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Celebrating 30 years of International Workshop on Real and Complex Singularities

Abstract. The first part of the article is a survey of papers originating from a joint course
given by the first and third named authors in São José do Rio Preto. That is an historical

journey from Athens to São Carlos, going from the discovery of the Plato polyhedra to char-

acteristic classes of a singular variety, by M.-H. Schwartz and R. MacPherson, from the Euler
formula and Poincaré-Hopf Theorem to the study of local Euler obstruction.

In 1965, Marie-Hélène Schwartz defined characteristic classes for singular complex varieties,

as cohomology classes of an ambient manifold, with support on the singular varieties. In 1974,
Robert MacPherson showed existence of homology characteristic classes for singular varieties,

proving a Deligne and Grothendieck conjecture. One of the main ingredients of his definition

is the local Euler obstruction, defined by differential forms. An equivalent definition of the
local Euler obstruction, using vector fields, has been given by Jean-Paul Brasselet and Marie-

Hélène Schwartz in their proof of the coincidence of two previous definitions of characteristic

classes via Alexander isomorphism.
In 1998, the first author published a survey, Local Euler obstruction, old and new followed

in 2010 by a survey by the two first authors Local Euler obstruction, old and new, II. The
notion of local Euler obstruction was revealed to be very useful to describe the local complexity

of stratified singular varieties and developed in many areas, study of foliations, determinantal

varieties. Nowadays, a full book would be necessary to write a complete survey on the subject.
Many São Carlense researchers published various papers related to local Euler obstruction.

Celebrating 30 years of International Workshops on Real and Complex Singularities in São

Carlos is the occasion to “take stock” of the successes they achieved in this area alone or with
coauthors. That is the second part of the article.

Part 1. With Euler from Athens to São Carlos

1. The Greek period

Since the beginning of the history of mathematics, mathematicians have sought to classify
characteristic surfaces by attributing philosophical and esoteric properties to them.

The story begins with Pythagoras of Samos (∼ 570 – 495 B.C.) who knew three of the regular
convex polyhedra: Tetrahedron (4 faces), hexahedron (cube, 6 faces) and octahedron (8 faces).

A regular convex polyhedron is a polyhedron whose faces are all identical (that is regular) and
in such a way that the segment linking any two points of the polyhedron is completely included
in the polyhedron (that is convex).
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Tetrahedron

V=4, E=6, F=4
Hexahedron

V=8, E=12, F=6
Octahedron

V=6, E=12, F=8

Figure 1. V = number of vertices, E = number of edges, F = number of faces

The following two: icosahedron (20 faces) and dodecahedron (12 faces) have been discovered
by Theaetetus of Athens (∼ 415 - 365 B.C.) who gave a mathematical description of all five.

Icosahedron
V=12, E=30, F=20

Dodecahedron
V=20, E=30, F=12

Figure 2.

They have been popularized by Plato (∼ 428 - 348 B.C.) in his philosophical dialogue
“Timaeus”.

Euclid of Alexandria (∼ 300 B.C.) completely mathematically describes the five Platonic
solids in the “Elements”.

2. Descartes - Euler

In this section, we provide a short history of the contributions of Maurolico (1494 - 1575),
Descartes (1596 - 1650) and Euler (1707 - 1783) (see [Add] and [Ri]).

Francesco Maurolico (1494 - 1575) was an Italian priest, who lived mainly in Messine, Sicily
and studied Mathematics and Astronomy. In an unpublished manuscript Compaginationes soli-
dorum regularium (1537), Maurolico stated the so-called “Euler’s formula” for Platonic solids
(see [Add, Pages 291 and 295]):

Formula 2.1 (Maurolico, December 26, 1537). “Item manifestum est in unoquoque regularium
solidorum, numerum basium coniunctum cum numero cacuminum conflare numerum, qui binario
excedit numerum laterum.”
In the same way it is evident that, in each regular solid, the number of faces added to that of
the vertices exceeds by two the number of edges, i.e. consider a Platonic solid with V vertices, E
edges and F faces, then

(2.1) V − E + F = 2.
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In his manuscript De solidorum elementis, ∼ 1622, at age around 25, Descartes proves the
following result:

Theorem 2.2 (Descartes). The sum of the angles of all faces of a convex polyhedron is equal
to 2(V − 2)π where V is the number of vertices.

Descartes did not publish the result at that time, and he died in Stockholm on February, 11,
1650.

In 1672, in Paris, Leibniz copied the manuscript with the idea of publishing it. But he died
in 1716 without publishing the (copy of the) Descartes’ manuscript.

On the one hand, after being in the possession of several people, the original documents were
eventually lost.

The legend says that, trying to classify convex polyhedra, Leonhard Euler observed that
formula (2.1) was verified for any convex polyhedron. Euler mentioned his discovery in a letter
to Christian Goldbach (November 14, 1750). Without knowing either Maurolico’s manuscript
or Descartes’ manuscript, both unpublished, Euler writes “It astonishes me that these general
properties of stereometry have not, as far as I know, been noticed by anyone else”. He later
(1753) published two papers on the formula, but unfortunately his argument was not correct.

Adrien-Marie Legendre (1752-1833) gave the first proof of Euler’s formula (1794) using a
projection of the polyhedron on a sphere.

In the year 1811, Augustin-Louis Cauchy (1789 - 1857) gave the first combinatorial proof of
the formula (see §3).

The story comes back to Descartes: In the year 1883, Foucher de Careil, France’s Ambassador
to Austria-Hungary came to Hanover. He discovered among Leibniz’s documents the (copy of)
Descartes’ manuscript.

Ernest de Fauque de Jonquières published, in 1890 a “Note aux CRAS” in which he claims
that Descartes discovered Euler’s “formula”. In fact, for convex polyedra, Descartes’ Theorem
2.2 is equivalent to the formula (2.1) (see for instance [BT1]).

So, the question of knowing who was the first to discover the formula has no clear answer!

3. Cauchy’s proof of the Euler formula.

Cauchy begins with a stereographic projection of the convex polyhedron on a plane P removing
a face F .
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Figure 3.



LOCAL EULER OBSTRUCTION, OLD AND NEW, III 93

Cauchy considers a triangulation K of the polygon obtained in the plane and shows that the
alternating sum V − E + F is preserved by the subdivision.

Then he extends the “hole” (in blue) by means of two operations that we will describe. This
is the stage that is controversial and that we will replace.

Consider a convex triangulated polygon with a hole B that we will extend through two
operations, the “Cauchy operations”.

B
τ

σ

I
B

B

τ1 τ2
a

σ

II

B

Figure 4. Extensions of the hole B using “Cauchy’s operations I and II”.

Cauchy’s operation I: Extending the hole B with a simplex σ having only one edge τ in
common with B does not change the alternating sum V − E + F .

Cauchy’s operation II: Extending the hole B with a simplex σ having two edges τ1 and τ2
and a vertex a in common with B does not change the alternating sum V − E + F .

According to Cauchy, at the end of the extension process, only a triangle is left for which:
V −E + F = 3− 3 + 1 = +1. Adding the triangle removed at the beginning, we obtain “Euler’s
formula”:

V − E + F = +2.

4. A controversy

Imre Lakatos (1976) [Lak] makes criticisms in his book “Proofs and Refutations: The Logic
of Mathematical Discovery” saying that the Cauchy method can give unsolvable situations.

Elon Lima (Dec. 1985) [Li] criticized Cauchy’s proof, saying that there are four possibilities
not mentioned by Cauchy. The first three ones (figure 5) do not preserve the alternating sum,
the last one preserves the alternating sum.

(a) (b)

•

(c)

Hole B wih boundary: Triangle σ, extension of the hole.

Figure 5. Situations which were not mentioned by Cauchy.

According to Elon Lima, in order to avoid these three cases, it is necessary to use deep results
of algebraic topology.
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5. Elementary proof of Euler’s formula
using only the Cauchy’s method.

In this section we give a sketch of the elementary proof of Euler’s formula using Cauchy’s
method given in [BT1], by Brasselet and Thủy.

Recall the first step of Cauchy’s proof : Cauchy begins with a stereographic projection of the
convex polyhedron P removing a face F (Figure 3).

Then Cauchy considers a triangulation K of the polygon in the plane and shows that the
alternating sum V − E + F is preserved.

We stop here Cauchy’s initial proof and show a theorem that allows us to finish the proof,
using only the two Cauchy operations.

Theorem 5.1. [BT1] Let K be a (finite) triangulated polygon in R2, homeomorphic to a disc
D, with (possible) identification of the simplices in the edge K0 = ∂K, then

V − E + F = V0 − E0 + 1,

where V0 and E0 denote respectively the number of vertices and edges of the boundary K0 of the
polygon, taking into account the identifications.

Example 5.2. In the following example, one has V0 = 4 vertices and E0 = 5 edges,

b1

b6

b3
b2

K0

<

<

b5 = b1

b4 = b2

Figure 6. Here, V − E + F = V0 − E0 + 1 = 4− 5 + 1 = 0.

Example 5.3. In the case of the polygon E′G′H ′F ′ of Figure 3, there is no identification for
the vertices and edges on the boundary of the polygon, then one has V0 = E0. Taking into account
the removed face F , one has, for the polyhedron P the value V − E + F = +2. That is “Euler’s
formula”.

Sketch of the Proof of Theorem 5.1. (see [BT1]).
The first path is to take a triangle (here with vertices u1, u2, u3), situated in the interior of

the polygon, and to lift the polygon, linearly, keeping the boundary at the level of the plane P
and the triangle at the level of a parallel plane P0. We obtain a pyramid (Figure 8 left) that we
cut by horizontal planes passing by the vertices xi (liftings of the vertices in K).

The next step is to triangulate the pyramid in a compatible way with the cuttings of the
planes (Figure 8 right).

Removing the face (2-simplex) (u1, u2, u3). There remain then V vertices, E edges and (F−1)
faces.

Going down from the plane Pi to the plane Pi+1, and using Cauchy’s operations I and II, the
sum V − E + (F − 1) does not change. We also observe that the intersection of the pyramid
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P

Figure 7. Lifting the polygon.

with each plane is homeomorphic to a circle (with the same number of vertices and edges) and
in between two planes there is a band with the same number of edges and faces.

u1

u2

u3

b1
b2 b3 b4

b5b6

x2

x1

P

u1

u2

u3

b1
b2 b3 b4

b5b6

x2

x1

P0

P1

P2

· · · · · ·

Pn+1

P

Figure 8. The pyramid Π (with horizontal planes).

Coming to the last plane Pn+1, and taking into account the identifications on the boundary,
one has V − E + (F − 1) = V0 − E0, that is

V − E + F = V0 − E0 + 1.

