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THE DELTA INVARIANT AND FIBERWISE NORMALIZATION FOR

FAMILIES OF ISOLATED NON-NORMAL SINGULARITIES

GERT-MARTIN GREUEL AND GERHARD PFISTER

Abstract. We prove the semicontinuity of the delta invariant in a family of schemes or ana-
lytic varieties with finitely many (not necessarily reduced) isolated non-normal singularities,

in particular for families of generically reduced curves. We define and use a modified delta

invariant for isolated non-normal singularities of any dimension that takes care of embedded
points. Our results generalize results by Teissier and Chiang-Hsieh–Lipman for families of

reduced curve singularities. The base ring for our families can be an arbitrary PID such that
our semicontinuity result provides possible improvements for algorithms to compute the genus

of a curve.

Introduction

The delta invariant, also called genus defect, is an important numerical invariant of a singular
reduced curve and is therefore often considered for algebraic curves over the complex numbers,
but also for curves over finite fields, e.g. in coding theory. The delta invariant was extended to
generically reduced complex analytic curves in [BG90] and it was shown that it can be used to
control the topology in a family of such curves by taking care of the influence of embedded points.
In [Gr17] the delta invariant was further extended to complex-analytic isolated non-normal
singularities of any dimension and its behavior was studied in connection with simultaneous
normalization.

The study of simultaneous normalization of deformations of a reduced curve singularity has
been initiated by Teissier in the 1970’s in the complex analytic setting. The main result was,
that a flat family of reduced curve singularities over a normal base space admits a simultaneous
normalization if and only if the delta invariant of the curve singularities is locally constant. This
was further carried on by Chiang-Hsieh and Lipman [CL06] in the algebraic setting for families
of reduced curves defined over a perfect field, clarifying some points in the proof given in [Te78].
In [CL06] the authors get also intermediate results for families of higher-dimensional reduced
and pure-dimensional varieties, but the δ-constant criterion for simultaneous normalization is
only proved for families of reduced curves (and for projective morphisms with equidimensional
reduced fibers of arbitrary dimension, replacing the δ-invariant by the Hilbert polynomial).

The results by Chiang-Hsieh and Lipman motivated us to reconsider the δ-constant criterion
for families of schemes with finitely many isolated (not necessarily reduced) non-normal singular-
ities, including the case of generically reduced curves, defined over an arbitrary field. We define
and use in the algebraic setting a modified delta invariant for an isolated non-normal singularity
(INNS) of any dimension analogous to the complex analytic case, which coincides with the clas-
sical δ-invariant for reduced singularities. One of our main results are semicontinuity theorems
for this new δ-invariant for families of schemes parametrized by the spectrum of a principal ideal
domain (Theorem 22 and its corollaries in arbitrary characteristic, Theorem 35 in characteristic

2020 Mathematics Subject Classification. 13B22, 13B40, 14B05, 14B07.
Key words and phrases. Isolated non-normal singularity, delta invariant, semicontinuity, generically reduced

curves, simultaneous normalization.

http://dx.doi.org/10.5427/jsing.2022.25j


174 GERT-MARTIN GREUEL AND GERHARD PFISTER

0). We like to emphasize that the semicontinuity of δ holds for fibers over closed and non-closed
points in a neighbourhood of a given point (in contrast to e.g. [CL06, Proposition 3.3]).

We apply the semicontinuity to prove a δ-constant criterion for fiberwise resp. simultaneous
normalization (the two notions coincide e.g. in characteristic 0) of a family of INNSs. This
means that a family of affine Noetherian schemes over the spectrum of an arbitrary PID with
fibers having only finitely many isolated non-normal singularities and with singular locus finite
over the base admits a simultaneous normalization if and only if the δ-invariant of the fibers is
constant (for a precise formulation see Theorem 33 and Corollary 34).

Although we use ideas from [CL06], the proofs of our main results are quite different. In
[CL06, Theorem 4.1] it is assumed (for the δ-constant criterion for simultaneous normalization
of reduced curves) that the fibers are reduced and pure-dimensional and that the base scheme is
the spectrum of a complete, or Henselian, or analytic normal local ring. We do neither assume
that the fibers are reduced nor that they are pure-dimensional. Our restriction (in the more
general situation of families of INNSs) is that the base scheme is the spectrum of a PID. We
conjecture that the results hold also for normal base spaces of any dimension, but the non-
reducedness of the fibers provides essential technical difficulties.

Since our base rings include Z and k[t], k any field, we just mention in passing that our results
have interesting computational applications. E.g., if an isolated non-normal singularity is defined
over Z resp. over k[t], the computation of the δ-invariant over Q resp. k(t) can be estimated
and speeded up by the (much cheaper) computation modulo any (not only lucky) prime p ∈ Z
resp. modulo ⟨t − a⟩, a any element in k. This applies of course also to δ for reduced curves
and hence can be used to improve algorithms to compute the genus of a curve. We refer to
[GP21, Remark 24], where we considered δ for families of parametrized curve singularities and
to [GPS21] for an algorithm, showing that the semicontinuity can lead to an impressive speed
up of the calculations.

That we allow non-reduced singularities in the fibers is not an artificial assumption but occurs
naturally in connetion with families of parametrized curves. Consider e.g. an analytic morphism
ϕ : C × S → Cn × S over S such ϕs : C → Cn is the parametrization of a reduced curve Cs in
Cn for s ∈ S. Let X = ϕ(C × S) be closed in Cn × S and flat over S. Then the fibers Xs of
X → S have in general non reduced singularities (the reduction of Xs coincides with Cs) and
our results apply to this situation.

All rings in this paper are associative, commutative and with 1, ring maps map 1 to 1, and
a ring map of local rings maps the maximal ideal to the maximal ideal. Moreover, we assume
that all rings, modules, and schemes are Noetherian, without always explicitly stating this.

Notation: A,R denote rings, k an arbitrary field, dim the Krull dimension and dimk the
k-vector space dimension.

If p1, ..., pr are the minimal prime ideals of R, we denote by pi the intersection1 of the pj with
dimR/pj = i and by p>i the intersection of the pj with dimR/pj > i. With X = SpecR and
Xred = SpecRred, where Rred denotes the reduction of R, we define for i ≥ 0:

Ri := R/pi, Xi := SpecRi,
R>i := R/p>i, X>i := SpecR>i.

Note that Ri and R>i are reduced and thus Xi and X>i are reduced subschemes of X. In
particular, X0 is a finite set of reduced, isolated points of Xred and X>0 = Xred iff X has no
isolated points.

1The empty intersection is the whole ring R. E.g., if no minimal primes pj with dimR/pj = i exist then

Ri = 0 and Xi = ∅.
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We set
ri(X) := ♯{irreducible componentes of Xi},

which is the number of i-dimensional irreducible components of X 2.
If φ : A → R is a ring map, p a prime ideal of A and k(p) = Ap/pAp = Q(A/p) the residue

field of A at p, we set for an R-module M

M(p) := Mp ⊗Ap
k(p) = M ⊗A k(p)

and call it the fiber of M over p; R(p) denotes the fiber of φ over p.
Let f = Specφ : X = SpecR → SpecA = S be the induced map of schemes and t ∈ S the

point corresponding to p. Then

Xt := f−1(t) := SpecR(p)

denotes the fiber of f over t. We set f i := f |Xi resp. f>i := f |X>i and (Xi)t := (f i)−1(t)
resp. (X>i)t := (f>i)−1(t)

Acknowledgement: We thank the reviewer for useful comments and Dmitry Kerner for his
questions that helped improve the presentation.

1. Delta for an Isolated Non-Normal Singularity

Let R be a reduced ring. Then Q(R), the total quotient ring of R, is a direct product of fields.
If p1, ..., pr are the minimal primes of R then Q(R) is the direct product of the fields Q(R/pj).

R denotes the integral closure of R in Q(R). R or, more precisely, the natural inclusion R ↪→ R
is called the normalization of R. R is the direct product of the integral closures of R/pj in
Q(R/pj) (cf. [Stack, Lemma 28.52.3], tag 035P).

If R is not reduced, let π : R ↠ Rred be the natural projection and nil(R) := ker(π) the ideal
of nilpotent elements of R. We denote by νred : Rred ↪→ R the normalization of Rred and call R
or the composition

ν := νred ◦ π : R ↠ Rred ↪→ R

the normalization of R. R is called normal if ν : R → R is an isomorphism. This is equivalent
to Rp being a normal domain for every prime ideal p ⊂ R. We often write R/Rred in place of

R/ν(R).
For an arbitrary R-module let AnnR(M) = {g ∈ R | gM = 0} be the annihilator ideal of M

in R.

Definition 1. Let R be a ring. We define

(1) CR := AnnR(R/Rred) ⊂ R, the conductor ideal of R,

C̃R := CR ∩AnnR(nil(R)) ⊂ R, the extended conductor ideal of R,
CR := SpecR/CR the conductor scheme of R and‹CR := SpecR/C̃R the extended conductor scheme of R.

(2) The non-normal locus of R is denoted as

NNor(R) := {p ∈ SpecR |Rp is not normal}.
It contains the non-reduced locus

NRed(R) := {p ∈ SpecR |Rp is not reduced}.

Thus, if R is normal, then CR = C̃R = R and CR, ‹CR are the empty schemes.

Remark 2.

2By definition, the irreducible components of X are the reduced schemes SpecR/pj , j = 1, ..., r.
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(1) CRred = AnnRred(R/Rred) = π(CR) is the conductor ideal of R
red. We have nil(R) ⊂ CR

since nil(R) = ker(ν), and π induces an isomorphism R/CR

∼=−→ Rred/CRred .

(2) We have always NNor(R) ⊂ V (C̃R) but equality may not hold and NNor(R) may not be
closed in SpecR. However, if R/Rred is (module-) finite over R (equivalently, R is finite
over R), then SuppR(R/Rred) coincides with V (CR) and is therefore closed in SpecR.

(3) We get: If R is finite over R (for examples see Remark 15), then the non-normal locus
of R

NNor(R) = NRed(R) ∪NNor(Rred)

= V (AnnR(nil(R))) ∪ V (CR)

= V (C̃R).

is the zero-locus of the extended conductor ideal C̃R and hence closed in SpecR.

