ) = λΓ(λ− 1). The formula ii) is easy and left to the
reader. ■

Remark. The point i) of the previous proposition shows that Fψh (λ)[ω] has no pole in ξ + Z
when ω induces the zero class in En+1

0 = Hn+1(K̂er df•0 , d
•), and the point iii) implies the same

conclusion when the class of ω in En+1
0 is of b−torsion. So the polar part of Fψh (λ)[ω] in ξ + Z

depends only on the class induced by ω in En+1
0 = En+1

0

/
b − torsion for h and ψ fixed. This

remark will be crucial in the sequel.

We shall give the following result which is more precise than Theorem 1.0.1 stated in the
introduction. Let us recall the situation. Let f be a holomorphic function on a polydisc U with
center 0 in Cn+1 and assume that f(0) = 0 is the only critical value of f on U . Let ω be a

7Such a u always exists.
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(n + 1) holomorphic differential form on U and let ψ be a C∞ differential form with compact
support in U of type (0, n+ 1) which satisfies dψ ≡ 0 near 0. Then define as above

(9) Fψh (λ)[ω] :=
1

Γ(λ)

∫
U

|f |2λf̄hω ∧ ψ.

Theorem 3.1.2. Fix a number ξ ∈ Q and an integer d ≥ 1. Assume that the hypothesis H(ξ, 1)

is satisfied. Then assume that, for a given ψ, the meromorphic extension of Fψh (λ)[ω] has no
pole of order ≥ d+1 at any point in ξ+Z, for any choice of h ∈ Z, but that there exists a point
in ξ + Z where, for some h, this meromorphic extension has a pole of order d.
For each integer s ∈ [1, d] let ξs be the biggest element in ξ+Z for which there exists h ∈ Z such

that Fψh (λ)[ω] has a pole of order at least equal to s at ξs. Then each ξs for s ∈ [1, d] is a root
of the Bernstein polynomial of the fresco Fω.
Moreover, if ξs = ξs+1 = · · · = ξs+p then ξs is a root of the Bernstein polynomial of Fω with
multiplicity at least equal to p+ 1.

Remark that the theorem implies that the Bernstein polynomial of the fresco Fω is a multiple

of
∏d
s=1(λ− ξs) and that we have ξd ≤ ξd−1 ≤ · · · ≤ ξ1 < 0 by definition.

The proof of this theorem needs some lemmas.

Lemma 3.1.3. In the situation of the theorem 3.1.2, let S ∈ C[[b]] which satisfies S(0) = 1 and
let µ ∈ C such that µ ̸= −ξs for a given s ∈ [1, d]. Then

(1) ξs is still the biggest pole of order ≥ s in ξ + Z for the meromorphic extension of

Fψh (λ)[S(b)ω] when h varies in Z.
(2) ξs − 1 is the biggest pole of order ≥ s in ξ + Z for the polar part of the meromorphic

extension of Fψh (λ)[(a− µb)ω] when h varies in Z.

proof. Write S(b) := 1 +
∑∞
m=1 smb

m. As Fψh (λ)[b
mω] = (−1)mFψh−m(λ + m)[ω], for each

m ≥ 1, thanks to point iii) in Proposition 3.1.1, the meromorphic extension of Fψh (λ)[b
mω]

cannot have a pole of order ≥ s at the point ξs for any choice of h. So the pole of order ≥ s
given by the initial term (i.e. m = 0) for a suitable value of h, stays maximal. This proves 1.
Because we assume µ+ ξs ̸= 0, the point iv) in Proposition 3.1.1 shows that the pole at ξs − 1

of Fψh (λ)[(a−µb)ω] has the same order as the pole at ξs for F
ψ
h+1(λ)[ω]. Also, the same formula

shows that for any integer p ≥ 0 the order of the pole ξs + p for Fψh (λ)[(a − µb)ω] is less than

or equal to the order of the pole ξs + p + 1 ≥ ξs + 1 for Fψh−1(λ)[ω] which is at most s − 1 by
definition of ξs. This allows us to conclude. ■

Lemma 3.1.4. In the situation of the theorem 3.1.2, assume that ξs+1 = ξs, for some s ∈
[1, d − 1]. Then ξs − 1 is the biggest pole of order ≥ s in ξ + Z for the meromorphic extension

of Fψh (λ)[(a+ ξsb)ω] when h varies in Z.