□

6. Applications of the Theorem to classical examples.

For a full description of the following examples, see [BT1].
Considering a triangulation of any (smooth) surface orientable or not, one can “cut” the surface

according to curves in order to obtain a planar representation of the surface.
By taking the precaution of sub-triangulating the surface in a way compatible with the cut-off

curves, one then obtains a triangulation of the planar representation.
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Applying Theorem 5.1 to the planar representation provides the value of the Euler-Poincaré
characteristic V − E + F of the surface.

Example 6.1. With appropriate cut-off curves along (demi-)meridians, the sphere can be also
viewed in that way.

•N

•
a1

•
a2

•
a3

E

∧γ1

∧γ2∧γ3

•N•N

•N

•a1 •a2

•
a3

•α1

•α2

•α1

•α2

τ1

τ2

τ3

τ1

τ2

τ3

γ3 γ3

γ2

γ2

γ1

γ1

Figure 9. Planar representation of the sphere.

The vertex N is common to all curves γi, so one has already +1 for V0.
For each curve γi one has the same number of vertices and adges, then V γi − Eγi = 0 for

i = 1, 2, 3.
So, one has V0 − E0 = +1 and, by Theorem 5.1, for the triangulation K of the sphere:

V − E + F = +2.

Example 6.2 (The torus). Given a triangulation K of the torus, we consider a meridian M
and a parallel P crossed at a point A. We consider a sub-triangulation K ′ of K such that for
each simplex σ the intersections σ ∩M and σ ∩P are simplices of K ′. The sum V −E+F does
not change.

>
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>
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>
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>
d

>
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>
b

>
c

>
d

∧e

∧f
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∧h

∧e
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∧h

A A

A A

Figure 10. Planar representation of the torus.

By Theorem 5.1, one has:

V − E + F = V0 − E0 + 1 = 0.
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Example 6.3 (The projective space). The projective space P2 is the set of all lines of the
Euclidean space R3 passing through the origin. One way to represent the projective space P2 is to
consider in R3 the quotient of the sphere S2 of radius 1 by symmetry with respect to the center
of the sphere.

Let K be a triangulation of the sphere symmetrical relative to the center of the sphere. One
considers a sub-triangulation K ′ compatible with the equator (see [BT1]).

The straight lines of the plane 0xy meet the north hemisphere at two diametrically opposite
points, which we have to identify. We obtain a representation of the projective space P2 as the
north hemisphere with identification of diametrically opposite points on its edge.

With the projection in the plane of the equator, we obtain a triangulated disk with identifica-
tions on the edge. One has V0 − E0 = 0. Then one has: V − E + F = +1.

Example 6.4 (The Klein bottle). In the same way as the torus, given a triangulation K of the
Klein bottle, we consider a “meridian” M and a “parallel” P crossed at a point A. We consider
a sub-triangulation K ′ of K such that for each simplex σ the intersections σ ∩M and σ ∩P are
simplices of K ′. Cutting along M and P provides a planar representation of the Klein bottle (see
[BT1]).

On the boundary K0, one has V0 − E0 = −1. For the Klein bottle χ(X) = V − E + F = 0.

Example 6.5 (The pinched torus). Given a triangulation K of the pinched torus, and a “parallel”
passing through the pinched point A, on the boundary K0, one has V0 − E0 = 0 (see [BT1]).

For the pinched torus χ(X) = V − E + F = +1.

Part 2. Where the local Euler obstruction arrives

7. Chern classes for singular varieties

The notion of the Euler characteristic χ(X) = V − E + F for a (compact) surface has been
extended by Poincaré as χ(X) =

∑n
i=0(−1)iki for any compact polyhedron X where ki is the

number of i-simplices of any triangulation K of X.
The Poincaré-Hopf Theorem says that the Euler-Poincaré characteristic is the obstruction to

the construction of a vector field tangent to a smooth compact manifold (without boundary),
see [BT2] for a simple proof of the Poincaré-Hopf Theorem.

Stiefel-Whitney classes (for the real case) and Chern classes (for the complex case) are a
measure of the obstruction to the construction of r-frames tangent to smooth (real - complex)
manifolds. For a long time, there was no equivalent of the Poincaré-Hopf Theorem or character-
istic classes for singular varieties.

In 1965, Marie-Hélène Schwartz showed that considering the so called “radial” stratified vector
fields, obtained by a method of radial extension she defined (see [B2]), it is possible to recover
a Poincaré-Hopf Theorem for singular stratified varieties. She defined classes in cohomology as
the obstruction to the construction of radial stratified r-frames tangent to a complex analytic
variety X embedded in a smooth complex manifold M . These are called Schwartz classes, and
denoted by cS(X) ∈ H∗(M,M \X).

The next year, in his seminar, Grothendieck conjectured the existence of (homology) Chern
classes for complex algebraic varieties. The conjecture was taken up by Deligne and called the
“Deligne-Grothendieck conjecture”. In 1974 MacPherson proved the existence and the unique-
ness of Chern classes for possibly singular compact complex algebraic varieties, answering the
conjecture. Characteristic classes are the subject of the course given by Brasselet at IMPA [B2]
and an extensive survey in the Handbook of Geometry and Topology of Singularities [B].

One defines the functor F such that for any singular algebraic complex variety X, then F(X)
is the set of constructible functions α : X → Z.
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Theorem 7.1 (MacPherson). There exists a natural transformation from the functor F to
homology which, on a nonsingular variety X, assigns to the constant function 1X the Poincaré
dual of the total Chern class of X.

In other words, the theorem asserts that we can assign to any constructible function α : X → Z
on a compact complex algebraic variety X an element c∗(α) of H∗(X) satisfying the following
three conditions:

(1) f∗c∗(α) = c∗f∗(α),
(2) c∗(α+ β) = c∗(α) + c∗(β),
(3) c∗(1X) = c(X) ∩ [X] if X a smooth variety.

Here, [X] is the fundamental class of X and the pushforward f∗ is defined on characteristic
functions 1A for A ⊂ X by:

f∗(1A)(y) = χ(f−1(y) ∩A), y ∈ Y

for a morphism f : X → Y , and linearly extended to elements of F(X).
The compactness restriction may be dropped with minor modifications of the proof if all maps

are taken to be proper and Borel–Moore homology (homology with locally finite supports) is
used.

Brasselet and Schwartz proved in [BS], using Alexander’s duality isomorphism

H∗(M,M \X) → H∗(X)

that the Schwartz classes cS(X) coincide with MacPherson’s classes c∗(1X), and therefore these
classes are called the Chern–Schwartz–MacPherson classes, denoted by cSM (X) ∈ H∗(X).

Let us now introduce some objects in order to define the Schwartz–MacPherson class.
Suppose X is a representative of a d-dimensional analytic germ (X, 0) ⊂ (Cn, 0), such that

X ⊂ U , where U is an open subset of Cn. In the case of singular analytic varieties, one may
consider Whitney stratifications whose strata are denoted by {Vα}.

Definition 7.2. Let us denote by TU |X the restriction to X of the tangent bundle of U . A
stratified vector field v on X means a continuous section of TU |X such that if x ∈ Vα ∩X then
v(x) ∈ Tx(Vα).

Let G(d, n) denote the Grassmannian of complex d-planes in Cn. On the regular part Xreg of
X the Gauss map ϕ : Xreg → U ×G(d, n) is well defined by ϕ(x) = (x, Tx(Xreg)).

Definition 7.3. The Nash transformation (or Nash blow up) of X denoted by X̃ is the closure
of the image Im(ϕ) in U × G(d, n). It is a (usually singular) complex analytic space endowed
with an analytic projection map ν : X̃ → X which is biholomorphic away from ν−1(Sing(X)).

The fibre of the tautological bundle T over G(d, n), at point P ∈ G(d, n), is the set of
vectors v in the d-plane P . We still denote by T the corresponding trivial extension bundle over
U ×G(d, n). Let T̃ be the restriction of T to X̃, with projection map π. The bundle T̃ on X̃ is
called the Nash bundle of X.

An element of T̃ is written (x, P, v) where x ∈ U , P is a d-plane in Cn based at x and v is a
vector in P . We have the following diagram:

T̃ ↪→ T
π ↓ ↓
X̃ ↪→ U ×G(d, n)
ν ↓ ↓
X ↪→ U.
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MacPherson defined the Mather classes, by the formula

cMa(X) = ν∗(c(T̃ ) ∩ [X̃]),

where [X̃] denotes the fundamental (orientation) homology class of X̃.
An algebraic cycle on a variety X is a finite formal linear sum

∑
ni[Xi], where the ni are

integers and the Xi are irreducible subvarieties of X. We may define cMa on any algebraic cycle
of X by

cMa(
∑

ni[Xi]) =
∑

nicMa(Xi),

where by abuse of notation we denote incli∗cMa(Xi) by cMa(Xi).
An important object introduced by MacPherson in his work is the local Euler obstruction. This

invariant was deeply investigated by many authors; for an overview about it see [B]. Brasselet
and Schwartz presented in [BS] an alternative definition for the local Euler obstruction using
stratified vector fields.

By Whitney condition (a) one has the following:

Lemma 7.4 (See [BS]). Every stratified vector field v nowhere zero on a subset A ⊂ X has a
canonical lifting as a nowhere zero section ṽ of the Nash bundle T̃ over ν−1(A) ⊂ X̃).

Now consider a stratified radial vector field v(x) in a neighbourhood of {0} in X, i.e. there is
ε0 such that for every 0 < ε ≤ ε0, v(x) is pointing outwards from the ball Bε over the boundary
Sε := ∂Bε.

The following interpretation of the local Euler obstruction has been given by Brasselet and
Schwartz in [BS].

Definition 7.5. Let v be a stratified vector field on X ∩ Sε pointing outwards from a small ball
Bε centered at {0} and ṽ the lifting of v on ν−1(X ∩ Sε) to a section of the Nash bundle T̃ .

The local Euler obstruction (or simply the Euler obstruction), denoted by EuX(0), is defined
to be the obstruction to extending ṽ as a nowhere zero section of T̃ over ν−1(X ∩Bε).

More precisely, let
O(ṽ) ∈ Z2d(ν−1(X ∩Bε), ν

−1(X ∩ Sε);Z)
be the obstruction cocycle to extending ṽ as a nowhere zero section of T̃ inside ν−1(X ∩ Bε).
The Euler obstruction EuX(0) is defined as the evaluation of the class [O(ṽ)] on the fundamental
class of the topological pair (ν−1(X ∩Bε), ν

−1(X ∩Sε)). The Euler obstruction is an integer and
is independent of all choices.