Definition 3. We say that p ∈ SpecR is an isolated non-normal point of R, or that R has an
isolated non-normal singularity at p, if p is an isolated point of SpecR or an isolated point of
NNor(R). We also say that p is an INNS (of R or of SpecR). Furthermore we set

INNS(R) := {p ∈ SpecR | p is an INNS of R},
the locus of isolated non-normal points of R.

We note that p is an INNS if either Rp is not normal (and there is an open neighbourhood U
of p with Rq normal for all q ∈ U ∖ {p}), or Rp is normal and p is an isolated reduced point of
SpecR. We include isolated reduced points in our definition of INNS, since these play a special
role in our definition of the delta invariant (Definition 6 and Remark 7). Isolated singularities
are INNS, with typical examples (generically) reduced curves.

Remark 4. Using the notations from the introduction we have

V (p0) = {p ∈ SpecR | p is a reduced isolated point of SpecR}.

If R is finite over R, then p ∈ INNS(R) iff p ∈ V (p0) or p is an isolated point of V (C̃R). Therefore
every p ∈ INNS(R) is a closed point of SpecR, i.e. a maximal ideal.

Lemma 5. Let R be finite over R. Then INNS(R) is a finite set if and only if R/C̃R is an
Artinian R-module.

Proof. V (p0) is finite and we have NNor(R) = V (C̃R) = SuppR(R/C̃R). The result follows since

R/C̃R is Artinian ⇔ SpecR/C̃R is a finite set ([AM69, Prop. 8.3]). □

We are now going to define the delta and the epsilon invariant of a local ring. Let m ∈ SpecR
be a maximal ideal of R and M an R-module. The 0-th local cohomology group of M is the
submodule

H0
m(M) = {x ∈ M | mkx = 0 for some k ≥ 0}.

Since M is Noetherian, H0
m(M) is Noetherian too and is annihilated by some power of m; hence

H0
m(M) has finite length, i.e. is Artinian.

Definition 6. Let (R,m) be a local ring with normalization R, k a field, and k → R a ring
map. We define:

(i) the epsilon invariant of R (w.r.t. k),

εk(R) := dimkH
0
m(R),
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(ii) the delta invariant of R (w.r.t. k),

δk(R) := dimkR/Rred − εk(R),

(iii) the (multiplicity of the) conductor of R (w.r.t. k)

ck(R) := dimkR/CRred − εk(R).

Hence, if R is reduced and dimR > 0 then εk(R) = 0 and δk(R) = dimkR/R, which is the
usual definition of δk.

Remark 7. Let K = R/m denote the residue field of the local ring (R,m) and assume that
dimkK < ∞.

(1) εk(R) is always finite while δk(R) and ck(R) may be infinite. If R is an INNS with R
finite over R, then δk(R) and ck(R) are also finite (Lemma 10).

(2) If dimR = 0, then R = Rred = K, nil(R) = m and H0
m(R) = R. We get

δk(R) = ck(R) = −εk(R) = −dimkR = −dimk nil(R)− dimkK < 0.
In particular, δ and ε are never 0 and δk(R) = −εk(R) = −dimkK if R is a reduced
(hence normal) isolated point.

(3) Let dimR > 0 and let R be an INNS with R finite over R. Since Rp is reduced for
p ∈ U ∖ m, U some open neighbourhood of m in SpecR, we have nil(R) = H0

m(R) and
εk(R) = dimk nil(R).

(4) Let dimR > 0. If R is normal then δk(R) = ck(R) = εk(R) = 0. If R is reduced, then R
is normal ⇐⇒ δk(R) = 0 ⇐⇒ ck(R) = 0 (for the last equivalence see Lemma 10(2)).
But if R is not reduced, then δk(R) = 0 may happen for non-normal R (see Example 8
(3)).

Example 8. (1) The ideal I = ⟨x⟩ ∩ ⟨x2, y2, xy⟩ = ⟨x2, xy⟩ ⊂ k[[x, y]] defines a line with
embedded component. With R = k[[x, y]]/I we get δk(R

red) = 0 and εk(R) = 1, hence
δk(R) = −1 and ck(R) = −1.

(2) The ideal

I = ⟨x3y + x2y2, x2y2 + xy3⟩ = ⟨x+ y⟩ ∩ ⟨x⟩ ∩ ⟨y⟩ ∩ ⟨x2, y3⟩ ⊂ k[[x, y]],

defines 3 lines with an embedded component at 0. For R = k[[x, y]]/I, we have

δk(R
red) = 3 and εk(R) = dimk

√
I/I = 1 3 and hence δk(R) = 2. Since Rred is a

reduced plane curve singularity, we get

ck(R
red) = 2δk(R

red) = 6

and ck(R) = ck(R
red)− εk(R) = 5.

(3) I = ⟨z, x2 − y3⟩ ∩ ⟨x, y, z2⟩, R = k[[x, y]]/I, defines a cusp in the (x, y)-plane and
an embedded point in the z-direction. Then δk(R

red) = 1 and εk(R) = 1 and hence
δk(R) = 0.

Lemma 9. Let (R,m) be a local ring, K = R/m, k → R a ring map, and M ̸= 0 a finitely
generated R-module. Then dimkM < ∞ ⇔ M is Artinian and dimkK < ∞.

Proof. If dimkM < ∞ then M is Artinian since it satisfies obviously the descending chain
condition. By Nakayama’s lemma, M/mM is a finite-dimensional K-vector space ̸= 0. We have
dimkK ≤ dimkM/mM ≤ dimkM < ∞. Conversely, if M Artinian then mnM = 0 for some
n. The K-vector space mkM/mk+1M has finite K-dimension, hence finite k-dimension since
dimkK < ∞. Thus dimkM < ∞. □

3 We compute ε and δ with Singular [DGPS]: codim computes dimk nil(R) = dimk

√
I/I and the procedure

normal(..,"wd") computes δk(R
red); the number of isolated points of SpecR can be determined with a primary

decomposition of I.



178 GERT-MARTIN GREUEL AND GERHARD PFISTER

Lemma 10. Let (R,m,K) be a local ring with normalization R finite over R.

(1) The following are equivalent:
(i) m is an INNS or R is normal;

(ii) R/C̃R is an Artinian R-module;
(iii) R/CRred and nil(R) are Artinian R-modules;
(iv) R/Rred and nil(R) are Artinian R-modules;

(2) Let k be a field and k→ R a ring map. Then the following are equivalent:
(i) m is an INNS or R is normal, and dimkK < ∞;

(ii) dimk(R/C̃R) is finite and dimkK < ∞;
(iii) ck(R

red) and εk(R) are finite;
(iv) δk(R

red) and εk(R) are finite;
If any of these conditions hold, ck(R) and δk(R) are finite. We always have the equality

ck(R) = δk(R) + dimk(R/CR),

with ck(R) being finite iff δk(R) and dimk(R/CR) are finite.

Proof. Note first that R is normal ⇐⇒

R/C̃R = 0 ⇐⇒ R/CRred = nil(R) = 0 ⇐⇒ R/Rred = nil(R) = 0.

Since the modules in the above row are finitely generated, they vanish iff their K-dimension
vanishes. Furthermore εk(R) < ∞ ⇐⇒ dimkK < ∞.

(1) It is well known that a finitely generated R-module M ̸= 0 is Artinian ⇔ mkM = 0 for
some k > 0 ⇔ dimM = 0 ⇔ SuppR(M) = {m}. Now (1) follows from

NNor(R) = SuppR(R/C̃R) = SuppR(nil(R)) ∪ SuppR(R/Rred),

where the sets are empty iff R is normal.
(2) The equivalence of (i) - (iv) follows from (1) for k = K, noting that εk(R) = dimk nil(R) if

dim(R) > 0 and dimk nil(R) = εk(R)−1 if dim(R) = 0. Together with Lemma 9 the equivalence
follows for arbitrary k.

The exact sequence

0 → Rred/CRred → R/CRred → R/Rred → 0

implies ck(R
red) = δk(R

red) + dimk(R
red/CRred) and hence ck(R) = δk(R) + dimk(R/CR) by

definition of ck and δk. □

Now let R be a not necessarily local ring with R finite over R. Since C̃Rp = (C̃R)p it follows

from Lemma 5 and 10 that R has only finitely many non-normal points ⇐⇒ R/C̃R is Artinian.

If R is a k-algebra then dimk(R/C̃R) < ∞ ⇐⇒ NNor(R) is finite and dimk k(p) < ∞ for all
p ∈ NNor(R) and this implies the finiteness of δ, ε and c ad p.

Definition 11. Let R be a k-algebra with normalization R finite over R. Assume that R has
only finitely many isolated non-normal points and that dimk k(p) < ∞ for all p ∈ INNS(R). We
define

δk(R) :=
∑

p∈ INNS(R)

δk(Rp),

εk(R) :=
∑

p εk(Rp) and ck(R) :=
∑

p ck(Rp) (p runs through INNS(R)), which are all finite.

Note that every isolated point of SpecR (reduced or not) counts in the above sum, but
δk(Rp) = 0 may happen for p ∈ INNS(R) if dim(Rp) > 0.
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Example 12. Let RC = C[x, y]/I, I = ⟨y2 − 2x2⟩ ∩ ⟨y − x2⟩. V (I) consists of two straight

lines and a parabola meeting in (0, 0) and in (±
√
2, 2). The three INNS correspond to the

maximal ideals p,±q. p is a triple point with δC(RC,p) = 3, while ±q are ordinary nodes with
δC(RC,±q) = 1 each, hence δC(RC) = 5.

Let RQ = Q[x, y]/I, with I as above. Then RQ has (in SpecRQ) two INNS, at the maximal

ideals p = ⟨x, y⟩ and q = ⟨x2 − 2, y− 2⟩, with k(p) = Q and k(q) = Q(
√
2). We get δQ(RQ,p) = 3

and δQ(RQ,q) = 2, hence δQ(RQ) = 5. The equality δQ(RQ) = δC(RC) is a general fact, since 4

RC = RQ ⊗Q C.

The following interpretation of δ as an Euler characteristic is useful. Using that

Rred = R0 ⊕R>0, R = R
0 ⊕R

>0
, and R0 = R

0
,

we get

εk(R) = dimkKer(R → R) + dimk(R0),

= dimkKer(R → R
>0

)

δk(R) = dimkR
>0

/R>0 − εk(R)

= dimk Coker(R → R
>0

)− dimkKer(R → R
>0

).