proof. Using the formula of point iv) in Proposition 3.1.1 we obtain that, for some suitable

choice of h, the meromorphic extension of Fψh (λ)[(a + ξs+1b)ω] has a pole of order ≥ s at the
point ξs+1 − 1 = ξs − 1. Assume that for some integer p ≥ 0 and some h ∈ Z the meromorphic

extension of Fψh (λ)[(a+ ξs+1b)ω] has a pole of order ≥ s at ξs+p. Then using again the formula

of the point iv) in Proposition 3.1.1 we find that (λ− ξs + 1)Fψh−1(λ+ 1)[ω] has, for a suitable
choice of h ∈ Z, a pole of order ≥ s at λ = ξs + p. But ξs + p − ξs + 1 = p + 1 ̸= 0 so we find
a pole of order ≥ s at the point ξs + p + 1 for Fh−1(λ)[ω]. As p + 1 ≥ 1 this contradicts the
definition of ξs, so ξs − 1 is the biggest pole of order ≥ s in ξ + Z when h varies in Z, for the
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meromorphic extension of Fψh (λ)[(a+ ξsb)ω]. ■

Lemma 3.1.5. In the situation of Theorem 3.1.2, there exists a minimal integer jd ∈ [0, k − 1]
such that ξd − jd = −λk−jd and for each s ∈ [1, d − 1] there exists a minimal integer
js ∈ [js+1 + 1, k − 1] such that ξs − js = −λk−js . Moreover the meromorphic extension of

Fψh (λ)[Pk−js−1ω] has a pole of order ≥ s− 1 at the point ξs − js − 1, where we define

Pr := (a− λ1b)S1(b) . . . (a− λrb)Sr(b) for r ∈ [1, k]

where Pk := Π is given by applying Theorem 2.3.1 to the fresco Fω and satisfies moreover the
condition that the sequence (λj + j), j ∈ [1, k] is non-decreasing.

proof. The fact that we may assume that the sequence (λj + j), j ∈ [1, k] is non-decreasing is
a consequence of the existence of a principal Jordan-Hölder sequence for a fresco (see [4]
Theorem 1.2.5 or [8] Proposition 3.5.2). Note also that the roots of the Bernstein polynomial of
Fω are given by the numbers −(λj + j − k) for j ∈ [1, k] .
Now the first point is to prove that there exists an integer j ∈ [0, k−1] such that ξd−j = −λk−j ,
because we may then define jd as the minimal such integer. So assume that no such j exists.

Then applying Lemma 3.1.3 we will obtain that the meromorphic extension of Fψh (λ)(Πω) has
a pole of order at least equal to d ≥ 1 at the point ξd − k. But points i) and iii) in Proposition

3.1.1 imply that there is no pole in ξ+Z in the meromorphic extension of Fψh (λ)[Πω] as [Πω] = 0

in En+1
0 . Contradiction. So such a j exists and jd is well defined.

The same argument as for s = d shows that for each s ∈ [1, d − 1] there exists at least one
j ∈ [1, k] such that ξs − j = −λk−j . Now we have

ξs+1 = −λk−js+1
+ js+1 ≤ ξs = −λk−j + j.

The non-decreasing property of the sequence λj+j implies then that j ≥ js+1. If the inequality is

strict, then we obtain js := j and the point iv) in Proposition 3.1.1 implies that Fψh (λ)[Pk−js−1ω]
has a pole of order ≥ s− 1 at the point ξs − js − 1.
If we have ξs+1 = ξs then Lemma 3.1.4 shows that ξs − js+1 − 1 is still in this case the biggest

pole of order ≥ s in ξ + Z for the meromorphic extension of Fψh (λ)[(a + ξsb)Pk−js+1−1ω] when
h varies in Z. So we can continue to apply Sk−js+1−2 and then a − λk−js+1−2b, etc... until we
reach another j < js+1 such that ξs − j = −λj , and then we conclude using the same argument
as above. ■

Remarks.

(1) The sequence js, s ∈ [1, d] is strictly decreasing, so the sequence k−js is strictly increasing
and there are exactly d rational numbers

ξs = −(λk−js − js) = −(λk−js + k − js − k)

counting multiplicities (we remark that the multiplicities correspond to equalities
λk−js − λk−js+1

= js − js+1).
(2) As long as r ≤ js the rational number ξs remains the biggest pole of order ≥ s in ξ + Z

for the meromorphic extension of Fψh (λ)[Qrω] when h describes Z, where

(@) Qr := Sr(a− λr+1b)Sr+1...(a− λkb)Sk

(3) Note that if we have several ψ which are d−closed near 0 and for which the meromorphic

extension of Fψh [ω] presents poles in ξ + Z, we may obtain more roots in ξ + Z for the
Bernstein polynomial of Fω from this result.



