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INVARIANTS AND CLASSIFICATION OF SIMPLE FUNCTION GERMS

WITH RESPECT TO LIPSCHITZ A -EQUIVALENCE

NHAN NGUYEN AND SAURABH TRIVEDI

Abstract. In this note we discuss the classification of Lipschitz simple function germs. The
full classification under Lipschitz right-equivalence has been established by M. Ruas and the

authors. We consider Lipschitz left-right equivalence here and show that the classification for

this equivalence coincides with the classification for Lipschitz right-equivalence.

1. Introduction

M. Ruas and the authors in [18] completely classified finitely determined simple complex
analytic function germs under Lipschitz R-equivalence (R stands for ‘right’). In this article we
show that the classification of Lipschitz A -simple germs (A stands for ‘left-right’ equivalence)
coincides with that of Lipschitz R-simple germs. The idea comes from the classification presented
in the above mentioned article which is quite technical in nature. For this reason, we present a
less technical introduction to [18] for better accessibility to the reader.

That the classifications of simple germs coincide for smooth R and A -equivalence follows
from the fact that the smooth A -classification agrees with smooth R-classification for quasi-
homogeneous germs. However, if the germs are not quasihomogenous the smooth A -type and
R-type might differ. For example, the family ft(x, y) = x5+y5+tx3y3 is not smoothly R-trivial,
for x3y3 does not belong to the R-tangent space. The family however is smoothly A -trivial for
non-zero t. Since the list of Lipschitz R-simple germs contains non-quasihomogenous singulari-
ties, the above argument cannot be applied directly to show that the classifications of Lipschitz
R-simple and Lipschitz A -simple germs coincide. Our conclusion is an observation coming from
the complete classification.

The paper is organized as follows. We first recall in Section 2 the classical idea of proving
Lipschitz R-triviality of a deformation, and then present a concrete example of a deformation in
the real case which is Lipschitz trivial but has different Milnor numbers at two different parameter
values. This shows that the Milnor number is not a Lipschitz R-invariant. In fact, the Milnor
number is also not a Cp-invariant for any p ∈ N as is shown by giving a counterexample.

In Section 3 we present some Lipschitz invariants related to finitely determined singularities.
We first discuss the invariance of corank which is defined as the nullity of the Hessian of a germ
at 0. This is interesting since it partially answers the question of Arnold whether corank is a
topological invariant; see problem 1975-14 in Arnold [2]. Next we show the invariance of the
multiplicty and singular locus of non-quadratic part of the germ obtained after applying the
splitting lemma. The section ends with some open questions.

Section 4 discusses the notion of Lipschitz R-simplicity and the idea behind the classification
with least technical details as possible. In Section 5, we show that certain families of germs cannot
deform to J10 using results of Kushnirenko [13] and Newton diagrams. Finally, in Section 6 we
show that a germ is Lipschitz A -simple if and only if it is Lipschitz R-simple. The idea is

The authors would like to thank Maria Ruas for helpful discussions. The second author was supported by
SERB-MATRICS Grant - MTR/2021/000043.

http://dx.doi.org/10.5427/jsing.2022.25p


LIPSCHITZ A -EQUIVALENCE 349

essentially the same as in the classification of simple germs under Lipschitz R-equivalence. The
key is to show that J10 is Lipschitz A -modal family.

2. Milnor number and Triviality of deformations

2.1. Milnor number. Given a germ f : (Cn, 0) → (C, 0) (n ≥ 2) of a complex isolated hy-
persurface singularity, the Milnor number (or the codimension) µ(f) of f is defined to be the
C-vector space dimension of En/Jf , where En is the local ring of complex analytic germs from
(Cn, 0) to C (i.e. germs of complex analytic functions defined on a neighbourhood of 0 in Cn)
and Jf is the ideal of En generated by the partial derivatives of f . The Milnor number in the
complex case has a purely topological description, namely the Milnor fiber of f has the homotopy
type of a bouquet of spheres and the number of spheres in the bouquet is precisely the Milnor
number; this is now known as the Milnor-Palamodov Theorem, see Milnor [16] and Palamodov
[19]. This implies that the Milnor number is a topological invariant in the complex case.

