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MONSTER TOWERS FROM DIFFERENTIAL AND ALGEBRAIC

VIEWPOINTS

PIOTR MORMUL

Abstract. Monster Towers were fathered by J.G. Semple in 1954 and were frequently used
in algebraic geometry since then. Those towers got a second youth with A.Kumpera’s works

in the 1980’s and Bryant and Hsu’s modern treatment (1993) of the Cartan prolongation

in differential geometry. In consequence, there have emerged Goursat- and [special-multi]-
flags living on the stages of the same Monster/Semple Towers, and featuring rich trees of

singularities (albeit not of a wild functional type, omnipresent among more generic structures
in the tangent bundles to manifolds).

Now a unification of the two approaches is in sight. In fact, after the works of Castro

et al (2017), Mormul and Pelletier (2020), and recently of the present author (2020), there
emerges a clear two-way dictionary allowing one to quickly interpret algebraically defined

singularities in Semple Towers in differential terms, and also to make readable to algebraic

geometers differential constructions done long since in Monster Towers.

1. Introduction

In differential geometry, in the early 2000s, there have been constructed various monster
towers generalizing the by-then-already-classical Goursat Monster Tower (GMT) produced by
Montgomery and Zhitomirskii in 1999 and published in [MonZ]. The GMT was produced with
the systematic use of classical Cartan prolongation of vector distributions (in its modern version
presented in the paper [BH]).

The stages of GMT are manifolds hosting Goursat distributions of all possible coranks. (Gour-
sat distributions are particular rank-2 subbundles in the tangent bundle to a manifold having
the flag of consecutive Lie squares regular and growing in ranks – slowly! – always only by one.)
In fact, the r-th stage Mr (of dimension r+2) hosts a distribution Dr which is locally universal
among all existing corank-r Goursat distributions E. Meaning that each such E considered any-
where locally on its home manifold of dimension r + 2 is diffeomorphic to Dr around a certain
properly chosen point in Mr.

This is a formidable property of the GMT – which reduces the study of otherwise unfathomable
Goursat singularities to that of the model structures (Dr) living on the stages (Mr) of the GMT.

In a line of direct generalization, in the paper [M2], p. 159, generalized Cartan prolongations
(gCp) were defined. These prolongations, when iterated many times, have proven instrumental
in building, still in [M2], Remark 3, so-called Special m-Flag Monster Towers (SmFMT for short,
m ≥ 2). The stages of the SmFMT host distributions locally universal as concerns generating
special m-flags of arbitrary lengths. So what are those flags?
They are nested sequences of subbundles in the tangent bundle to a manifold M , say, that
originate from a rank-(m+ 1) distribution D and that satisfy

(1) D = Dr ⊂ Dr−1 ⊂ Dr−2 ⊂ · · · ⊂ D1 ⊂ TM ,

where

rkDj = dimM − jm = m+ 1 + (r − j)m,
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Dj + [Dj , Dj ] = Dj−1 for j = r, r − 1, . . . , 1, D0 = TM , and such that D1 possesses a corank
one involutive subdistribution F ([F, F ] ⊂ F ⊂ D1).1

The present paper, of half comparative, half research character, arose out of author’s getting
hold of the work [CCKS]. An entirely new world has been unveiled, inhabited by generations
of algebraic geometers investigating virtually the same towers, and that for the last 60+ years!
(if under different names). A predominant name for them has been Semple towers, after the
pioneering work [S] and a benchmark late follow-up [L-J]. (They are also sometimes called
Semple-Demailly Towers.) Algebraic geometers were equally in acute need of glasses to watch
(and to construct!) objects living on the stages of the Semple towers with base manifolds of
various dimensions. In consequence, more or less standardized glasses for Semple Towers had
gradually sprung into existence in Algebraic Geometry, the benchmark paper [L-J] included.
(See also section 5.3 in the present paper for the discussion of an important example originally
due to A.Campillo and analized – in certain glasses – in [L-J]).
In [CCKS] canonical charts in the stages of the Semple towers have been defined and given the
name of C-charts (see also the extensive lectures [CK]).

1.1. Paper’s objective. By now it is well-known that the local geometrical behaviours of
special m-flags are enormously rich. [By way of comparison, Goursat flags are just 1-flags.
The discrete parameter m—the constant increment in ranks of the members of the derived
flag—says how much new room is obtained, over any point, when one Cartan-prolongs a flag.
Traditionally (p. 7 in [M3]) m is called the width of a flag.]
It is already so for the width m = 2, and all the more so for m > 2. In order to be able to
watch those local geometries, particular charts have been produced in the stages of SmFMT’s –
starting from the work [KuRub] having its conceptual roots in the year 1999 (cf., in particular,
p. 5 in [M3]) – on open dense parts of the stages of each SmFMT. By an already-established
tradition they are called Extended Kumpera–Ruiz (EKR for short, with, interestingly, ‘R’ not
for Rubin but for – chronologically much earlier – Ruiz) coordinate charts.

Therefore, from the one side there are Monster Towers investigated in Differential Geometry
for 20+ years. They are endowed with long lists of various EKR charts adjusted to the plethora
of singularities hidden in the seemingly innocent definition (1) of special multi-flags recalled
above.

From the other side there are Semple Towers investigated in Algebraic Geometry already for
60+ years. Currently, reiterating, they are equipped with the so-called C-type charts.

Until recently the comparison of the two approaches was hardly possible. Even the lecture of
paper [CCKS] was hampered, on the differential geometry side, by the much different language
being in use there. The objective of this work is to propose a clear translation procedure

the EKR charts on the DG side←→ the C-charts on the AG side

going in both directions: in Theorem 1 from the left to right, and in section 4.3 from the right
to left. Furnished also are examples illustrating the translation. In section 5.3 there is given yet
another example of a C-chart in action. Analyzed are prolongations of a particular 1-parameter
family of singular 3D curves investigated earlier in [L-J].

