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TOPOLOGICAL CLASSIFICATION OF CIRCLE–VALUED SIMPLE

MORSE–BOTT FUNCTIONS ON CLOSED ORIENTABLE SURFACES

E. B. BATISTA, J. C. F. COSTA AND I.S. MEZA-SARMIENTO

Abstract. In this work we investigate the topological classification of circle-valued simple
Morse-Bott functions on connected closed orientable surfaces, up to topological conjugacy.

We provide a complete topological invariant, called the MB-Reeb graph. This invariant is

based on the generalized Reeb graph and the topological type of singular level sets of these
functions. The results presented here extend to those obtained by the authors in a previous

work when the surface is the standard sphere.

1. Introduction

Denote by Sn the standard sphere in Rn+1.

Let f, g : Mn → R be two smooth functions, where Mn denotes an n-dimensional manifold.
The term smooth used here will mean “at least three times continuously differentiable” through-
out the paper. We say that f and g are topologically equivalent if there exist homeomorphisms
h :Mn →Mn and k : R → R such that

f = k ◦ g ◦ h−1.

The problem of topological classification of smooth functions is a classical subject in Topology
and Singularity theory. However, global results and global invariants are not easy to obtain. Then
some restrictions on the manifold Mn or on the function f are considered. For instance, Fukuda
[11] shows that there is a finite number of topological equivalence classes if we consider the space
of all polynomials f : Mn = Rn → R of limited degree. Prishlyak [21] provides a topological
classification of smooth functions on a closed surface M2 with isolated critical points. About
the topological classification of Morse functions on surfaces, we can mention the works of Arnold
[4], Kulinich [14], Nicolaescu [18] and Sharko [23, 24], for instance.

In all these works previously cited, the Reeb graph associated to f plays a crucial role. Reeb
graphs were introduced by Reeb [22] to study Morse functions from closed surfaces M2 to R.
The classical Reeb graph associated to f is the graph obtained by contracting each connected
component of level set (fibers) of f to a point, where the vertices correspond to the singular
fibers of f . The Reeb graph allows us to study the evolution and to express the connectivity
of the level sets of f . It has many interesting applications in Mathematics as well as in other
areas such as Computational Geometry, Computer Graphics, etc. Recently, a generalization of
the Reeb graph, called the generalized Reeb graph, was introduced in [7, 8]. The generalized
Reeb graph has extra additional information compared to the classical Reeb graph. Based on
generalized Reeb graphs, the authors in [6] investigated the topological classification of circle-
valued Morse-Bott functions, up to topological conjugacy, in the following sense:
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Definition 1. Two Morse-Bott functions f, g :M2 → S1 are said to be topologically conjugated
if there exist homeomorphisms h : M2 → M2 and k : S1 → S1 such that f = k ◦ g ◦ h−1 and h
sends singular fibers of g to singular fibers of f .

When M2 = S2 the topological classification of simple surjective Morse-Bott functions from
S2 to S1 was done by the authors in [6], where they introduced a complete invariant. If the
Morse-Bott functions are not surjective, the topological classification can be reduced to the case
from S2 to R (via stereographic projection) which had already been obtained in [15, 16]. When
f :M2 → S1 is a Morse function, the topological classification was done in [20] and in the case
of the Morse functions f : S1 → S1, the topological classification is related to snakes defined by
Arnold (see [2, 3]).

In this paper we extend the topological classification done in [6], now investigating simple
Morse-Bott functions from M2 to S1, where M2 is any connected closed orientable surface. We
introduce a complete invariant, called the MB-Reeb graph. The MB-Reeb graph coincides with
the invariant introduced by the authors in [6], when M2 = S2.

2. Morse-Bott functions

Classical Morse theory deals only with functions whose critical points are all non-degenerate.
In particular, the critical points must all be isolated points. However, in many situations, critical
points form submanifolds of Mn of dimension greater than or equal to one. Then Bott in [9]
studied how to extend the theory of Morse to this situation. In fact, Bott introduced the notion
of a non-degenerate critical submanifold: a critical submanifold S ⊂Mn is non-degenerate if at
any point p ∈ S the Hessian of f restricted to the normal space to S is non-singular.

