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CURVATURE LINES OF A TRANSVERSAL EQUIAFFINE VECTOR FIELD

ALONG A SURFACE IN 3-SPACE

MARCOS CRAIZER AND RONALDO A. GARCIA

Abstract. In this paper we discuss the behavior of the curvature lines of a transversal
equiaffine vector field along a surface in 3-space at isolated umbilical points.

1. Introduction

Let M be a smooth surface and denote by X(M) the space of smooth vector fields tangent
to M . Given an immersion f : M → R3 and an arbitrary transversal vector field ξ : M → R3,
write, for X,Y ∈ X(M),

(1.1) DXf∗Y = f∗(∇XY ) + h(X,Y )ξ,

where ∇ is a torsion free connection and h a symmetric bilinear form. We shall assume that h
is positive definite, which corresponds geometrically to the convexity of the surface f(M). For
X ∈ X(M), write

(1.2) DXξ = −f∗(BX) + τ(X)ξ.

where B is a (1, 1)-tensor called the shape operador and τ a 1-form. The vector field ξ is called
equiaffine if τ = 0.

The class of equiaffine transversal vector fields includes the Euclidean normal and the Blaschke
affine normal vector fields. The behavior of curvature lines at an umbilical point has a vast
literature in the Euclidean case ([2],[4],[5]) and has also been studied in the affine Blaschke case
([1]). Curvature lines of immersions endowed with equiaffine transversal vector fields are closely
related to asymptotic lines of surfaces in 4-space ([3]).

When ξ is equiaffine, B is self-adjoint with respect to the metric h, and so admit a pair of
linearly independent eigenvectors at each point. The lines tangent to these eigenvectors of B
are called curvature lines. Points r0 ∈ M where B(r0) is a multiple of the identity are called
umbilical and at such points curvature lines are not defined.

Consider an isolated umbilical point r0 ∈M . In a fixed neighborhood V ⊂M of r0, consider
an h-orthonormal frame {X1, X2}, and denote by B(r) = (bij(r)) the matrix of the shape
operator in this frame. Since B is self-adjoint with respect to h, we have b12 = b21. Now
consider the vector field on V given by

(1.3) B = (b11 − b22)X1 + 2b12X2.

It is easy to verify that r0 is an isolated zero of B and the index of B at r0 is twice the index of
the curvature lines at r0. We say that r0 is semi-homogeneous of degree k if B has zero (k−1)-jet
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and r0 is an isolated zero of the k-jet of B. We verify in section 3 that this definition does not
depend on the choice of the h-orthonormal frame {X1, X2}.

In this paper we prove a version of Loewner’s conjecture, which generalizes the well-known
result for euclidean normal vector fields ([6],[9]).

Theorem 1.1. Assume r0 is a semi-homogeneous umbilical point of a pair (f, ξ), where
f : M → R3 is an immersion with positive definite metric and ξ is an equiaffine transversal
vector field. Then the index of the curvature line foliation at r0 is at most 1.

Natural questions are whether or not the semi-homogeneous or the equiaffine conditions can
be dropped in Theorem 1.1:

Question 1: Assume r0 is an umbilical point of an equiaffine pair (f, ξ), not necessarily semi-
homogeneous. Is it still true that the index of the curvature line foliation at r0 is at most
1?

Question 2: Assume r0 is an umbilical point of a pair (f, ξ), not necessarily equiaffine. Is it
still true that the index of the curvature line foliation at r0 is at most 1?

Loewner’s type results always have consequences regarding Carathéodory’s type conjectures,
which states that a compact ovaloid should have at least 2 umbilical points. A related question
is whether or not there exists an ovaloid with only two Blaschke umbilical points. We show in
Section 5 that every compact rotational surface admit at least one umbilical parallel.

The paper is organized as follows: In Section 2, we discuss line congruences, which is related
but not an essential tool in the proof of Theorem 1.1. In Section 3 we describe the main tools
needed in the proof of Theorem 1.1, while in Section 4, we prove Theorem 1.1. In Section 5 ,we
discuss the corresponding Carathéodory’s type results.

We would like to thank the referee for several suggestions that improved the presentation of
this paper.