One can define the Milnor number in the real case analogously. By abuse of notation, let En

be the local ring of germs of C∞ functions (also called smooth functions) on Rn at the origin, and
mn be its maximal ideal (the germs that vanish at 0). Given f ∈ En define µ(f) = dimR En/Jf ,
where Jf is the Jacobian ideal of f . It is then natural to ask if the Milnor number is a topological
invariant in the real case. This is certainly not true, for the germs of f(x) = x and g(x) = x3

are topologically equivalent but they have different Milnor numbers. However, we know that:
1. The Milnor number µ(f) is a C∞-invariant. That is, if f and g are C∞-equivalent then

µ(f) = µ(g). A proof of this can be found in Trotman [23].
2. The Milnor number mod 2 is a topological invariant, see Wall [24]. That is, if f is

topologically equivalent to g, then µ(f) ≡ µ(g) mod 2. There are some simplifications of the
result of Wall by Dudzinski et al. [7]. Wall, in the same article, also pointed out that the
topological type of f(x1, . . . , xn) = x2i

1 + x2
2 + · · ·+ x2

j − x2
j+1 − · · · − x2

n is determined by n and
j, but the Milnor number of f is 2i− 1.

It was first shown in [18] the Milnor number is not a Lipschitz R-invariant by constructing a
family of germs which is Lipschitz R-trivial but the Milnor numbers are different for two distinct
parameter values. In the following we describe how to prove the Lipschitz triviality of a given
family.

2.2. Triviality. We begin with some definitions. Two germs f, g ∈ En are said to be bi-Lipschitz
R-equivalent if there exists a germ h : (Rn, 0) → (Rn, 0) of a bi-Lipschitz homeomorphism such
that f ◦ h = g. Recall that h is a bi-Lipschitz homeomorphism if there exists a real number
K ≥ 1 such that

1

K
∥x− y∥ ≤ ∥h(x)− h(y)∥ ≤ K∥x− y∥.

on a neighbourhood of 0. This is equivalent to say that h is a homeomorphism which is Lipschitz
and whose inverse is also Lipschitz.

Given a germ f0 : (Rn, 0) → (R, 0), a smooth germ F : (Rn × R, 0) → (R, 0) such that
F (0, t) = 0 for all t is said to be a (one-parameter) deformation of f0 if F (x, 0) = f0(x).
The deformation F is said to be smoothly trivial if there exists a germ of a diffeomorphism
H : (Rn × R, 0) → (Rn × R, 0) of the form H(x, t) = (h(x, t), t) with h(x, 0) = x and h(0, t) = 0
such that

F ◦H(x, t) = f0(x). (1)
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As a consequence of the definition of a smoothly trivial deformation it follows that for every
t, Ft = F (·, t) and f0 are smoothly equivalent; see page 33-34 in Martinet [15]. If H is a bi-
Lipschitz germ, F is said to be Lipschitz trivial. If H is only a germ of a homeomorphism, then
F is said to be a topologically trivial deformation of f0; see page 340 in Damon and Gaffney [6].

We can differentiate Equation (1) with respect to t to get

n∑
i=1

∂Hi

∂t
(x, t)

∂F

∂xi
(H(x, t)) +

∂F

∂t
(H(x, t)) = 0. (2)

Now, if we put X(x, t) = ∂
∂t +

∑n
i=1 Xi(x, t)

∂
∂xi

where Xi(x, t) =
∂Hi

∂t (x, t), then Equation (2)

can be rewritten as X.F = 0 (here xi’s are the coordinates of Rn). This implies that if F is
smoothly trivial, then there exists a vector fieldX(x, t) = ∂

∂t+
∑n

i=1 Xi(x, t)
∂

∂xi
withXi(0, t) = 0,

i = 1, . . . , n, such that X.F = 0.
The converse of the above statement is also true with a weaker condition on the vector field,

namely that the vector field be Lipschitz. More precisely, let F : (Rn × R, 0) → (R, 0) be a
deformation of a function f0 : (Rn, 0) → (R, 0), i.e. F (x, 0) = f0(x). Suppose there exists a
vector field X(x, t) of the form

X(x, t) =
∂

∂t
+

n∑
i=1

Xi(x, t)
∂

∂xi
,

with eachXi : (Rn, 0) → (R, 0) a germ of a Lipschitz function, such thatXi(0, t) = 0, i = 1, . . . , n
and

X.F =
∂F

∂t
+

n∑
i=1

Xi(x, t)
∂F

∂xi
= 0. (3)

Think of X as a time dependent vector field. Suppose H : (Rn × R, 0) → (Rn, 0) is the germ
of the flow of X.