A point p ∈ Mn is called a singular point of f if rank(df(p)) is not maximum, where df(p)
denotes the differential of f at p ∈ Mn. Otherwise, p is called a regular point of f . A point
b ∈ R is called a singular value of f if f−1(b) contains a singular point of f . The singular set of
f , denoted by Sing(f), is the set of all singular points of f . The image of Sing(f) by f is called
the discriminant set of f , denoted by ∆f .

For each a ∈ R consider the level set Ia(f) = f−1(a). Notice that Ia(f) is a union of connected
components, ika(f), k = 1, . . . ,m(a), called fibers. A singular fiber is a connected component of
a level set Ia(f) which contains a singular point of f and it is denoted by sa(f).

If all nearby fibers around a singular fiber are homeomorphic to it then this fiber is called
reducible. See [1] for details.

The nullity of a singular point p of f is the dimension of the kernel of the Hessian of f evaluated
at p, Hesspf . A smooth submanifold S ⊂ Sing(f) is a non-degenerate singular submanifold of
f if the followings conditions are satisfied (see [9]):

(i) ∂S = ∅;
(ii) S is compact and connected;
(iii) For all s ∈ S, the nullity of s is equal to the dimension of S.

Definition 2. Let Mn be a closed orientable n-dimensional manifold. A smooth function
f : Mn → R is called a Morse-Bott function (from now on MB function) if the set Sing(f) is
a disjoint union of connected non-degenerate singular submanifolds of dimension ≤ n− 1.

It follows from the Morse-Bott Lemma (see [5]) that Morse functions are MB functions with
isolated singular points. Since Mn is compact then these functions have a finite number of
isolated singular points.

We can find many examples of MB functions in the references [6, 15, 16].
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From now on, we will work with connected closed orientable 2-dimensional manifolds M2.

Considering the dimension of the singular submanifolds and using the Morse-Bott Lemma we
note that the singular set Sing(f) of an MB function f :M2 → R can be subdivided into three
subsets:

(i) Points on singular submanifolds which are homeomorphic to S1. In these circles, the
function takes extreme values. Such singular submanifolds are called singular circles.

(ii) Isolated singular points that are extreme points of f (maximum or minimum).
(iii) Saddle points, that is, isolated singularities of index 1 of f .

3. Circle-valued Morse-Bott functions

In this section, we will investigate simple Morse-Bott functions on M2, but now taking values
on S1 instead of R. We call such functions f : M2 → S1 circle-valued Morse-Bott functions.
Recently, the authors investigated the simple circle-valued Morse-Bott functions defined on the
standard sphere M2 = S2 (see [6]). Also, a similar approach was done for stable circle-valued
functions in [7, 8].

Since S1 is locally homeomorphic to R then circle-valued functions may be seen locally as
real-valued functions, and then all the local notions of the Morse-Bott theory are transported
immediately to the framework of circle-valued functions.

Definition 3. A circle-valued function f : M2 → S1 is called a circle-valued MB function if
for any x ∈M2 we can choose a neighborhood V of f(x) ∈ S1, and a diffeomorphism ϕ : V → R,
such that ϕ ◦ (f |U ), where U = f−1(V ), is a real-valued Morse-Bott function.

Example 1. Let M2 = T2 be the bitorus and consider the radial projection as indicated in
Figure 1. Then we have an example of a circle-valued MB function with two saddle points and
two singular circles.

T2

S1

Figure 1. Circle-valued Morse-Bott function of the bitorus.

Proposition 4. Let f :M2 → S1 be a circle-valued Morse-Bott function, with Euler character-
istic χ(M2) ̸= 0. Then f is always non-regular.