ALGEBRAIC DIFFERENTIAL EQUATIONS OF PERIOD-INTEGRALS 67

Proof of the theorem 3.1.2. We shall prove first, by induction on d ≥ 1, that there exist at
least d values of j ∈ [1, k] such that −λj belongs to ξ + Z.
So assume that either d = 1 or that d ≥ 2 and that our claim is proved for d − 1. Then
consider the poles of the meromorphic extension of Fh(λ)[Qk−jdω] (where Qr is defined in the
formula (@) above) and where the integer jd is defined in Lemma 3.1.5. Using Lemma 3.1.3
applied to ξd, we obtain that it has a maximal pole of order d at the point ξd − jd for a suit-
able choice of h and, applying Lemma 3.1.5 we conclude that the meromorphic extension of
Fh(λ)[(a−λk−jdb)Qk−jdω] has a pole of order at least equal to d−1 at the point ξd−jd−1. But

the form ω′ := (a − λk−jdb)Qk−jdω is killed in En+1
0 by Pk−jd−1, so the induction hypothesis

gives at least d− 1 values of j ∈ [1, k − jd − 1] such that −λj is in ξ + Z. As −λk−jd = ξd − jd
belongs to ξ + Z this completes the proof of our induction.
So we obtain that at least d roots (counting multiplicities) of the Bernstein polynomial of Fω
are among the ξs for s ∈ [1, d]. ■

3.2. Some variants. The following variant of the previous result is also useful.

Assume now that we fix a rational number ξ and an integer q ≥ 1 and that we make the
following hypothesis:

• For any differential form φ ∈ C
∞,(n+1,n+1)
c (U \ {0}) the meromorphic extension of

(H(ξ, q))
1

Γ(λ)

∫
U

|f |2λφ

has no pole of order at least equal to q at some point in ξ + Z.
Note that we require that φ ≡ 0 near 0.

Theorem 3.2.1. Let ω ∈ Ωn+1(U) and fix a differential form ψ ∈ C
∞,(0,n+1)
c (U) which is

d−closed near 0.
Assume that the condition H(ξ, q) is satisfied and that for some integer h ∈ Z the meromorphic
extension of

(10) Fψh (λ)[ω] :=
1

Γ(λ)

∫
U

|f |2λf̄hω ∧ ψ

has a pole of order q+d−1 at some point in ξ+Z with d ≥ 1, maximal in N∗. Let ξ0 be maximal

in ξ+Z such that there exists h ∈ Z with the property that Fψh (λ)[ω] has a pole of order q+d−1
at ξ0. Then ξ0 is a root of the Bernstein polynomial Bω of the fresco Fω associated to the germs
of f and ω at the origin, and Bω admits at least d roots in ξ0 + N (counting multiplicities).

proof. The argument is analogous to the one given in the proof of Theorem 3.1.2. The change
to make in the proof is that we must take into account here only the polar parts of order at least
equal to q of the poles at points in ξ + Z. So in Proposition 3.1.1 and in Lemmas 3.1.3, 3.1.4
and 3.1.5 we have to replace “no poles in ξ + Z” by “no pole of order ≥ q in ξ + Z” under the
hypothesis H(ξ, q). Also we define ξs as the maximal pole of order ≥ q + s− 1 for s ∈ [1, d].
The other difference in the argument lies in the fact that in the Stokes’ formula the extra term
given by the differential of ψ equal to:

G(λ) :=
(−1)n

Γ(λ)

∫
U

|f |2λf̄hu ∧ dψ
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has no pole of order ≥ q at a point in ξ + Z because we assumed dψ ≡ 0 near 0 and we may
apply our hypothesis H(ξ, q) with φ := f̄hu∧ dψ for h ≥ 0 or with φ := f−hu∧ dψ for h ≤ 0. ■

Let us specialize now the form ψ ∈ C
∞,(0,n+1)
c (U) such that dψ ≡ 0 near the origin by

defining ψ := ρω̄′ where ω′ is a fixed holomorphic (n+1)−differential form on U and where ρ is
a function in C∞

c (U) which is identically equal to 1 near the origin (so d(ρω̄′) = d′ρ∧ ω̄′ vanishes
identically near the origin). Then we consider the Mellin transform of the hermitian period

z 7→ 1

(2iπ)n

∫
f=z

ρ(ω/df) ∧ (ω′/df).

In the following corollary we use the hermitian symmetry between ω and ω′ in order to obtain a
better control of the poles of the Mellin transform using the Bernstein polynomials of the frescos
associated to (f, ω) and (f, ω′) at the origin.

Corollary 3.2.2. Let f̃ : (Cn+1, 0) → (C, 0) be a non-constant holomorphic germ. Fix ξ ∈ Q
and a positive integer q. Assume that the hypothesis H(ξ, q) holds for f̃ and consider ω and ω′

two germs of (n+1)−holomorphic forms. Let q+ d− 1, d ≥ 1, be the maximal order of pole8 for

(2iπ)n+1Fhω,ω′(λ) :=
1

Γ(λ)

∫
U

|f |2λf̄hρω ∧ ω̄′

for any choice of a point in ξ + Z and for any choice of h ∈ Z.
Let ξ0 be maximal in ξ + Z such that there exists some h ∈ Z and a pole of order q + d − 1 at
ξ0 ∈ ξ+Z for Fhω,ω′(λ). Then ξ0 is a root of the Bernstein polynomial of the fresco Fω and there

exist at least d roots of the Bernstein polynomial of Fω in (ξ0+N)∩ [ξ0, 0[ counting multiplicities.
Moreover, under our hypothesis, there exists ξ1 ∈ ξ + Z such that for some h ∈ Z, Fhω′,ω(λ) has
a pole of order q+ d− 1 at ξ1. Let ξ1 be maximal in ξ+Z such that this happens. Then ξ1 is a
root of the Bernstein polynomial of the fresco Fω′ and there exist at least d roots of the Bernstein
polynomial of Fω′ in (ξ1 + N) ∩ [ξ1, 0[ counting multiplicities.

