
Journal of Singularities
Volume 25 (2022), 377-392

Proc. of 16th International Workshop
on Singularities, São Carlos, 2020

DOI: 10.5427/jsing.2022.25r

CLASSIFICATION AT INFINITY OF POLYNOMIALS

OF DEGREE 3 IN 3 VARIABLES

NILVA RODRIGUES RIBEIRO

Abstract. We classify singularities at infinity of polynomials of degree 3 in 3 variables. Based
on this classification, we calculate the jump in the Milnor number of an isolated singularity

at infinity, when we pass from the special fiber to a generic fiber. As an application of the

results, we investigate the existence of global fibrations of degree 3 polynomials in complex
affine 3-space and search for information about the topology of the fibers in each equivalence

class.

1. Introduction

The study of natural fibrations of a polynomial f : Cn → C was introduced by Broughton [5]
long ago. At the same time, Pham [10] studied the conditions for a polynomial to have a good
behavior at infinity, and Hà and Lê [8] obtained a criterion of regularity at infinity for complex
polynomials in two variables. Since then the global theory of singularities of polynomials has
been developed from the point of view of this article, with contributions by [16], [18], [14], [7],
[9], [17], and others.

In the local case, the presence of singularities is a natural obstruction for the existence of
a trivial fibration associated to the germ f . In the global context, however, the fibers of a
polynomial can be topologically distinct, even without the presence of singularities. The values of
f for which the topology of the fiber changes are denominated atypical values. The determination
of these special values depends on the behavior of f at infinity.

In the case of polynomials in two variables, different characterizations of atypical values are
known, whereas in higher dimensions this is still an open problem.

As in the local case, the Milnor number at infinity, and the sum of (boundary) Milnor numbers
of the generic fiber are useful invariants for studying the topology of the fiber.

In [12], Siersma and Smeltink classified the singularities at infinity of polynomials of degree
4 in two variables, obtaining conditions for the equivalence of polynomials whose homogeneous
part of degree 4 are equivalent.

In this work we use Siersma and Smeltink’s method to classify singularities at infinity of
polynomials f : C3 → C of degree 3 in 3 variables,

f(x0, x1, x2) = f1(x0, x1, x2) + f2(x0, x1, x2) + f3(x0, x1, x2),

where fi homogeneous polynomial of degree i for i = 1, 2, 3. We restrict the classification to
the case that all compactified fibers have only isolated singularities. Based on this classification,
we study the equisingularity at infinity of the family f = t. We say that a polynomial f is of
Broughton type if f has no affine singularities and the set of atypical values is non-empty. In
each equivalence class of a degree 3 polynomial in C3, we give conditions for the existence of
examples of Broughton type.

http://dx.doi.org/10.5427/jsing.2022.25r
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2. General setting

Consider a polynomial f : Cn → C, X = {x ∈ Cn; f(x) = 0}. The zero set X is an affine
variety embedded in Cn. Let Sing(f) be the singular locus of f, that is,

Sing(f) = {x ∈ Cn; grad(f) = 0}.
We consider Pn as the standard compactification of Cn for some fixed affine coordinates. We use
the following notations: let X be the compactification of X in Pn, X∞ = X∩H∞ its intersection
with the hyperplane at infinity H∞ = Pn−1 and Xt = f−1(t). We write f = fd+fd−1+ . . .+f0,
fi a homogeneous polynomial of degree i = 0, . . . , d, and F = fd + xn+1fd−1 + . . .+ xd

n+1f0 the
homogenization of f . Then we can associate to F the hypersurface

X := {((x : xn+1), t)| ∈ Pn × C : F (x, xn+1)− txd
n+1 = 0}.

The map τ : X → C is the projection to the t-coordinate and τ−1(t) = Xt. As above,
X∞

t = Xt ∩H∞

At a point p ∈ H∞ we consider the boundary pair < Xt, Xt ∩ H∞ >p which is a family of
germs depending on t ∈ C. We say that Xt has a singularity at infinity if at least one of the
members of this pair is singular. Singular points of Xt at infinity are solutions of grad(fd = 0).
We can distinguish between two types:

(i) Singular points of X∞
t where Xt is smooth. These are given by the conditions grad(fd) = 0

and fd−1 ̸= 0.
(ii) Singular points of X∞

t , where Xt is singular. These are given by the conditions grad(fd) = 0
and fd−1 = 0.

Definition 2.1. The polynomial f is general at infinity at a point Q if X ⋔ H∞ at Q. We say
f is general at infinity if this condition holds for all Q ∈ X ∩H∞.

Definition 2.2. The polynomial f : Cn → C is topologically trivial at infinity if f is locally
topologically trivial for all t0 ∈ C.

The following definition was given in [13].

Definition 2.3. (Definition 4.1 in [13]) We define the following classes of polynomials.

(i) We say f is a F-type polynomial if its compactified fibers and their restrictions to the
hyperplane at infinity have at most isolated singularities.

(ii) We say f is a B-type polynomial if its compactified fibers have at most isolated singu-
larities.

The F-class is contained in the B-class. Moreover, both are contained in the W-class, consisting
of polynomials for which the proper extension τ : X → C has only isolated singularities with
respect to some Whitney stratification of X such that X∞ = X ∩H∞ is an union of strata, see
[14].

Based on results of [14] and [13] we can get information about the topology of the generic
fiber Xt. The following theorem ([14],Theorem 3.1) is known as the Bouquet Theorem.