1.2. The definition of the prolongation. In the following definition, excerpted from [BH],
p. 4544−10, one obtains the definition of generalized Cartan prolongation by simply re-
placing ‘rank 2’ by ‘rank m+ 1’, ‘2-dimensional’ by ‘(m+ 1)-dimensional’, ‘PR1’ by ‘PRm’, and
‘1-manifolds’ by ‘m-manifolds’

1 for more explanations compare, for instance, page 165 in [M2]



MONSTER TOWERS FROM DIFFERENTIAL AND ALGEBRAIC VIEWPOINTS 333

‘If D is a rank 2 distribution on a manifold M , then, regarding D as a vector bundle, we can
certainly define its projectivization π : PD −→M , which is a bundle over M whose typical fiber
PDx is the space of 1-dimensional linear subspaces of the 2-dimensional vector space Dx. Thus,
the fibers of PD are isomorphic to PR1 as projective 1-manifolds. There is a canonical rank 2

distribution D(1) on PD defined by setting D(1)
ξ = (π′)−1(ξ) for each linear subspace ξ ⊂ Dx.

The distribution D(1) is called the (first) prolongation of D.’
(Note that a formally equivalent definition appears also on page 1283 in [L-J]. Algebraic geome-

ters had seemed unaware of some fields of interest of Élie Cartan.)

1.3. Extended K-R pseudo-normal forms for special m-flags. The aim of this section is
to produce a huge variety of rank-(m+1) distributions with polynomial vector field’ generators
on RN , N possibly very large and always being 1 (modm). For each k ∈ {1, 2, . . . , m + 1} we
are going to define an operation k producing new rank-(m + 1) distributions from older ones.
The technical writing of its outcome, not the operation’s formal definition, will depend on how
many operations were done before k. It also depends on whether k = 1 or not.

In fact, the outcome of 1 being performed as operation number l on a distribution

(Z1, . . . , Zm+1)

defined on Rs with coordinates y1, . . . , ys, is a new rank-(m + 1) distribution defined on Rs+m

with coordinates y1, . . . , ys, x
l
2, . . . , x

l
m+1, generated by the vector field

Z ′
1 = Z1 + xl

2Z2 + · · ·+ xl
m+1Zm+1

and by Z ′
2 = ∂

∂xl
2
, . . . , Z ′

m+1 = ∂
∂xl

m+1

.

While the outcome of k, 2 ≤ k ≤ m+ 1, is a rank-(m+ 1) distribution generated by

Z ′
1 = xl

2Z1 + · · ·+ xl
kZk−1 + Zk + xl

k+1Zk+1 + · · ·+ xl
m+1Zm+1

and by Z ′
2 = ∂

∂xl
2
, . . . , Z ′

m+1 = ∂
∂xl

m+1

. (When k = m+1, the components in the expansion of Z ′
1

end with Zm+1.) In either case it is important that these local generators are written precisely
in this order, yielding together a new more complex object (Z ′

1, Z
′
2, . . . , Z

′
m+1).

Extended K-R pseudo-normal forms (EKR for short) of length r ≥ 1, denoted by j1. j2 . . . jr,
where j1, . . . , jr ∈ {1, 2, . . . , m+1}, are now defined inductively, starting from the empty label
distribution (

∂1, ∂2, . . . , ∂m+1

)
=

( ∂

∂x0
1

,
∂

∂x0
2

, . . . ,
∂

∂x0
m+1

)
on Rm+1(x0

1, x
0
2, . . . , x

0
m+1). Then, assuming the distribution j1 . . . jr−1 is already defined,

j1 . . . jr−1. jr is the outcome of the operation jr performed as the operation number r over
j1 . . . jr−1. (The adjective ‘pseudo-normal’ refers to numerous and often spurious real parame-
ters featuring in those polynomial visualisations. Similarly, in the case of Goursat flags many a
constant showing up in Kumpera-Ruiz visualisations are redundant – and because of that those
visualisations are only pseudo-normal.)

By introducing, in the operation jr, the new affine coordinates xr
2, . . . , x

r
jr
, . . . , xr

m+1, all the

line directions in
(
Z1, . . . , Zm+1

)
that are close to the direction of

(2) Zjr + xr
jr+1Zjr+1 + · · ·+ xr

m+1Zm+1

at the reference point down in the (r− 1)-st stage, are parametrized. These m free variables
xr
2, . . . , x

r
m+1 float (or: dance) around their reference values in (2). Note that the first jr − 1 of

these reference values are 0 by the very definition of the operation jr.
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For the reader feels already that the operations 1,2,. . . ,m+1 are certain prolongations viewed
locally. In fact, they are just different gCp’s seen in possible different affine charts on the
Grassmanians used in the gCp procedure. (When m = 1, the two operations 1 and 2 applied
interweavingly lead to the well-known local Kumpera-Ruiz pseudo-normal forms in the theory
of Goursat flags – compare the explanation an instant ago and p. 466 in [MonZ].)

Every EKR is a special m-flag of length equal to the number of operations used to produce
it, and equal to the length of the relevant word encoding the sequence of operations. Moreover
– important – that EKR can be taken such that j1 = 1 and, for l = 1, . . . , r − 1,

if jl+1 > max(j1, . . . , jl),

then jl+1 = 1 + max(j1, . . . , jl) (the rule of the least possible new jumps upward in the words
j1. j2 . . . jr). More details about these constructions are given in [M2].

Definition 1. The set of all sequences (or: words) of length r over the alphabet

{1, 2, . . . , m, m+ 1}
satisfying the least upward jumps rule (‘lujr’ for short in all what follows) is denoted by Υ. The
dependence of Υ on the length r (and, needless to say, on m) is understood implicitly.

2. Charts in the stages of Semple Towers

On the Algebraic Geometry side the construction of handy ‘night glasses’ in the stages of
a Semple Tower with the base dimension m + 1,2 similar to the EKR charts on the DG side,
starts from an otherwise unspecified set of coordinates x1, x2, . . . , xm+1 mapping a part of
the base manifold (say) M to Rm+1. Following the exposition in [CCKS], these charts will
be denoted — when speaking for the r-th stage M(r) — by C(p1p2 . . . pr) with the indices
1 ≤ p1, p2, . . . , pr ≤ m+ 1.

To proceed, we take an arbitrary fixed smooth immersed curve

δ = (δ1, δ2, . . . , δm+1), 0 ̸= δ̇ = [δ̇1, δ̇2, . . . , δ̇m+1].