proof. The first statement is a special case of the previous theorem.
We shall deduce the second statement by using complex conjugation. Let ξ0 ∈ ξ+Z and h0 ∈ Z
be such that F (λ) := (2iπ)n+1Fh0

ω,ω′(λ) has a pole of order q+ d− 1 at ξ0. As F (λ) has only real

poles, the poles of F (λ̄) are the same as the poles of F (λ) with the same orders. Moreover we

may assume that the function ρ is real, so F (λ̄) is given by

(2iπ)−(n+1)

Γ(λ)

∫
U

|f |2(λ+h0)f̄−h0ρω′ ∧ ω̄ =
(2iπ)−(n+1)

Γ(µ− h0)

∫
U

|f |2µf̄−h0ρω′ ∧ ω̄.

where µ = λ + h0. But F (λ) is holomorphic when ℜ(λ) ≥ 0 and ℜ(λ + h0) ≥ 0 so we may
replace Γ(µ − h0) by Γ(µ) in the right hand-side without changing the poles and their orders.

We conclude that F−h0

ω′,ω has a pole of order q+ d− 1 at ξ0 + h0 and applying the first statement
gives the conclusion. ■

Remark. Of course, with the same method, we can obtain a result analogous to that in
Theorem 3.2.1 for the asymptotic expansion at the origin of a period-integral of the type

s 7→
∫
γs

ω/df

8Note that the polar parts of order ≥ q of the poles in ξ+Z are independent of the choice of ρ because of our

hypothesis H(ξ, q).
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where ω is a holomorphic (n+1)−form on U and where (γs)s∈H is a horizontal family of compact
n−cycles in the fibers of f :
Assuming the hypothesis H(ξ, q) for q ≥ 1 and the existence of a non-zero term like
sm−ξ(Log s)q+d−2 with d ≥ 1 (or sm(Log s)q+d−1 for ξ = 0), in such an expansion will imply
that the Bernstein polynomial of the fresco Fω will have at least d roots (counting multiplicities)
in the set ξ + Z.
This gives a numerical criterion to ensure that such a term will not appear in the expansion we
are interested in.

4. The case of a polynomial with (n+ 1) variables and (n+ 2) monomials

The purpose of this section is to give a general algorithm in order to obtain an “estimate” of
the Bernstein polynomial of the fresco associated to (f, ω) for any polynomial f ∈ C[x0, . . . , xn]
with (n+2) monomials and for any monomial holomorphic differential form ω = xβdx of degree
n + 1, where β is in Nn+1 (we exclude the quasi-homogeneous case for f which is classical,
see [16]). Using the results of the previous sections we obtain rather precise information on
the exponents of the asymptotic expansions of the period integrals

∫
γz
ω/df where (γz)z∈H is

a horizontal family of n−cycles in the fibres of f . This gives also rather precise information
on the poles of the meromorphic extensions of the Mellin transform of the hermitian periods
z 7→

∫
f=z

ρ(ω/df) ∧ (ω′/df):

1

Γ(λ)

∫
Cn+1

|f |2λf̄hρω ∧ ω̄′

where ρ ∈ C∞
c (Cn+1) satisfies ρ ≡ 1 near 0, where ω, ω′ are monomial holomorphic differential

forms of degree n+ 1 and where h is in Z. We shall illustrate the result by several examples.

4.1. Our setting. We consider a polynomial f ∈ C[x0, . . . , xn] which is the sum of n + 2
monomials

f =

n+2∑
j=1

mj

where mj := σjx
αj , with σj ∈ C∗ and αj ∈ Nn+1 are not 0. Define the matrix with (n+ 1)

lines and (n+2) columns M = (αi,j) and let M̃ be the square (n+2, n+2) matrix obtained
from M by adding a first line equal to (1, . . . , 1). We shall assume the following conditions:

(C1) α1, . . . , αn+1 is a Q−basis of Qn+1.

(C2) The rank of M̃ is n+ 2.

Remarks.

(1) Only the condition (C2) is restrictive on f : when (C2) is fulfilled the condition (C1) may
always be satisfied without changing f by a suitable ordering of the n+ 2 monomials.

(2) The condition (C2) is equivalent to the fact that f is not quasi-homogeneous.