2. Line Congruences

The notion of line congruence is not needed for the proof of Theorem 1.1. Nevertheless, it is
instructive to describe the concepts involved in this theorem in terms of line congruences.

A 3-dimensional line congruence is a 2-dimensional family of lines in R3. Given a 3-dimensional
line congruence, consider smooth functions f, ξ : M → R3 such that, for each r ∈ M , f(r) is a
point of the line at r and ξ(r) is a non-zero vector in the direction of the line at r.

Principal lines of a congruence. Let r(t) be a curve on M . Then we set the induced 1-parameter
family of lines by f(t) = f(r(t)) and ξ(t) = ξ(r(t)). The ruled surface defined by this family is
developable if and only if

(2.1) [ξ, ft, ξt] = 0.

The solutions of Equation (2.1) are called the curvature lines of the congruence.
In a local coordinate system (u, v) for M , we can write Equation (2.1) as

(2.2) P

(
du

dt

)2

+ 2Q
du

dt

dv

dt
+R

(
dv

dt

)2

= 0,

where, denoting by [·, ·, ·] the determinant of 3 vectors,

P = [ξ, fu, ξu] , 2Q = [ξ, fv, ξu] + [ξ, fu, ξv] , R = [ξ, fv, ξv] .

Writing {
ξu = b11fu + b21fv + τ1ξ
ξv = b12fu + b22fv + τ2ξ

,
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Equation (2.2) becomes

b21

(
du

dt

)2

+ (b22 − b11)
du

dt

dv

dt
− b12

(
dv

dt

)2

= 0,

which implies that the curvature lines of the congruence are tangent to the eigenvectors of the
shape operator B defined by Equation (1.2). On the other hand, we remark that the curvature
lines of the congruence are independent of the choice of f or ξ.

Equiaffine vector fields. We say that ξ is equiaffine with respect to the reference surface f if
τ = 0, where τ is given by Equation (1.2).

Lemma 2.1. There exists a vector field ξ̃ = λξ such that the pair (f, ξ̃) is equiaffine if and only
if τ is exact.

Proof. Assume that τ = dµ and take ξ̃ = exp (−µ)ξ. Then

ξ̃∗X = exp (−µ)(ξ∗X − dµ(X)ξ) = −f∗(exp (−µ)BX),

thus proving that ξ̃ is equiaffine. Conversely, assume that ξ̃ = exp (−µ)ξ is equiaffine. Then the
above calculations show that τ = dµ, thus proving that τ is exact. □

We say that the pair (f, ξ) is exact when τ is exact. We have the following question:

Question 3: Given a line congruence (f, ξ), is there a reference surface f̃ = f + λξ such that

the pair (f̃ , ξ) is exact?

3. Main Tools

In this section we describe the main tools needed in the proof of Theorem 1.1.

3.1. Isothermal coordinates. Consider a convex immersion f : M → R3 together with an
equiaffine transversal vector field ξ, and let h denote the (positive definite) affine metric defined
by Equation (1.1). We say that (u, v) are isothermal coordinates on M if

h11 = h22 = ρ; h12 = 0.

If we change ξ, the metric h is multiplied by some scalar function and thus the isothermal
property is preserved. Moreover, it is well-known that any convex surface can be covered by
isothermal parameterizations ([7]). Let ν denote the co-normal vector field defined by

(3.1) ν · fu = ν · fv = 0, ν · ξ = 1.

Lemma 3.1. We can write

(3.2) ξ =
1

[ν, νu, νv]
νu × νv.

Moreover,

(3.3) νu · fu = νv · fv = −ρ, νu · fv = νv · fu = 0,

and

(3.4) fu =
ρ

[ν, νu, νv]
ν × νv, fv = − ρ

[ν, νu, νv]
ν × νu.

Finally

(3.5) [fu, fv, ξ] =
ρ2

[ν, νu, νv]
.
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Proof. From ξ equiaffine and ν · ξ = 1, we conclude (3.2). From h11 = ρ we obtain ν · fuu = ρ
and so νu · fu = −ρ. With a similar reasoning, we conclude (3.3). Observe that νv · fu = 0
and ν · fu = 0 to obtain the first of Equations (3.4). The second one is obtained similarly.
Equation (3.5) is obtained from Equations (3.4). □

Remark 3.2. In case ξ is Blaschke, [ν, νu, νv] = [fu, fv, ξ] = ρ and the above formulas become
much simpler (see [7, N4, p.208]).