Since X is a Lipschitz vector field, H is a Lipschitz flow and for any fixed t, Ht(x) = H(x, t)
is a bi-Lipschitz map germ. Then,

∂H

∂t
(x, t) = X(H(x, t), t) (4)

= (X1(H(x, t), t), . . . , Xn(H(x, t), t)) (5)

=

(
∂H1

∂t
(x, t), . . . ,

∂Hn

∂t
(x, t)

)
(6)

From (1) and (2) we get:

∂F

∂t
(H(x, t), t)) +

n∑
i=1

Xi(H(x, t), t)
∂F

∂xi
(H(x, t), t) = 0. (7)

From (5) we get:

∂F

∂t
(H(x, t), t)) +

n∑
i=1

∂H1

∂t
(x, t)

∂F

∂xi
(H(x, t), t) = 0. (8)

Now, put Φ(x, t) = (H(x, t), t). Since Ht is bi-Lipschitz, Φ is also bi-Lipschitz. By the Chain
Rule, (6) can be rewritten as:

∂(F ◦ Φ)
∂t

(x, t) = 0 (9)
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But, since F is a deformation of f0, F (x, 0) = f , thus for all t:

F ◦ Φ(x, t) = f0(x)

This implies that for every t, Ft = F (·, t) is Lipschitz equivalent to f0. That is, the deformation
F is Lipschitz trivial along the parameter t and the trivialization is given by integration of the
Lipschitz vector field X. This is called the Thom-Levine Theorem and we state it as follows:

Theorem 2.1. Let F : (Rn ×R, 0) → (R, 0) be a deformation of a germ f : (Rn, 0) → (R, 0). If
there exists a Lipschitz vector field X of the form:

X(x, t) =
∂

∂t
+

n∑
i=1

Xi(x, t)
∂

∂xi
,

such that Xi(0, t) = 0, i = 1, . . . , n and X.F = 0, then F is a Lipschitz trivial deformation.

The converse of the above theorem holds, as we have seen, if F is smoothly trivial. In the case
of Lipschitz trivialization, the converse is still an open problem. It is for this reason that in some
places a Lipschitz trivial deformation whose trivialization is given by integrating a Lipschitz
vector field is termed a strongly Lipschitz trivial deformation.

2.3. Lipschitz triviality. To decide whether a given deformation is Lipschitz trivial, Theorem
2.1 suggests we seek a Lipschitz vector field which acts on the deformation trivially. But, this is
not an easy task and requires some work which we will explain in this section.

So, given a deformation F : (Rn × R, 0) → (R, 0), we want to find a Lipschitz vector field X
such that X.F = 0. This is where Kuo vector fields (Kuo [11, 12]) are helpful. To understand
the idea, let us restrict to 2-variables.

Given a one-parameter deformation F : (R2 × R, 0) → (R, 0) of f : (R2, 0) → (R, 0), put

ρ =

(
∂F

∂x1

)2

+

(
∂F

∂x2

)2

.

Then,

ρ.
∂F

∂t
=

(
∂F

∂t

∂F

∂x1

)
∂F

∂x1
+

(
∂F

∂t

∂F

∂x2

)
∂F

∂x2
(10)

Put A =

(
∂F
∂t

∂F
∂x1

ρ

)
and B =

(
∂F
∂t

∂F
∂x2

ρ

)
. Then, Equation (10) can be rewritten as

∂F

∂t
= A

∂F

∂x1
+B

∂F

∂x2
.

The function ρ is called a control function.
So, to prove that a deformation F is Lipschitz trivial, we attempt to show that the vector

field

X =
∂

∂t
+A

∂

∂x1
+B

∂

∂x2
,

called the Kuo vector field, is Lipschitz. This is equivalent to showing that A and B are Lipschitz
functions, since a multivariable function is Lipschitz if and only if its components are Lipschitz.
Observe that the idea can easily be generalized to any number of variables.

In the case where the deformation F of f : (Rn, 0) → (R, 0) is of the form

F (x, t) = f(x) + θ(x, t)

and f is a quasihomogeneous germ, then we have a result of Fernandes and Ruas [8] giving
sufficient conditions for Lipschitz triviality of F . We need some definitions for the statement of
this result.
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Given ω = (w1, . . . , wn) an n-tuple of non-negative integers in increasing order, the filtration of
the monomial xα1

1 . . . xαn
n with respect to ω is defined to be

∑n
i=1 αiwi. And, given a polynomial

f the filtration of f with respect to ω is given by

fil(f) = min{fil(xα)|xα is a monomial of f}.