Let vα be a vector field tangent to a stratum Vα with an isolated singularity at the point
a ∈ Vα with index I(vα, a) also denoted by I(vα, a;Vα). By the “radial extension” method (see
[BS]), M.-H. Schwartz defined in a neighbourhood of a in the manifold M the vector field vrad
with an isolated singularity at a with index I(vrad, a;M) = I(vα, a;Vα).

Theorem 7.6 (Proportionality Theorem). [BS] Take a vector field vα tangent to the stratum
Vα with an isolated singularity at the point a ∈ Vα with index I(vα, a). Then, for the stratified
vector field vrad obtained by radial extension of the vector field vα, one has:

I(vrad, a;M) = EuX(a) · I(vα, a : Vα).

Using the local Euler obstruction, MacPherson defined a map T from the algebraic cycles on
X to the constructible functions on X by

T (
∑

niXi)(x) =
∑

ni EuXi
(x).

MacPherson proved the fundamental Theorem (Theorem 2 of [MP2]):
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Theorem 7.7. T is a well-defined isomorphism from the group of algebraic cycles to the group
of constructible functions and cMaT

−1(1X) satisfies the requirements for c∗ in the Deligne–
Grothendieck conjecture.

The computation of the local Euler obstruction is not easy. In order to simplify the compu-
tation many authors proposed formulae to compute this invariant. With the aid of Gonzalez–
Sprinberg’s purely algebraic interpretation of the local Euler obstruction ([Gon]), Lê and Teissier
in [LT] showed that the local Euler obstruction is an alternating sum of the multiplicities of the
local polar varieties. This important formula for computing the local Euler obstruction will be
used in this paper.

For a sufficiently general flag D in Cm

(D) Dd ⊂ · · · ⊂ D0 = Cm,

where codimC Di = i, the k-th Schubert variety

ck(D) = {P ∈ G(n,m) : dim(P ∩Dn−k+1) ≥ k}
is well defined and its (complex) codimension in G(n,m) is k.

The k-th polar variety of X is defined by Pk(D) = ν(γ̃−1(ck(D)), where γ̃ is the Gauss map
γ̃ : X̃ → G(n,m).

Theorem 7.8. [LT] The local Euler obstruction of X at a is equal to

(7.8) EuX(a) =

n−1∑
i=0

(−1)n−1−ima(Pn−1−i(D)),

where ma(Q) is the multiplicity of a variety Q at the point a.

Example 7.9. The Whitney umbrella.
An example of application of the formula is given by the surface X in C3 whose equation is

x2 − y2z = 0

.

X0 = 0

X1

X2

y

x

z

The strata are : the origin X0 = {0}, the axis X1 = {x = y = 0} minus the point {0} and the
complement X2 = Xreg.

One has EuX(x) = 1 if x ∈ X2 = Xreg, EuX(a) = 2 if a ∈ X1 and EuX(0) = 1.

An interesting formula for the local Euler obstruction due to Brasselet, Lê and Seade, [BLS]
shows that the Euler obstruction, as a constructible function, satisfies the Euler condition relative
to generic linear forms. More precisely:
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Theorem 7.10. Let X be an equidimensional complex analytic variety in Cm.
Let Vα, α = 1, . . . , d, be the (connected) strata of a Whitney stratification containing 0 in their
closure.
For every sufficiently general linear form ℓ on Cm, there is ε0 such that, for all ε, 0 < ε < ε0
and sufficiently small t0 ̸= 0, then :

EuX(0) =

d∑
α=1

χ(Vα ∩ Bε ∩ ℓ−1(t0)) EuX(Vα),

where Bε is the ball of radius ε centered at 0 and EuX(Vα) is the value of the local Euler
obstruction of X at every point of Vα.

Remark 7.11 (Remark on the notation of Local Euler Obstruction). The notation EuX(x)
used in this section is not the original one ([MP2, BS]), which is Eux(X). The present notation
emphasizes the fact that the local Euler obstruction is a (constructible) function of the point
x ∈ X. The original notation is more adapted if the point x is fixed and we consider the strata
Vα containing x in their closure, obtaining a function Eux(Vα) of the strata. In the following,
according to the situation, we will use one or the other of both notations, without risk of error.
Another possible notation would be Eu(X,x).

8. Computations of the Local Euler Obstruction

There are many papers dealing with the computation of the local Euler obstruction in different
situations. In the following we review the results obtained by Brazilians, in particular Sãocarlense,
researchers and collaborators.

8.1. Stable types. Callejas-Bedregal, Saia and Tomazella in [CST] compute the local polar
multiplicities of a germ at zero of an analytic variety Y in Cp, which is the image by a finite
morphism f : Z → Y , of a d-dimensional isolated complete intersection singularity Z in Cn.
They compute the local Euler obstruction of Y at zero in the case that it is reduced. For this
they apply the Lê -Teissier formula 7.8.

In [PRS], Pérez, Rizziolli and Saia determine a minimal set of invariants whose constancy
guarantees the Whitney equisingularity of families of finitely determined holomorphic map germs
f : (Cn, 0) → (C3, 0), with n > 3. As an application, they get explicit algebraic formulae to
calculate the local Euler obstruction of the stable types that appear in the singular set Σ(f) and
also in the discriminant ∆(f) = f(Σ(f)) of corank one map germs f : (Cn, 0) → (C3, 0), with
n > 3.

Such a minimization was obtained by Pérez, Levcovitz and Saia in [PLS] in the case of a one
parameter deformation of corank one finitely determined holomorphic germ f : (Cn, 0) → (Cn, 0).
The authors describe how the source and target invariants are related and reduce the number
using these relations. They show an algebraic formula for the local Euler obstruction in terms
of the polar multiplicities and show that the Euler obstruction is an invariant for the Whitney
equisingularity.

We also mention the work of Pérez and Saia [PS], where the main goal is to show how to
compute the local Euler obstruction of the stable types which appear in a finitely determined map
germ f : (Cn, 0) → (Cn, 0). The authors apply the Lê -Teissier formula 7.8 to compute the local
Euler obstruction of the stable types using the polar multiplicities. In [RS], Rizziolli and Saia
consider corank 1, quasi-homogeneous and finitely determined map germs f : (Cn, 0) → (Cn, 0),
with n ≥ 3. They obtain formulae for the polar multiplicities defined on some stable types of
f in terms of the weights and degrees of f . Examples of such stable types are the discriminant
∆(f) and images by f of the subvarieties of Σ(f) defined by Morin [Mo].
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8.2. Toric and multitoric varieties. An important class of varieties is the class of toric vari-
eties. In the case where X is a toric surface, Gonzalez-Sprinberg showed in [Gon] that the Euler
obstruction of X at 0 depends only on the minimum embedded dimension of this surface.

Theorem 8.1. [Gon] Let σ ⊂ R2 be the cone generated by the vectors v1 = e2 and v2 = pe1−qe2,
where 0 < q < p and p, q are coprimes. Consider Xσ the toric surface associated to σ and assume
that the minimum embedded dimension of Xσ is k, that is, suppose that

p

p− q
= [[a2, a3, . . . , ak−1]],

where the integers a2, . . . , ak−1 satisfy ai ≥ 2, for i = 2, . . . , k − 1, then EuXσ
(0) = 3− k.

More recently, Matsui and Takeuchi, using Newton’s polyhedra, generalized the Gonzalez-
Sprinberg result, presenting in [MT] a formula for Euler’s obstruction of a n-dimensional toric
variety X.

In [BGS] Barbosa, Grulha and Saia show how to obtain the minimal Whitney stratification
of the discriminant of finitely determined map germs from (Cn+p, 0) to (Cp, 0), of corank one
if n < p, and with only Ak singularities if n ≥ 0. The authors apply the theory developed
by Gaffney which shows how to define a Whitney stratification of discriminants of any finitely
determined holomorphic map germ in the nice dimensions of Mather, or in its boundary. For
the pairs cited above they show that both stratifications coincide. The authors also compute the
local Euler obstruction at 0 for a class of discriminants of finitely determined map germs from
Cn+p to Cp with n ≥ 0 and with only Ak singularities.

In [DG] Dalbelo and Grulha introduce the notion of multitoric varieties:

Definition 8.2. We will say that a n-dimensional variety Y ⊂ Ck is a multitoric variety if there
is an action φ : Tn ×Ck → Ck of Tn in Ck such that φ gives each irreducible component of Y a
structure of n-dimensional toric variety.

Dalbelo and Grulha provide a formula for the Euler obstruction of multitoric surfaces. As
applications, they compute the Euler obstruction for some families of determinantal surfaces
and give some remarks about Milnor number on toric surfaces.

In particular, one has the following results.

Theorem 8.3. Let Y ⊂ Ck be a multitoric surface, Y = Y1∪· · ·∪Ym∪Ym+1∪· · ·∪Ym+s, where
Ym+1, . . . , Ym+s are the irreducible components of Y with singularity isolated at the origin. Then

EuY (0) = m+ 3s−m1 − · · · −ms,

where mi is the smallest dimension of each component Ym+i with singularity.

As an application of the previous formula, we can highlight the next three theorems. Analyzing
that the families of determinant surfaces below are families of multitoric surfaces, the authors
proved the following formulae.

Theorem 8.4. Let Y ⊂ Ck be the determinant surface given by the minors 2× 2 of the matrix(
z1 z2 · · · zk−3 zbk−2 zb−1

k−2z
c
k−1

za2 z3 · · · zk−2 zk−1 zk

)
,

where a, b, c are positive integers with b ≥ 2. Then Y is a bitoric surface (multitoric surface Y
with two irreducible components) and EuY (0) = 4− k.

Theorem 8.5. Let Y ⊂ Ck be the determinant surface given by the minors 2× 2 of the matrix

C =

(
z1 z2 z3 · · · zk−3 zck−2 zc−1

k−2z
d
k−1

za2z
b−1
3 zb3 z4 · · · zk−2 zk−1 zk

)
,
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where a, b, c, and d are positive integers with b, c ≥ 2. Then Y is a multitoric surface and
EuY (0) = 5− k.

Theorem 8.6. Let Y ⊂ Ck+1 be the determinant surface given by the minors 2×2 of the matrix(
z1 z2 z3 · · · zk−1 zbkzk+1

za2 z3 z4 · · · zk z2k+1

)
,

where a, b, are positive integers. Then Y is a multitoric surface and EuY (0) = 5− 2k.

8.3. Determinantal varieties. The definition of generic determinantal variety is the following:

Definition 8.7. Let n, k, s ∈ Z, n ≥ 1, k ≥ 0 and Mat(n,n+k)(C) be the set of all n × (n + k)
matrices with complex entries, Σs ⊂ Mat(n,n+k)(C) the subset formed by matrices that have rank
less than s, with 1 ≤ s ≤ n. The set Σs is called the generic determinantal variety.