Lemma 3.3. The shape operator is given by

B = −1

δ

[
νuu · ξ νuv · ξ
νuv · ξ νvv · ξ

]
,

where

(3.6) δ =
[fu, fv, ξ][ν, νu, νv]

ρ
.

Proof. Writing ξu = −b11fu − b21fv we obtain

−b11[fu, fv, ξ] = [ξu, fv, ξ] =
ρ

[ν, νu, νv]2
[νu, νv, νuu] =

ρ

[ν, νu, νv]
νuu · ξ,

which proves the formula for b11. The other formulas are obtained similarly. □

3.2. The vector field B. For an isolated umbilical point r0, let B = (bij) be the matrix of the
shape operator in an h-orthonormal frame {X1, X2} and consider the vector field B defined by
Equation (1.3).

The order of the umbilical point is the order of the first non-zero jet of B. We call an umbilical
point simple if it is of order 1. We say that an umbilical point r0 is semi-homogeneous of degree
k if it is an isolated zero of the first non-zero jet JkB of B.

Lemma 3.4. The above definition does not depend on the choice of the h-orthonormal frame
{X1, X2}.

Proof. If {X̃1, X̃2} is another h-orthonormal frame, we can write{
X̃1 = cos(θ)X1 − sin(θ)X2

X̃2 = sin(θ)X1 + cos(θ)X2.

Straightforward calculations show that{
b̃11 − b̃22 = cos(2θ)(b11 − b22)− sin(2θ)2b12
2b̃12 = sin(2θ)(b11 − b22) + cos(2θ)2b12,

and the same relation holds for the k-jet of B. Thus r0 is isolated for the k-jet of B if and only
if it is isolated for the k-jet of B̃. □

Consider now isothermal coordinates (u, v). Then we can write fu = ρX1, fv = ρX2, for some
h-orthonormal frame {X1, X2}. Since ξu = ρDX1ξ, ξv = ρDX2ξ, we conclude that the matrix of
the shape operator B in coordinates (u, v) is the same as in the frame {X1, X2}. Thus we can
use Lemma 3.4 also for the coordinate lines of an isothermal parameterization.

From now on we shall always be using an isothermal parameterization. In particular, b12 = b21.
The following lemma is well-known and relate the index of the curvature lines with the index of
B at an umbilical point.

Lemma 3.5. The index of the curvature lines of ξ at an umbilical point r0 = (u0, v0) is exactly
one half of the index of the vector field B.
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Proof. The equation of curvature lines is given by

(b11 − b22)dudv + b12(dv
2 − du2) = 0.

Writing du = dr cos(η), and dv = dr sin(η), we obtain

(b11 − b22) sin(2η)− 2b12 cos(2η) = 0,

which implies that B is a multiple of (cos(2η), sin(2η)). Thus the rotation of B is twice the
rotation [du : dv], which proves the lemma. □

3.3. The support function and the vector field P. Consider the support function
p :M → R defined by

p(u, v) = ν(u, v) · (f(u, v)− q0),

where q0 ∈ R3 is a fixed point. Observe that

pu = νu · (f − q0), pv = νv · (f − q0).

Differentiating we obtain

puu = νuu · (f − q0)− ρ; pvv = νvv · (f − q0)− ρ; puv = νuv · (f − q0).

It follows that

(3.7) puu − pvv = (νuu − νvv) · (f − q0); 2puv = 2νuv · (f − q0).

Denote

(3.8) P1 = puu − pvv, P2 = 2puv.

and let P be the the vector field whose components are P1 and P2.

3.4. Loewner’s conjecture for planar vector fields. Consider a function w : U ⊂ R2 → R
defined in a neighborhood U of (0, 0) and assume (0, 0) is an isolated zero of the vector field

W = ∂nw
∂z̄n . We are identifying here R2 with C, ∂

∂z̄ means 1
2

(
∂
∂u + i ∂

∂v

)
, and the domain of W in

C is identified with U ⊂ R2. Loewner’s conjecture states that the index of W is at most n.
This conjecture is proved in [9], but there are also some controversies concerning the proof.