Then, the result of Fernandes and Ruas [8] says that:

Theorem 2.2. Let f : (Rn, 0) → (R, 0) be the germ of a quasihomogeneous polynomial with
isolated singularity of weight (w1, . . . , wn) and total weight d such that (w1 ≤ . . . ≤ wn). Let
ft(x) = f(x) + tθ(x, t) be a one-parameter deformation of f . If fil(θ) ≥ d+wn −w1, then ft is
a Lipschitz trivial deformation of f (for t sufficiently close to the origin).

To prove the result, the authors show that the Kuo vector field associated to the deformation
is Lipschitz and then use the Thom-Levine theorem to conclude the result.

Observe that, if t is not close to the origin in the above theorem, then the theorem fails to
hold. Consider for example the deformation ft(x, y) = x2+ y2+ t(xy+ y3). This family satisfies
the hypothesis of the above theorem. But

f2(x, y) = (x+ y)2 + 2y3 and f1(x, y) = x2 + y2 + xy + y3

cannot be Lipschitz equivalent because the tangent cones of their zero loci are different. It
is known that the Lipschitz type of the tangent cone is a Lipschitz invariant of the variety;
see Sampaio [21]. In [18], Theorem 7.9, we showed a global version of the above theorem by
adding the condition that the initial part of ft has isolated singularity for all t. The result
holds also for the complex case. Let us recall the notion of initial part of a germ. Given a
weight w = (w1, . . . , wn) and a smooth germ f , we may write the Taylor expansion of f at 0 as
T0f = fd + fd+1 + . . . where fd ̸= 0 and fk is a weighted homogeneous polynomial of the total
weight k. The polynomial fd is called the initial part of f (with respect to the weight w).

Theorem 2.3 ([18], Theorem 7.9). Let f : (Rn, 0) → (R, 0) be the germ of a quasi homogeneous
polynomial of weight (w1, . . . , wn) and total weight d such that (w1 ≤ · · · ≤ wn). A smooth family
ft(x) = f(x) + tθ(x, t) is Lipschitz trivial if the initial part of ft has an isolated singularity for
every t and fil(θ) ≥ d+ wn − w1.

2.4. Non-invariance of Milnor number. The following are examples showing that the
Milnor number is not a Lipschitz invariant. In fact, it is not even a Cr-invariant for any finite
r, in contrast with the C∞ case.

Consider the one-parameter deformation

ft(x, y) = x4 + y4 + t(x2y2 + y6) (t ≥ 0)

and observe that this deformation satisfies the hypotheses of Theorem 2.3. Thus, this deforma-
tion is Lipschitz R-trivial. However, for t ̸= 2 the Milnor number of ft is 9 while the Milnor
number of f2 is 13. This shows that the Milnor number is not a Lipschitz R-invariant.

Furthermore, consider the deformation ft given by

ft(x, y) = x4 + y4 + 2x2y2 + ty4+k, (k ≥ 1).

This deformation is Ck-trivial since it can be easily shown that the Kuo vector field associated
to ft is C

k. However, the Milnor number µ(f0) = ∞ while µ(ft) = 13. Thus, the Milnor number
is not a Ck-invariant for any finite k. This fact about Cp-non-invariance of Milnor number also
follows from Takens [22]. Takens mentions in his article that the functions (x2

1+x2
2)

2+xp+5
1 and

(x2
1 + x2

2)
2 are C1-equivalent but not Cp+2-equivalent and attributes the result to Kuiper [10].

The result follows by adding a parameter to the functions.
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3. Lipschitz Invariance of Corank

Given a smooth function germ f : (Rn, 0) → (R, 0), its Taylor expansion at 0 can be written
as T0f(x) =

∑∞
i=k fk(x) where fk is a homogeneous polynomial of degree k. The smallest k such

that fk ̸= 0 is called the multiplicity of f , denoted by mf , and Hk is called the lowest degree
homogeneous polynomial of f , denoted by Hf . We denote by Σf the singular locus of f , i.e.,
Σf = {x ∈ Rn : Df(x) = 0}.