Remark 8.8. The following properties of the generic determinantal varieties are fundamental.
(1) Σs is an irreducible singular algebraic variety.
(2) The codimension of Σs in the ambient space is (n− s+ 1)(n+ k − s+ 1).
(3) The singular set of Σs is exactly Σs−1.
(4) The stratification of Σs given by {Σt \ Σt−1}, with 1 ≤ t ≤ s, is locally analytically

trivial and hence it is a Whitney stratification of Σs.

Definition 8.9. Let F : U ⊂ Cq −→ Hom(Cn,Cn+k) be an analytic map, where U is an open
neighbourhood of 0 and F (0) = 0. Let s such that 1 ≤ s ≤ n and denote by X = F−1(Σs) the
subvariety in Cq. If codim(X) = codimΣs, then X is called a determinantal variety in U of type
(n+ k, n, s).

In [EG] Ebeling and Gusein–Zade introduced the notion of a determinantal variety with an
essentially isolated determinantal singularity (EIDS) ([EG, Section 1]).

Definition 8.10. A determinantal variety X ⊂ U , where U is an open neighbourhood of 0 in Cq,
defined by X = F−1(Σs), 1 ≤ s ≤ n, where F : U ⊂ Cq −→ Hom(Cn,Cn+k) is an analytic map,
is an essentially isolated determinantal singularity (EIDS) of type (n+ k, n, s) if F is transverse
to the rank stratification of Hom(Cn,Cn+k) except possibly at the origin.

If X is an EIDS in U of type (n + k, n, s), the singular set of X is given by F−1(Σs−1).
The regular part of X is given by F−1(Σs \ Σs−1) and denoted by Xreg. As mentioned by
Ebeling and Gusein–Zade, an EIDS X has an isolated singularity at the origin if and only if
q ≤ (n− s+ 2)(n+ k − s+ 2).

A deformation F̃ : U ⊂ Cq → Hom(Cn,Cn+k) of F which is transverse to the rank stratifica-
tion is called a stabilization of F . According to Thom’s Transversality Theorem (see [KZ, Tri]),
F always admits a stabilization F̃ .

The variety X̃ = F̃−1(Σs) is called an essential smoothing of X ([EG, Section 1]). Ebeling
and Gusein–Zade also remarked that, in the specific case q < (n − s + 2)(n + k − s + 2), then
the essential smoothing is a genuine smoothing.

In [Cha] Chachapoyas–Siesquén studies the Euler obstruction of essentially isolated determi-
nantal singularities (EIDS). The author obtains formulae to calculate the Euler obstruction for
the determinantal varieties whose singular set is an ICIS.

The paper [GGR] by Gaffney, Grulha and Ruas, has two complementary parts, in the first
part the authors compute the local Euler obstruction of generic determinantal varieties and apply
this result to compute the Chern-Schwartz-MacPherson class of such varieties. In the second part
they compute the Euler characteristic of the stabilization of an essentially isolated determinantal
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singularity (EIDS). The formula is given in terms of the local Euler obstruction and Gaffney’s
md multiplicity (see [GR, Definition 3.3]).

Let us denote the topological Euler-Poincaré characteristic by χ and the reduced Euler-
Poincaré characteristic χ by χ = χ− 1.

Proposition 8.11. [EG, Prop.3] Let ℓ : Hom(Cn,Cn+k) → C be a generic linear form. Then,
for s ≤ n, one has

χ(Σs ∩ ℓ−1(1)) = (−1)s
(
n− 1

s− 1

)
.

In order to find the Chern–Schwartz–MacPherson class of a generic determinantal variety,
first we calculate its local Euler obstruction.

Theorem 8.12. [GGR] Let Σs ⊂ Hom(Cn,Cn+k) be a generic determinantal variety defined as
above, we have

EuΣs(0) =

(
n

s− 1

)
,

for 1 ≤ s ≤ n.

For this part, fix k ∈ Z+, k ≥ 1, and for i ∈ Z+, 1 ≤ i ≤ n+1, let us denote Σi ⊂ Hom(n, n+k)
by Σi

n.
On the one hand, on the left figure 11, we have a triangle of spaces and maps.
Description is given in [GGR, Remark 1.18]: In the apex of the triangle (row zero) we have

{0} ∈ Hom(C0,Ck). Elements in row 1 are {0} ∈ Hom(C1,Ck+1) and Hom(C1,Ck+1). We have
maps from the element in row 0 to each element in row 1 given by the inclusions of Ck to Ck+1,
and projection of C1 to C0. Row 2 is Σ1 = {0} ∈ Hom(C2,Ck+2), Σ2 ⊂ Hom(C2,Ck+2), and
Hom(C2,Ck+2).

Again there are maps given by projection and inclusion from elements of row 1 into adjacent
pairs of elements of row 2.

Then row n consists of the spaces Σi
n ⊂ Hom(Cn,Cn+k), 1 ≤ i ≤ n + 1, with maps from

the previous row to adjacent pairs of elements of this row. The triangle on the right is Pascal’s
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triangle. Then Theorem 8.12 says that the local Euler obstruction takes the (left) triangle of
spaces to the (right) Pascal triangle.

Using this last proposition and MacPherson definition, we can calculate the Chern–Schwartz–
MacPherson class of Σs as follows.

Theorem 8.13. [GGR, Theorem 1.22] In the same setting as above, the (total) Chern–Schwartz–
MacPherson class of Σs is

cSM(Σs) =

s−1∑
j=0

(−1)s−1+j

(
n− j − 1

s− j − 1

)
cMa(Σ

j+1),

where cMa denotes the total Chern–Mather class.

The key tool for the next results is the theory of integral closure of modules andmultiplicity
of pairs of modules. Based on this theory, in this section, we compute the Euler characteristic of
the stabilization of an essentially isolated determinantal singularity (Def. 8.10). The results of
this part are mainly based on [GRa, GR].

In [EG2], Ebeling and Gusein–Zade studied the radial index and the Euler obstruction of
1-form on a singular variety. The authors presented a formula expressing the radial index of a
1-form in terms of the Euler obstructions of the 1-form on different strata.

One of the main ingredients to prove results about stabilization, as remarked in [GR], in the
EIDS context, instead of a smoothing, we have a stabilization – a determinantal deformation of
X to the generic fibre. Then the multiplicity of the polar curve of JMz(X ) over the parameter
space at the origin in a stabilization is the number of critical points that a generic linear form
has on the complement of the singular set on a generic fibre. Call this number md(X), where
d = dimX. The md multiplicity was defined by Gaffney in [Gaff3] for the study of isolated
complete intersection singularities (ICIS), and for isolated singularities whose versal deformation
have a smooth base in [Gaff1].

Now, from [GGR] and using that if X is an EIDS of type (n+k, n, s), defined by the analytic
map F : U ⊂ Cq → Hom(n, n + k), when q > n(n + k) we have a submersion on the strata
different from {0}, so we have a fibred structure and when q < n(n+ k) we have an immersion,
using the transversality of F we have the following results.

Before stating the next results let us fix the following notation: iX = F−1(Σi), 1 ≤ i ≤ n.

Proposition 8.14. [GGR, Proposition 2.14]Let X ⊂ Cq be an EIDS of type (n+k, n, s), defined
by the analytic map F : U ⊂ Cq → Hom(n, n+ k), with F (0) = 0, 1 ≤ i ≤ n and n(n+ k) > q.
In this setting we have

Eu0(X) = e(s− 1, n− 1) +

s∑
i=2

χ∗(i, n)

(
n− i

s− i

)
,

where χ∗(i, n) = χ(iX ∩ l−1(t0) ∩Bε(0)) and l is a generic linear form.

Proposition 8.15. [GGR, Proposition 2.15] Let X ⊂ Cq be an EIDS of type (n+k, n, s), defined
by the analytic map F : U ⊂ Cq → Hom(n, n + k), with F (0) = 0 and q > n(n + k). In this
setting we have

Eu0(X) =

(
n

s− 1

)
+ χ(1X ∩H)

(
n− 1

s− 1

)
+

s∑
i=2

χ∗(i, n)

(
n− 1

s− 1

)
.

Remark 8.16. Note that in this case, when q > n(n+k) there are 2 additional terms. Also note
that 1X is always an ICIS so χ(1X ∩H) is µ(1X ∩H) up to a sign. Note also that if n = s = 2



106 JEAN-PAUL BRASSELET, NIVALDO GRULHA, AND THỦY NGUYỄN THỊ BÍCH

we get
Eu0(X) = 2 + χ(1X ∩H) + 1 + χ∗(2, 2) = 2 + χ(1X ∩H) + χ̃∗(2, 2),

which is Siesquén’s formula [Cha].

8.4. Euler obstruction of a module. In [GGR] Gaffney, Grulha and Ruas generalize the
definition of polar varieties as follows:

Given a submodule M of the free OXd module Op
Xd of rank p, we can associate the Rees

algebra R(M) of M , that is the subalgebra of the symmetric OXd algebra on p generators. Then
Projan(R(M)), the projective analytic spectrum of R(M) is the closure of the projectivised row
spaces of M at points where the rank of a matrix of generators of M is maximal (see [Gaff1],
[GGR, page 25]).

Definition 8.17. Let us consider a submodule M of the free OXd module Op
Xd of rank p whose

generic rank is g. The polar variety of codimension k of M in X, denoted Pk(M), is constructed
by intersecting Projan(R(M)) with X×Hg+k−1, where Hg+k−1 is a general plane of codimension
g + k − 1, then projecting to X.

Let us define the local Euler obstruction of a module M ⊂ Op
Xd .

Definition 8.18. Assume X equidimensional, generically reduced. Given a sheaf of modules
M ⊂ Op

Xd , M with the same generic rank on each component of X. We define

Eu0(M) =

d−1∑
i=0

(−1)im0(Pi(M)),

where Pi(M) is the polar variety of M of codimension i. Since X is generically reduced,
P0(M) = X.

Remark 8.19. When M is the Jacobian module JM(X) the generalization of the polar varieties
(Def. 8.17) coincides with the classical notion of polar varieties used by Lê and Teissier. In other
words, in this case we have Eu0(JM(X)) = Eu0(X).

Theorem 8.20. Given F : Cq → Hom(n, n+ k), with 0 < q ≤ n(n+ k), such that F defines a
EIDS X. Let Mi = JM((F |Hc(r)+i)−1(Σr)) = JM(F−1(Σr)∩Hc(r)+i), i > 0. Here Hc(r)+i is a
generic plane of dimension c(r) + i, where c(r) is the codimension of Σr in Hom(n, n+ k). Let
Ni = (F |Hc(r)+i)∗(JM(Σr)). We let M0, N0 = 0. Then,

Eu0(JM(X)) = Eu0(X) =

d−1∑
i=0

(−1)ie(Mi, Ni;OX∩Hc(r)+i) + Eu0(F
∗(JM(Σr))).