Then, clearly, a certain p1-th component of the velocity δ̇ is non-zero: δ̇p1
̸= 0. This allows us

to define a new group of m coordinates – components of the velocity vectors of curves C1-close
to δ, velocities computed – important – with respect to the chosen parameter coordinate xp1

:

xj(p1) =
dxj

dxp1

, for j ̸= p1 ,

and to put additionally xp1
(p1) = xp1

. In this way we obtain a [local] system of coordinates
x1, x2, . . . , xm+1 extended by the newer ones xj(p1) (j ̸= p1), on a domain lying in the 1st stage
M(1) of the Semple tower. (Recalling, M(1) is of dimension m + 1 + 1 · m.) The coordinate
xp1

(p1) having just served as a parameter is, taken plainly, redundant. Yet it is remembered
and carried along in the construction, because it can still become useful. (In [CCKS] it is named
‘retained’.)

The first prolongation δ(1) of δ is (by definition) horizontal with respect to the focal distribu-
tion F 1 living on M(1), while the xj(p1) (j ̸= p1) are the angle-affine coordinates of the velocities

of F 1-horizontal curves C1-close to δ(1). Their values float around the respective reference val-
ues being assumed on δ(1). In a sharp distinction, the p1-th component of the velocity of the
reference curve δ(1) is, naturally, 1.

2 A certain disadvantage, in comparing the Differential and Algebraic approaches to the towers, is that in

some contributions, including [CCKS], the symbol m stands for m+ 1 in [M3], [MP2] and throughout the entire

present work.
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To define the consecutive group of m local coordinates – now in the second stage M(2) of
Semple – that extends the previously obtained set of 2m + 1 coordinates, we consider a fixed
curve γ traced in M(1), horizontal with respect to F 1, immersed and passing at the reference
moment, say t = 0, by our preceding reference point δ(1)(0). We take γ not necessarily C1-
close to δ(1). This is central for the construction; its velocity γ̇ may à priori have any one of
its components non-zero! Let it be the xp2

(p1) component. (The component xp1
(p1), that is,

p2 = p1 is not excluded.)
To the curves in M(1) which are C1-close to γ we associate the components of their velocities,

mimicking the previous step. That is, by means of differentiating with respect to the coordinate
xp2(p1) serving as a new parameter:

xj(p1p2) =
dxj(p1)

dxp2
(p1)

, for j ̸= p2 ,

and putting additionally xp2(p1p2) = xp2(p1).
And so it goes recursively step after step. Around a point p ∈ M(k − 1) which already sits

in the domain of a chart constructed on [a part of] M(k − 1), one considers arbitrary immersed
curve Γ in M(k − 1) horizontal with respect to the focal distribution F k−1 living on M(k − 1),
Γ (0) = p, and picks a coordinate xj(p1 . . . pk−1) (1 ≤ j ≤ m+ 1) such that the j-th component

of Γ̇ (p) is non-zero. It is this index j that is declared to be pk while xpk
(p1 . . . pk−1) is a new

variable parameter giving rise, by way of differentiation, to new coordinates xj

(
p1 . . . pk−1pk

)
,

j ̸= pk:

xj

(
p1 . . . pk−1pk

)
=

dxj

(
p1 . . . pk−1

)
dxpk

(
p1 . . . pk−1

)
for j ̸= jk. As in the initial steps, the parameter of differentiation is carried along as a new
retained variable

xpk

(
p1 . . . pk−1pk

)
: = xpk

(
p1 . . . pk−1

)
.

After r such steps one arrives at a chart on an open part of M(r) consisting, after eventually
leaving out all the retained variables, of m+ 1 + rm coordinates. (Reiterating, our quantity m
is m − 1 in [CCKS].) Needless to say, this number coincides with the dimension of M(r). The
construction of the charts C(p1p2 . . . pr) on the AG side is now complete.

Attention. In [CCKS] this construction is originally put forward in a slightly different way
which does not bring in the intermediate (if purely technical) horizontal curves δ, γ, Γ , and so
on. Instead, the authors postulate for the non-vanishing of the differential of each variable that
is chosen as retained, on the focal (i. e., horizontal) directions under consideration at each given
step.

Example 1 (Example 5.1 in [CCKS]). Here is one of the systems of coordinates emerging in
the above-recalled construction when m = 2 and r = 5. The retained variables are underlined.

x1 x2 x3

x1(3) x2(3) x3(3)

x1(32) x2(32) x3(32)

x1(321) x2(321) x3(321)

x1(3212) x2(3212) x3(3212)

x1(32123) x2(32123) x3(32123)
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It is to be noted that the sequence of indices p1, p2, p3, p4, p5 in this example does not satisfy
the least upward jumps rule, in contrast to what is proclaimed (and sufficient) in Theorem 1
below.

3. Bringing the EKR charts into the C-format

The EKR charts serving any given r-th stage of the SmFMT consist of m+1+r ·m coordinate
functions. At the same time each C-chart serving [a part of] the stage M(r) of the Semple Tower
with (m+1)-dimensional base consists of (r+1)(m+1) functions. Consequently, to allow for any
comparison whatsoever, the EKR’s are to be augmented by certain r functions of beforehand
unspecified nature.

3.1. Extending any given EKR system of coordinates by a set of redundant variables.
As already invoiced, those auxiliary (and ultimately . . . redundant!) variables are needed for
further comparison of the EKR’s with the C(p1p2 . . . pr) charts used on the AG side of the theory.

Recalling from section 1.3, our arbitrarily chosen EKR j1.j2 . . . jr satisfies the least upward
jumps rule (cf. also [M2]). Arrange the coordinates that show up in j1.j2 . . . jr to appear in rows:
x0
1, x

0
2, . . . , x

0
m+1 in the 0-th row and xk

2 , x
k
3 , . . . , x

k
m+1 in the k-th row, 1 ≤ k ≤ r. So the 0-th

row stands out in that it is longer – it has the variable x0
1 from the very beginning. Supposing

that, for certain k ≥ 1, the variables x0
1, . . . , x

k−1
1 are already defined, we continue by adding in

the k-th row the variable

(3) xk
1 : = xk−1

jk
.

(Note that repetitions are not excluded in this process.) Upon arriving at k = r, all r + 1 rows
contain m+1 variables each. The variables x1

1, x
2
1, . . . , x

r
1 are redundant in this (r+1)× (m+1)

matrix of variables – they are repetitions of certain original EKR coordinates (and, possibly, are
certain repetitions among themselves).