It was shown in [18] that the corank of a function germ in m2
n is a Lipschitz R-invariant. The

proof of this result is based on the following important properties:

Lemma 3.1. Let f, g : (Rn, 0) → (R, 0) be two smooth germs. If f and g are Lipschitz R-
equivalent then:

(1) The multiplicities mf = mg.
(2) The lowest degree homogeneous polynomials of f and g are Lipschitz R-equivalent.
(3)

L−1∥Df(h(x))∥ ≤ ∥Dg(x)∥ ≤ L∥Df(h(x))∥
where h : (Rn, 0) → (Rn, 0) is a bi-Lipschitz homeomorphism such that g = f ◦ h and L is the
Lipschitz constant of h.

The Lipschitz invariance of multiplicities in the complex case was proved by Risler and Trot-
man [20] and in the real case by Fernandes and Ruas [8].

The theorem is as follows:

Theorem 3.2. Let f, g be finitely determined germs in m2
n. If f and g are Lipschitz R-equivalent

then the corank of f is equal to the corank of g at 0.

Let f, g be finitely determined germs in m2
n+p. Assume that coranks of f and g are r and

s respectively. By the Splitting Lemma, up to smooth change of coordinates we can write
f = f̃(x1, . . . , xr) + Qf (xr+1, . . . , xn) and g = g̃(x1, . . . , xs) + Qg(xs+1, . . . , xn) where Qf and
Qg are non-degenerate quadratic polynomials. By Theorem 3.2, if f and g are Lipschitz R-
equivalent, then r = s. The following is proved in [18] Theorem 5.1.

Theorem 3.3. Suppose that f and g are Lipschitz R-equivalent. Then,

(i) mf̃ = mg̃.

(ii) Σf̃ and Σg̃ are Lipschitz equivalent.

The proof of the above result also relies on properties in Lemma 3.1.

For Lipschitz A -equivalence, it is not so difficult to prove that the results in Lemma 3.1
still hold. The multiplicity is also known as an invariant of a weaker equivalence relation called
bi-Lipschitz contact equivalence (see for example Birbrair [3], Nguyen [17]). A proof for (2) can
be found in [17]. Proof for (3) is similar to the case of Lipschitz R-equivalence. Then, following
the proof of Theorem 3.2 one can show that corank is invariant under Lipschitz A -equivalence.
Similarly, results in Theorem 3.3 are also true for this case. In conclusion, we have

Theorem 3.4. Suppose that f and g are Lipschitz A -equivalent. Then

(1) corank(f) = corank(g).
(2) mf̃ = mg̃.

(3) Σf̃ and Σg̃ are Lipschitz equivalent.
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Remark 3.5. All the above results are also valid for complex analytic germs. The proofs are
similar.

Question 3.6. Suppose that f and g are Lipschitz R-equivalent (resp. Lipschitz A-equivalent).

1) Are the zero sets of f̃ and g̃ Lipschitz equivalent?

2) Are f̃ and g̃ Lipschitz R-equivalent (resp. Lipschitz A-equivalent)?

Remark 3.7. Arnold in 1975 (see Problem 1975-14 in [2]) asked if the corank of a germ is
a topological invariant and remains unanswered to this date. Considering that the topological
invariance of the corank in the complex case is an open problem, our result is the best known
partial answer so far.

In the real case, analogous to the case of Milnor number, corank is not a topological invariant.
Consider for example f(x, y) = x2 + y2 and g(x, y) = x4 + y4. We have f ◦ h = g where
h(x, y) = (x|x|, y|y|) which is a homeomorphism. It is clear that corank f is 0 while corank of g
is 2.

Boardman symbols in general are not topological invariants as was proved by Loojienga [14].
Recently, the first author [17] has given an example showing that Boardman symbols are also
not invariant under Lipschitz R-equivalence for both the real and the complex cases.

4. Classifying Lipschitz simple R-germs

The aim of this section is to recall the main result of [18] which is the classification of Lipschitz
R-simple complex analytic germs.

A finitely determined germ f : (Cn, 0) → (C, 0) is said to be Lipschitz R-simple if in the jet
space Jk(n, 1) of sufficiently high-order k, there exists a neighbourhood of jkf(0) that intersects
only finitely many Lipschitz R-classes. Here by a finitely determined germ we mean a germ that
is finitely determined with respect to the group R. A germ that is not Lipschitz simple is called
a Lipschitz modal germ. Replacing the Lipschitz R-equivalence by the Lipschitz A -equivalence
we get the notion of Lipschitz A -simple germs.