A diagonal linear change of variables allows us to reduce the study to the case where

(a) f(x) =

n+1∑
j=1

xαj + λxαn+2

for some λ ∈ C∗. So in what follows, we shall assume that mj = xαj for j ∈ [1, n + 1] and
mn+2 = λxαn+2 where λ ∈ C∗ is a parameter.
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Then we shall write, using our hypothesis (C1):

(b) αn+2 =

n+1∑
j=1

ρjαj

where ρj are rational numbers. We define

H := {j ∈ [1, n+ 1] / ρj = 0};
J+ := {j ∈ [1, n+ 1] / ρj > 0};
J− := {j ∈ [1, n+ 1] / ρj < 0}.

Let |r| be the smallest positive integer such that |r|ρj := pj is an integer for each j ∈ [1, n+1].
Write now the relation above as

(c) |r|αn+2 +
∑
j∈J−

(−pj)αj =
∑
j∈J+

pjαj .

Now define d + h and d as respectively the supremum and infimum of the two numbers
|r|+

∑
j∈J− (−pj) and

∑
j∈J+ pj .

Then d and h are positive :
- - the non-vanishing of d is a consequence of the fact that |r| ≥ 1 and that at least one pj is
positive.
- - the non-vanishing of h is a consequence of the fact that the equality of these two integers
would imply that the first line in M̃ satisfies the same linear relation (b) as all the other lines

in M̃ , contradicting our hypothesis (C2).
The relation (e) above gives the following equality between the monomials (mj)j∈[1,n+2]:

(d) m
|r|
n+2

∏
j∈J−

m
−pj
j = λ|r|

∏
j∈J+

m
pj
j

and we shall write it

(e) m∆ = λrmδ

where ∆ and δ are in Nn+2 of respective lengths d+ h and d.
Remark that ∆j and δj are zero for each j ∈ H.
Note that the relation (e) defines the sign of r which is well defined in Z∗ by |r| and its sign.

We shall also use the following observation later on :

Lemma 4.1.1. The j−th element of the first column of the matrix M̃−1 is zero if and only
if j is in H.

Proof. The co-factor of the element (1, j) in M̃ is the (n+ 1, n+ 1) determinant of the matrix
with columns α1, . . . , α̂j , . . . , αn+2. This matrix has rank at most n if and only if αn+2 is a
linear combination of α1, . . . , α̂j , . . . , αn+1. This is the case if and only if ρj = 0, thanks to our
hypothesis (C1). ■

4.2. The result. Let Ωp be the C[x0, . . . , xn]−module of polynomial p−differential forms on
Cn+1 and fix a polynomial f ∈ C[x0, . . . , xn] with (n+ 2) monomials

(11) f :=

n+2∑
j=1

mj
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where mj := xαj for j ∈ [1, n + 1] and mn+2 := λxαn+2 , with λ ∈ C∗, satisfying the conditions
(C1) and (C2) above.

We define dfp : Ωp → Ωp+1 the C[x0, . . . , xn]−linear map given by exterior product by df and
we note Ker(df)p its kernel.
Let Ef := Ωn+1

/
d(Ker(df)n

)
endowed with its natural structure of module over the C−algebra

A := C⟨a, b⟩ where the variables a and b satisfy the commutation relation ab− ba = b2. Recall
that on Ef the action of a is the multiplication by f and the action of b is given by df ∧ d−1

where d is the de Rham differential (which is surjective on Ωn+1).
We extend this structure of (left) A−module to Ef [λ] := Ef ⊗C C[λ] by asking that a and b are
C[λ]−linear.

Lemma 4.2.1. For any monomial xβ the image of C[m1, . . . ,mn+2].x
β via the map defined by

mη 7→ ληn+2

n∏
i=0

x
∑n+2

j=1 αi,jηj
i where η ∈ Nn+2,

is a sub-A-module of Ef [λ].

Proof. We want to prove that this image is stable by the action of a and b.
Let γ ∈ Nn+1 and compute b using a primitive in xi, for any i ∈ [0, n]:

b(xγ+βdx) =
1

γi + βi + 1
xix

γ+β ∂f

∂xi
dx.

Remark now that xi
∂f
∂xi

=
∑n+2
j=1 αi,jmj so the previous computation gives, with γ := Mη for

some η ∈ Nn+2 and then γi :=
∑n+2
j=1 αi,jηj ,

(@i) Γi(η, β)b(m
ηxβdx) =

n+2∑
j=1

αi,jmjm
ηxβdx ∀i ∈ [0, n],

where Γi(η, β) := 1 + βi +
∑n+2
j=1 αi,jηj .

Note that we have also

(@n+1) a(mηxβdx) =

n+2∑
j=1

mjm
ηxβdx

The formulas (@i) for i ∈ [0, n+ 1] are enough to conclude the proof. ■

Corollary 4.2.2. Fix β ∈ Nn+1. For each η ∈ Nn+2 there exists an element Pβ,η(a, b) in A,

homogeneous of degree q := |η| :=
∑n+2
j=1 ηj in (a,b) such that:

(1) There exists c(β, η) ∈ Q∗ such that Pβ,η(a, b)[x
βdx] = c(β, η)mηxβdx in Ef .