Lemma 13. With the assumptions of Definition 11 consider the 2–term complex with R in
degree 0,

R• : 0 → R → R
>0 → 0.

Then

δk(R) = −χ
k
(R•),

where χ
k
(L•) :=

∑
i(−1)i dimkH

i(L•) for a complex L• of k-modules with finite-dimensional
cohomology.

The following technical lemma compares δ and ε of R with that of a finite modification of
R whose positive-dimensional part is a partial normalization of R>0. It is a key lemma for the
semicontinuity of δ.

Lemma 14. Let R be a k-algebra with R finite over R, having only finitely many isolated non-
normal singularities, with residue fields finite over k. Consider a finite morphism of k-algebras

µ : R → R̃. Let N ⊂ SpecR be a finite set of closed points with residue fields finite over k, such
that Specµ is an isomorphism over SpecR∖N .

Then the positive-dimensional parts R>0 and R̃>0 have the same normalization and µ satisfies

dimk Coker(µ)− dimkKer(µ) = δk(R)− δk(R̃)

= εk(R̃)− εk(R) + dimkCoker(µ
>0)

with µ>0 : R>0 → R̃>0 the induced map. µ>0 is finite and injective and a partial normalization5

of the reduced positive-dimensional part of R 6 and all numbers are finite.

4Let B be a k-algebra and K a separable field extension of k then B ⊗k K = B ⊗k K ([Stack], Lemma

32.27.4, tag 0C3N) and hence δK(B ⊗k K) = δk(B).
5Let ν : R → R be the normalization of R. A partial normalization of R is a birational morphism µ : R → ‹R

such that ν = ν̃ ◦ µ : R → ‹R → R, with ν̃ the normalization of ‹R.
6 In the case R>0 = 0, i.e. X>0 = ∅, the statements here and in the following are to be interpreted accordingly,

e.g. with δk(R
>0) = 0 and εk(R

>0) = 0.
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Proof. By assumption R has only finitely many non-normal singularities with δk(R) and εk(R)
finite (Lemma 10). Since µ is an isomorphism outside finitely many closed points, Ker(µ) and
Coker(µ) are Artinian. Then the kernel and cokernel of µ and of µ>0 are finite over k (Lemma 9).

We have Spec R̃red = Spec R̃>0 ∪ {finitely many isolated points} and the restriction of µ

induces a birational 7 morphism R>0 → R̃>0, since it is an isomorphism outside finitely many

closed points. Let ν>0 : R>0 → R
>0

be the normalization of R>0. By [Stack, Lemma 28.52.5

(3), tag 035Q] ν>0 factors as ν>0 = ν̃ ◦ µ>0 : R>0 → R̃>0 → R
>0

with ν̃ : R̃>0 → R
>0

the

normalization of R̃>0 and ν̃ finite. Hence µ>0 is a partial normalization. It is finite since µ is
finite and injective since R>0 is reduced.

Now consider the 2–term complexes (with R resp. R̃ in degree 0)

R• : 0 → R → R
>0 → 0 ,

R̃• : 0 → R̃ → R
>0 → 0

and the morphism of complexes µ• : R• → R̃• with µ0 = µ and the identity in degree 1. Let K•

resp. C• be the 1–term complexes Ker(µ) resp. Coker(µ), concentrated in degree 0. Then we
have the exact sequence of complexes

0 → K• → R• → R̃• → C• → 0 .

Taking Euler characteristics we get (by Lemma 13)

dimk Coker(µ)− dimkKer(µ) = χ
k
(R̃•)− χ

k
(R•) = δk(R)− δk(R̃)

showing the first equality. Since δk(R) = δk(R
>0)− εk(R) we get

δk(R)− δk(R̃) = εk(R̃)− εk(R) + δk(R
>0)− δk(R̃

>0).

From this and from the inclusions R>0 ↪→ R̃>0 ↪→ R
>0

the second equality follows. □

Remark 15. (1) For all results of this paper we have to assume that R is (module-) finite
over R. Integral domains that satisfy this conditions are called N-1 rings. An N-2 ring
(or Japanese ring) is an integral domain R such for every finite field extension L of Q(R)
the integral closure of R in L is finite over R. R is a Nagata ring if R is Noetherian and
for every prime ideal p the ring R/p is N-2 (see [Stack, Lemma 10.157.2, tag 03GH]).
Hence R is finite over R if R is Nagata.

(2) R is Nagata iff (cf. [CL06, 1.4.3])

(a) for every maximal ideal n of R the canonical map Rn → R̂n from the local ring Rn

to its completion is reduced (flat with reduced fibers) and
(b) for every reduced finitely generated R-algebra R′ the set of normal points is open
and dense in SpecR′.

Condition (b) is implied by (a) if R is semi-local. For further properties of Nagata
rings we refer to [Stack, Section 10.157, tag 032E].

(3) Examples of Nagata rings are:
(a) fields, Z, complete local Noetherian rings,

7A morphism of schemes is birational if it is a bijection between the generic points and an isomorphism of
the corresponding local rings. A morphism of rings is birational if this holds for the corresponding morphism of

schemes.
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(b) Dedekind domains with perfect8 fraction field9,
(c) finite type ring extensions of any of the above,

(for (a) (b) (c) see [Stack, Proposition 10.157.16, tag 0335]),
(d) quasi-excellent, in particular excellent rings (e.g. analytic local rings), ([Stack,

Lemma 15.51.5, tag 07QV]),
(e) localizations of a Nagata ring ([Stack, Lemma 10.157.6, tag 032U]),
(f) A-algebras (essentially) of finite type over a Nagata ring A ([Stack, Proposition

10.157.16, tag 0335]),
(g) A[[x1, ..., xn]] is Nagata if A is Nagata, ([KS19, Appendix A, Property PSEP]).
A scheme X is called Nagata if for every x ∈ X there exists an affine open neighbourhood
U ⊂ X of x such that the ring OX(U) is Nagata. Note that there are discrete valuation
rings that are not Nagata ([Stack, Example 10.157.17, tag 09E1]).

2. Semicontinuity of the Delta Invariant

We consider now families of isolated non-normal singularities over a principal ideal domain.
Recall that a principal ideal domain A is a regular 1-dimensional domain with Ap a discrete
valuation ring for p ∈ SpecA and with p a maximal ideal for p ̸= ⟨0⟩. For us the most important
examples are Z and k[t]. The following Proposition 16 is fundamental for the semicontinuity
results of this paper.

Proposition 16. Let φ : A → R be a flat morphism of rings with A a principal ideal domain

and µ : R → R̃ a finite morphism of A-algebras. Assume that

(1) the composition φ̃ := µ ◦ φ : A → R̃ is flat,
(2) Ker(µ) and Coker(µ) are finite over A,

(3) the normalization R(q) is finite over R(q) and the residue fields at the non-normal points
of R(q) are finite over k(q) for q ∈ Im(Specφ).

Then, for p ∈ Im(Specφ) there exists an open neighborhood U ⊂ SpecA of p such that for
q ∈ U ∩ Im(Specφ) the following holds:

(i) δk(p)(R(p))− δk(q)(R(q)) = δk(p)(R̃(p))− δk(q)(R̃(q)).

(ii) εk(p)(R(p))− εk(q)(R(q)) = εk(p)(R̃(p))− εk(q)(R̃(q))
+dimk(p) Coker(µ(p)

>0)− dimk(q) Coker(µ(q)
>0).

(iii) If Spec R̃1 ∩ Spec R̃>1 = ∅ (e.g. if R̃ = R or R̃1 = 0), then

εk(p)(R(p))− εk(q)(R(q)) = εk(p)(R̃(p))− εk(q)(R̃(q))

+dimk(p)(R̃
>1/µ(R>1))⊗A k(p)− dimk(q)(R̃

>1/µ(R>1))⊗A k(q)

≥ εk(p)(R̃(p))− εk(q)(R̃(q)).

(iv) If Ker(µ) = 0 then Ker(µ(q) : R(q) → R̃(q)) = 0 for q ̸= p.

Here R̃(q) = R̃⊗Ak(q) and µ(q)>0 : R(q)>0 → R̃(p)>0 is the induced map of positive-dimensional
parts, which is a partial normalization of R(q)>0.

Proof. We set

N : = Ker(µ : R → R̃),

M : = Coker(µ : R → R̃).

8A field k is perfect if k is of characteristic 0 or of characteristic p > 0 and every element has a p-th root (e.g.
if k is finite).

9This statement is formulated in [Stack] only for Dedekind domains with fraction fields of characteristic 0,
but the proof works for perfect fields of positive characteristic as well.



182 GERT-MARTIN GREUEL AND GERHARD PFISTER

Both R-modules are finitely generated A-modules by assumption and hence N(q) = N ⊗A k(q)
and M(q) = M⊗A k(q) are finite-dimensional vector spaces over k(q) for q ∈ SpecA. Then they
are Artinian R(q)-modules with

N(q) := SuppR(q) N(q) ∪ SuppR(q) M(q)

a finite set of closed points of R(q). The set N := SuppR N ∪ SuppR M is closed in SpecR with

N(q) = {n ∈ N |n ∩ A = q} = N ∩ SpecR(q). Since Specµ : Spec R̃ ∖ µ−1(N) → SpecR ∖ N

is an isomorphism, the fiber map Specµ(q) : Spec R̃(q) → SpecR(q) is an isomorphism over
SpecR(q) ∖ N(q) with µ(q)−1(N(q)) a finite set of closed points [Stack, Lemma 36.39.1.,tag
02LS] (since µ and hence µ(q) is finite). It follows that the assumptions of Lemma 14 are

satisfied for µ(q) : R(q) → R̃(q) and k = k(q). In particular, µ(q) : R(q)>0 → R̃(q)>0 is a partial
normalization of R(q)>0.

Let q ∈ Im(Specφ) be non-zero. Since A is principal, q is a maximal ideal, generated by one

element tq ∈ A. We denote the image of tq in R resp. R̃ by fq resp. f̃q, which are non-zero

divisors since R and R̃ are flat over A. Consider the commutative diagram

0 // R

µ

��

fq
// R //

µ

��

R(q) //

µ(q)
��

// 0

0 // R̃
f̃q
// R̃ // R̃(q) // 0,

with exact rows. Since A is a principal ideal domain we have a decomposition

M = F ⊕ T

with F a free A–module and T an A–torsion submodule concentrated on finitely many maximal
ideals in A. N is a free A-module (since it is torsion free as a submodule of the flat, hence torsion
free A-module R). Since F and N are free, they are of constant rank m and n respectively and
we get for every q ∈ Im(Specφ),

m = dimk(q) F(q), n = dimk(q) N(q).