We denote again by En the ring of all complex analytic germs (Cn, 0) → C and by mn its
maximal ideal. The space En can be considered as a bundle of copies of mn, so it suffices to
reduce the problem to classification of germs in mn. Since germs in mn \ m2

n are non-singular,
they are obviously simple, therefore we only need to classify germs in m2

n.
Thom’s splitting lemma says that if f : (Cn, 0) → (C, 0) is a finitely determined germ of

corank c, then there exists a germ g ∈ m3
c such that

f(x1, . . . , xn) ∼R g(x1, . . . , xc) + x2
c+1 + · · ·+ x2

n.

Moreover, this splitting of f is unique in the sense that if g+Q ∼R h+Q, then g ∼R h where Q
is a quadratic form in the rest of the variables. Owing to this result one can ignore the quadratic
part in the classification under holomorphic R-equivalence.

One of the key results used in the classification is the following:

Theorem 4.1 ([18], Theorem 6.4). The family J10 : ft(x) = x3
1 + tx1x

4
2 + x6

2 +Q(x3, . . . , xn) is
Lipschitz R-modal.
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If the uniqueness property of the splitting lemma were true for the Lipschitz R-equivalence
then the above theorem would trivially follow from the result of Henry and Parusiński [9] that
the Lipschitz R-type of the family gt(x, y) = x3 + txy4 + x6 varies continuously. Unfortunately,
such a property is still unknown.

By Theorem 4.1, J10 is a Lipschitz modal family, it then follows from the definition of modality
that every germ that deforms to J10 is also Lipschitz modal. Here by saying a germ f deforms
to a family D we mean that there is a continuous map F : (Cn×C, 0) → (C, 0) such that F0 = f
and Ft ∈ D for every t near 0, t ̸= 0.

In fact, it turns out that to classify Lipschitz simple germs, it is enough to check if a germ
deforms to J10 or not, for we prove in [18] that:

Theorem 4.2. The set of all finitely determined germs in m2
n can be split into two disjoint

groups. The first one, denoted Ω1, includes all germs deforming to J10, the second one, denoted
Ω2, is the complement of the first one, which includes all smooth simple germs (Ak, Dk, E6, E7,
E8) and finitely many families of smooth unimodal germs as in Table 1.

Table 1: List of germs in Ω2

Name Normal form Codimension Corank
Ak, k ≥ 1 xk+1 k 1
Dk, k ≥ 4 x2y + yk−1 k

E6 x3 + y4 6 2
E7 x3 + xy3 7
E8 x3 + y5 8
X9 x4 + y4 + tx2y2 9

T2,4,5 x4 + y5 + tx2y2 10
T2,5,5 x5 + y5 + tx2y2 11 2
Z11 x3 + y5 + txy4 11
W12 x4 + y5 + tx2y3 12

Tp,q,r, 3 ≤ p ≤ q ≤ k ≤ 5 xp + yq + zr + txyz p+ q + r − 1
Q10 x3 + y4 + yz2 + txy3 10
Q11 x3 + y2z + xz3 + tz5 11 3
S11 x4 + y2z + xz2 + tx3z 11
S12 x2y + y2z + xz3 + tz5 12

It is proved in [18] that all families in Table 1 are Lipschitz R-trivial. Consequently, Ω2

contains only finitely many Lipschitz R-equivalence classes. Given a germ f ∈ Ω2, then f only
deforms to germs in Ω2, in other words, there is small neighborhood of f in m2

n which contains
only germs in Ω2, so by definition, f is Lipschitz simple.

To write down all the Lipschitz R-classes of germs in Ω2 it is necessary to distinguish the
Lipschitz types of families in Table 1. It is shown in [18] that they are different by using several
invariants including the Milnor number, the corank, the order and the singular locus of the
non-quadratic part of a germ after applying Thom’s splitting lemma, and also the zeta functions
of the monodromy.