For the following Corollary, proved in [GGR], it is convenient to change our notation a little
since the main tool is based on [GRa], so we match the notation there. We let Σr denote Σr+1,
that is we let Σr denote the matrices of kernel rank r.

Corollary 8.21. Suppose that X ⊂ Cq and its generic plane sections are good approximations
to Σr ⊂ Hom(n, n+ k). Suppose that n(n+ k) > q > dim(Σr). Then Eu0(X) = Eu0(Σr).

8.5. Ruled surfaces. Ruled surfaces are also very interesting objects in mathematics that have
many applications. Consider two complex curves α : D → C3 and β : D → C3, where D ⊂ C is a
disk centered at the origin, we can consider the two curves together as a map (α, β) : D → C3×C3.
We say that α(t) = (α1(t), α2(t), α3(t)) and β(t) = (β1(t), β2(t), β3(t)) is a primitive parameter
pair for (α, β) if it cannot be re-parameterized by powers of a new variable.

A ruled surface in C3 is locally the image of the application: f : D × C → C3 given by

f(t, u) = α(t) + uβ(t),
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where α and β are complex spatial curves with β ̸= 0. We call α : D → C3 the base curve and
β : D → C3 the steering curve.

Lemma 8.22. [MN] Given the germ of a ruled surface in C3, we can choose coordinates in C3

such that the surface is parametrized in the form f : (C2, 0) → (C3, 0)

(8.22) f(t, u) = (0, α1(t), α2(t)) + u(1, β1(t), β2(t)).

Given a pair of primitive parametrizations (α, β) of complex plane curves, we will denote by
f(α,β) a parametrization of the ruled surface associated with these curves as in (8.22).

Definition 8.23. Given a pair (γ(1), γ(2)) : D → C2 × C2, the multiplicity (of the pair) at the
origin 0 ∈ D ⊂ C is (m(γ(1)),m(γ(2))) with m(γ(j)) = min{ordtγ(j)

i (t); i = 1, 2}.

In [GEM] given two integers m ≥ n ≥ 0 the authors exhibit (ruled) surfaces with multiplicity
m and Euler obstruction n.

Theorem 8.24. If (X, 0) is the germ of a ruled surface given by f(α,β) as in (8.22) where (α, β)
is a pair of primitive parametrizations of complex plane curves, with pair of multiplicities (n0, n1)
with n0 ≥ n1 ≥ 0, then EuX(0) = n1.

As a consequence of this result we see that given a positive integer n it is possible to find a
germ of a ruled surface (X, 0) such that EuX(0) = n.

Corollary 8.25. Let (X, 0) ⊂ (C3, 0) be the germ of a ruled surface, if the Euler obstruction
EuX(0) is greater than 1, then (X, 0) has no isolated singularity at the origin.

9. The Euler obstruction of a function and the Brasselet number

In [BG], Brasselet and Grulha write a continuation of the first author’s survey Local Euler
Obstruction, Old and New (1998). It takes into account recent results obtained by various au-
thors, in particular with regard to the extensions of Euler’s local obstruction to frames, functions
and maps and for differential forms and collections of them.

Definition 9.1. (see Section 7) Let Y ⊂ Rn be a semi-algebraic set. A constructible function
α : Y → Z is a Z-valued function that can be written as a finite sum:

α =
∑
i∈I

mi1Yi
,

where Yi is a semi-algebraic subset of Y and 1Yi
is the characteristic function on Yi.

The sum and the product of two constructible functions on Y are again constructible. The
set of constructible functions on Y is thus a commutative ring, denoted by F(Y ).

Definition 9.2. If α is a constructible function in F(Y ) and W ⊂ Y is a semi-algebraic set then
the Euler characteristic χ(W,α) is defined by

χ(W,α) =
∑
i∈I

miχc(W ∩ Yi),

where α =
∑

i∈I mi1Yi and χc is the Euler characteristic in Borel-Moore homology.

In what follows, the complex link is a key object in the study of the topology of complex
analytic sets. It is analogous to the Milnor fibre and was studied first in [Le1]. It plays a crucial
role in complex stratified Morse theory (see [GM2]) and appears in general bouquet theorems
for the Milnor fibre of a function with isolated singularity (see [Le2]).
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Let V be a stratum of the stratification V of X and let x be a point in V . Let

g : (Cn, x) → (C, 0)
be an analytic complex function-germ such that the differential form Dg(x) is not a degenerate
covector of V at x. Let NC

x,V be a normal slice to V at x, i.e. NC
x,V is a closed complex submanifold

of Cn which is transversal to V at x and NC
x,V ∩ V = {x}.

Definition 9.3 ([GM2], p.161). The complex link LX
V of V is defined by

LX
V = X ∩NC

x,V ∩Bϵ(x) ∩ {g = δ},
where 0 < |δ| ≪ ϵ ≪ 1. Here Bϵ(x) is the closed ball of radius ϵ centered at x.

The normal Morse datum NMD(V ) of V is the pair of spaces

NMD(V ) =
(
X ∩NC

x,V ∩Bϵ(x), X ∩NC
x,V ∩Bϵ(x) ∩ {g = δ}

)
,

where x ∈ X.

The fact that these two notions are well-defined, i.e. independent of all the choices made to
define them, is explained in [GM2].

Definition 9.4. [SchuTib, Definition 2.2] Let α ∈ F (X) be a constructible function with respect
to the stratification V. Its normal Morse index η(V, α) along V is defined by

η(V, α) = χ(NMD(V ), α).

Moreover, the key role of the Euler obstruction comes from the following identities (see
[SchuTib] p.34 or [Schu] p.292 and p.323-324):

η(V ′,EuV ) = 1 if V ′ = V

and
η(V ′,EuV ) = 0 if V ′ ̸= V.

The Euler obstruction is a constructible function and there are two distinguished bases for
the free abelian group of constructible functions: the characteristic function 1V and the Euler
obstruction EuV of the closure V of all strata V . The Euler characteristic χ(W,α) is also called
the Euler integral of α and denoted by

∫
W

αdχc. Here we follow the terminology and notations
used in [BMPS, DG, ST].

In [BLS], Brasselet, Lê and Seade study the Euler obstruction using hyperplane sections,
following ideas of Dubson and Kato. Let us assume that 0 belongs to X.

Theorem 9.5 ([BLS], Theorem 3.1). For each generic linear form l, there is ϵ0 such that for
any ϵ with 0 < ϵ < ϵ0 , the Euler obstruction of (X, 0) is equal to:

EuX(0) = χ
(
X ∩Bϵ(0) ∩ l−1(δ),EuX

)
,

where 0 < |δ| ≪ ϵ ≪ 1.

Let f : X → C be a holomorphic function. We assume that f has an isolated singularity (or
an isolated critical point) at 0, i.e. that f has no critical point in a punctured neighbourhood of
0 in X.

In [BMPS] Brasselet, Massey, Parameswaran and Seade introduced an invariant which mea-
sures, in a way, how far the equality given in Theorem 9.5 is from being true if we replace the
generic linear form l with some other function on X with at most an isolated stratified critical
point at 0. This number is called the Euler obstruction of a function and denoted by Euf,X(0).

Let f : X → C be an analytic function, restriction of an analytic function F : U → C,
with an isolated singular point at 0 ∈ X. The gradient vector field of F allows to construct
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a stratified vector field denoted by ∇Xf using the Marie-Hélène Schwartz construction and
Whitney conditions.

Definition 9.6. The local Euler obstruction of f on X, at the point 0, denoted by Euf,X(0), is
the local Euler obstruction Eu(∇Xf, 0, X) of the stratified vector field ∇Xf at 0 ∈ X.

The following result of Brasselet, Massey, Parameswaran and Seade [BMPS] compares, in the
same point, the local Euler obstruction with the Euler obstruction of a function.

Theorem 9.7 ([BMPS], Theorem 3.1). Let f : X → C be a function with an isolated singularity
at 0. For 0 < |δ| ≪ ε ≪ 1 we have:

EuX(0)− Euf,X(0) = χ
(
X ∩Bϵ(0) ∩ f−1(δ),EuX

)
,

where 0 < |δ| ≪ ϵ ≪ 1.

In [STV], the authors show that the Euler obstruction of f is closely related to the number
of Morse points of a Morsification of f , as it is stated in the next proposition.

Proposition 9.8 ([STV] Proposition 2.3). Let f : X → C be an analytic function with isolated
singularity at the origin. Then:

Euf,X(0) = (−1)dnreg,

where nreg is the number of Morse points on Xreg in a stratified Morsification of f lying in a
small neighbourhood of 0.

Definition 9.9 ([Ma], p.971). A good stratification of X relative to f is a stratification V of
X which is adapted to Xf , (i.e. Xf is a union of strata) , where Xf = X ∩ f−1(0), such that
{Vi ∈ V;Vi ̸⊂ Xf} is a Whitney stratification of X \ Xf and such that for any pair of strata
(Va, Vb) such that Va ̸⊂ Xf and Vb ⊂ Xf , the Thom (af ) condition is satisfied.

In this section, we recall several formulae proved by Dutertre and Grulha in [DG3] that relate
the number of critical points of a Morsification of a polynomial function f on an algebraic set X,
to the global Brasselet numbers and the Brasselet numbers at infinity of f . We note that when
X = Cn, similar formulae have already appeared in the literature in the work of many authors
as Artal, Luengo, Melle, Tibar, Parusinski, Siersma, Suzuki and others.

Durtertre and Grulha [DG1] defined the Brasselet number as follows.

Definition 9.10. Suppose that X is equidimensional. Let V = {Vi}qi=0 be a good stratification
of X relative to f . The Brasselet number, Bf,X(0), is defined by

Bf,X(0) =

q∑
i=1

χ
(
Vi ∩Bε(0) ∩ f−1(δ)

)
· EuX(Vi),

where 0 < |δ| ≪ ε ≪ 1.

Remark 9.11. Note that if f has a stratified isolated singularity at the origin then, by
Theorem 9.7, we have that Bf,X(0) = EuX(0)− Euf,X(0).

In [DG2] the authors present an alternative proof of the Brasselet, Massey, Parameswaran and
Seade formula for the Euler obstruction of a function using Ebeling and Gusein-Zade’s results
on the radial index and the Euler obstruction of 1-forms.