Nevertheless, assuming that W is semi-homogeneous, i.e., (0, 0) is an isolated zero of its first
non-zero jet, then there are no doubts that Loewner’s conjecture holds ([6],[8],[9],[10]). Thus we
can state the following theorem, considering n = 2:

Theorem 3.6. Let w : U ⊂ R2 → R be a function defined in a neighborhood U of (0, 0) and
assume (0, 0) is an isolated zero of the semi-homogeneous vector field W = (wuu − wvv, 2wuv).
Then the index of W is at most 2.

4. Proof of Theorem 1.1

The idea to prove Theorem 1.1 is to apply the Theorem 3.6 to P defined by Equation (3.8)
and conclude results concerning B.
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4.1. Simple umbilical points. From now on we shall fix an isolated umbilical point
(u0, v0) = (0, 0) of an immersion f :M → R3 together with an equiaffine transversal vector field
ξ and isothermal coordinates (u, v). Denote f0 = f(0, 0), ξ0 = ξ(0, 0) and let q0 = f0 + λ−1

0 ξ0,
where

λ0 = b11(0, 0) = b22(0, 0).

Denote also δ0 = δ(0, 0), where δ is defined by Equation (3.6).
From Equations (3.7) and (3.8), we obtain

P(0, 0) = −λ−1
0 ((νuu − νvv) · ξ0, 2νuv · ξ0) .

Now Lemma 3.3 implies that

P(0, 0) = λ−1
0 δ0B(0, 0).

Since B(0, 0) = 0, we conclude that P(0, 0) = 0.

Lemma 4.1. We have that

(4.1) f(u, v) + λ−1
0 ξ(u, v) = f0 + λ−1

0 ξ0 +O(2),

where O(2) denotes terms of degree at least 2 in (u, v). Conversely, if equation (4.1) is satisfied,
then (0, 0) is an umbilical point and λ0 = b11(0, 0) = b22(0, 0).

Proof. The equation f(u, v) + λ−1
0 ξ(u, v) = f0 + λ−1

0 ξ0 holds up to order 1 if and only if

fu + λ−1
0 ξu = fv + λ−1

0 ξv = 0

at (0, 0), which is equivalent to say that (0, 0) is an umbilical point and

λ0 = b11(0, 0) = b22(0, 0).

□

Proposition 4.2. Let (0, 0) be an umbilical point and q0 = f0 + λ−1
0 ξ0. Then

J1P(0, 0) = λ−1
0 δ0J1B(0, 0),

where J1P and J1B denote the first jet of the vector fields P and B, respectively.

Proof. We shall verify the equality for the derivatives of Pi and Bi with respect to u and v. We
shall verify the equality for the derivatives of P1 and B1 with respect to u, the other 3 cases
being similar. Observe that

(P1)u = puuu − pvvu = (νuuu − νvvu) · (f − q0) + (νuu − νvv) · fu.

At (0, 0), fu = −λ−1
0 ξu and so

(P1)u = −λ−1
0 ((νuuu − νvvu) · ξ + (νuu − νvv) · ξu) .

On the other hand, since B1 = − 1
δ (νuu − νvv) · ξ, we have that

δ(B1)u + δuB1 = −(νuuu − νvvu) · ξ − (νuu − νvv) · ξu.

Thus, at (0, 0),

δ0(B1)u = λ0(P1)u,

thus proving the desired result. □
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4.2. Umbilical points of order k.

Lemma 4.3. Let (0, 0) be umbilical and q0 = f0 + λ−1
0 ξ0. Then (0, 0) is umbilical of order ≥ k

if and only if

(4.2) f(u, v) + λ−1
0 ξ(u, v) = q0 +O(k + 1).

Proof. Write

(4.3)
ξu = −b11fu − b21fv
ξv = −b12fu − b22fv

If the (k− 1)-jet of B at (0, 0) equals 0, differentiating equation (4.3) (k− 1) times we obtain
that, at (u0, v0), the k-jet of ξ equals −λ0 times the k-jet of f , thus proving formula (4.2).