Now fix a ⟨0⟩ ≠ p ∈ Im(Specφ). There exists an open neighbourhood U of p in SpecA such
that Tq = 0 for q ∈ U ∖ {p} and hence dimk(p) Tp < ∞. The snake lemma, applied to the
diagram above, gives for q ∈ U the exact sequence

0 → N
fq−→ N → Ker(µ(q)) → M

f̃q−→ M → Coker(µ(q)) → 0,

and from this we get

0 → N(q) → Ker(µ(q)) → Ker(f̃q) → 0,

0 → Ker(f̃q) → F ⊕ T
f̃q−→ F ⊕ T → Coker(µ(q)) → 0 .

f̃q respects the decomposition into free and torsion part, with

Ker(f̃q|F) = 0 and Coker(f̃q|F) = F(q).

Since T is finite-dimensional, kernel and cokernel of f̃q : T → T have the same dimension for
each q ∈ U (being 0 for q ̸= p).

If N = 0 then Ker(µ(q)) = Ker(f̃q) and = 0 for q ̸= p since Tq = 0 and statement (iv) follows.
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By Lemma 14 Coker(µ(q)) and Ker(µ(q)) are finite-dimensional over k(q) and we get

m = dimk(q) Coker(µ(q))− dimk(q) Ker(f̃q)
= dimk(q) Coker(µ(q))− dimk(q) Ker(µ(q)) + n.

It follows that dimk(q) Coker(µ(q))−dimk(q) Ker(µ(q)) = m−n is independent q ∈ U ∖ ⟨0⟩. The
same holds for q = ⟨0⟩ since T(q) = 0 and hence Coker(µ(q)) = F(q) and Ker(µ(q)) = N(q).
Lemma 14 implies now statement (i) and (ii).

To prove (iii), assume that Spec R̃1 ∩ Spec R̃>1 = ∅. Then R̃(p)0 = (R̃1)(p) and

R̃(p)>0 = (R̃>1)(p) for p ∈ Im(Specφ) (φ is flat) and Coker(µ(p)>0) = (R̃>1/µ(R>1))⊗A k(p).

By assumption R̃/µ(R) is a finite A-module and hence also R̃>1/µ(R>1). Thus

dimk(p)(R̃
>1/µ(R>1))⊗ k(p)

is semicontinuous on SpecA ([GP20, Lemma 1]), which proves

dimk(p) Coker(µ(p)
>0) ≥ dimk(q) Coker(µ(q)

>0)

and hence (iii). We notice, that if R̃>1 = 0 the proof gives

εk(p)(R(p))− εk(q)(R(q)) = εk(p)(R̃(p))− εk(q)(R̃(q)).

□

Lemma 17. Let φ : A → R be a morphism of rings with A a principal ideal domain. Let the

normalization ν : R → R be finite and µ : R → R̃ be a finite morphism, which is a partial
normalization of R.

(1) Let φ be flat.
(i) Let Q be the (non-empty) intersection of some associated primes of R and set

R′ := R/Q. Then the induced map φ′ : A → R′ is flat.
In particular, φred : A → Rred is flat.

(ii) The map φ̃ = µ◦φ : A → R̃ is flat if R̃ is reduced. In particular, φ = ν ◦φ : A → R
is flat.

(2) Let R and R̃ be reduced. Then φ is flat ⇐⇒ φ̃ is flat.
(3) Let n ∈ SpecR, p = n ∩A and φ : Ap → Rn flat.

(i) If Rn(p) = Rn ⊗Ap
k(p) is reduced, then Rn is reduced.

(ii) If dimRn ≥ 2 and Rn(p) reduced, then depth(Rn) ≥ 2 and r1(Rn) = 0 (i.e., no
1-dimensional irreducible component of SpecR passes through n).

(iii) If dimRn ≥ 2 and Rn(p) an INNS then: Rn(p) is reduced ⇐⇒ depth(Rn) ≥ 2.
(4) Let φ be flat and dimR/n ≥ 2 for every minimal prime n of R. Assume that R(p)

has only isolated non-normal singularities for p ∈ Im(Specφ). Then the following are
equivalent:
(i) R is reduced,
(ii) for each p ∈ Im(Specφ), R(p) is reduced at all normal closed points of R.

Proof. Since A is a PID, φ is flat ⇐⇒ φ(a) is a non-zero divisor (n.z.d.) in R for each a ̸= 0
in A ⇐⇒ φ(a) is not contained in any associated prime of R.

(1) The above characterization implies (i). To see (ii), let ν = ν̃ ◦ µ : R → R̃ → R, with

ν̃ the normalization of R̃. Consider first the case that µ = ν : R → R is the normalization of
R. Let p1, ..., pr be the minimal primes of R. Then R = ⊕iR/pi and φ̄(a) = (b1, ..., br), with
bi = φ̄(a mod pi). Since φred is flat by (i), φ(a) /∈ pi for all i and hence bi ̸= 0 for all i, showing

that φ̄(a) is a n.z.d. in R, i.e., φ̄ is flat. If R̃ is a partial normalization of R and reduced, then

R̃ ⊂ R and hence φ̃ is flat.
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(2) By (1) (ii) the flatness of φ implies that of φ̃. The flatness of φ̃ implies that of φ since R

is reduced and R ⊂ R̃.
(3) (i) By [Mat86, Corollary to Theorem 23.9] Rn is reduced (normal), if Rn ⊗Ap

k(q) is
reduced (normal) for all q ∈ SpecAp. Since Ap has only two prime ideals Rn is reduced by the
following Lemma 19.

(ii) Rn(p) is reduced iff it satisfies Serre’s condition (R0) and (S1).
If dimRn ≥ 2 and Rn(p) reduced, then dimRn(p) ≥ 1 and depth Rn(p) ≥ 1 (from (S1)). Hence
depth(Rn) ≥ 2 since φ is flat ([Mat86, Corollary to Theorem 23.3]) and then r1(Rn) = 0 ([BH98,
Proposition 1.2.13]).

(iii) Implication ⇒ follows direclty from (ii). For the converse direction we note that
nil(R) = H0

m(R) for (R,m) a local INNS of dimension ≥ 1 (Remark 7) and that H0
m(R) = 0 iff

depth(R) ≥ 1 ([BH98, Proposition 3.5.4.]). Hence Rn(p) is reduced iff depth(Rn(p)) ≥ 1, which
holds since p is generated by a non-zero divisor and therefore depth(Rn(p)) = depth(Rn) − 1
([Stack] Lemma 10.71.7, tag 090R).

(4) Let R be reduced and n ∈ SpecR a normal closed point of R. By assumption dimRn ≥ 2
and by Serre’s condition (S2) depth(Rn) ≥ 2. Hence R(p)n = Rn(p) is reduced by (3) (iii), and
this proves (i) ⇒ (ii). Conversely, as R is reduced at all normal points we consider a non-normal
point n of R (n is then a closed point). Let p = n∩A, t a generator of p and f the image of t in
R. Since Rn is an INNS, nil(Rn) is concentrated on n and hence killed by a power of f . Since
each power of f is a non-zero divisor of Rn, nil(Rn) = 0 and (ii) ⇒ (i) follows. □

Example 18. The condition in Lemma 17 (3)(iii) that Rn(p) is an INNS is necessary:
Let A = k[z],k algebraically closed and char(k) = p > 0 and R = A[x, y]/⟨f⟩, f = yp − xp − z.
Then R is regular of depth 2 at every closed point, and the canonical map φ : A → R is flat (z
is a non-zero divisor in R). All fibers R(s) = k[x, y]/yp−xp− s over closed points ⟨z− s⟩, s ∈ k,
are not reduced (yp − xp − s = (y − x − s1/p)p) and not an INNS (the generic fiber is however
regular).

Such an example is not possible in characteristic 0 (see Section 4). E.g. if f : (Cn, 0) → (C, 0)
is flat then the fibers f−1(t) are smooth for t ̸= 0 close to 0.

Lemma 19. Let φ : (A,m) → (R, n) be a flat morphism of local rings.

(1) R⊗A Q(A) = R⊗A Q(A); in particular, if R is normal, then R⊗A Q(A) is normal.
(2) If (A,m) is a discrete valuation ring and R⊗AA/m reduced, then R⊗AQ(A) is reduced.

Proof. A ⊂ R since R is flat, hence faithfully flat over A.
(1) We have R⊗AQ(A) = { r

a | r ∈ R, a ∈ A a non-zero divisor}, hence Q(R⊗AQ(A)) = Q(R)

and Q(R⊗AQ(A)) = Q(R) = Q(R). Thus R⊗AQ(A)) is normal and R⊗A Q(A) ⊂ R⊗AQ(A)).
Since the last inclusion is birational it is an equality.

(2) Since A is a DVR, m = ⟨t⟩ for some t. Then R ⊗A Q(A) = Rt = { r
tν |r ∈ R, ν ≥ 0}.

Assume ( r
tν )

n = 0 for some n. Then rn = 0 since t is a non-zero divisor of R and r̄n = 0, r̄ the
image of r in R/mR = R/tR. Since R/tR is reduced, r = tr′ for some r′ ∈ R. By induction
r ∈ ∩tνR, and ∩tνR = 0 by Krull’s intersection theorem. Hence r = 0. □

The following lemma is used for a geometric interpretation of the technical assumption that
Coker(ν) and Ker(ν>1) are finite over A in the proof of our main Theorem 22.

Lemma 20. Let A → R be a ring map with A Noetherian and M a finitely generated R-module.
Then the following are equivalent.

(i) M is finite over A.
(ii) R/AnnR(M) is finite over A.
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(iii) R/I is finite over A for every ideal I ⊂ R with
√
I =

√
AnnR(M).

Proof. (i)⇒(ii): LetM be generated over R bym1, ...,mn. Then we can embedd R/AnnR(M) in
Mn by r 7→ (rm1, ..., rmn). As M is finite over A, Mn is finite over A and since A is Noetherian,
Mn is a Noetherian A-module. Since any submodule of a Noetherian module is Noetherian,
R/AnnR(M) is a Noetherian A-module and therefore finite over A.