QUESTION. Are there some differential relations among the actual (r+1)×(m+1) variables?
Before answering (in the affirmative), let us note for a future use

Observation 1. In the stepwise production in section 1.3 of any EKR system j1.j2 . . . jr, at each
stage k = 0, 1, . . . , r of its production, the only component, in the leading vector field generator
Z1, which is identically 1, is the ∂xk

1
-component.

Proof by induction on k.
• k = 0. Yes, the initial starting generator Z1 = ∂x0

1
by definition.

•• k ⇒ k + 1. If jk+1 = 1 then, by (3), xk+1
1 = xk

jk+1
= xk

1 . On the other hand

Z ′
1 = Z1 +

m+1∑
j=2

xk+1
j Zj

and it is clear that Z1 and Z ′
1 have one and the same component 1. It is ∂xk

1
in Z1, and it is

∂xk+1
1

in Z ′
1.

If now jk+1 > 1, then

Z ′
1 =

jk+1∑
j=1

xk+1
j+1Zj + Zjk+1

+

m+1∑
j=jk+1+1

xk+1
j Zj

and so Zjk+1
= ∂xk

jk+1

= ∂xk+1
1

( cf. (3) ) is indeed the unique component in Z ′
1 being identically

1. Observation is proved. □
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3.2. Differential relations among the superfluous variables. The question presented in
section 3.1 is central in this work. We will answer it in the present section. To that end
we prolong an EKR system (Z1, Z2, . . . , Zm+1) of the form j1.j2 . . . jr−1 to the EKR system
(Z ′

1, Z
′
2, . . . , Z

′
m+1) of the form j1.j2 . . . jr−1.jr.

By the very construction of the EKR’s, it is the vector generator Z ′
1 which spans the running

horizontal direction downstairs [that is lifted up to a point upstairs]. One can compute the rates

of change of the coordinates xk−1
j , j = 2, 3, . . . , m+ 1, that have appeared downstairs one step

earlier, with respect to a variable well-parametrizing the integral curves of Z ′
1. What remains

is to identify such a variable, and then the answer will emerge. For the clarity of exposition we
split the analysis in two parts: (a) jk = 1 and (b) jk > 1.

Case (a). jk = 1. Let us watch carefully, with Observation 1 at hand, the vector field Z ′
1:

Z ′
1 = Z1 + xk

2Z2 + · · ·+ xk
m+1Zm+1

=
(
· · ·+ ∂xk−1

1
+ · · ·︸ ︷︷ ︸

Z1

)
+ xk

2∂xk−1
2

+ · · ·+ xk
m+1∂xk−1

m+1
.

Hence it is the variable xk−1
1 that well-parametrizes the integral lines of Z ′

1. Therefore, one

differentiates the one-step-old coordinates xk−1
j , j = 2, 3, . . . , m+ 1, with respect to xk−1

1 , and
gets

(4)
d xk−1

j

d xk−1
1

= xk
j , j = 2, 3, . . . , m+ 1

(Think about the family of Pfaffian equations describing dually the field Z ′
1. That family

comprises the equations d xk−1
j − xk

j d x
k−1
1 = 0 ,

j = 2, 3, . . . , m+ 1.)

Case (b). jk > 1. Now the identification and handling of a coordinate which well-parametrizes
the integral curves of Z ′

1 goes slightly differently. However, Observation 1 is being used one more
time:

Z ′
1 = xk

2Z1 + xk
3Z2 + · · ·+ xk

jk
Zjk−1 + Zjk + xk

jk+1Zjk+1 + · · ·+ xk
m+1Zm+1

= xk
2

(
· · ·+ ∂xk−1

1
+ · · ·︸ ︷︷ ︸

Z1

)
+ xk

3∂xk−1
2

+ · · ·+ xk
jk
∂xk−1

jk−1
+ ∂xk−1

jk

+ xk
jk+1∂xk−1

jk+1
+ · · ·+ xk

m+1∂xk−1
m+1

.

Therefore, this time it is the variable xk−1
jk

that well-parametrizes the integral lines of Z ′
1. And,

moreover, one differentiates now with respect to that variable groupwise:

d xk−1
1

d xk−1
jk

= xk
2 ,(5)

d xk−1
j−1

d xk−1
jk

= xk
j , j = 3, . . . , jk ,(6)

d xk−1
j

d xk−1
jk

= xk
j , j = jk + 1, . . . , m+ 1 .(7)

At this moment the packs of coordinates building up the EKR systems j1.j2 . . . jr on the Differ-
ential Side, and the C(p1p2 . . . pr) systems on the Algebraic Side have gotten much closer to each
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other. How to establish a possible correspondence among all EKR’s and all C(p1p2 . . . pr)’s ?
This is the objective of the following Section. Certain precisely defined reorderings of those rows
with superfluous coordinates from Section 3.1 will do.

4. A one-to-one correspondence

In order to quickly demonstrate the correspondence, some preparatory steps are necessary.
The actual extended (r + 1)× (m+ 1) matrix of EKR variables

(8)
(
xj
i

)
i=0,1,...,r

j=1,2,...,m+1

will instantly be reordered row-wise, that is – within its rows. In fact, let σk mean the permuta-

tion cycle

(
1 2 · · · jk − 1 jk
2 3 · · · jk 1

)
in the permutation group Sm+1. Let, moreover, ⟨jk⟩ be

the mapping sending the ordered (m + 1)-tuple of variables
(
xk−1
1 , xk−1

2 , . . . , xk−1
m+1

)
to the or-

dered (m+1)-tuple
(
xk
σk(1)

, xk
σk(2)

, . . . , xk
σk(m+1)

)
. With these notations, we reorder the entries

of (8) row-wise, replacing its k-th row (1 ≤ k ≤ r) by the row

(9) ⟨jk⟩ ◦ ⟨jk−1⟩ ◦ · · · ◦ ⟨j1⟩
(
x0
1, x

0
2, . . . , x

0
m+1

)
.

(Naturally enough, the 0-th row is kept unchanged.)

Definition 2. For k = 1, 2, . . . , r, a natural number pk is the position, in the (k − 1)-st row of

the form (9), of the variable xk−1
jk

. 3

In this way there is obtained a length r sequence (p1, p2, . . . , pr) of integers from

{1, 2, . . . , m, m+ 1}.
(p1 is, of course, 1.)