In short, we have the following result:

Theorem 4.3. A germ f ∈ m2
n is Lipschitz R simple if and only if it is Lipschitz R-equivalent

to one of the germs in the table below:
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Table 2: List of Lipschitz R-simple germs

Name Normal form Codimension Corank
Ak, k ≥ 1 xk+1 k 1
Dk, k ≥ 4 x2y + yk−1 k

E6 x3 + y4 6 2
E7 x3 + xy3 7
E8 x3 + y5 8
X9 x4 + y4 + x2y2 9

T2,4,5 x4 + y5 + x2y2 10
T2,5,5 x5 + y5 + x2y2 11 2
Z11 x3 + y5 + xy4 11
W12 x4 + y5 + x2y3 12

Tp,q,r, 3 ≤ p ≤ q ≤ k ≤ 5 xp + yq + zr + xyz p+ q + k − 1
Q10 x3 + y4 + yz2 + xy3 10
Q11 x3 + y2z + xz3 + z5 11 3
S11 x4 + y2z + xz2 + x3z 11
S12 x2y + y2z + xz3 + z5 12

We would like to remark that although the definition seems easy, it is difficult in general
to prove that a family of singularities is bi-Lipschitz trivial. In [18], we improved upon earlier
results of Abderrahmane [1], Fernandes and Ruas [8] and Saia et al. [5] using Newton diagram
to prove several of families in Table 1 are bi-Lipschitz trivial. It is worth mentioning that the
bi-Lipschitz triviality of Q11 was rather tricky and did not follow from the improvements of
results we just mentioned. The reader might want to look at the proof of Lipschitz triviality of
Q11 for it could be applied to more general situations.

An interesting observation is that the notion of Lipschitz R-simplicity is a Lipschitz R-
invariant in the sense that given two germs f and g which are Lipschitz R- equivalent, if f is
Lipschitz simple then g is also Lipschitz simple. This property is not clear from the definition,
it is a consequence of the complete classification.

We would also like to mention that our method may be applied to get a classification of
Lipschitz simple function germs in the real case, however, it would be more subtle since the
family J10 is not completely Lipschitz modal in the real case, more precisely, germs in J10 are
Lipschitz R-modal if t ≤ 0 and are Lipschitz R-simple if t > 0; see Henry and Parusiński [9].

5. Certain adjacencies and non-adjacencies to J10

The results of this section are not original and the proofs can also be found in Brieskorn [4].
However, during our investigation of Lipschitz simple germs we reproved some of Brieskorn’s
results and we thought it could be worthwhile to give an account of our method here. One must
compare the proofs of Brieskorn with ours.

Let f : (Cn, 0) → (C, 0) be a germ and D a class of singularities in mn. Then, f is said to
deform to D (or that f is adjacent to D) if there exists a deformation F : (Cn × C, 0) → (C, 0)
such that F (x, 0) = f(x) and F (x, t) ∈ D for every t ̸= 0. Recall that T2,5,5 is a one modal
family of germs given by x5 + y5 + λx2y2 and J10 is x3 + y6 + λxy4.

We will prove that:

Lemma 5.1. T2,5,5 does not deform to J10.
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Proof. The first thing to notice is that for T2,5,5 to deform to J10, the 3-jet of the deformation
must be analytically equivalent to x3. This is because J10 has 3-jet equal to x3 (see Arnold’s
classification). Thus, if there were a deformation of T2,5,5 to J10, it should have the following
general form:

Fλ = x5 + y5 + λx2y2 + ϵ(x− βy)3 + p4(x, y) + p5(x, y) +R(x, y),

where ϵ is a complex number, p4, p5 are homogeneous polynomials of degree 4 and 5 respectively
and R is a polynomial of degree ≥ 6. Under the change of coordinates x → x+ βy and y → y,
we get:

Fλ = (x+ βy)5 + y5 + λ(x+ βy)2y2 + ϵx3 + p4(x, y) + p5(x, y) +R(x, y).

Of course, p4, p5 and R change after the change of coordinates, but we can rearrange them to
have the above form.

We will prove that such a deformation can have Milnor number at most 8. To see this we
proceed as follows:

Recall first that if f : (C2, 0) → (C, 0) is Newton non-degenerate in the sense of Kushnirenko
(see Definition 1.19 in Kushnirenko [13]), then the Milnor number of f can be given in terms of
the area under the Newton polyhedron of f and its x and y intercepts. It is a matter of simple
calculations to verify that our germ and all that appear in the proof of the lemma, are Newton
non-degenerate in the sense of Kushnirenko. More precisely if the Newton diagram of a Newton
non-degenerate polynomial germ f looks like:

y

x
(a, 0)

(0, b)

S

,

then the Milnor number of the germ f is equal to 2S− a− b+1, where S (in yellow) is the area
below the Newton polyhedron of f , see Kushnirenko [13].