(ii)⇒(iii): If I ⊂ J are two ideals in R then R/I finite over A implies obviously that R/J is
finite over A. Moreover,

R/In finite over A for all n ≥ 1 ⇐⇒ R/I finite over A,

To see ”⇐” we consider the exact sequence 0 → In−1/In → R/In → R/In−1 → 0. Starting
with n = 2 we may assume by induction that R/Ii−1 is finite over A for i = 2, ..., n − 1. Since
In−1/In is finite over R/I, it is finite over A. Hence R/In is finite over A.

By assumption R/AnnR(M) is finite over A and hence R/AnnR(M)n is finite over A for all
n. There exists an n with AnnR(M)n ⊂ I and therefore R/I is finite over A.

(iii)⇒(i): M is finite over R/AnnR(M) and since R/AnnR(M) finite over A by assumption,
M is finite over A. □

For Lemma 21 we introduce the following notations. Let ν = νred ◦π : R → Rred → R be the
normalization map and ν>1 be the composition

ν>1 : R ↠ Rred ↪→ R = R1 ⊕R>1 ↠ R>1.

Let p̃i = pi/ nil(R) be the minimal prime ideals of Rred and p̃1 resp. p̃>1 be the intersection of
the p̃j with dimR/pj = 1 resp. dimR/pj > 1. We assume that dimR/pj ≥ 1 for all j. Then
nil(R) = p1 ∩ p>1 and the kernel of

Rred ↪→ Rred/p̃1 ⊕Rred/p̃>1 → Rred/p̃>1 = R>1

is p̃>1 with AnnRred(p̃>1) = p̃1. It follows

Ker(ν>1) = p>1 and AnnR(p̃
>1) = p1.

From the exact sequence 0 → nil(R) → p>1 → p̃>1 → 0 we get

SuppR(p
>1) = SuppR(nil(R)) ∪ SuppR(p̃

>1))

and therefore»
AnnR(p>1) =

»
AnnR(nil(R)) ∩

»
AnnR(p̃>1) =

»
AnnR(nil(R)) ∩ p1.

Hence

SuppR(Ker(ν>1)) = SuppR(nil(R)) ∪ V (p1),

SuppR(Coker(ν)) ∪ SuppR(Ker(ν>1)) = V (C̃R) ∪ V (p1),

with C̃R the extended conductor ideal.
Note that V (C̃R) = NNor(R) resp. V (p1) are the non-normal locus resp. the 1-dimensional

part of SpecR.

Lemma 21. Let A → R is a ring map and let all minimal primes of R have dimension ≥ 1.
With the above notations the following are equivalent.

(i) Coker(ν) and Ker(ν>1) are finite over A.

(ii) R/C̃R ∩ p1 is finite over A.

(iii) R/C̃R and R/p1 are finite over A.
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Proof. From the canonical exact sequence, for ideals I, J ∈ R,

0 → R/I ∩ J → R/I ⊕R/J → R/I + J → 0,

(with f 7→ (f, f) and (f, g) 7→ f − g) it follows that

R/I, R/J are finite over A ⇐⇒ R/I ∩ J is finite over A

(the finiteness of R/I + J follows from that of R/I ∩ J). This shows the equivalence of (ii) and
(iii).

We apply now Lemma 20. Since AnnR(Coker(ν)) = CR (the conductor ideal of R), Coker(ν)
is finite over A iff R/CR is finite over A, and since»

AnnR(Ker(ν>1)) =
»

AnnR(nil(R)) ∩ p1,

Ker(ν>1) is finite over A iff R/(AnnR(nil(R))∩ p1) is finite over A. It follows that Coker(ν) and
Ker(ν>1) are finite over A iff

R/C ∩AnnR(nil(R)) ∩ p1 = R/C̃R ∩ p1

is finite over A, showing the equivalence of (i) and (ii). □

We are now going to prove the semicontinuity of δ and ε in flat families A → R over a principal
ideal domain A. For a geometric interpretation of the assumption that Coker(ν) and Ker(ν>1)
are finite over A see Lemma 21.

Theorem 22. Let φ : A → R be a flat morphism of rings, A a principal ideal domain, and let
the normalization ν : R → R be finite. Let X = SpecR, X = SpecR, n = Spec ν : X → X
and f = Specφ : X → S = SpecA. Assume that Coker(ν) and Ker(ν>1 : R → R>1) are finite
over A and, moreover, that for each s ∈ f(X) the normalization of Xs = f−1(s) is finite over
Xs and that Xs is normal outside finitely many isolated non-normal singularities at which the
residue fields are finite over k(s).

Then f := f ◦ n : X → S is flat, δk(s)(Xs) < ∞, εk(s)(Xs) < ∞, and for each s ∈ f(X) there
exists an open neighbourhood V ⊂ S of s such that the following holds for U = V ∩ f(X):

(1) δk(s)(Xs)− δk(t)(Xt)

= δk(s)((X
red)s)− δk(t)((X

red)t)

= δk(s)((X
>1)s)− δk(t)((X

>1)t)

= δk(s)((X)s)− δk(t)((X)t)

= δk(s)((X
>1

)s)− δk(t)((X
>1

)t) for t ∈ U .

(2) If (X>1)t is normal for t ∈ U ∖ {s}, then
δk(s)(Xs)− δk(t)(Xt) = δk(s)((X>1)s) ≥ 0.

(3) δk(s)(Xs)− δk(η)(Xη) = δk(s)((X>1)s) ≥ 0, η the generic point of S.

(4) εk(s)(Xs)− εk(t)(Xt) = εk(s)((X
>1)s) ≥ 0 for t ∈ U ∖ {s}.

(5) (X>1)t = (X
>1

)t := (f |X>1
)−1(t) is reduced for every t ∈ U . If X is reduced then Xt

is reduced for t ∈ U ∖ {s}.

Remark 23. Let x1, ..., xrs be the isolated non-normal singularities of Xs, with s corresponding
to a prime ideal p ⊂ A. Then each xi is a closed point of Xs (cf. Remark 4), corresponding to
a maximal ideal ni of R(p) and

δk(s)(Xs) =

rs∑
1

δk(s)(Xs, xi),



THE DELTA INVARIANT OF ISOLATED NON-NORMAL SINGULARITIES 187

with δk(s)(Xs, xi) := δk(p)(R(p)ni
) = dimk(p) R(p)ni

/R(p)redni
−εk(p)(R(p)ni

). If s is a closed point
of S (i.e. p ̸= ⟨0⟩) then the xi are closed points of X and R(p)ni = Rni/pRni . If p = ⟨0⟩ is
the generic point η, then k(η) = Q(A) and R(p)ni = Rni ⊗A Q(A). For a concrete example see
Example 25.

Before giving the proof, we’d like to comment on the result. A semicontinuity theorem in
the algebraic setting was proved by Chiang-Hsieh and Lipman in [CL06, Proposition 3.3 and
Theorem 4.1] under several assumptions, including the following (in our notation): (i) (A,m)
is a normal local ring with perfect residue field, (ii) A is complete, or A is henselian and R
is a localization of a finitely generated A-algebra, or A and R are both analytic local rings,
(iii) R is a formally equidimensional Nagata ring, and (iv) the special fiber Xs = SpecR/mR
is a reduced curve and every closed point of X is contained in Xs. The authors prove that
δk(t)(Xt) − δk(η)(Xη) = δk(t)((X)t) for t ∈ SpecA (since SpecA has only one closed point,
the semicontinuity holds only for generalizations to the generic point η). Apart from the fact
that there is no restriction for dimA in [CL06], our result is stronger in several ways. We
do not assume (a) that the residue fields at closed points of SpecA are perfect, (b) that X is
equidimensional, (c) that the fibers are reduced curves and (d) that A is local; it can be e.g. Z or
k[t], k an arbitrary field. Thus our semicontinuity holds also for closed points in a neighbourhood
of the given point s in SpecA.

For complex analytic map germs f : (X,x) → (S, 0), with (S, 0) = (C, 0) and (X0, x) a reduced
curve singularity, the result is classical and due to Teissier [Te78].

Remark 24. (1) We have R = R
1 ⊕R

>1
and

nil(R) = Ker(R → Rred) = Ker(ν) ⊂ Ker(ν>1)

since R → R
>1

is surjective. Hence, if Ker(ν>1) is finite over A then Ker(ν) is also finite
over A. On the other hand, if Coker(ν) is finite over A, then Coker(ν>1) is finite over A
since Coker(ν) surjects onto Coker(ν>1).

(2) We remark that every irreducible component of X has dimension ≥ 1 (f is flat) and that

X = X
>1 ⊔X

1
and (X)t = (X

>1
)t ⊔ (X

1
)t with (X

>1
)t = (X)>0

t and (X
1
)t = (X)0t .

In particular,

(X>1)t = (X)t ⇐⇒ (X)t has no isolated points

⇐⇒ X has no 1-dimensional components meeting Xt.

(3) Since φ is injective, the generic point η = ⟨0⟩ is contained in f(X) ([Stack, Lemma
29.4.,tag 00FJ]). It may however happen that f(X) does not contain any open subset
of S. E.g. f(X) = {η} for A = Z → R = Q[x] since A ∩ p = ⟨0⟩ for every prime ideal
p ∈ R (see also Example 25 (2)).

(4) The statement of the theorem is especially interesting if f is surjective or if f is open
(which holds if X is of finite presentation over S by [Stack, Proposition 10.40.8.,tag
00I1], or for analytic maps).

Proof. (of Theorem 22) Let µ : R → R̃ be one of the maps νred : R → Rred, ν′ : R → R>1,

ν : R → R, and ν>1 : R → R
>1

. Since Ker(νred) = Ker(ν) ⊂ Ker(ν>1) = Ker(ν′), it follows
that Ker(µ) and Coker(µ) are finite over A, since Ker(ν>1) and Coker(ν) are finite over A by
assumption.

If R>1 = 0, i.e. X is of pure dimension 1, then R = Ker(ν>1) and hence R is finite over A.
Since R is A-flat, it is torsion free, hence free and dimk(p)(R(p)) = εk(p)(R(p)) = −δk(p)(R(p))
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is constant on SpecA. Thus the theorem holds in this case trivially and we will assume in the
following the R>1 ̸= 0.