Here is an example of the translation procedure j −→ p, when m = 3 and r = 10, j1.j2 . . . j10 ∈ Υ
(cf. Definition 1 in Section 1):

k jk σk ◦ σk−1 ◦ · · · ◦ σ1(1 2 3 4) pk

1 2 3 4
1 1 1 2 3 4 1
2 2 2 1 3 4 2
3 1 2 1 3 4 2
4 3 3 2 1 4 3
5 2 3 1 2 4 2
6 1 3 1 2 4 2
7 4 4 2 3 1 4
8 4 1 3 4 2 1
9 3 2 1 4 3 2
10 4 3 2 1 4 3

Theorem 1. Let j1.j2 . . . jr−1.jr be any EKR satisfying the least upward jumps rule. • The re-
ordered matrix with the rows (9) is precisely the (r+1)×(m+1) matrix of variables C(p1p2 . . . pr)
started with

(
x1, . . . , xm+1

)
=

(
x0
1, . . . , x

0
m+1

)
. •• Moreover, the sequence (p1, p2, . . . , pr) also

satisfies the least upward jumps rule.

3Because σk(jk) = 1, pk is also—handier, if posterior to the definition itself— the position of the variable

xk
1 in the k-th row, cf. (∗) in the proof of Theorem 1 below.
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Proof. We will show by induction on k = 1, 2, . . . , r that

⟨jk⟩ ◦ ⟨jk−1⟩◦ · · · ◦ ⟨j1⟩
(
x0
1, x

0
2, . . . , x

0
m+1

)
=

(
x1(p1 . . . pk), x2(p1 . . . pk), . . . , xm+1(p1 . . . pk)

)
.

[k = 1]:
j1 = 1, the variable x1−1

j1
= x0

1 is at the 1st position in
(
x0
1, x

0
2, . . . , x

0
m+1

)
, hence p1 = 1. Next,

x1(1) = x1 = x0
1 = x1

1 and also xj(1) =
dxj

dx1
=

dx0
j

dx0
1
= x1

j for j ̸= 1 so that the case k = 1 is

checked.

[k − 1⇒ k]:
from the inductive assumption we know that

⟨jk−1⟩◦ · · · ◦ ⟨j1⟩
(
x0
1, x

0
2, . . . , x

0
m+1

)
=

(
x1(p1 . . . pk−1), x2(p1 . . . pk−1), . . . , xm+1(p1 . . . pk−1)

)
.

We know from Definition 2 that the pk-th entry on the LHS above is xk−1
jk

, hence also

xpk
(p1 . . . pk−1) = xk−1

jk
.

Let us write now, directly below the row of variables on the LHS, the derivatives of xk−1
j , j ̸= jk,

with respect to xk−1
jk

and in the same order as on the LHS before differentiation. And

(∗) write xk
1 = xk−1

jk
below the entry xk−1

jk
.

In view of (4), (5), (6) and (7), the outcome of these actions is precisely

⟨jk⟩ ◦ ⟨jk−1⟩ ◦ · · · ◦ ⟨j1⟩
(
x0
1, x

0
2, . . . , x

0
m+1

)
.

Now comes the decisive moment in the proof. One step down on the RHS we write

(†) below xj(p1 . . . pk−1): xj(p1 . . . pk−1 pk) =
d xj(p1... pk−1)
d xpk

(p1... pk−1)
for j ̸= pk

and

(‡) below xpk
(p1 . . . pk−1): xpk

(p1 . . . pk−1 pk) = xpk
(p1 . . . pk−1).

In differentiating the same as on the LHS functions with respect to the same as on the LHS
variable, we have simply mimicked our previous actions below the row of functions standing
on the LHS. Therefore, the two newly obtained ordered rows of functions are identical. The
induction step is done.

[The ‘Moreover’ part]:
In order to justify this, we will show two things. Namely

(i) Suppose n ∈ {1, 2, . . . , m}, 1 ≤ s ≤ r, j1, j2, . . . , js ≤ n. Then p1, p2, . . . , ps ≤ n.
(ii) If the assumptions in (i) are slightly changed in that j1, j2, . . . , js−1 ≤ n, but js = n+ 1
(recalling, the EKR code under consideration satisfies the least upward jumps rule), then
ps = n+ 1.

This will do, because from (i) and (ii) taken together there follows already that the sequence
p1, p2, . . . , pr satisfies the least upward jumps rule.

Item (i). Because

(10) j1, j2, . . . , js−1 ≤ n ,

the permutations σ1, σ2, . . . , σs−1 only mix numbers within the set {1, 2, . . . , n}, and leave
untouched numbers bigger than n through m + 1. Since j1, j2, . . . , js are in this distinguished
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set, the positions of the variables xl−1
jl

, l = 1, 2, . . . , s, in the reordered rows with running
numbers l − 1 are not bigger than n.

Item (ii). The premise (10), put to work in the previous argument, still holds, hence the
number n + 1 stays still under all the permutations σ1, σ2, . . . , σs−1. By consequence, the
variable xs−1

js
= xs−1

n+1 stands in the (n+1)-st position in the reordered row No s−1. This means
that ps = n+ 1.
Now Theorem 1 is proved in its entirety. □

4.1. The injectivity of the mapping j→ p. Any given EKR system of coordinates j1.j2 . . . jr
has been accordingly reordered to just become a certain C(p1p2 . . . pr) system of coordinates.
This EKR system is, in certain precise sense, the only EKR system associated to the singularity
class j1.j2 . . . jr.
(In fact, Theorem 1 and Remark 5 in [M3] say that the germ at the origin of only j1.j2 . . . jr sits
in j1.j2 . . . jr.

4 As a matter of recollection, the construction of the singularity classes in general
width m ≥ 2 – the notion recalled in section 1.1 – was given in [M1].)
Consequently, that system C(p1p2 . . . pr) is the only one associated to the class j1.j2 . . . jr. In
view of this, the injectivity of the mapping j → p is, in principle, clear. However, in order that
this paper be as self-contained as possible, we note formally the following.