Grulha compares in [Gru, GruE] the local Euler obstruction with some generalizations of the
Milnor number, in particular the Milnor number of Lê, and the Milnor number of Bruce and
Roberts.
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Let On the ring of germs of analytic functions f : (Cn, 0) → (C, 0) and I(X) the ideal of On

of the germs of functions vanishing on X. A germ of vector field vn on (Cn, 0), can be seen as a
derivation vn : On → On. It is tangent to X if

dg(vn) = vng ∈ I(X),∀g ∈ I(X).

Definition 9.12. Let f ∈ On and let θX be the set of vector fields tangent to X, the Milnor
number of Bruce and Roberts is defined by

µBR(f) = dimC
On

df(θX)
.

For a logarithmic stratification of X, we denote by LC(V ) the union of the conormal spaces
of the strata Vα. There are subspaces of T ∗

0 (Cm) of vanishing forms on TVα . One denotes by
mα the multiplicity of T ∗Vα in LC(V ).

Theorem 9.13 ([Gru, GruE]). Let (X, 0) be a germ of a reduced equidimensional analytic variety
in Cm and f : (Cm, 0) → (C, 0) an analytic function with isolated singularity at 0.
If LC(V ) is Cohen-Macaulay then

µBR(f) =
∑
α

(−1)dimC Vα mα Euf,V α
(0).

By [GM2], given a stratification S of X, one can refine S to obtain a Whitney stratification
V of X which is adapted to Xf . Moreover, by [BMM, Theorem 4.3.2], the refinement V satisfies
the Thom af condition. This means that good stratifications always exist.

For instance, if V is a Whitney stratification of X and f : X → C has a stratified isolated
critical point at {0}, then

{Vα \Xf , Vα ∩Xf \ {0} , {0}}, with Vα ∈ V,

is a good stratification for f . We call it the good stratification induced by f .

Definition 9.14. The critical locus of f relative to V, ΣVf , is defined by the union

ΣVf =
⋃

Vλ∈V
Σ(f |Vλ

).

In [DG1] the authors proved that the Brasselet number satisfies a Lê-Greuel type formula,
which relates this invariant with the number of Morse critical points. To explain this property
we introduce the following definition.

Definition 9.15. Let V be a good stratification of X relative to f . We say that g : (X, 0) → (C, 0)
is prepolar with respect to V at the origin if the origin is a stratified isolated critical point of g.

Given f and g function-germs defined on (X, 0), the Thom (af ) condition in Definition 9.10
together with the hypothesis of g be prepolar guarantee that g : X ∩ f−1(δ) ∩ Bε → C has no
critical points on {g = 0} [Ma, Proposition 1.12] and so the number of stratified Morse critical
points on the top stratum Vq ∩ f−1(δ) ∩Bε(0) appearing in a Morsification of

g : X ∩ f−1(δ) ∩Bε(0) → C

does not depend on the Morsification.
The following result shows that the Brasselet number satisfies a Lê-Greuel type formula [DG,

Theorem 4.4].
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Theorem 9.16. Suppose that X is equidimensional and that g is prepolar with respect to V at
the origin. For 0 < |δ| ≪ ε ≪ 1, we have

Bf,X(0)− Bf,Xg (0) = (−1)d−1m,

where m is the number of stratified Morse critical points of a Morsification of

g : X ∩ f−1(δ) ∩Bε → C

appearing on Xreg ∩ f−1(δ) ∩ {g ̸= 0} ∩ Bε. In particular, this number does not depend on the
Morsification.

In [San], Santana considered the case where the function g has a stratified singular set of
dimension 1 and proved that in this case the difference of the Brasselet numbers Bf,X(0) and
Bf,Xg (0) is still related with the number of Morse critical points on the regular part of the Milnor
fibre of f appearing in a Morsification of g. To prove this result the author considered that the
function-germ g is tractable.

The notion of tractability uses the following auxiliary definition.

Definition 9.17. If V = {Vα} is a stratification of X, the symmetric relative polar variety of
f and g with respect to V, Γ̃f,g(V), is the union ∪αΓ̃f,g(Vα), where Γf,g(Vα) denotes the closure
in X of the critical locus of (f, g)|Vα\(Xf∪Xg).

Definition 9.18. A function g : (X, 0) → (C, 0) is tractable at the origin with respect to a good
stratification V of X relative to f : (X, 0) → (C, 0) if the dimension of Γ̃1

f,g(V) is less than or
equal to 1 in a neighbourhood of the origin and, for all strata Vα ⊆ Xf , g|Vα

has no critical
points in a neighbourhood of the origin except perhaps at the origin itself.

Theorem 9.19. [San, Theorem 3.2] Suppose that g is tractable at the origin with respect to V
relative to f . Then, for 0 < |δ| ≪ ε ≪ 1,

Bf,X(0)−Bf,Xg (0)−
r∑

j=1

mf,bj · (EuX(bj)− EuXg (bj)) = (−1)d−1m,

where m is the number of stratified Morse critical points of a partial Morsification of

g : X ∩ f−1(δ) ∩Bε → C

appearing on Xreg ∩f−1(δ)∩{g ̸= 0}∩Bε, ΣVg = {0}∪ b1∪ . . .∪ br and mf,bj is the multiplicity
of f |bj .

The authors in [ANOT] prove that given an analytic function germ f : (X, 0) → C on an
isolated determinantal singularity or on a reduced curve, one has formulae relating the local
Euler obstruction of f to the vanishing Euler characteristic of the fibre X ∩ f−1(0) and to the
Milnor number of f . Restricting ourselves to the case where X is a complete intersection, one
obtains an easy way to calculate the local Euler obstruction of f as the difference between the
dimension of two algebras.

The concept of the evanescent Euler characteristic was extended and applied in the context
of normal toric surfaces. In [DGP], the authors give a formula to calculate it, and associate
this number with the second polar multiplicity of Xσ. They also present a formula for Euler’s
obstruction of a function and for the difference between the Euler obstruction of the toric surface
Xσ and the Euler obstruction of a function f . As an application of this result they compute the
Euler obstruction of polynomials of a certain type on a family of determinantal surfaces. In the
same direction, in [DaPe] Dalbelo and Pereira present a formula to compute the Euler obstruction
of a function f : (X, 0) → (C, 0) and its Brasselet number, where X is a multitoric surface. As
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an application of this formula, the authors compute the Euler obstruction of a function on some
families of determinantal surfaces.

In [DHa] the authors present a formula to compute the Brasselet number of f : (Y, 0) → (C, 0),
where Y ⊂ X is a non-degenerate complete intersection in a toric variety X. As applications
one establishes several results concerning invariance of the Brasselet number for families of
non-degenerate complete intersections. Moreover, when (X, 0) = (Cn, 0) one derives sufficient
conditions to obtain the invariance of the Euler obstruction for families of complete intersections
with an isolated singularity contained in X.

Since the introduction of the notion of free divisors by Saito, people have discovered how
commonplace they are. Discriminants of the versal unfoldings of isolated hypersurface and com-
plete intersection singularities are free divisors and the bifurcation sets associated to the versal
unfoldings of isolate hypersurfaces singularities are also free divisors, for instance. One way to
investigate these objects is to compute and understand the behavior of some invariants on them.
In [Gru2] the author uses the local Euler obstruction in order to investigate free divisors.

10. Global Euler Obstruction

We assume X ⊂ Cn to be a reduced algebraic set of dimension d, equipped with a finite
Whitney stratification V = {V1, . . . , Vt}. In [STV], Seade, Tibăr and Verjovsky introduced a
global analogue of the Euler obstruction called the global Euler obstruction and denoted by
Eu(X). Let us denote by X̃

ν→ X the Nash modification of X (Definition 7.3), and let us
consider a stratified real vector field v on a subset V ⊂ X: this means that the vector field
is continuous and tangent to the strata. The restriction of v to V has a well-defined canonical
lifting ṽ to ν−1(V ) as a section of the real bundle underlying the Nash bundle T̃ → X̃.

Definition 10.1 ([STV], Definition 2.1). We say that the stratified vector field v on X is radial-
at-infinity if it is defined on the restriction to X of the complement of a sufficiently large ball
BM centered at the origin of CN , and it is transversal to SR, pointing outwards, for any R > M .
In particular, v does not vanish on X \BM .

The “sufficiently large” radius M is furnished by the following well-known result.

Lemma 10.2 ([STV], Lemma 2.2). There exists M ∈ R such that, for any R ≥ M , the sphere
SR centered at the origin of CN and of radius R is stratified transversal to X, i.e. transversal
to all strata of the stratification V.

Using this last lemma and inspired by [BS] and [STV], Seade, Tibăr and Verjovsky defined
the global Euler obstruction as follows:

Definition 10.3 ([STV], Definition 2.3). Let ṽ be the lifting to a section of the Nash bundle
T̃ of a radial-at-infinity stratified vector field v over X \ BR. We call global Euler obstruction
of X, and denote it by Eu(X), the obstruction for extending ṽ as a nowhere zero section of T̃
within ν−1(X ∩BR).

To be precise, the obstruction to extend ṽ as a nowhere zero section of T̃ within ν−1(X ∩BR)
is in fact a relative cohomology class

o(ṽ) ∈ H2d(ν−1(X ∩BR), ν
−1(X ∩ SR)) ≃ H2d

c (X̃).

The global Euler obstruction of X is the evaluation of o(ṽ) on the fundamental class of the
pair (ν−1(X ∩BR), ν

−1(X ∩SR)). Thus Eu(X) is an integer and does not depend on the radius
of the sphere defining the link at infinity of X. Since two radial-at-infinity vector fields are
homotopic as stratified vector fields, it does not depend on the choice of v either.
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Remark 10.4. The global Euler obstruction has the following properties (see [STV] p. 396):
((1)) Eu(X) = χ(X,EuX),
((2)) if X is non-singular, then Eu(X) = χ(X).

A natural question is to know if the concepts of the Euler obstruction and the Brasselet
number of a function could be extended to the global setting, as Seade, Tibăr and Verjovsky did
for the local Euler obstruction. In the case of positive answer, what kind of information could
we obtain with these new global invariants?

As the idea for defining the global Euler obstruction is to consider balls and spheres whose
radius R goes to infinity, to answer the previous question, it is natural to consider results con-
cerning singularities at infinity. The main references we use in this setting are [DRT, Ti] and
we refer to these papers for details.

We consider X ⊂ CN a reduced algebraic set of dimension d. We use coordinates (x1, . . . , xN )
for the space CN and coordinates [x0 : x1 : · · · : xN ] for the projective space PN . We consider
the algebraic closure X of X in the complex projective space PN and we denote by

H∞ =
{
[x0 : x1 : · · · : xN ] | x0 = 0

}
the hyperplane at infinity of the embedding CN ⊂ PN .