Proof. Suppose f is regular. Then, f should be surjective and from Ehresmann’s fibration
theorem [10], f should be a locally trivial fibration. In particular, if F is a fiber of this fibration,
then it must happen that

0 ̸= χ(M2) = χ(S1)χ(F ) = 0,
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which is absurd.
Then f is always non-regular. □

Definition 5. We say that f :M2 → S1 is a simple circle-valued MB function if there is only
one connected component containing the isolated singular points or the non-degenerate singular
submanifolds in the singular level. It is contained in a singular fiber sa(f) ⊂ Ia(f) for each
a ∈ R.

In particular, the function defined in Example 1 is a simple circle-valued MB function.

From now on, we will always consider simple circle-valued MB functions. Sometimes, for
simplicity, when there is no doubt that f takes values on S1 (i.e., f : M2 → S1) we will just
write simple MB function for f .

The proof of the next proposition follows from the same ideas as in Proposition 5 in [6]. Then,
its proof will be omitted.

Proposition 6. Let f :M2 → S1 be a simple MB function. Then the non-degenerate singular
submanifolds of f are homeomorphic either S1 or points. Moreover, there is a finite number of
them on M2.

It follows from Proposition 6, that the singular set Sing(f) associated to a simple MB
function f :M2 → S1 can also be divided into three subsets, according to the dimension of the
singular submanifolds and their indices. The possibilities are: singular circles (homeomorphic
to S1), maximum or minimum points and saddle points.

4. The MB-Reeb graph of a simple circle-valued MB function

It is well-known that the Reeb graph is a powerful tool for studying the topological classifi-
cation of functions. For instance, Arnold [4], Kulinich [14], Nicolaescu [18] and Sharko [23, 24]
investigate the classification of Morse functions on surfaces, using Reeb graphs with some ad-
ditional information. Prishlyak [21] classified smooth functions with isolated critical points on
closed surfaces, also working with Reeb graphs. Sharko [25], Masumoto-Saeki [17] and recently
Michalak [19], investigate the problem of the realization of a given graph as the Reeb graph
associated to a smooth function f : Mn → R with finitely many critical points, where Mn is a
closed manifold.

In this paper, our goal is to extend the topological invariant introduced in [6], now for simple
circle-valued MB functions defined on any connected closed orientable surface M2. This new
invariant, the MB-Reeb graph, will be used to provide a complete topological classification, up
to topological conjugacy, of simple circle-valued MB functions from M2 to S1.

The MB-Reeb graph is inspired by the notion of generalized Reeb graphs which, in turn, are
a generalization of classical Reeb graphs (cf. [6, 7, 8]). Its definition also takes into account the
notions of circles and separatrix eights associated to saddle points. These circles and separatrix
eights were first introduced in [15, 16] to investigate the classification of singular level sets of
MB functions fromM2 to R and also the singular leaves of MB foliations on orientable surfaces.
In this work we will use this classification (see Theorems 11 and 12) in order to define a global
invariant for simple circle-valued MB functions on M2.

Let f : M2 → S1 be a simple MB function. Consider the following equivalence relation on
M2: x ∼ y if and only if f(x) = f(y), where x and y are in the same connected component of
f−1(f(x)).
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Proposition 7. Let f : M2 → S1 be a simple MB function. Then the quotient space
Rf =M2/ ∼ admits a structure of a connected graph in the following way:

(1) the vertices are the connected components of level curves f−1(v), where v ∈ S1 is a
critical value of f ;

(2) each edge is formed by points corresponding to connected components of level curves
f−1(v), where v ∈ S1 is a regular value of f .

The proof of Proposition 7 is analogous to the proof of Proposition 6 in [6]. Then it will be
omitted here.

Each vertex of the graph obtained as in Proposition 7 can be of four types, depending on if
the connected component has a saddle point, maximum/minimum critical point, regular points
whose images are critical values or singular circles. Vertices corresponding to singular circles
will be identified by white vertices “ ◦ ”.

So, the possible incidence rules of edges and vertices when f : M2 → S1 is a simple MB
function and according to the topological type of level curve of f are given in Figure 2.

a) d)c)b)

Figure 2. Incidence rules of edges and vertices.