(2) Assuming that η satisfies ηj = 0 for each j ∈ H, there exist rational numbers (depending
on β and η) r1, . . . , rq such that Pβ,η(a, b) =

∏q
h=1(a− rhb) in A.

Proof. Let us first show by induction on q ≥ 0 that such a Pβ,η(a, b) satisfying condition 1 exists
and that it satisfies condition 2 when η has no component on H. As for q = 0 the assertion is
clear with P ≡ 1, assume that our assertion is proved for any η with |η| = q − 1 with q ≥ 1.
Then it is enough to prove the assertion for mjm

η for each j ∈ [1, n + 2] and each η with
|η| = q − 1.
Then consider the equations (@i) for i ∈ [0, n+1] as a square Q−linear system of size (n+2, n+2)
with unknown the elementsmjm

ηxβdx in Ef . The matrix of this system is in Gl(Q, n+2) thanks
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to our hypothesis (C2), and so there exist rationals numbers uj and vj such that we have, for
each j ∈ [1, n+ 2],

mjm
ηxβdx = (uja+ vjb)[m

ηxβdx].

With our induction hypothesis this gives that the homogeneous degree q element in A defined
by Pβ,η+1j (a, b) := (uja+ vjb)Pβ,η(a, b) satisfies 1.
Assuming that η + 1j has no component on H we obtain that Pβ,η(a, b) is monic in a (up to
a non-zero rational number) and then it is enough to show that uj is not zero to conclude the
induction. This is given by Lemma 4.1.1. ■

Theorem 4.2.3. Assume that f ∈ C[x0, . . . , xn] has (n+2) monomials and satisfies the condi-
tions (C1) and (C2) described above. Let d and h be the positive integers defined after (c) and
r ∈ Z∗ defined in (c) and (e). For each β ∈ Nn+1 there exist homogeneous elements Pd+h and
Pd of respective degrees d+h and d which are products of homogeneous factors of degree 1 of the
form a− ξb where ξ ∈ Q such that

(12)
(
Pd+h(a, b)− cλrPd(a, b)

)
[xβdx] = 0 in Ef [λ] where c ∈ Q∗

Proof. The previous corollary applied to both sides of the equality in Ef [λ]
m∆xβdx = λrmδxβdx deduced from (e) and Corollary 4.2.2 allow us to conclude because we
know that ∆j = 0 and δj = 0 for each j ∈ H. ■

This theorem has the following corollary.

Corollary 4.2.4. Let f ∈ C[x0, . . . , xn] be as in the previous theorem and choose any monomial
xβ. Define for any horizontal family of n−cycles (γs)s∈S over a simply connected open set S in
C∗ avoiding the critical values of f and having 0 in its boundary, the integral-period:

(13) φβ(s) :=

∫
γs

xβdx
/
df

Then φβ is a solution on S of the differential equation (which is regular singular at 0) obtained
from (12) by letting a = ×s and b :=

∫ s
0
.

Proof. Thanks to Proposition 2.3.2 the annihilator in Â of the element [xβdx] in Ef ⊗A Â is
a left multiple of Pd(a, b) as c and λ are not 0. This is enough to conclude. ■

This shows that the computation of Pd(a, b) gives rather precise information on the asymptotic
expansion at 0 of such a period-integral.
We leave the corresponding statement for the poles of the Mellin transform of the hermitian
period-integrals corresponding to such an f and monomial holomorphic differential forms ω and
ω′ to the reader. Of course, by conjugation, the Bernstein polynomial of the fresco (f, ω′) also
gives constraints on the possible poles of this Mellin transform, as in Corollary 3.2.2.

4.3. Examples. The control of the Bernstein polynomial of a fresco will use Theorem 4.2.3 and
Proposition 2.3.2.

4.3.1. fλ := x5 + y5 + z5 + λxyz2. We assume that λ is a non-zero complex number. Then 0 is
the only singular point of the hypersurface {f = 0} :
as on the set Σ := {df = 0} ⊂ C3 we have

f(x, y, z) =
1

5
λxyz2,
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we easily deduce that Σ ∩ {f = 0} = {0}.

Now using the method explained above we obtain, after some elementary computations, for
each monomial form ω below a degree 4 polynomial multiple of the Bernstein polynomial of the
fresco Fω.
Note that such a fresco has rank at most equal to 4 (recall that for a fresco with rank k its
Bernstein polynomial has degree k; see [8]) and if the rank is equal to 4 then we obtain the
Bernstein polynomial itself.
Of course, the reader interested by more monomials can easily complete this list, where | means
“divides” :

• ω = dx ∧ dy ∧ dz B1(ξ) | (ξ + 7
10 )(ξ +

4
5 )

2(ξ + 6
5 ).

• ω = xdx ∧ dy ∧ dz Bx(ξ) | (ξ + 9
10 )(ξ + 1)(ξ + 6

5 )(ξ +
7
5 ).