One may endow X with a semi-algebraic Whitney stratification W = {Wα} such that Xreg

is a stratum and the part at infinity X ∩H∞ is a union of strata.
Since X is projective and since the stratification of X is locally finite, it follows that W has

finitely many strata. We denote by Xsing the set of singular points of X, i.e. Xsing = X \Xreg.
In order to recall the definition of t-regularity, let us recall the definition of the conormal

spaces.

Definition 10.5 ([DRT], Definition 2.1). We denote by C(X) the conormal modification of X,
defined as:

C(X) = closure
{
(x,H) ∈ Xreg × P̌N−1 | TxXreg ⊂ H

}
⊂ X × P̌N−1.

Let π : C(X) → X denote the projection π(x,H) = x.

Definition 10.6 ([DRT], Definition 2.2). Let g : X → C be an analytic function defined in
some neighbourhood of X in CN . Let X0 denote the subset of Xreg where g is a submersion.
The relative conormal space of g is defined as follows:

Cg(X) = closure
{
(x,H) ∈ X0 × P̌N−1 | Txg

−1 (g(x)) ⊂ H
}
⊂ X × P̌N−1,

together with the projection π : Cg(X) → X, π(x,H) = x.

Let F : CN → C be a polynomial function and f : X → C defined by f = F|X . Let X = graphf

be the closure of the graph of f in PN ×C and let X∞ = X∩ (H∞×C). One has an isomorphism
graph(f) ≃ X.

We consider the affine charts Uj × C of PN × C, where

Uj = {[x0 : · · · : xN ] | xj ̸= 0}, j = 0, 1, . . . , N.

Identifying the chart U0 with the affine space CN , we have X ∩ (U0 × C) = X \ X∞ = graphf ,
and X∞ is covered by the charts U1 × C, ..., UN × C.

If g denotes the projection to the variable x0 in some affine chart Uj × C, then the relative
conormal space Cg(X \ X∞ ∩ Uj × C) ⊂ X× P̌N is well defined.

With the projection π(y,H) = y, let us then consider the space π−1(X∞), which is well defined
for every chart Uj × C as a subset of Cg(X \ X∞ ∩ Uj × C).
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Definition 10.7 ([DRT], Definition 2.4). We call space of characteristic covectors at infinity
the set C∞ = π−1(X∞). For any p0 ∈ X∞, we denote C∞

p0
:= π−1(p0).

By Lemma 2.8 in [Ti], these notions are well-defined, i.e. they do not depend on the chart Uj .
Let us denote by τ : PN × C → C the second projection. One defines the relative conormal

space Cτ (PN × C) as in Definition 10.6 where the function g is replaced by the mapping τ .

Definition 10.8 ([DRT], Definition 2.5). We say that f is t-regular at p0 ∈ X∞ if

Cτ (PN × C) ∩ C∞
p0

= ∅.

We say that f−1(t0) is t-regular if f is t-regular at all points p0 ∈ X∞ ∩ τ−1(t0).

Let us now recall the definition of ρ-regularity. Let K ⊂ CN be some compact (possibly
empty) set and let ρ : CN \K → R≥0 be a proper analytic submersion.

Definition 10.9 (ρ-regularity at infinity, [DRT], Definition 5.2). We say that f is ρ-regular
at p0 ∈ X∞ if there is an open neighbourhood U ⊂ PN × C of p0 and an open neighbourhood
D ⊂ C of τ(p0) such that, for all t ∈ D, the fibre f−1(t) ∩Xreg ∩ U intersects all the levels of
the restriction ρ|U∩Xreg

and this intersection is transversal.
We say that the fibre f−1(t0) is ρ-regular at infinity if f is ρ-regular at all points

p0 ∈ X∞ ∩ τ−1(t0). We say that t0 is an asymptotic ρ-non-regular value if f−1(t0) is not ρ-
regular at infinity.

Let X ⊂ Cn be a reduced algebraic set of dimension d, equipped with a finite Whitney
stratification V = {Vi}ti=1. We assume that V1, . . . , Vt−1 are connected, V1, . . . , Vt are reduced
and that Vt = Xreg, where Xreg has dimension d. Let f : X → C be a complex polynomial,
restriction to X of a polynomial function F : Cn → C, i.e. f = F|X . We assume that f has a
finite number of critical points, which means that for i = 1, . . . , t, F|Vi

has a finite number of
critical points. We denote by {q1, . . . , qs} the set of critical points of f and by {a1, . . . , ar} the
set of stratified asymptotic non-ρE-regular values of f .

For simplicity, we will write BR for the ball BR(0) and SR for ∂BR.

Lemma 10.10. Let α : X → Z be a constructible function with respect to V. The function
c 7→ χ(f−1(c), α) is constant on C \

(
{f(q1), . . . , f(qs)} ∪ {a1, . . . , ar}

)
.

Definition 10.11. When X is equidimensional, we define the global Brasselet number of f at
c by

BX
f,c = χ(f−1(c),EuX)

and the global Euler obstruction of f at c by

EuXf,c = Eu(X)− BX
f,c.

We start to compare the global Brasselet numbers of f and the Euler obstructions of the
fibres of f .

Proposition 10.12. Let a ∈ C, we have

BX
f,a = Eu(f−1(a)) +

∑
j | f(qj)=a

EuX(qj)− Euf−1(a)(qj).

Note that for a regular value c of f , BX
f,c = Eu(f−1(c)). Furthermore if X = Cn then

EuX(qj) = 1 and Euf−1(a) = 1 + (−1)n−2µ′(f, qj), where µ′(f, qj) is the first Milnor-Teissier
number of f at qj , so

BX
f,a = χ(f−1(a)) = Eu(f−1(a)) + (−1)n−1

∑
j | f(qj)=a

µ′(f, qj).
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Remark 10.13. As remarked in [DG3], in the equality of Proposition 10.12, we can distinguish
between two kinds of critical points: those lying in V = Xreg and those lying in a lower dimen-
sional stratum. Note that the collection of lower dimensional strata gives a Whitney stratification
of Xsing, the singular locus of X. Hence the critical points of f that lie on Xsing depend on the
stratification of Xsing. However, the formula of Proposition 10.12 implies that the sum∑

j | f(qj)=a

qj∈Xsing

EuX(qj)− Euf−1(a)(qj)

does not depend on the stratification of Xsing.

A direct corollary of the previous proposition is a global relative version of the local index
formula of Brylinski, Dubson and Kashiwara [BDK].

Corollary 10.14. Let α : X → Z be a constructible function with respect to V. For any a ∈ C,
we have

χ(f−1(a), α) =

t∑
i=1

BVi

f,aη(Vi, α).

As before, X ⊂ Cn is a reduced algebraic set of dimension d, equipped with a finite Whitney
stratification V = {Vi}ti=1 such that V1, . . . , Vt−1 are connected, V1, . . . , Vt are reduced and
Vt = Xreg ; f : X → C is a complex polynomial, restriction to X of a polynomial function
F : Cn → C. We assume that f has a finite number of critical points, which means that for
i = 1, . . . , t, F|Vi

has a finite number of critical points. We denote by {q1, . . . , qs} the set of
critical points of f and by {a1, . . . , ar} the set of stratified asymptotic non-ρE-regular values of
f .

Definition 10.15. We say that f̃ : X → C is a Morsification of f if f̃ is a small deformation of
f which is a local (stratified) Morsification at all isolated critical points of f .

Let f̃ be a Morsification of f . As in the local case, we can take f̃ of the form f + tl where
t is a sufficiently small complex number and l is the restriction to X of a generic linear form
(see Theorem 2.2 in [Le2]). Note that f̃ has two kinds of critical points: those appearing in a
small neighbourhood of a critical point of f and those appearing at infinity, i.e. outside a ball
of sufficiently big radius. We will only consider the first ones.

Let ni, i = 1, . . . , t, be the number of critical points of f̃ appearing in a small neighbourhood
of a critical point of f on the stratum Vi. Note that

ni ≥ µT (f|Vi
) =

∑
j | qj∈Vi

µ(f|Vi
, qj),

where µ(f|Vi
, qj) is the Milnor number of f|Vi

at qj , since we do not assume that f is general
with respect to V.

The next result, proved in [DG3] relates the number of stratified critical points of f̃ appearing
on the stratum Vi to the topology of X and a generic fibre of f .

Theorem 10.16. Let c ∈ C be a regular value of f , which is not a stratified asymptotic non-
ρE-regular value. We have

χ(X)− χ(f−1(c)) =

t∑
i=1

(−1)dini

(
1− χ(LX

Vi
)
)
− λX,∞

f .
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Moreover if f is general with respect to V, then we have

χ(X)− χ(f−1(c)) =

t∑
i=1

(−1)diµT (f|Vi
)
(
1− χ(LX

Vi
)
)
− λX,∞

f .

An interesting application occurs when X is equidimensional, then by [STV], Proposition 2.3,
the term (−1)dinij that appears in Equality (∗) is equal to Euf,Vi

(qj), if α = EuX .
In [DG3], the authors show that it is possible to define a global Brasselet number at infinity

and they prove the important result that this number satisfies a Brylinski-Dubson-Kashiwara
type formula [BDK].

From now on, we assume that X is equidimensional. If f = l is the restriction to X of a
generic linear function L : CN → C, then l has no stratified asymptotic non-ρE-regular values
and moreover l is a stratified Morse function (see [STV], Lemma 3.1).

Keeping the notations introduced in [STV], we denote by α
(d)
X the number of (Morse) critical

points of l on Xreg and by α
(d)
X,a those not occuring on l−1(a). In this case, if c is a regular value

of l then EuXl,c = (−1)dα
(d)
X and if a is a critical value of l, then EuXl,a = (−1)dα

(d)
X,a. By the

relation between BX
l,a and Eu(l−1(a)), we obtain

Eu(X)− Eu(l−1(a)) = (−1)dα
(d)
X,a +

∑
j | l(qj)=a

EuX(qj)− Eul−1(a)(qj),

where the qj ’s are the critical points of l. For a regular value c of l, this gives

Eu(X)− Eu(l−1(c)) = (−1)dα
(d)
X ,

and we remark that we have recovered Equality (2), page 401 in [STV]. Based on this equality,
Seade, Tibăr and Verjovsky could express the global Euler obstruction as an alternating sum of
global polar invariants. In the sequel, we will establish a relative version of this result for the
global Brasselet number. Such results are also proved for the Brasselet numbers at infinity in
[DG3].