Consider B a singular fiber containing a saddle point of a simple circle-valued MB function as
in Figure 3. For simplicity, we call this curve a saddle curve (which is homeomorphic to an eight).
Denote by VB a regular closed neighborhood of B (for details about regular neighborhoods, see
[12, 13]).

Lemma 8. Let f :M2 → S1 be an MB function having a saddle point x. Then a closed regular
neighborhood VB of a singular fiber B containing x is homeomorphic to a sphere minus three
disks.

Proof. Since f is an MB function and x ∈M2 is a saddle point of f , it follows from Definition 3
that we can choose a neighborhood V of f(x) ∈ S1, and a diffeomorphism ϕ : V → R, such that

f̃ = ϕ ◦ (f |U ), where U = f−1(V ), is a real-valued Morse-Bott function and x is a saddle point

of f̃ . Applying [16, Lemma 3.3], we have that a closed regular neighborhood VB of B must be
homeomorphic to a sphere minus three disks. □

If f :M2 → S1 is an MB function then a closed regular neighborhood of a saddle curve B has
three boundary curves in VB (see Figure 3). One of them is contractible to B and this respective
boundary curve will be denoted by JB (see Figure 3).
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JB

JsJs

B

Figure 3. A regular closed neighborhood VB of a saddle curve B.

4.1. Classification of circles and separatrix eights.

In this subsection we bring referential elements of the topological classification (up to home-
omorphisms) of circles and eights on closed orientable surfaces. This classification was done in
[15] and, as mentioned in the Introduction, it will be a key point to define the MB-Reeb graph.

We start with two general definitions:

Definition 9. An embedded circle on M2 is the image of an embedding ψ : S1 →M2.

Definition 10. We will say that two circles (or two eights) in M2 are topologically equivalent
if there is a homeomorphism on M2 that sends one of them to the other.

Now, in coherence with the notations and results given in [15] we present here some more
notations.

Let E (a) be the largest integer not greater than a and C (a) be the smallest integer not less
than a.

If ψ(S1) = l is the image of an embedding, then M2 \ l could have one or two connected
components. Taking the closure of these components, we obtain a compact surface with holes,
denoted by N (or Nj , j = 1, 2 in the case of two connected components). We will say that l is
of type l0 if l is homotopic to zero. Also, we say that l is of type li if it is homologous to zero
but not homotopic to zero and M2 \ l is the disjoint union of N1 and N2, with i = min(g1, g2),
where g1 and g2 are the genus of N1 and N2, respectively. Finally, we say that l is of type lK if
the curve is not homologous to zero.

The next two theorems give the topological classification of circles and eights on closed ori-
entable surfaces.

Theorem 11. [[15]] Let M2 be a closed orientable surface of genus g. Then, the number of
non-equivalent embeddings of S1 on M2 is

(i) 1 if g = 0,
(ii) E

(
g
2

)
+ 2 with representatives l0, l1, . . . , lE( g

2 )
, lK if g > 0.

Theorem 12. [[15]] Let M2 be a closed orientable surface of genus g. Then, the number of
topological types of eights on M2 is

(1) 3g + 1, if g = 0, 1,
(2) E

(
g
2

)
C
(
g
2

)
+ E

(
g
2

)
+ 2g + 3, if g ≥ 2.

Although an eight is homeomorphic to two circles glued by a point, the topological type of
these circles is not sufficient to distinguish the topological type of the eight (see cases 11 and 12
in the Table 1 in [15]). Hence the topological type of an eight must be included in any complete
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invariant associated with MB function from M2 to R. It was done in [15]. In this work, we will
take a similar approach carrying this topological information in the Reeb graph, as follows.

Let ξ be the function that associates each saddle vertex of Rf with the edge containing the
JB curve. Let us indicate the effects of ξ in Rf by the symbol ⋆ on the corresponding edge. See
Figure 4.

�

Figure 4. The function ξ.