• ω = zdx ∧ dy ∧ dz Bz(ξ) | (ξ + 1)3(x+ 3
2 ).

• ω = z2dx ∧ dy ∧ dz Bz2(ξ) | (ξ + 6
5 )

2(ξ + 13
10 )(ξ +

9
5 ).

• ω = xydx ∧ dy ∧ dz Bx.y(ξ) | (ξ + 11
10 )(ξ +

7
5 )

2(ξ + 8
5 ).

• ω = x2dx ∧ dy ∧ dz Bx2(ξ) | (ξ + 6
5 )(ξ +

8
5 )

2(ξ + 11
10 ).

• ω = xzdx ∧ dy ∧ dz Bx.z(ξ) | (ξ + 6
5 )

2(ξ + 7
5 )(ξ +

17
10 ).

• ω = xyzdx ∧ dy ∧ dz Bx.y.z(ξ) | (ξ + 7
5 )(ξ +

8
5 )

2(ξ + 19
10 ) etc ...

Note that in this example the differential forms corresponding to degree 2 monomials in x, y, z
are global holomorphic 3−forms on the fibers of the family of compact surfaces given, for λ fixed,
by the fibers of the map πλ(s, (x, y, z, t)) = s, sending

Xλ := {(s, (x, y, z, t)) ∈ C× P3(C) / st5 = x5 + y5 + z5 + λxyz2t}
to C. As, moreover, the map πλ has no singular point at infinity, the affine computation controls
also the global case for these forms.
Remark that the global computation for these forms gives here the same frescos as in the affine
case because fλ has an isolated singularity at the origin.

4.3.2. f = xy3+yz3+ zx3+λxyz. The singularity set of the hypersurface {f = 0} is the origin:

It is easy to see that any monomial of f is a linear combination of f and x∂f∂x , y
∂f
∂y , z

∂f
∂z , so that

each monomial in f has to vanish on the singular set of {f = 0}. Then this implies easily our
claim.
Again using Theorem 4.2.3 and Proposition 2.3.2 allows us, after some elementary computations,
to find for each monomial form ω below a degree 3 polynomial dividing the Bernstein polynomial
of the fresco Fω.

• ω = dx ∧ dy ∧ dz B1(ξ) | (ξ + 1)3.
• ω = xdx ∧ dy ∧ dz Bx(ξ) | (ξ + 8

7 )(ξ +
9
7 )(ξ +

11
7 ).

• ω = x2dx ∧ dy ∧ dz Bx2(ξ) | (ξ + 9
7 )(ξ +

11
7 )(ξ + 15

7 ).

• ω = xydx ∧ dy ∧ dz Bx.y(ξ) | (ξ + 10
7 )(ξ + 12

7 )(ξ + 13
7 ).

• ω = xyzdx ∧ dy ∧ dz Bx.y.z(ξ) | (ξ + 2)3.
• ω = x7dx ∧ dy ∧ dz Bx7(ξ) | (ξ + 5)(ξ + 3)(ξ + 2).

4.3.3. f := xy2z3+yz2t3+zt2x3+ tx2y3+λxyzt. In this case the singularity set is not isolated:
the singular set of {f = 0} contains the union of the planes {x = z = 0} and {y = t = 0}.

Lemma 4.3.1. The estimate for the Bernstein polynomial associated to the monomial 1 (so of
the fresco Fω with ω := dx ∧ dy ∧ dz ∧ dt) is B1(ξ) | (ξ + 1)4.
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proof. Write m1,m2,m3,m4,m5 the monomials in f . As we have

6


1
1
1
1

 =


1
2
3
0

+


0
1
2
3

+


3
0
1
2

+


2
3
0
1


the element in A given by Theorem 4.2.3 which kills dx ∧ dy ∧ dz ∧ dt (noted by (1) in the

sequel) is deduced from the equality

λ6m1m2m3m4 = m6
5

and its initial part in (a,b) corresponds to the monomial m1m2m3m4 in A(1). We shall make
the computation explicit (following the proof of the theorem) in this very interesting example.

The inverse of the matrix :

M =


1 0 3 2 1
2 1 0 3 1
3 2 1 0 1
0 3 2 1 1
1 1 1 1 1


is the matrix:

M−1 =
1

8


1 1 3 −1 −4
−1 1 1 3 −4
3 −1 1 1 −4
1 3 −1 1 −4
−4 −4 −4 −4 24


Then we have: 

b(1)
b(1)
b(1)
b(1)
a(1)

 =


1 0 3 2 1
2 1 0 3 1
3 2 1 0 1
0 3 2 1 1
1 1 1 1 1



m1

m2

m3

m4

m5


and so 

m1

m2

m3

m4

m5

 =
1

8


1 1 3 −1 −4
−1 1 1 3 −4
3 −1 1 1 −4
1 3 −1 1 −4
−4 −4 −4 −4 24



b(1)
b(1)
b(1)
b(1)
a(1)


we obtain:

m1 = m2 = m3 = m4 =
1

2
(b− a)(1) m5 = −2b(1) + 3a(1) = (3a− 2b)(1)

and then 
2b(m1)
3b(m1)
4b(m1)
b(m1)
a(m1)