By Lemma 17 the maps f̃ = Spec(µ ◦ φ) : ‹X = Spec R̃ → S are flat. We use the notation

(‹X)t = f̃−1(t).
(1) We can apply Proposition 16 (i) to each map µ and we get the equalities in statement (1).

Now consider f
>1

:= f |X>1
: X

>1 → S. From Proposition 16 (i) and (iii) we get an open
neighbourhood U of s such that for t ∈ U ∩ f(X)

(a) δk(s)(Xs)− δk(t)(Xt) = δk(s)((X
>1

)s)− δk(t)((X
>1

)t).

Altogether this proves (1).

(2) (X
>1

)t normal implies δk(t)((X
>1

)t) = 0, t ̸= s. Since X
>1

= X>1 is normal and of

dimension ≥ 2 at each closed point x, depth(X
>1

) ≥ 2 at x. By Lemma 17 (3)(iii), (X
>1

)t,

t ∈ f(X), is reduced at every closed point, hence at every point. Thus δk(t)((X
>1

)s) ≥ 0 and
(a) proves (2).

(3) By Lemma 19 the ring R
>1

(η) and thus the generic fiber X
>1

η is normal, and (3) follows
from (2).

To get estimates for ε we apply Proposition 16 (iii) to f ′ = Spec(ν′ ◦ φ) : X>1 → S and get

(b) εk(s)(Xs)− εk(t)(Xt) = εk(s)((X
>1)s)− εk(t)((X

>1)t)

+ dimk(s) Coker(ν
′>1)⊗A k(s)− dimk(t) Coker(ν

′>1)⊗A k(t)

= εk(s)((X
>1)s)− εk(t)((X

>1)t),

since Coker(ν′>1) = R>1/ν′(R>1) = 0.

(4) Since X>1 is reduced, (X>1)t is reduced for t ∈ U ∖ {s} by (5). Hence εk(t)((X
>1)t) = 0

and (4) follows from (b).
(5) If X is reduced, i.e. if R is reduced, then ν : R → R is injective. By Proposition 16 (iv)

R(q) → R(q) is injective for q ∈ U ∖ {p}, U some neighbourhood of p. Hence Xt is reduced for

t ∈ U ∖ {s}. By the proof of (2) (X
>1

)t is reduced for all t ∈ U . □

We illustrate Theorem 22 with some examples.

Example 25. (1) Let φ : A = k[z] → R = A[x, y]/I, I = ⟨x2+y2−z2⟩∩⟨x−y, y2−z⟩. Then
X = V (I) = X2∪X1, with X2 the normal surface singularity defined by x2+y2−z2 = 0
and X1 the smooth curve defined by x − y = y2 − z = 0, meeting X2 at (0, 0, 0) and

(x, y, z) = (x, y, 2) with x = y = ±
√
2 (if

√
2 ∈ k).

For z = 0 the fiber X0 is the nodal curve x2 + y2 = 0 with an embedded point, and
we compute εk(X0) = 2 and thus δk(X0) = −1. For z = t ∈ k, t ̸= 0, 2 the fiber Xt

is a smooth curve and two extra reduced points not on the curve. Hence Xt = (X)t is
normal with εk(Xt) = 2. We get δk(Xt) = −2 and δk(X0)− δk(Xt) = 1.

The normalization X is the disjoint union of X>1 = X2 and X1. (X)0 is the disjoint

union of a nodal curve (X
>1

)0 and a double point (X
1
)0. We get δk((X

>1
)0) = 1,

confirming statement (2) of Theorem 22.
Now let η := ⟨0⟩ be the generic point of SpecA. The generic fiber is then

R⊗A Q(A) = k(z)[x, y]/I

consisting of the regular curve x2+y2− z2 = 0 (if char(k) ̸= 2) and the isolated reduced
point defined by the field k(z)[x, y]/⟨x − y, y2 − z⟩ = k(z)[y]/⟨y2 − z⟩ a field extension
of k(z) of degree 2. Hence δk(z)(Xη) = −2.

We get δk(X0) − δk(z)(Xη) = 1 and δk(Xt) − δk(z)(Xη) = 0 if t ̸= 0, 2 and

δk((X
>1

)t) = 0. Both equalities confirm thus statement (3) of Theorem 22.
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Since R is of finite typ over A the flat map f is open (in fact f(X) = SpecA). This
is different in the following example.

(2) Consider now φ : A = k[z] → R = k[z]⟨z⟩[x, y, z]/I, with I as in (1). Let p be a prime
ideal in R. If z ∈ p then p ∩ A = ⟨z⟩. If z ̸∈ p then p ∩ A = ⟨0⟩ (otherwise p ∩ A = ⟨p⟩
for some irreducible polynomial p(z) ̸∈ ⟨z⟩ and since p is a unit in R, p ̸∈ p). It follows
that f = Specφ : X = SpecR → S = SpecA is flat and f(X) consists of two points ⟨z⟩
and η = ⟨0⟩. As in (1) we get δk(X0) = −1 and δk(Xη) = −2.

We note that f−1(η) = {p ∈ SpecR | p ∩ A = ⟨0⟩} and none of these p is closed in
SpecR (R/p is not a field). On the other hand, infinitely many of these prime ideals
(e.g. p = ⟨x − p, y − q⟩, p ∈ k(z), q = (p − z)(p + z)) are closed points of the fiber
Xη = Speck(z)[x, y]/I.

Example 26. We provide two examples showing the necessity of the assumptions in Theorem 22.

(1) The condition that (X
>1

)t, t ̸= s, is normal in Theorem 22 (2) is necessary in pos-
itive characteristic (it automatically holds in characteristic 0, see Theorem 35): Let
A = k[z],k algebraically closed, char(k) = p > 2, and R = A[x, y]/⟨f⟩, f = y2 − xp − z.
Then R is regular, hence normal, of dimension 2 and the canonical map φ : A → R
is flat (z is a non-zero divisor in R). For every closed point ⟨z − t⟩, t ∈ k, the fiber
R(t) = k[x, y]/y2 − xp − t has a reduced isolated non-normal point, which is not normal
since y2 = (x+ t1/p)p.

Since δk(R(t)) = (p − 1)/2 is the same for every t ∈ k and since R
>1

(s) = R(s) the
equality in Theorem 22 (2) does not hold for s, t ∈ k, while the equality in (3) holds
for the generic fiber. Note that the generic fiber k(z)[x, y]/y2 − xp − z is regular (hence
normal) but not geometrically normal: it is not-normal in k(z1/p)[x, y]/y2 − xp − z.

This example shows also that δ of the generic fiber is stricly smaller than δ of every
fiber over a closed point.

(2) The assumption that Ker(ν>1 : R → R>1) is finite over A is necessary for the upper
semicontinuity of ε even in characteristic 0 (the finiteness over A of Ker(ν) is not suf-
ficient). For A = k[x], R = A[y]/⟨y(xy − 1)⟩, we have εk(R(0)) = 1 but εk(R(s)) = 2
for s ∈ k − {0}. In this case R>1 = 0 and X>1 = ∅. Hence Ker(ν>1) = R, which
is quasi-finite but not finite over A (the class of x in R is not integral over A), while
Ker(ν) = 0. See also Example 39.

Now let X → S be a morphism of Noetherian schemes with finite normalization map

n : X → X and ‹CX
10 the extended conductor scheme, which is supported on the non-normal

locus NNor(X) of X. Recall that Xi resp. X>i denote the union of the irreducible components
of Xred of dimension i resp. > i. We say that NNor(X) and X1 are finite over S if O‹CX

and OX1 are finite OS-modules. In view of Lemma 21 this holds iff Ker(n∗OX → OX>1) and
Coker(n∗OX → OX) are finite OS-modules. With this notation and that of Theorem 22 we get:

Corollary 27. Let f : X → S be a flat morphism of schemes with S the spectrum of a PID and
X Nagata. Assume that NNor(X) and X1 are finite over S and that for each s ∈ f(X) the fiber
Xs has finitely many isolated non-normal singularities with residue fields finite over k(s). Then
the conclusions of Theorem 22 hold.

Morever, if all irreducible components of X have dimension ≥ 2 (i.e., X1 = ∅), then the

conclusions of Theorem 22 hold with (X>1)t = Xt and (X>1)t = (X)t for t ∈ U .

10 If X is covered by open affine sets Xi = SpecRi, then ‹CX |Xi = ‹CRi
= Spec(Ri/C̃Ri

), c.f. Definition 1.
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Proof. We may assume that X = SpecR with R a Nagata ring and S = SpecA, A a PID. Then
R is finite over R ([Stack, Lemma 10.157.2, tag 03GH]) and since R/pR, p ∈ SpecA, is Nagata
(cf. Remark 15). the normalization of Xs is finite over Xs. Now apply Theorem 22. □

The most interesting cases are perhaps when R is (essential) of finite type over A, i.e.,
R = A[x]/I with x = (x1, ..., xn) and I an ideal, or R is the localization A[x]/I at some
prime ideal. If A is a PID which is Nagata (see Remark 15 for examples), then R is Nagata by
Remark 15. Since a flat morphism is open in this situation ([Stack, tag 01UA, Lemma 28.24.9.])
we get the following corollary, which applies in particular to families of generically reduced curves
(if X is pure 2-dimensional).

Corollary 28. Let f : X → S be a flat morphism with S the spectrum of a Nagata PID and
X locally (essentially) of finite type over S and without 1-dimensional components. Assume
that NNor(X) is finite over S and that each fiber Xs has finitely many isolated non-normal
singularities with residue fields finite over k(s). Let n : X → X be the normalization of X.

Then f := f ◦ n : X → S is flat, δk(s)(Xs) < ∞, εk(s)(Xs) < ∞, and for each s ∈ S there

exists an open neighbourhood U ⊂ S of s such that the following holds (with (X)t := f
−1

(t)):

(1) If (X)t is normal for t ∈ U ∖ {s}, then
δk(s)(Xs)− δk(t)(Xt) = δk(s)((X)s) ≥ 0.

(2) δk(s)(Xs)− δk(η)(Xη) = δk(s)((X)s) ≥ 0, η the generic point of S.
(3) εk(s)(Xs)− εk(t)(Xt) = εk(s)((X)s) ≥ 0 for t ∈ U ∖ {s}.
(4) (X)t is reduced for every t ∈ U . If X is reduced then Xt is reduced for t ∈ U ∖ {s}.