Lemma 13. Let ξ be a function on Rf that associates each saddle vertex of degree 3 with the
edge containing the JB curve. The graph Rf and ξ determine the topological type of saddle curve
B.

Proof. Locally, each saddle vertex of degree 3 of Rf has exactly the same behavior as a saddle
vertex of degree 3 in a classical Reeb graph associated to an MB function from M2 to R.
Applying the Proposition 3.10 in [16], we have that the graph Rf and ξ determine the topological
type of saddle curve B. □

Let v1, . . . , vr ∈ S1 be the critical values of f . We choose a base point v0 ∈ S1 and an
orientation. We can reorder the critical values such that v0 ≤ v1 < . . . < vr and we label each
vertex with the index i ∈ {1, . . . , r}, if it corresponds to the critical value vi.

Definition 14. The graph given by Rf together with the labels, colors of the vertices and with
the function ξ, as previously defined, will be called here the MB-Reeb graph associated to a
simple MB function f :M2 → S1. The MB-Reeb graph associated to f will be denoted by Γf .

Remark 15. Notice that if M2 = S2 then there is only one topological type of saddle curves.
Then, in this case, it is not necessary to label the edges that contain the points associated to JB
curves. Hence, the MB-Reeb graph of f introduced here coincides with that graph defined in [6].

Proposition 16 ([6]). Let f : S2 → S1 be a simple MB function. Then the MB-Reeb graph of
f is a tree.

Example 2. Let f1, f2 : S2 → S1 be two simple MB functions given by the radial projection.
Then their respective MB-Reeb graphs are given as they appear in Figure 5.

The functions f1 and f2 in Example 2 have the same classical Reeb graph, but their cor-
responding MB-Reeb graphs are distinct. In fact, the function f1 is not surjective while f2 is
surjective. Therefore, f1 and f2 are not topologically equivalent. This example shows that the
classical Reeb graph is not enough to distinguish between these two simple MB functions.

Example 3. Consider the following two simple circle-valued MB functions of the torus and
their respective MB-Reeb graphs, as shown in Figure 6. Notice that without the ⋆ symbol the
graphs would be equivalent, but their MB-Reeb graphs are different because the topological type
of the saddle curves are not the same.
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Figure 5. MB-Reeb graphs associated to f1 and f2.
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Figure 6. Two MB-Reeb graphs associated to distinct simple MB functions of
the torus.

Remark 17. 1. The MB-Reeb graph was inspired by the invariant used in works [6, 7,
8, 15, 16]. However, the MB-Reeb graph contains some extra information. In fact, it
has vertices corresponding to the regular connected components of f−1(v), where v is a
critical value; white vertices corresponding to singular circles and the star symbol “⋆” on
the corresponding edge to distinguish the topological type of the saddle curves.

2. If f :M2 → S1 is not surjective, then f may be regarded as a simple MB function from
M2 to R (via stereographic projection) and we can apply the results of [16].

It is obvious that the labeling of vertices in the MB-Reeb graph is not uniquely determined,
since it depends on the chosen orientations and the base points on each S1. Different choices will
produce either a cyclic permutation or an inversion of the labeling in the MB-Reeb graph. This al-
lows us to introduce the following notion of equivalence between MB-Reeb graphs (Definition 19).

Let f, g :M2 → S1 be two simple MB functions. Let Γf and Γg be their respective MB-Reeb
graphs. Consider the induced quotient maps

f̄ : Γf → S1
f and ḡ : Γg → S1

g ,

where S1
f , S

1
g denote S1 with the graph structure whose vertices are the critical values of f, g

respectively.

Definition 18. An isomorphism between two graphs Γ1 and Γ2 is a bijection f from V (Γ1) to
V (Γ2), where V (Γi) = {vertices of Γi}, such that two vertices v and w are adjacent in Γ1 if and
only if f(v) and f(w) are adjacent in Γ2.