 =


1 0 3 2 1
2 1 0 3 1
3 2 1 0 1
0 3 2 1 1
1 1 1 1 1




m2
1

m1m2

m1m3

m1m4

m1m5

 .
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
m2

1

m1m2

m1m3

m1m4

m1m5

 =
1

8


1 1 3 −1 −4
−1 1 1 3 −4
3 −1 1 1 −4
1 3 −1 1 −4
−4 −4 −4 −4 24



2b(m1)
3b(m1)
4b(m1)
b(m1)
a(m1)

 .

And so:

m2
1 =

1

2
(4b− a)(m1) =

1

4
(4b− a)(b− a)(1)

m1m2 =
1

2
(2b− a)(m1) =

1

4
(2b− a)(b− a)(1)

m1m3 =
1

2
(2b− a)(m1) = m1m2

m1m4 =
1

2
(2b− a)(m1) = m1m2

m1m5 = (3a− 5b)(m1) =
1

2
(3a− 5b)(b− a)(1)

We have m1m2 = xy3z5t3 and then

m1m2m3 =
1

8

(
3 −1 1 1 1 −4

)

2b(m1m2)
4b(m1m2)
6b(m1m2)
4b(m1m2)
a(m1m2)

 =
1

2
(3b− a)(m1m2).

So

m1m2m3 =
1

8
(3b− a)(2b− a)(b− a)(1).

As m1m2m3 = x4y3z6t5 we obtain:

m1m2m3m4 =
1

8

(
1 3 −1 1 −4

)

5b(m1m2m3)
4b(m1m2m3)
7b(m1m2m3)
6b(m1m2m3)
a(m1m2m3)

 =
1

2
(4b− a)(m1m2m3)

we obtain m1m2m3m4 = 1
16 (4b− a)(3b− a)(2b− a)(b− a)(1) ■

4.3.4. f := xy2+x2y+zt3+tz3+λxyzt. Again we assume that λ is a non-zero complex number.
The hypersurface {f = 0} has an isolated singularity at the origin :
If Σ := {df = 0} ⊂ C4 we have on Σ the relations

xy2 = x2y =
−1

3
λxyzt and zt3 = z3t =

−1

4
λxyzt.

So on Σ ∩ {f = 0} we have xy = 0 = zt and this implies that Σ ∩ {f = 0} = {0}.

Now we shall use again Theorem 4.2.3 and Proposition 2.3.2 in order to give a polynomial of
degree 12 which is a multiple of the Bernstein polynomial of the fresco Fω for ω := dx∧dy∧dz∧dt.
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The relation between the monomials of f is

λ12(xy2)4(yx2)4(zt3)3(z3t)3 = (λxyzt)12.

So to compute the initial form in (a,b) of the polynomial in A constructed in Theorem 4.2.3
annihilating [ω] in Ef [λ], it is enough to compute the homogeneous in (a,b) polynomial P of
degree 12 satisfying in Ef [λ] the relation P [ω] = [(λxyzt)12ω].
Note m1, . . . ,m4 the first monomials in f and m := λxyzt. Then we have in Ef [λ] the equalities
for any integer k ≥ 0 (where ω is omitted)

•
(
(k + 1)b(mk)−mk+1

)
= (m1 + 2m2)m

k

•
(
(k + 1)b(mk)−mk+1

)
= (2m1 +m2)m

k

•
(
(k + 1)b(mk)−mk+1

)
= (m3 + 3m4)m

k

•
(
(k + 1)b(mk)−mk+1

)
= (3m3 +m4)m

k

and so we obtain (
a− 7

6
(k + 1).b

)
(mk) =

−1

6
mk+1.

Then the initial form of the polynomial annihilating [ω] is equal to the product ordered from
left to right by decreasing k

11∏
k=0

(
a− 7

6
(k + 1)b

)
(mk).

This gives the following estimate for the Bernstein polynomial

B(ξ) |
11∏
k=0

(ξ +
k + 7

6
)

The reader interested by another holomorphic monomial form can follow the same line to obtain
an analogous result.

In a forthcoming article on this subject we shall examine the effective contribution of the
roots in ξ + Z of the Bernstein polynomial of the fresco associated to a volume form ω to the
poles of the meromorphic extension of the integrals

1

Γ(λ)

∫
X

|f |2λf̄ jρω ∧ ω̄′

assuming the hypothesis H(ξ, 1) and where ω′ is in Ωn+1
0 and ρ is C∞ on X, ρ ≡ 1 near 0 and

has enough small support in order that ρω̄′ is C∞ on X.
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