Conversely, assume that equation (4.2) holds with k ≥ 2. Differentiating Equation (4.3) and
taking (u, v) = (0, 0), we obtain

(b11)ufu + (b21)ufv = 0, (b11)vfu + (b21)vfv = 0,

which implies that

(b11)u = (b21)u = (b11)v = (b21)v = 0.

Similarly, we can prove that

(b12)u = (b22)u = (b12)v = (b22)v = 0,

which implies that the 1-jet of B vanishes at (0, 0). To prove that the (k − 1)-jet of B vanishes
at (0, 0), one can proceed by induction. □

Proposition 4.4. At an umbilical point of order ≥ k,

(4.4) JkP = λ−1
0 δ0JkB,

where JkP and JkB denote the k-jets of P and B, respectively.

Proof. For k = 2, we must prove that the second derivatives of P and B are multiples at (0, 0).
Let us consider (P1)uu and (B1)uu, the other cases being similar. Observe that

(P1)uu = (νuuuu − νvvuu) · (f − q0) + 2(νuuu − νvvu) · fu + (νuu − νvv) · fuu.

At (u0, v0), by Lemma 4.3,

(P1)uu = −λ−1
0 ((νuuuu − νvvuu) · ξ + 2(νuuu − νvvu) · ξu + (νuu − νvv) · ξuu) .

On the other hand,

δ(B1)uu + 2δu(B1)u + δuuB1 = −(νuuuu − νvvuu) · ξ − 2(νuuu − νvvu) · ξu − (νuu − νvv) · ξuu.

At (0, 0),

δ0(B1)uu = λ0(P1)uu,

thus proving the claim. To prove Equation (4.4) for any k, one can proceed by induction. □
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4.3. Completing the proof.

Lemma 4.5. If (0, 0) is an umbilical point, semi-homogeneous of degree k, the index of B at
(0, 0) is the same index of JkB at (0, 0).

Proof. For ||(u, v)|| sufficiently small,

||B − JkB|| ≤
1

2
||JkB||,

which proves the lemma. □

We can now prove Theorem 1.1.

Proof. If (0, 0) is an isolated umbilical point, semi-homogeneous of degree k, Proposition 4.4
implies that the index of JkB at (u0, v0) is the same index of JkP. From the above lemma, they
are also equal to the index of B. By Theorem 3.6, any vector field of the form Pk has index ≤ 2.
By Lemma 3.5, the index of the curvature lines is at most 1. □

5. Carathéodory’s type Results and Questions

5.1. A Carathéodory’s type result. In the Euclidean case, Carathéodory’s conjecture states
that any compact surface homeomorphic to the sphere admits at least 2 umbilical points. This
conjecture is a consequence of Loewner’s conjecture, which states that the index of the Euclidean
curvature lines at umbilical points are at most 1.

In our case, Loewner’s type Theorem 1.1 implies the following result:

Corollary 5.1. Consider a convex centroaffine immersion f : M2 → R3, M2 compact, and
an equiaffine transversal vector field ξ. Assume that all umbilical points are semi-homogeneous.
Then there are at least 2 umbilical points.

Proof. Assuming all umbilical points are semi-homogeneous, their curvature lines indices are at
most 1. By the index theorem of Euler-Poincaré, the sum of the indices must be the Euler
characteristic of M , in this case 2 since f is convex. We conclude that there are at least 2
umbilical points. □

If Question 1 in the Introduction is answered positively, then we can drop the semi-homogeneous
condition in Corollary 5.1.

5.2. Rotational surfaces. Concerning Corollary 5.1, it is natural to ask whether or not there
exist compact surfaces in 3-space with only two umbilical points. If we are free to choose the
equiaffine transversal vector field ξ, then the answer is positive, since we can take ξ to be the
Euclidean unit normal and the surface to be a rotational ellipsoid. But what happens if we
choose ξ to be the Blaschke vector field? Are there compact surfaces with only two Blaschke
umbilical points?