Definition 19. Let f, g :M2 → S1 be two simple MB functions with Γf and Γg their respective
MB-Reeb graphs. We say that Γf is equivalent to Γg and we denote it by Γf ∼ Γg, if there exist
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graph isomorphisms j : Γf → Γg preserving the assignments of the functions ξ and l : S1
f → S1

g ,
such that the following diagram is commutative:

Vf
f̄ |Vf−−−−→ ∆f

j|Vf

y yl|∆f

Vg
ḡ|Vg−−−−→ ∆g

where Vf = {vertices of Γf}, Vg = {vertices of Γg} and ∆f and ∆g are their respective discrim-
inant sets.

5. The topological invariance

In this section, we prove that the MB-Reeb graph is a complete topological invariant, up to
topological conjugacy.

First, we remark that for simple circle-valued MB functions we have the following trivial
result:

Proposition 20. If f, g :M2 → S1 are two topologically conjugated simple MB functions, then
the singular fibers sa(f) and sk(a)(g) are homeomorphic.

Theorem 21. Let f, g : M2 → S1 be two simple MB functions. If f and g are topologically
conjugated, then their respective MB-Reeb graphs are equivalent.

Proof. Since f and g are topologically conjugated, there exist homeomorphisms h : M2 → M2

and k : S1 → S1 such that f = k ◦ g ◦h−1 and h sends singular fibers of g to singular fibers of f .
Hence, h induces a graph isomorphism from Γf to Γg and k induces a graph isomorphism from
S1
f to S1

g that provide the equivalence requested. □

The next theorem is the converse of Theorem 21.

Theorem 22. Let f, g :M2 → S1 be two simple MB functions with Γf and Γg their respective
MB-Reeb graphs. If Γf and Γg are equivalent, then f and g are topologically conjugated.

Proof. Since Γf ∼ Γg, there exist graph isomorphisms j : Γf → Γg preserving the assignments
of the function ξ and l : S1

f → S1
g as in Definition 19. These isomorphisms j and l induce

graph isomorphisms h̄ : Γf → Γg preserving the assignments of the function ξ, and k̄ : S1
f → S1

g

which realize the graph isomorphisms j, l respectively and such that ḡ ◦ h̄ = k̄ ◦ f̄ . The graph
isomorphism k̄ induces a homeomorphism k : S1 → S1.

Since k◦f is topologically conjugated to f then by Theorem 21 we have Γk◦f ∼ Γf . Moreover,

these graphs are the same because k̄ ◦ f̄ = k ◦ f . In other words the following diagram is
commutative:

Γg
ḡ // S1

g

Γf

h̄

OO

k◦f

??

For simplicity, we simply write f instead of k ◦ f . By construction h̄(Vf ) = Vg, but now f
and g have the same critical values v1, . . . , vn ∈ S1. We choose a base point and an orientation
in S1 and assume that v1 < v2 < . . . < vn.

Denote by arc(a, b) the oriented arc from a to b, where a and b are regular distinct values

of f in S1, and by arc(a, b) its closure. Then, for both a and b we choose ϵa > 0 and ϵb > 0
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such that arc(a− ϵa, a+ ϵa) and arc(b− ϵb, b+ ϵb) have just regular values of f . Then we define

A := arc(a+ ϵa, b− ϵb) and B := arc(b+ ϵb, a− ϵa) and consider the restriction maps

fa := f |f−1(A) : f−1(A) → A, fb := f |f−1(B) : f−1(B) → B,

ga := g|g−1(A) : g−1(A) → A, gb := g|g−1(B) : g−1(B) → B,

Since fa, fb, ga and gb are MB functions with values in R, it follows from [16] that we can
consider graphs associated to these restrictions which here we will denote by Γfa , Γfb , Γga and
Γgb , respectively. Notice that the graph isomorphism h̄ restricted to Γfa (resp. Γfb) preserves
the assignments of ξ for the saddle vertices. Then the function ξ induces an orientation η in the
vertices of Γfa and Γga (resp. Γfb and Γgb). By Theorem 3.17 of [16] there exist homeomorphisms
ha : f−1(A) → g−1(A) and hb : f

−1(B) → g−1(B) such that fa = ga ◦ ha and fb = gb ◦ hb.
Since the boundary of the sets f−1(A), f−1(B), g−1(A), g−1(B) is formed by a finite number

of disjoint closed curves we can assume that the homeomorphisms ha and hb when restricted to
the boundary preserve orientation. Then, there exist extensions of the homeomorphisms ha and
hb to f−1(arc(a− ϵa, a+ ϵa) ∪ arc(b− ϵb, b+ ϵb)) such that they coincide in

f−1(arc(a− ϵa, a+ ϵa) ∪ arc(b− ϵb, b+ ϵb)) (see [26]).