Theorem 22 and its corollaries say that over the spectrum of a PID the delta invariant of
the generic fiber Xη is minimal among all fibers Xs, s ∈ f(X). It does not say, however,
that the delta invariant of a special fiber Xs is bigger or equal than the delta invariant of
the fibers Xt over closed points t in a neighbourhood of s, except if (X>1)t is normal for
t ̸= s (which holds always in characteristic 0). By Example 26 this may not be true and the

equality δk(s)(Xs)−δk(t)(Xt) = δk(s)((X>1)s) in Theorem 22 (2) does not always hold in positive
characteristic (nevertheless, semicontinuity may hold in general but we do not know this). For
characteristic 0 see Theorem 35, Section 4.

3. Fiberwise and Simultaneous Normalization

While the notion of simultaneous normalization is well known, the following (weaker) defini-
tion of fiberwise normalization is new. It is useful if the residue fields of the base scheme are not
perfect.

Definition 29. Let m : ‹X → X and f : X → S be morphisms of schemes.

(1) We call m : ‹X → X a fiberwise normalization of f if
(a) m is finite,

(b) the composition f̃ := f ◦m : ‹X → S is flat,

(c) the non-empty fibers of f̃ are normal, and

(d) the induced map mt : f̃
−1(t) → f−1(t) is birational for every t ∈ f(X)

(2) A fiberwise normalization of f is called a simultaneous normalization if the non-empty

fibers of f̃ are geometrically normal.

Recall that a k-algebra R is called geometrically normal (resp. geometrically reduced) if R⊗kk
′

is normal (resp. reduced) for every field extension k ⊂ k
′ (equivalently, for every finite field
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extension). If k is a perfect field, then a k-algebra is normal (resp. reduced) iff it is geometrically
normal (resp. reduced), see [Stack, Lemma 10.43.3.,tag 030V and Lemma 10.160.1.,tag 037Z].
A morphism of rings φ : A → R is called normal (resp. reduced) if it is flat and if the non-
empty fibers R(p) := R ⊗A k(p), are geometrically normal (resp. geometrically reduced) as
k(p)-algebras, where k(p) = Ap/pAp = Quot(A/p) is the residue field of Ap, p ∈ SpecA.

A morphism of schemes f : X → S is geometrically normal (resp. geometrically reduced),
if this holds for the induced morphisms of local rings. Hence, if the residue fields of all local
rings of S are perfect (e.g. of characteristic 0), then the notions of fiberwise normalization and
simultaneous normalization coincide.

Note that simultaneous normalization is preserved under base change, while this is in general
not the case for fiberwise normalization of schemes over non-perfect fields. On the other hand,
the following results show that the weaker assumption of a fiberwise normalization is often
sufficient and useful.

Lemma 30. Let f : X → S be a flat morphism of schemes and assume that f admits a fiberwise

normalization m : ‹X → X. Let f̃ = f ◦m : ‹X → S. Then the following holds:

(1) m is birational.

(2) ‹X is reduced (resp. normal) at x̃ if and only if S is reduced (resp. normal) at f̃(x̃). If‹X is normal, then ‹X ∼= X and m is the normalization map.

(3) The induced fiber map mt : ‹Xt = f̃−1(t) → f−1(t) = Xt is the normalization of Xt for
every t ∈ f(X).

(4) Let S be normal, t ∈ S and x ∈ Xt. Denote by Xi
t , i = 1, ..., r, the irreducible components

of Xt passing through x and by Xj , j = 1, ..., s, the irreducible components of X passing
through x. Then r = s and for each j there exists a unique i = i(j) such that Xi

t ⊂ Xj.
The corresponding components satisfy the dimension formula

dim(Xj , x) = dim(Xi
t , x) + dim(S, t).11

In particular, if dim(Xt, x) > 0 then each irreducible component of X passing through x
has dimension > dim(S, t).

The dimension formula in (4) is not a direct consequence of the flatness of f , since the
restriction of a flat map to an irreducible component need not be flat; it is a consequence of the
existence of a fiberwise normalization.

Proof. (1) A flat morphism f maps a generic point x ∈ X to a generic point f(x) ∈ S,
since flat mappings have the going down property ([Stack] Lemma 10.38.19, tag 00HS). Since

mt : f̃−1(t) → f−1(t), t ∈ f(X), induces a bijection of generic points of the fibers and an iso-
morphism of their local rings, this holds also for m by the following Lemma 31 (see also [CL06,
Theorem 2.3]), since the minimal primes of a ring correspond uniquely to the generic points of
its spectrum.

(2) The first statement follows from [Mat86, Corollary of Theorem 23.9]. The second state-
ment follows since m is finite by definition and birational by (1).

(3) Since mt is finite and birational it is the normalization map.
(4) Since S is normal, m is the normalization map by (2) and thus the number r of irreducible

components X passing through x equals #m−1(x). In the same way s = #m−1
t (x) holds. Since

#m−1(x) = #m−1
t (x) we get the first statement of (2). For each Xj there exists a unique point

11dim(X,x) denotes the dimension of the local ring OX,x of the scheme X at x.
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x̃j ∈ m−1(x) ∩m−1(Xj) and we get for i = i(j)

dim(Xj , x) = dim(‹X, x̃j) = dim(‹Xt, x̃
j) + dim(S, t) = dim(Xi

t , x) + dim(S, t),

since f̃ is flat. Finally, dim(Xt, x) > 0 means of course that all irreducible components Xi
t have

dimension > 0 at x and the last statement follows. □

Lemma 31. Let A be a ring and R a flat A-algebra. Then the total ring of fractions satisfies

Q(R) = Q(R⊗A Q(A)). Let R̃ be a flat A-algebra and µ : R → R̃ an A-algebra homomorphism
inducing an isomorphism

R⊗A Q(A) ∼= R̃⊗A Q(A).

Then µ induces an isomorphism Q(R) ∼= Q(R̃) and µ : R → R̃ is birational.

Proof. Let R be an A-algebra via φ : A → R.

R⊗A Q(A) = { r

φ(a)
|r ∈ R and a ∈ A a non-zerodivisor}.

Since φ is flat, it maps non-zero divisors to non-zero divisors. Hence R ⊗A Q(A) ⊂ Q(R) and

Q(R) = Q(R⊗A Q(A)). Similarly we obtain Q(R̃) = Q(R̃⊗A Q(A)).

By assumption µ induces an isomorphism R ⊗A Q(A) ∼= R̃ ⊗A Q(A) and it follows that µ

induces an isomorphism Q(R) ∼= Q(R̃). Let p1, . . . , pr be the associated prime ideals of R. Then
p1 ∪ ...∪ pr is the set of zero divisors of R and p1Q(R), . . . , prQ(R) are the prime ideals of Q(R)
([Mat86, Theorem 4.1]). Here the minimal associated primes of R correspond to the minimal
primes of Q(R) (also the embedded associated primes of R correspond to the embedded primes

of Q(R), but this is not relevant for us), and similarly for Q(R̃). Since Q(R) ∼= Q(R̃) the minimal

prime ideals of Q(R) and Q(R̃) are in 1-1 correspondence. Since for a minimal prime p of R
we have Rp = Q(R)pQ(R) we obtain all together a bijection between the minimal primes of R

and R̃ and an isomorphism of the corresponding local rings. This implies that µ : R −→ R̃ is
birational. □

We want to characterize fiberwise resp. simultaneous normalization of a family of INNS
numerically by the δ-invariant of the fibers. The following example shows that we have to be
careful with families of affine fibers.

Example 32. Consider Example 26 (2) with R = A[y]/⟨y(xy−1)⟩ and A = k[x]. The canonical
map A → R is flat, with normal fibers, and hence the identity R → R is a fiberwise normal-
ization (resp. simultaneous normalization if char(k) = 0). But the δ-invariant is not constant
(δk(R(0)) = −1 and δk(R(s)) = −2 for s ∈ k− {0}). The same holds for A = k[x]⟨x⟩ and s the

generic point of SpecA. This does not contradict the following Theorem 33 since Ker(ν>1) is
not finite over A. For another example with all fibers reduced curves, see Example 39.

The following theorem resp. its corollary is a numerical characterization for the existence of a
fiberwise normalization of a family of isolated normal singularities over the spectrum of a PID.

Theorem 33. Let φ : A → R be a flat morphism of rings with A a principal ideal domain and
R Nagata. Let ν : R → R be the normalization. Set S = SpecA, X = SpecR, X = SpecR,
f = Specφ : X → S, n = Spec ν : X → X. Assume that Coker(ν) and Ker(ν>1 : R → R>1)
are finite over A and that for each t ∈ f(X) the fiber Xt has finitely many isolated non-normal
singularities with residue fields finite over k(t).

(1) Assume that f admits a fiberwise normalization. Then δk(t)(Xt) is constant on S.

(2) δk(t)(Xt) is constant on S if and only if f>1 : X>1 → S admits a fiberwise normalization.
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(3) If X has no 1-dimensional irreducible components (equivalently, the fibers Xt have no
isolated points), then f admits a fiberwise normalization if and only if δk(t)(Xt) is con-
stant on S.

Proof. (1) Since A is regular, hence normal, any fiberwise normalization is the normalization by

Lemma 30. Since the fibers of f = f ◦ n are normal by assumption, (X
>1

)t is normal and has

positive dimension. Hence δk(t)((X
>1

)t) = 0 for t ∈ S. The constancy of δk(t)(Xt) follows from
Theorem 22 (2) (resp. Corollary 27).

(2) If δk(t)(Xt) is constant then

δk(t)(Xt) = δk(η)(Xη)

for t ∈ SpecA and η the generic point of SpecA. By Theorem 22 (3) (applied to any t ∈ U)

δk(t)((X>1)t) = 0 and (X>1)t is reduced. Hence (X>1)t is normal and equal to the normalization

of (X>1)t (since (X>1)t → (X>1)t is birational and finite). Since f is flat by Lemma 17,

f
>1

= f |X>1
is also flat and n>1 : X

>1 → X>1 is a fiberwise normalization of f>1.
By Theorem 22 (1) δk(t)(Xt) is constant ⇐⇒ δk(t)((X

red)t) is constant ⇐⇒ δk(t)((X
>1)t)

is constant. If f>1 admits a fiberwise normalization, then δk(t)((X
>1)t) is constant by (1) and

thus δk(t)(Xt) is constant.