Observation 2. The mapping (j1, j2, . . . , jr) 7→ (p1, p2, . . . , pr) sending the sequences satisfy-
ing the least upward jumps rule to sequences satisfying the least upward jumps rule as well is
injective.

Proof. Let
(
j1, j2, . . . , jr

)
̸=

(
j′1, j

′
2, . . . , j

′
r

)
and

(11)
(
j1, j2, . . . , jk−1

)
=

(
j′1, j

′
2, . . . , j

′
k−1

)
while jk ̸= j′k (the first occurrence of the deviation between the two j-sequences under consider-
ation). The coincidence (11) clearly implies

(12) ⟨jk−1⟩ ◦ · · · ◦ ⟨j1⟩ = ⟨j′k−1⟩ ◦ · · · ◦ ⟨j′1⟩ .

Now observe that pk is the position number of the variable xk−1
jk

in the ordered row of functions

⟨jk−1⟩ ◦ · · · ◦ ⟨j1⟩
(
x0
1, x

0
2, . . . , x

0
m+1

)
,

while p′k is the position number of the variable xk−1
j′k

in the same (see (12)) ordered row of

functions. The two variables brought out are different, hence their positions in that row are
different: pk ̸= p′k. □

Corollary 1. For every r ≥ 1 the mapping j→ p is a bijection in the set Υ.

(An injective mapping Υ→ Υ, with the set Υ finite.)

4.2. On the cardinality of the sets Υ. The lujr limitation imposed on the sequences with
values in {1, 2, . . . , m+1} does not seem to have been in use before the appearance of the texts
[M1, M2]. It is of interest to know, how many such sequences exist, as a function of the width
m and length r. That is to say, how many singularity classes exist for given m and r. Here is a
sample of experimental data.

4Adjacencies occurring among the singularity classes are closely related to that uniqueness. When a singularity
class k1. k2 . . . kr is adjacent to k′1. k

′
2 . . . k

′
r, then it is not visible in the chart k′

1.k
′
2 . . . k

′
r. Whereas the thicker

k′1. k
′
2 . . . k

′
r is visible in k1.k2 . . . kr.
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the width m #(words of length r satisfying the lujr)

2 1
3!3

r + 1
2 , r ≥ 3

3 1
4!4

r + 1
42

r + 1
3 , r ≥ 4

4 1
5!5

r + 1
123

r + 1
62

r + 3
8 , r ≥ 5

5 1
6!6

r +
∑

(lesser bases)r , r ≥ 6

The restrictions r ≥ m+1 in the above table are, formally speaking, redundant. Yet the special
m-flags – precisely due to the lujr principle – start to fully manifest their properties only from
the length r = m+ 1 onwards! In these optics, the following is important.

Question 1. Keeping m ≥ 2 [arbitrary] fixed, is the leading term in the power expansion of
#(Υ) = #(words of length r satisfying the lujr) always 1

(m+1)! (m+ 1)r ?

Or, relaxing the question a bit, does the following equality hold?

(13) lim
r→∞

#(Υ)

(m+ 1)r
=

1

(m+ 1)!
.

Attention. The case m = 1 (Goursat flags) falls off this pattern. The number of Kumpera-Ruiz
classes of length r is 1

4 · 2
r. This deviation from a general rule is due to the Engel theorem for

Goursat distributions of corank 2. Engel forces, in the Kumpera-Ruiz systems of coordinates, on
top of j1 = 1, also j2 = 1. For special m-flags, m ≥ 2, it is well known that there is no analogous
theorem – see Proposition 1, (iii) in [M2].

It turns out that a proof of equality (13) is just round the corner.
Let, for p = 1, 2, . . . , m, m+ 1, N(r, p) denote the number of lujr words of length r having the
maximal letter p. (For instance N(r, 1) = 1, N(r, 2) = 2r−1 − 1.) Let also, more generally,
T (r, p) be the number of all words whatsoever of length r over the alphabet {1, 2, . . . , p} which
use all letters from this alphabet. Then T (r,m+ 1) < (m+ 1)r =

T (r,m+ 1) +

(
m+ 1

m

)
T (r,m) +

(
m+ 1

m− 1

)
T (r,m− 1) + · · ·+

(
m+ 1

1

)
T (r, 1)

< T (r,m+ 1) + 2m+1T (r,m) < T (r,m+ 1) + 2m+1mr .

This implies

T (r,m+ 1)

(m+ 1)r
< 1 <

T (r,m+ 1)

(m+ 1)r
+ 2m+1

(
m

m+ 1

)r

and further
T (r,m+ 1)

(m+ 1)r
−→ 1

when r tends to infinity. Now the lujr enters the situation with T (r,m+1) = (m+1)!N(r,m+1),
so that the above limit gets transformed into

(14)
N(r,m+ 1)

(m+ 1)r
−→
r→∞

1

(m+ 1)!
.

Naturally enough, (14) generalizes to

N(r, p)

pr
−→
r→∞

1

p !
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for p = m, m− 1, . . . , 1. This in turn implies that, for the same p’s,

(15)
N(r, p)

(m+ 1)r
=

N(r, p)

pr

(
p

m+ 1

)r

−→
r→∞

1

p !
· 0 = 0 .

Putting together (14) and (15),

N(r,m+ 1) +N(r,m) + · · ·+N(r, 1)

(m+ 1)r
−→
r→∞

1

(m+ 1)!
,

that is

#(Υ)

(m+ 1)r
−→
r→∞

1

(m+ 1)!
. □

4.3. Algorithmic translation j←− p. The plain existence of the mapping inverse to j −→ p
is already established. However, how to describe that inverse mapping in algorithmic terms? To
answer this, we ask what has been (in Definition 2) the gist of the defining the p-sequence out
of any given j-sequence? Simply as it has been,

pk =
(
σk ◦ σk−1 ◦ · · · ◦ σ1

)−1

(1) .

Or else, writing this equivalently,

1 = σk ◦ σk−1 ◦ · · · ◦ σ1(pk) =

(
1 2 · · · jk − 1 jk
2 3 · · · jk 1

)(
σk−1 ◦ · · · ◦ σ1(pk)

)
.

This implies

(16) jk = σk−1 ◦ · · · ◦ σ1(pk) .