If β ̸= 0, then Fλ can be rewritten as,

Fλ = ϵx3 + (λβ2 + α)y4 + (x+ βy)5 + y5 + λx2y2 + 2λβxy3 + p̃4 + p5 +R(x, y),

where p̃4 is a homogeneous polynomial of degree 4 with coefficient of y4 equals 0. Then, if
λβ2 + α ̸= 0 the Milnor number of Fλ is determined by its Newtonian principal part. The
Newton polyhedron of Fλ is:
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y

x
(3, 0)

(0, 4)

S

Thus, the Milnor number of Fλ is 6.
Now, suppose λβ2 = −α. Then, Fλ can be rewritten as,

Fλ = ϵx3 + (2λβ + γ)xy3 + (x+ βy)5 + λx2y2 + y5 + ˜̃p4 + p̃5 +R(x, y).

But, since λβ2 = −α, we have,

Fλ = ϵx3 + β−1(−2α+ γβ)xy3 + (x+ βy)5 + λx2y2 + y5 + ˜̃p4 + p̃5 +R(x, y).

If −2α+ γβ ̸= 0. Then the Newton polyhedron of Fλ is:

y

x
(3, 0)

(0, 5)

S

And the Milnor number of Fλ in this case is 7.
Now, suppose γ = 2αβ. Then, the Newton polyhedron of Fλ is:

y

x
(3, 0)

(0, 5)

S

Then, the Milnor number of Fλ is 8. We have thus proved that the Milnor number of the
deformation can be at most 8. Since J10 has Milnor number 10, this proves that T2,5,5 cannot
deform to J10. □
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The class of singularities Z11 and W12 can also be shown similarly to not deform to J10.
We next show that Tp,q,r for 3 ≤ p, q, r ≤ 5 also cannot deform to J10. First notice that the

Milnor number of Tp,q,r is p+ q + r − 1. If p+ q + r − 1 ≤ 10 then Tp,q,r cannot deform to J10
for J10 has Milnor number more than or equal to p+ q+ r− 1. Thus we consider the case when
p+ q + r − 1 > 10. The first class in this set is T3,4,5. We show:

Lemma 5.2. The class of singularities T3,4,5 cannot deform to J10.

Proof. Since T3,4,5 and J10 have coranks 3 and 2 respectively, we first take an arbitrary small
deformation T3,4,5 of the form F = T3,4,5 + ϵ(x − by − cz)2. By the Splitting lemma this is
equivalent to a corank 2 germ. With the change of coordinates of the form x → (x − by − cz)
and keeping y and z fixed, the deformation is equivalent to:

F = (x+ by + cz)3 + y4 + z5 + t(x+ by + cz)yz + x2.

By the Splitting lemma this in turn is equivalent to G = g(y, z)+x2 for some g(y, z) ∈ m3
2. Then,

the Milnor number of G is equal to that of g. Notice that after application of the Splitting lemma,
g(y, z) will still have the terms y4+z5, or, g(y, z) = p3(y, z)+y4+z5+p4(y, z)+p5(y, z)+R(y, z).
The lemma follows from the fact that for a deformation of g to be equivalent to J10, one must
have j3g(0) = y3 or j3g(0) = z3. And, it follows from the Newton diagram of the deformation
that in both the cases the Milnor number of g can at most be 8. □

The same analysis applies to singularities Tp,q,r for any p, q, r ≤ 5 and p+ q + r − 1 > 10.
We also showed that all corank 4 germs deform to J10. The calculations are lengthy and thus

we only provided a sketch of this result in [18].

6. Lipschitz A -classification

As we have seen in Section 4 all germs in Ω2 are Lipschitz R-simple germs, hence they are
Lipschitz A -simple germs. Since property (3) in Lemma 3.1 is valid also for the Lipschitz
A -equivalence, by similar arguments as in the proof of Theorem 4.1, one sees that

Theorem 6.1. J10 is a Lipschitz A -modal family.

Consequently, all germs in Ω1 are Lipschitz A -modal because they deform to J10. In conclu-
sion, we have

Theorem 6.2. A germ is Lipschitz R-simple if and only if it is Lipschitz A -simple.

The invariants used to distinguish the Lipschitz R-types of germs in the Table 1 are also
invariants with respect to Lipschitz A -equivalence (the Milnor number and the zeta function
of the monodromy are topological invariants, hence Lipschitz A -invariants, the others are by
Theorem 3.4), so the lists of normal forms of Lipschitz simple germs with respect to Lipschitz
R-equivalence and Lipschitz A -equivalence coincide.
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