To answer this question, it is natural to look at the rotational surfaces. But if we consider
rotational surfaces with the Blaschke transversal vector field, then there exists at least one
umbilical parallel. In this section we prove this surprising fact, and so the following question
remains open:

Question 4: Is there an ovaloid in 3-space with 2 umbilical points with respect to the Blaschke
transversal vector field?
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5.2.1. Shape operator of a rotation surface at the axis. Any rotation surface is the graph a
smooth function z of the form z = h(x2 + y2), for some smooth function h. We shall assume
that the linear part of h is non-zero so that the rotation surface becomes non-degenerate. Then,
by an affine change of variables, the 4-jet of z at (0, 0) is given by

z =
1

2
(x2 + y2) +

α

24

(
x2 + y2

)2
+O(6),

which implies that (0, 0) is umbilical with respect to the Blaschke affine normal. We conclude
that the axes points of a rotation surface are Blaschke umbilical.

5.2.2. Shape operator of a rotation surface outside the axis. Assume S is a smooth rotation
surface generated by the convex planar arc γ(t) = (x(t), y(t)), t ∈ [0, π], such that x(t) > 0 and
y′(t) > 0, for t ∈ (0, π). A parameterization of S is given by

ψ(t, θ) = (x(t) cos θ, x(t) sin θ, y(t)) .

To calculate the Blaschke shape operator, we calculate first the co-normal vector field ν and
the Blaschke metric h = (hij). Straightforward calculations show that

ν(t, θ) =
x(t)

ϕ(t)
(−y′(t) cos θ,−y′(t) sin θ, x′(t)) ,

h11 =
x(t)

ϕ(t)
, h12 = h21 = 0, h22 =

x(t)2y′(t)

ϕ(t)
,

where ϕ4(t) = x(t)3y′(t).

Lemma 5.2. The Blaschke affine normal vector field ξ can be written as

ξ = (a cos θ, a sin θ, b) ,

for certain a = a(t), b = b(t).

Proof. Observe that νθ · ξ = 0. The conditions ν · ξ = 1 and νs · ξ = 0 are given by{
−ay′ + bx′ = ϕ

x

−ay′′ + bx′′ = −
(

ϕ
x

)2 (
x
ϕ

)′
.

This system certainly has a solution ξ = (a, b). □

Write g = ϕ
x . Then {

−ay′ + bx′ = g
−ay′′ + bx′′ = g′ .

We conclude that a′y′ − b′x′ = 0, which implies that ξt =
b′

y′ψt. Since ξθ = a
xψθ, the parallels

and meridians are affine curvature lines. Moreover, a parallel is umbilical if and only if a
x = b′

y′ .

5.2.3. A useful parameterization. Any generator arc γ(t) = (x(t), y(t)) as above can be param-
eterized with y′(t) = x(t). In fact, take

t =

∫
y′(s)

x(s)
ds.

This parameterization simplifies a lot the calculations. In fact, assuming this parameteriza-
tion, we obtain g = 1 and a parallel is umbilical if and only if a = b′. Moreover

ξ = (a, b) =
1

∆
(x′′(t), y′′(t)) ,
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where ∆ = [γ′, γ′′] = (y′′)2−y′y′′′ which is positive, by hypothesis. Then a parallel t is umbilical
if and only if

y′′′

∆
=
y′′′

∆
− ∆′y′′

∆2
.

Thus if y′′(t) = 0, the parallel t is umbilical. Since y′′(0) = x′(0) > 0 and y′′(π) = x′(π) < 0,
there exists at least one t0 ∈ (0, π) such that y′′(t0) = 0. We conclude that there exists at least
one umbilical parallel t0 ∈ (0, π).

References

[1] M.Barajas, M.Craizer and R.A.Garcia: Affine curvature lines of surfaces in 3-space, published on-line, Results
in Mathematics, 75:32, (2020). DOI: 10.1007/s00025-020-1158-9

[2] Bruce, J. W., and Fidal, D. L. On binary differential equations and umbilics. Proceedings of the Royal

Society of Edinburgh 111A (1989), 147–168. DOI: 10.1017/s0308210500025087
[3] M.Craizer and R.A.Garcia: Centroaffine Duality and Loewner’s Conjecture, (2022). arχiv: 1811:07331v8

[4] Darboux, J. G. Sur la forme des lignes de courbure dans la voisinage d’un ombilic. Leçons sur la Théorie
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