It is the sought after recurrence: jk gets retrieved from the data consisting of pk and the previous
length k− 1 permutation σk−1 ◦ · · · ◦σ1. Putting the same formally, the starting data are j1 = 1
and σ1 = id. Then, for 2 ≤ k ≤ r, supposing j1, . . . , jk−1 already ascertained, hence σ1, . . . , σk−1

known, the value of jk is gotten via the formula (16). That is, j2 (and σ2 !) is gotten from p2
and σ1, then j3 is gotten from p3, σ1 and σ2 (known from the previous step), and so on. Below
given is an example illustrating this recursive procedure.

One starts from a given sequence p1 p2 . . . pr ∈ Υ (invariably m = 3 and r = 10). Reiterating,
one knows that j1 = 1, so that the permutation in the first row is but 1 2 3 4:

k pk jk σk ◦ σk−1 ◦ · · · ◦ σ1

1 2 3 4
1 1 1 1 2 3 4
2 2 2 2 1 3 4
3 1 2 1 2 3 4
4 2 2 2 1 3 4
5 3 3 3 2 1 4
6 1 3 1 3 2 4
7 2 3 2 1 3 4
8 3 3 3 2 1 4
9 4 4 4 3 2 1
10 4 1
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5. The j←− p procedure in action

Example 1 which terminates Section 2 deserves to be analyzed in depth. And all the more
so that the then displayed C-chart C(32123) (excerpted, recalling, from [CCKS]) fell off the
framework of the lujr.

5.1. Reading off the local geometry hidden in Example 1. What is that C-chart in
tower’s stage M(5) recalled in Example 1? It is a certain EKR chart visualising one concrete
singularity class on the DG side ([M1, M3]). Which one? To answer, one firstly needs to bring
that chart within the framework of sequences of indices satisfying the lujr — and that is easy.
To get it done, one just transposes the first and third columns in Example 1, together with the
corresponding transposition of all 1’s and all 3’s in the indices featuring in Example 1. So, up
to the order of coordinates used, in the original Example 5.1 in [CCKS] there is displayed the
chart C(12321):

x1 x2 x3

x1(1) x2(1) x3(1)

x1(12) x2(12) x3(12)

x1(123) x2(123) x3(123)

x1(1232) x2(1232) x3(1232)

x1(12321) x2(12321) x3(12321)

Having observed this, the translation – according to the algorithm of section 4.3 – into an
EKR chart is immediate:

k pk jk σk ◦ σk−1 ◦ · · · ◦ σ1

1 2 3
1 1 1 1 2 3
2 2 2 2 1 3
3 3 3 3 2 1
4 2 2 3 1 2
5 1 3

Only at this moment it becomes visible that the chart in Example 1 (so, ultimately, in Example
5.1 in [CCKS]) serves the purpose of watching the singularity class 1.2.3.2.3 living in the fifth
stage of the Special 2-Flags Monster Tower. It is a deeply singular codimension-6 class (cf.
Proposition 4 in [M3]), sitting inside a codimension-4 sandwich class 1.2.2.2.2. (The definition
of the sandwich classes is given in section 3.2 in [M3].)
It so happens that this latter class coincides with the intersection locus IW , W = RV2V3V4V5 in
[CCKS] – compare the pages from 860 onwards there. Such a coincidence is not random in that
each sandwich class is certain intersection locus, if of a very basic type. The matching recipe is
as follows.(

1 in the j-th sandwich code position
)
⇔

(
R in the j-th locus code position

)
and (

2 in the j-th sandwich code position
)
⇔

(
Vj in the j-th locus code position

)
.

For instance, the locus IU , U = RRV3RV5, is precisely the sandwich class 1.1.2.1.2. However,
such a perfect matching does not extend to further refinements of the sandwich classes vis à vis
finer intersection loci.
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On the whole, the intersection loci IW with all admissible words W of length k do not form a
stratification of the k-th stageM(k) in the Semple tower. Instead, there is a natural stratification
of M(k) built by the pairwise disjoint sets

(17) SW : = IW \
⋃

IW′⊊IW

IW′

(W, W ′ – admissible RV words of length k).

Attention. The symbol SW appears explicitly neither in [CCKS] nor in [CK], but the construction
(17) is implicit in [CCKS] in the last paragraph on p. 860 and in the first paragraph on p. 864.

It is more than natural to ask how the strata (17) are positioned with respect to the singularity
classes j1.j2 . . . jk living – as the reader knows from Sections 2 and 3 – on the same space M(k).
The numbers of the RV strata grow quickly with k; much quicker than the numbers of the
singularity classes (see section 4.2 and the table on p. 195 in [MP2]). Yet, in general, the former
are not a refinement of the latter (cf. in this respect a badly misfired question on p. 195 in
[MP2]). Some examples that first come to mind are given in the following section.

5.2. Singularity classes quickly come across with RV strata. The comparison of these
natural (if both coarse) stratifications constructed on the DG and AG sides of a one and the
same theory starts deceivingly simply in length 2: 1.1 = SRR and 1.2 = SRV2 (remember the
defining formula (17)). Also length 3 is clear, with five singularity classes and six RV strata:
1.1.1 = SRRR, 1.1.2 = SRRV3

,

(18) 1.2.1 = SRV2R ∪ SRV2V2 ,

1.2.2 = SRV2V3
, 1.2.3 = SRV2V23

(cf., for instance, Figure 13 in [CK]). It is known (Theorem 4
in [MP1]) that the most involved class of length 3, 1.2.1 is the union of three orbits of the
local equivalence by the underlying diffeomorphisms of the base manifold. Their relation to
the splitting (18) is as follows. The only codimension one orbit is the stratum SRV2R. The
two remaining orbits (of codimensions two and three) build up the stratum SRV2V2

— it is also
the first instance of an RV stratum not being an orbit of the local equivalence. (The classes
1.1.1, 1.1.2, 1.2.2 and 1.2.3 are just orbits, and this independent of the base manifold dimension
m+ 1 ≥ 3.)

For the present discussion in length 4 it is important to have the orbits building up the class
1.2.1 described in the EKR coordinates 1.2.1, that is – Theorem 1 – in the coordinates C(122).
With [MP1], pages 13 –15 at hand,

SRV2R = {x1(12) = 0 , x1(122) ̸= 0} ,

while the codimension two and three orbits are

SRV2V2
= {x1(12) = x1(122) = 0 ̸= x3(122)} ∪ {x1(12) = x1(122) = x3(122) = 0} .