Define a map H :M2 →M2 given by

H(x) =

{
ha(x), if x ∈ f−1(arc(a− ϵa, b+ ϵb)),

hb(x), if x ∈ f−1(arc(b− ϵb, a+ ϵa)),

and if x ∈ f−1(arc(a−ϵa, a+ϵa)∪arc(b−ϵb, b+ϵb)) then ha(x) = hb(x), by previous construction.
Therefore, H is well-defined. Moreover, H is a homeomorphism that topologically conjugates f
and g. □

Example 4. The two simple MB functions considered in Example 3 are not topologically con-
jugated since their respective MB-graphs are not equivalent.

Remark 23. In Example 2, if we do not consider the regular vertices in the MB-Reeb graphs
associated to f1 and f2, then these graphs would become indistinguishable (and therefore equiva-
lent). However, clearly f1 and f2 are not topologically conjugated.
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fonction numérique, C. R. Acad. Sci. Paris 222 (1946), 847–849.

[23] V.V. Sharko, On topological equivalence Morse functions on surfaces, Internat. Conference
at Chelyabinsk State Univ., Low-Dimensional Topology and Combinatorial Group Theory
(1996), 19–23.

[24] V.V. Sharko, Smooth and topological equivalence of functions on surfaces, Ukranian Math.
J. 55 (2003), No. 5, 832–846. DOI: 10.1023/b:ukma.0000010259.21815.d7

https://doi.org/10.1007/s11040-007-9029-0
https://doi.org/10.1016/s0723-0869(04)80014-8
https://doi.org/10.5427/jsing.2018.17q
https://doi.org/10.1017/s0013091516000274
https://doi.org/10.1007/s00574-017-0058-4
https://doi.org/10.1016/j.jde.2015.09.008
https://doi.org/10.1090/conm/675/13590
https://doi.org/10.2206/kyushujm.65.75
https://doi.org/10.1112/s0010437x08003680
https://doi.org/10.12775/tmna.2018.029
https://doi.org/10.1016/s0166-8641(01)00077-3
https://doi.org/10.1023/b:ukma.0000010259.21815.d7


TOPOLOGICAL CLASSIFICATION OF CIRCLE–VALUED MORSE–BOTT FUNCTIONS 89

[25] V.V. Sharko, About Krondrod-Reeb graph of a function on a manifold, Methods Funct. Anal.
Topology 12 (2006), No. 4, 389–396.

[26] J.W.T. Youngs, The extension of a homeomorphism defined on the boundary of a 2-manifold,
Bull. Amer. Math. Soc. 54 (1948), 805–808. DOI: 10.1090/s0002-9904-1948-09084-x

Erica Boizan Batista, Centro de Ciências e Tecnologia, Universidade Federal do Cariri, Juazeiro

do Norte - CE, Brazil
Email address: erica.batista@ufca.edu.br

João Carlos Ferreira Costa, Universidade Estadual Paulista (Unesp), Instituto de Biociências,
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C.P. 676, CEP 13565-905 São Carlos, São Paulo, Brazil

Email address: isofia1015@gmail.com

https://doi.org/10.1090/s0002-9904-1948-09084-x

	1. Introduction
	2.  Morse-Bott functions 
	3. Circle-valued Morse-Bott functions
	4. The MB-Reeb graph of a simple circle-valued MB function
	4.1. Classification of circles and separatrix eights

	5. The topological invariance
	References