We consider a polynomial function f : X → C, restriction to X of a polynomial function
F : CN → C. We assume that f has a finite number of critical points, which means that for
i = 1, . . . , t, F|Vi

has a finite number of critical points. We denote by {q1, . . . , qs} the set of
critical points of f . For a ∈ C, we put Xa = f−1(a). The algebraic set Xa is equidimensional
and if q1, . . . , qu, u ≤ s, are the critical points of f on f−1(a), then

Va =
(
⊔t
i=1Vi ∩ f−1(a) \ {q1, . . . , qu}

)
∪
(
⊔u
j=1{qj}

)
is a Whitney stratification of Xa.

Let L : CN → C be a linear function and let l : X → C be its restriction to X. We denote by
ΓX
f,l the relative polar variety of f and l defined as follows:

ΓX
f,l = {x ∈ Xreg | rank[df(x), dl(x)] < 2}.

It is well-known that for L generic, ΓX
f,l is a reduced algebraic curve. Moreover if L is generic,

we can assume the following fact:
l|Xa

: Xa → C is ρ-regular at infinity and Morse stratified.

Let IX(ΓX
f,l, Xa) be the global intersection multiplicity of ΓX

f,l and Xa, namely

IX(ΓX
f,l, Xa) =

∑
p∈ΓX

f,l∩f−1(a)

Ip(Γ
X
f,l, Xa),



LOCAL EULER OBSTRUCTION, OLD AND NEW, III 117

where Ip(Γ
X
f,l, Xa) is the local intersection multiplicity of ΓX

f,l and Xa at p. If dim(X) = 1 then
ΓX
f,l = X and in this case Ip(Γ

X
f,l, Xa) is the degree of l : (X, p) → (C, a), that is the cardinality

of l−1(c) ∩X ∩Bϵ(p) for 0 < |c− a| ≪ ϵ ≪ 1.

Proposition 10.17. We have

BX
f,a − BX∩H

f,a = (−1)d−1IX(ΓX
f,l, Xa) +

u∑
j=1

Euf,X(qj),

where H is a generic hyperplane given by H = L−1(g) for a regular value g of l|Xa
and l|X .

By a standard connectivity argument, IX(ΓX
f,l, Xa) does not depend on the choice of the

generic linear function L. We denote it by γ
(d−1)
X,a . Similarly for i = 2, . . . , d, we define

γ
(d−i)
X,a = IX∩Hi−1(ΓX∩Hi−1

f,l , Xa ∩Hi−1),

where Hi−1 is a generic linear space of codimension i− 1.
The following statement is a relative version of the Seade-Tibăr-Verjovsky polar formula for

the global Euler obstruction.

Corollary 10.18. We have

BX
f,a =

d∑
i=1

(−1)d−iγ
(d−i)
X,a +

u∑
j=1

Euf,X(qj).

Another corollary is a characterization of the Brasselet numbers at infinity in terms of critical
points of generic linear forms (see [DG3]).

In [San] it is shown that the Brasselet number of a function f with nonisolated singulari-
ties describes numerically the topological information of its generalized Milnor fibre. Using the
Brasselet number, H. Santana provides several formulae for germs f : (X, 0) → (C, 0) and
g : (X, 0) → (C, 0) in the case where g has a one-dimensional critical locus. The author also
gives applications when f has isolated singularities and when it is a generic linear form.

11. The Euler obstruction of a map and the Chern number of
collections of forms

The Euler obstruction of a map, defined by Grulha [Gru1], and the Chern number of collections
of forms, defined by Ebeling and Gusein-Zade [EG3], were defined in the first decade of the
21st century and, in [BGR], Brasselet, Grulha and Ruas related these two invariants. The Euler
obstruction of a map is a generalization of the Euler obstruction of a function, defined in [BMPS].

The Chern number of collections of forms, defined by Ebeling and Gusein-Zade in [EG3],
has a foundation similar to the Euler obstruction of maps; however it has travelled a different
trajectory “avoiding” cellular decompositions, which are, in some sense, covered by the study
of the loci of collections of forms. That is another way to present a generalization of the local
Euler obstruction and, in [GG], Gaffney and Grulha present an algebraic treatment to study the
Chern number.

Since the Euler obstruction of a function-germ g at the origin gives important topological
information about g, more precisely, it counts the number of Morse points on the regular part
of a generic perturbation of g, a natural question has been raised: which kind of topological
information could be encoded by the Euler obstruction of a map and how is this invariant
related with the Euler obstruction of the coordinate functions of f .
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The notion of local Chern obstruction extends the notion of local Euler obstruction in the
case of collections of germs of 1-forms. More precisely, Ebeling and Gusein-Zade perform the
following construction.

Let (X, 0) ⊂ (Cn, 0) be the germ of a d-equidimensional reduced complex analytic variety
at the origin. Let {ω(i)

j } be a collection of germs of 1-forms on (Cn, 0) such that i = 1, . . . , s;
j = 1, . . . , d − ki + 1, where the ki are non-negative integers with

∑s
i=1 ki = d. Let ε > 0 be

small enough so that there is a representative X of the germ (X, 0) and representatives {ω(i)
j }

of the germs of 1-forms inside the ball Bε(0) ⊂ Cn.

Definition 11.1. For a fixed i, the locus of the subcollection {ω(i)
j } is the set of points x ∈ X

such that there exists a sequence xn of points from the non-singular part Xreg of the variety V
such that the sequence Txn

Xreg of the tangent spaces at the points xn has a limit L (in G(d, n))
and the restrictions of the 1-forms ω

(i)
1 , . . . , ω

(i)
d−ki+1 to the subspace L ⊂ TxCn are linearly

dependent.

Definition 11.2. A point x ∈ X is called a special point of the collection {ω(i)
j } if it is in the

intersection of the loci of the subcollections {ω(i)
j } for each i = 1, . . . , s. The collection {ω(i)

j }
of 1-forms has an isolated special point at {0} if it has no special point on X in a punctured
neighbourhood of the origin.

Note that in Definition 11.2, for each fixed i, we require each subcollection {ω(i)
j } to be linearly

dependent when restricted to the same limit plane. Also note that if an element of the collection
has less than maximal rank at a point, then it is linearly dependent on all planes passing through
the point.

Let {ω(i)
j } be a collection of germs of 1-forms on (X, 0) with an isolated special point at the

origin. Let ν : X̃ → X be the Nash transformation of the variety X and T̃ be the Nash bundle.
The collection of 1-forms {ω(i)

j } gives rise to a section Γ(ω) of the bundle

T̃ =

s⊕
i=1

d−ki+1⊕
j=1

T̃ ∗
i,j ,

where T̃ ∗
i,j are copies of the dual Nash bundle T̃ ∗ over the Nash transformation X̃.

Let D ⊂ T̃ be the set of pairs (x, {α(i)
j }) where x ∈ X̃ and the collection of 1-forms {α(i)

j } is

such that α(i)
1 , . . . , α

(i)
n−ki+1 are linearly dependent for each i = 1, . . . , s.

Definition 11.3. Let 0 be a special point of the collection {ω(i)
j }. The local Chern obstruction

ChX,0{ω(i)
j } of the collection of germs of 1-forms {ω(i)

j } on (X, 0) at the origin is the obstruction
to extend the section Γ(ω) of the fibre bundle T̃\D → X̃ from ν−1(X ∩ Sε) to ν−1(X ∩Bε).

It is easy to see that the correct obstruction dimension for which the first non-zero homotopy
group appears [Ste] is d in our setting.

The following result is a consequence of [EG3, Proposition 3.3].

Proposition 11.4. Let (X, 0) ⊂ (Cn, 0) be the germ of a d-equidimensional reduced complex
analytic variety at the origin. Let {ω(i)

j } be a collection of germs of 1-forms on (Cn, 0) such that
i = 1, . . . , s; j = 1, . . . , d− ki + 1, where the ki are non-negative integers with

∑s
i=1 ki = d. Let

0 be an isolated special point for the collection. If ω(i), i = 2, . . . , s, are generic collections of
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linear forms, then the number ChX,0{ω(i)
j } does not depend on the choice of the subcollections

ω(i), i = 2, . . . , s.

In [Gru1] Grulha defined a notion of the Euler obstruction of a map, but in his construction
the obstruction depends on a certain cellular decomposition. Later, in [BGR], Brasselet, Grulha
and Ruas compared the notion of the Euler obstruction of a map and the Chern number, defined
by Ebeling and Gusein-Zade [EG3]. In that paper they also proved that the Euler obstruction
does not depend on a generic choice in its construction. Based on this, we define the Euler
obstruction of a map in terms of collection of forms.

Definition 11.5. Let X be an equidimensional complex variety of dimension d, f : (X, 0) → Cp,
a holomorphic map, with 0 ≤ p ≤ d and ω1 = {df1, df2, ..., dfp}, with dfi the differential of the
coordinate functions of f , and ω2 a generic collection, in such a way that 0 is a special point of
the collection of collections ω = {ω1, ω2}. We define the Euler obstruction of the map f at the
origin, denoted by Eu∗

f,X(0) = ChX,0{ω(i)
j }.

Part 3. The local Euler obstruction in São Carlos

The Local Euler obstruction appears to be an important research topic for all “singularists”
and not only singularity researchers. Due to the particular relationship with other invariants it
is a promising area of research leading to exciting and interesting results.

In particular, the local Euler obstruction is a subject of intensive studies in Brazil and more
precisely in the team of São Carlos and its collaborators.

Celebrating 30 years of the International Workshop on Real and Complex Singularities is the
occasion to mention the obstructionist club of São Carlos and their collaborators.

Daiane A. H. Ament, UFSCar;
Grazielle F. Barbosa, UFSCar;
Jean-Paul Brasselet, I2M CNRS and Aix-Marseille University;
Roberto Callejas-Bedregal, UFPb (in memoriam);
Nancy Carolina Chachapoyas Siesquén, UNIFEI;
Thaís M. Dalbelo, UFSCar;
Nicolas Dutertre, Université d’Angers;
Terence Gaffney, Northeastern University;
Nivaldo G. Grulha Jr., ICMC, USP;
Luiz Roberto Hartmann Jr., UFSCar;
Marcelo Escudeiro Hernandes, UEM;
Victor Hugo Jorge-Pérez, ICMC, USP;
Daniel Levcovitz, ICMC, USP;
Rodrigo Martins, UEM;
Juan J. Nuño-Ballesteros, Universitat de València;
Bruna Oréfice-Okamoto, UFSCar;
Miriam da Silva Pereira, UFPB;
Eliris C. Rizziolli, UNESP, Rio Claro;
Maria Aparecida Soares Ruas, ICMC, USP;
Camila Mariana Ruiz, UFTM;
Marcelo José Saia, UFSCar;
Hellen Santana, ICMC, USP;
Thủy Nguyễn Thị Bích, UNESP, São José do Rio Preto;
João N. Tomazella, UFSCar.
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