Problems already start in length 4. We will illustrate them on just one sandwich class 1.2.1.2
being the union of two singularity classes 1.2.1.2 (of codimension 2) and 1.2.1.3 (of codimension
3). Passing from an intersection locus to its parts – RV loci,

(19) 1.2.1.2 (= IRV2RV4) = SRV2RV4 ∪ SRV2V2V4 ∪ SRV2V2V24 .

The first and thickest term in the union on the right-hand side comes across with both singularity
classes 1.2.1.2 and 1.2.1.3. In turn, the second term in the union sits entirely in 1.2.1.2, while
the third one sits in 1.2.1.3. Graphically this situation looks as follows.
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Formula (19) and the figure above show that the RV strata quickly deviate from the singu-
larity classes. Needless to say, the orbits of the local classification are a refinement of either
stratification. We conclude this paper by explicitly describing these orbits.

We start with the class 1.2.1.2 (blue on the figure). The EKR system 1.2.1.2 which is pertinent
for the class 1.2.1.2 is, on the AG side, the C(1221) system. The description of the four orbits
dissecting 1.2.1.2 (pages 25 – 28 in [MP1]) goes as follows in the C(1221) terms.

(i) The [lion’s] part of the stratum SRV2RV4
inside 1.2.1.2 is the union of a codimension-2 orbit

{x1(12) = 0 , x1(122) ̸= 0 , x2(1221) = 0 , x3(1221) ̸= 0}
and codimension-3 orbit

{x1(12) = 0 , x1(122) ̸= 0 , x2(1221) = 0 , x3(1221) = 0} .
(ii) The stratum SRV2V2V4 entirely contained in 1.2.1.2 is the union of
a codimension-3 orbit

{x1(12) = 0 , x1(122) = 0 , x3(122) ̸= 0 , x2(1221) = 0}
and codimension-4 orbit

{x1(12) = 0 , x1(122) = 0 , x3(122) = 0 , x2(1221) = 0} .
As regards the class 1.2.1.3 (green on the figure), the pertinent ‘viewing’ system of coordinates
is 1.2.1.3, that is, C(1223). Section 4.2 in [MP1] says that the three orbits dissecting 1.2.1.3 are
as follows:

(iii) the remaining part of the stratum SRV2RV4
inside 1.2.1.3 is a single codimension-3 orbit

{x1(12) = 0 , x1(122) ̸= 0 , x1(1223) = 0 , x2(1223) = 0} .
(iv) The stratum SRV2V2V24 entirely contained in 1.2.1.3 is the union of
a codimension-4 orbit

{x1(12) = 0 , x1(122) = 0 , x3(122) ̸= 0 , x1(1223) = 0 , x2(1223) = 0}
and codimension-5 orbit

{x1(12) = 0 , x1(122) = 0 , x3(122) = 0 , x1(1223) = 0 , x2(1223) = 0} .

5.3. Reading off the [intriguing] geometry hidden in an example of Lejeune-Jalabert.
We are going to conclude with yet another question. To that end we recall an example of
a one-parameter family of space (3D) analytic curves, originally due to A.Campillo and later
extensively discussed in [L-J]. That family {γα} is defined in the space R3 with coordinates
x1, x2, x3 by the equations

(20) γα : x1 = t8 , x2 = t10 + t13 , x3 = t12 + α t15 ,



346 PIOTR MORMUL

where α is a real parameter. In order to better understand the geometric character of the family
{γα}, a series of five Nash blow-ups5 is being performed over each one curve γα. The eventual
curve is horizontal with respect to the bundle of focal 3-spaces [at points of the stage M(5) of
the Semple tower with the base R3].
The proper C-chart in which one views the result of these five blow-ups is C(12223) provided
α ̸= 52

25 . (It is also the chart Z12223 in [L-J], p. 1310. Curiously, for the special value α = 52
25

the proper glasses are different: C(1222221).) Wishing to record this – rare in the singularity
theory sensu largo – phenomenon, we supply the intermediate steps of computations. In use
is the C-language (instead of the original Z-language of [L-J]). The departing point are the
coordinate functions (20) of γα. And then

x2(1) =
5

4
t2 +

13

8
t5 , x3(1) =

3

2
t4 +

15

8
α t7 ,

x1(12) =
16

5
t6 + · · · , x3(12) =

12

5
t2 +

105α− 156

20
t5 + · · · ,

x1(122) =
192

25
t4 + · · · , x3(122) =

48

25
+

21

50

(
25α− 52

)
t3 + · · · ,

x1(1222) =
1536

125
t2 + · · · , x3(1222) =

63

125

(
25α− 52

)
t+ · · · ,

x1(12223) =
3072

63
(
25α− 52

) t+ · · · , x2(12223) =
625

126
(
25α− 52

) t+ · · · .
Upon doing one more Cartan prolongation (or, the same thing, Nash blow-up) the two brand
new active coordinates are already non-zero at the reference point:

x1(122233)|0 =
128 000

1323
(
25α− 52

)2 , x2(122233)|0 =
78 125

7938
(
25α− 52

)2 .

The indices in the underlying chart C(122233) satisfy the lujr; the EKR name for this chart
is 1.2.1.1.3.1. This latter chart, as we know, properly describes its associated singularity class
C = 1.2.1.1.3.1, one among the two-step prolongations of the most involved in length 4 class
1.2.1.1 (see [MP1] and section 8.2 in [MP2]).
Saying the same differently, the sixth prolongation of γα hits at t = 0 the class C at a point Pα

having the pair of last EKR coordinates x6 = 78 125

7938
(
25α−52

)2 and y6 = 128 000

1323
(
25α−52

)2 .

Question 2. Are arbitrary two points Pα and Pβ , α ̸= 52
25 ̸= β, equivalent in C ? (Their

projections two levels down, π6
4

(
Pα

)
and π6

4

(
Pβ

)
, are – cf. Section 6 in [MP1] – identical in the

class 1.2.1.1.)

When α = 52
25 , the local geometry becoming visible in the prolongations of γ 52

25
is cardinally

different. Two more Nash blow-ups are required to regularize this particular curve, and the chart
needed to observe it (already mentioned) is C(1222221).
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