(3) The ”only if ” direction follows from (1). X1 = ∅ means

r1(X) = 0 and f>1 = fred : Xred → S.

By (2) δk(t)(Xt) = constant implies that X → Xred is a fiberwise normalization of fred. But

then X → X is a fiberwise normalization of f (the flatness of f implies the flatness of fred and
f : X → X → S by Lemma 17). □

Corollary 34. In addition to the assumptions of Theorem 33 assume that all residue fields
k(p), p ∈ SpecA, are perfect (e.g., A = Z or A a k-algebra with char(k) = 0). Then the state-
ments (2) and (3) of Theorem 33 hold with ‘fiberwise normalization’ replaced by ‘simultaneous
normalization’.

We conjecture that Theorem 33 and Corollary 34 hold if A is normal. However, at the moment
we don’t have a proof as the non-reducedness of the fibers creates severe technical difficulties for
non-PIDs as base rings.

4. Characteristic 0 and the Analytic Case

If the characteristic is zero then the assumptions of the semicontinuity theorem (Theorem 22)
can be weakened and the statement is stronger for morphisms of finite type and for analytic
morphisms (using theorems of Bertini and Sard type). The main property is that reduced
spaces are regular (hence normal) on an open dense subset.

Theorem 35. Let k be a field of characteristic zero and let φ : A → R be a flat morphism of
k-algebras. Assume that A is a PID and that R is of finite type over k. Let ν : R → R be
the normalization and assume that Ker(ν>1) and Coker(ν) are finite over A. Let X = SpecR,
X = SpecR, n = Spec ν : X → X, f = Specφ : X → S = SpecA and f = f ◦ n : X → S. Let
Xs = f−1(s), s ∈ f(X), have only finitely many non-normal points.

Then εk(s)(Xs) and δk(s)(Xs) are finite for s ∈ S and each s ∈ S has an open neighbourhood
U such that for t ∈ U ∖ {s} the following holds:

(1) (X
>1

)s is reduced and (X)t is regular, hence normal.

(2) δk(s)(Xs)− δk(t)(Xt) = δk(s)((X>1)s) ≥ 0,
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(3) εk(s)(Xs)− εk(t)(Xt) = εk(s)((X
>1)s) ≥ 0.

Proof. Since X is of finite type over k, any fiber Xs, s ∈ f(X), is of finite type over k(s). Since
the non-normal points x of Xs are closed in Xs, the field extension k(s) ⊂ k(x) is finite (by
Hilbert’s Nullstellensatz). Moreover, X is Nagata by Remark 15 and hence X is finite over X,

as well as the normalization (Xs) over Xs. From Theorem 22 (4) and (5) we get that statement

(3) holds and that (X
>1

)s is reduced for s ∈ f(X), while statement (2) follows from Theorem 22
(2) together with the regularity of (X)t, t ̸= s .

It remains to show that (X)t is regular for t ̸= s in some neighbourhood of s. Since f is flat,
the map f : X → S and its restriction to any irreducible component of X is flat by Lemma 17
and dominant (A → R is injective). Since X is reduced, there exists an open dense subset
V ⊂ X such that V is smooth ([Va17, Theorem 21.3.5]) and, since k is perfect, a point x is
smooth iff its local ring is regular ([Stack, Lemma 32.25.8.,tag 0B8X]). Since f is flat and of
finite presentation, it follows, that f(V ) is an open subset of S ([Stack, Proposition 10.40.8.,tag
00I1]). Since it is not empty, it is dense.

By ([Va17, Theorem 25.3.3]) there exists an open dense subsetW ⊂ S such that the restriction

of f to the non-empty open set V ∩ f
−1

(W ) is a smooth morphism. Then Xt is smooth, hence
regular for t ∈ W . Since S is 1-dimensional, W is the complement of finitely many points, this
implies (1). The rest follows from Theorem 22. □

Let us consider the real and complex analytic case with K ∈ {R,C} and

δ := δK, ε := εK.

The following theorems were proved in [Gr17] for K = C. The proofs follow similar arguments
as in Section 2 and 3. The proofs for K = R are analogous.

The analytic case is in some sense technically easier than the general algebraic case: complex
spaces are Nagata of characteristic 0, and all points are closed. Moreover, the non-normal locus
NNor(f) of an analytic morphism f : X → S is a closed analytic subset of X and f(NNor(f))
is neglectable 12 in S, provided there is an open dense subset V ⊂ S consisting of smooth points
of S such that f−1(V ) consists of normal points of X. If the restriction of f to NNor(f) is
proper, then ”neglectable” can be replaced by ”a nowhere dense closed analytic subset” (see
[BF93, Theorem 2.1(3)] for a proof of these statements).

For f : X → S and t ∈ S, if the fiber Xt = f−1(t) has only finitely many isolated non-normal
singularities x1, ..., xr, we use the notaion

δ(Xt) =

r∑
i

δ(Xt, xi).

Theorem 36. ([Gr17, Theorem 7.14]) Let f : (X,x) → (K, 0) be flat morphism of K-analytic
germs with fibre (X0, x) an isolated non–normal singularity. If f : X → T is a sufficiently small
representative, then Xt has only finitely many INNS and the following holds for t ̸= 0.

(1) (X
>1

)0 is reduced and (X)t is smooth.
(2) δ(X0)− δ(Xt)

= δ((Xred)0)− δ((Xred)t) with (Xred)t = (Xt)
red,

= δ((X)0)− δ((X)t) with − δ((X)t) = dimK O(X1)t ,

= δ((X>1)0)− δ((X>1)t)

= δ((X
>1

)0) ≥ 0.
(3) ε(X0)− ε(Xt) = ε((X>1)0) ≥ 0.

12 i.e. contained in a countable union of nowhere dense locally closed analytic subsets of S.
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Moreover, if r1(X,x) = 0 (i.e., (X,x) has no 1-dimensional components, or, equivalently, Xt

has no isolated points for t ̸= 0), then

(1) (X)0 is reduced and (X)t is smooth.
(2) δ(X0)− δ(Xt) = δ((X)0) ≥ 0.
(3) ε(X0)− ε(Xt) = ε((Xred)0) ≥ 0.

In particular, if X is reduced, then ε(Xt) = 0 and hence Xt is reduced for t ̸= 0.

Note that for morphisms of analytic germs we do not need to assume that Ker(ν>1) and
Coker(ν) are finite over (K, 0). This follows already from the assumption that (X0, x) is an
isolated non–normal singularity. Then Ker(ν>1) and Coker(ν) are quasi-finite over (K, 0) and
thus have a representative (in the Euclidean topology) which is finite over K.

For K = C we have dimK O(X1)t = #{isolated points of Xt}. Statement (2) is in [Gr17,
Theorem 7.14] formulated with r1(X) instead of dimK O(X1)t , which is wrong in general. We
have r1(X) ≤ dimK O(X1)t and r1(X) = 0 iff dimK O(X1)t = 0.

Theorem 37. ([Gr17, Theorem 7.17]) Let f : (X,x) → (K, 0) be flat with (X0, x) an INNS of
dimension ≥ 1. Then there exists a small representative f : X → S of the germ f , such that
f : X → S admits a simultaneous normalization if and only if δ(Xt) is constant and r1(X,x) = 0.

The assumption that (X0, x) an INNS implies that the non-normal locus of f (which is
analytic in X) is finite over S (for S sufficiently small), and hence Xt has only isolated non-
normal singularities for t ∈ S. We recall that an excellent local ring (R,m) is normal if R/f
is normal for f ∈ m a non-zero divisor of R ([BF93, Lemma 4.4]). Hence, for f : X → S a
flat analytic morphism, with S a smooth 1-dimensional manifold, the non-normal locus of X is
contained in the non-normal locus of f . Let n : X → X be the normalization of X. Then the
non-normal locus of X is the union of the supports of the sheaves Coker(n∗ : OX → n∗OX) and
Ker(n∗ : OX → n∗OX) and the assumption that (X0, x) an INNS implies that these sheaves are
finite over S. The necessity of r1(X,x) = 0 follows from the dimension formula of the analytic
analog of Lemma 30 (4). We thus see that analogous assumptions as in Theorem 35 hold also
in the analytic situation of Theorem 36.

It is not difficult to see that Coker(n∗ : OX → n∗OX) and Ker(n>1
∗ : OX → n∗OX

>1) are

finite over S iff the non-normal loci of X and X>1, defined by the extended conductor schemes,
are finite over S (see Remark 24 (1)). We use this in the following Theorem 38 for (global)
morphisms of analytic spaces.

Theorem 38. ([Gr17, Theorem 7.19]) Let f : X → S be a flat morphism of K-analytic spaces
with S a 1–dimensional analytic manifold. Assume that the non-normal loci of f and of f>1 :
X>1 → S are finite over S. Then, for t ∈ S, the fiber Xt has only finitely many isolated
non-normal singularities and the following holds:

(1) δ(Xs)− δ(Xt) = δ((X
>1

)s) ≥ 0 for s ∈ S and t in a small neighbourhood of s.
(2) The following are equivalent

(i) f admits a simultaneous normalization.
(ii) δ(Xt) is locally constant on S and the 1–dimensional part X1 of X is smooth and

does not meet the higher dimensional part X>1.

In particular, if X has no 1-dimensional part, then

(1) δ(Xs)− δ(Xt) = δ((X)s) ≥ 0, s ∈ S, t close to s.
(2) f admits a simultaneous normalization ⇐⇒ δ(Xt) is locally constant on S.

The finiteness of NNor(f>1) over S was mistakenly omitted in [Gr17, Theorem 7.19]. The
following example shows that it is necessary.
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Example 39. Let X = V (((tx − 1)2 − y3t2)y), a reduced surface in C3, and f : X → C the
projection (t, x, y) 7→ t. The non-normal locus of f is the curve {y = tx − 1 = 0} which is
quasi-finite over C (but not finite) and all fibers Xt are reduced curves. It is easy to see that
δ(X0) = 0 but δ(Xt) = 5 for t ̸= 0 (or we can use Singular [DGPS]), showing that δ is not
semicontinuous.
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