Theorem 2.4. ([14],Theorem 3.1) Let f : Cn → C be a polynomial with isolated W-singularities
at infinity. Then the general fiber of f is homotopy equivalent to a bouquet of spheres of real
dimension n− 1.

Let now (p, t) ∈ Pn−1 ×C be a singular point of X∞
t . This may be a singular point of Xt, or

a point where Xt is non-singular but tangent to H∞ at p. If (p, t) is an isolated singularity of
X∞

t , then we denote its Milnor number by µ∞
p . Notice that the singularity (p, t) ∈ X∞

t does not

depend on t. In contrast, the Milnor number of the fiber Xt at the point p, that we denote by
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µp(Xt), may jump at a finite number of values of t. Let us denote by µp,gen the value of µp(Xt)
for generic t.

For a finite number of bifurcation values t this type can change and the Milnor number can
drop with a value λt

p = µp(Xt)− µ∞
p . We denote by

λ = the sum of all jumps at infinity of the family f = t.

In the case f has only isolated singularities (in the affine space), we denote by

µ = the total Milnor number of the affine singularities.

Notice that this invariant can be computed by the following formula

µ = dimC
C[x1, . . . , xn]

Jf
,

where the ideal Jf ⊂ C[x1, . . . , xn] is the Jacobian ideal of f (see for instance, [15], pg 1).
In this paper we consider degree 3 polynomials in C3, so that the fibers Xt are in general

singular surfaces in C3, and X∞
t are singular curves in P2.

It follows from Theorem 2.4 that b0(Xt) = 1 and b1(Xt) = 0, where bi(Xt), i = 0, 1 are Betti
numbers of the generic fiber Xt.

For the F-class one can combine two formulas from [14] and [13], to compute the second Betti
number b2 of the generic fiber:

(1) b2 = λ+ µ = (d− 1)3 −
∑
i

(µpigen+ µ∞
pi
)

The right hand side can be computed via boundary data. In the left hand side λ is the sum
of all jumps in the family f = t. This makes it possible to compute not only b2 but also µ. A
similar formula exists for B-type, and we refer to [13], pg 663-664.

(2) b2(G) = λ+ µ = (χ3,d − 1)−
∑
x∈

∑µx,gen − χ∞

where G is the generic fiber, and χ3,d is the Euler characteristic of the smooth hypersurface V 3,d
gen

of degree d in P3 of the generic fiber G of f and χ∞ = χ({fd(x) = 0}). In general, the following
formula holds ([15], pg 8)

χn,d = χV n,d
gen = n+ 1− 1

d
{1 + (−1)n(d− 1)n+1}.

We shall denote by Atyp(f) the set of atypical fibers of f. It is known that

Atyp(f) = f(Sing(f)) ∪B∞(f),

where B∞(f) comes from the contribution of singularities at infinity.

3. Classification of polynomials of degree 3

The purpose of this section is to classify singularities at infinity of polynomials C3 → C of
degree 3 of the form

f(x0, x1, x2) = f1(x0, x1, x2) + f2(x0, x1, x2) + f3(x0, x1, x2),

fi is homogeneous polynomial of degree i. We write f1(x0, x1, x2) = a0x0 + a1x1 + a2x2,
f2(x0, x1, x2) = a3x

2
0 + a4x0x1 + a5x0x2 + a6x

2
1 + a7x1x2 + a8x

2
2. Let t ∈ C, the homogenization

F of f − t = 0 is given by

F (x0, x1, x2, x3) = x2
3f1(x0, x1, x2) + x3f2(x0, x1, x2) + f3(x0, x1, x2)− tx3

3.
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Definition 3.1. We say that f is affine equivalent to g (f ≈ g) if there exist linear affine
transformations T : C3 → C3, L : C → C, such that g = L ◦ f ◦ T−1.

Notice that if f and g are equivalent, the linear transformation L sends the fibers f = t of f
to the fibers g = L(t) of g.

Our aim in this section is to classify the singularities at infinity of the fibers f = t. We give
a complete classification of polynomials of type F in Theorem 3.4 and the polynomials of type
B are classified in Proposition 3.6.

We start the classification by making linear changes of coordinates to reduce the homogeneous
polynomial f3 to one of the following normal forms (see [4] or [6]).

(a) general: x3
0 + x3

1 + x3
2 − 3λx0x1x2, λ

3 − 1 ̸= 0.
(b) nodal: x3

0 + x3
1 + x0x1x2.

(c) cuspidal: −x3
0 + x2x

2
1.

(d) conic plus tangent: (x2
0 + x1x2)x1.

(e) conic plus chord: (x2
0 + x1x2)x0.

(f) three concurrent lines: x3
0 + x3

1

(g) triangle: x0x1x2.
(h) double line plus simple line: x0x

2
1.

(i) triple line: x3
1.

Let Xt ⊂ P3 be the cubic surface defined by F − tx3
3 = 0.

Note that affine equivalences extend to the projective space sending H∞ to H∞. Translations
act as the identity on H∞. The compatification Xt is sent to g−1(t) biholomorphically. The
types of local singularities do not change by affine equivalences.

Our classification is based on changes of coordinates and the recognition principles of singu-
larities of function germs that we review in section 3.1.

3.1. Recognition of simple singularities. Set g : (C3, 0) → (C, 0) be a holomorphic function
germ at the origin.

We recall the normal forms of simple singularities of germs of functions
g : (C3, 0) → (C, 0), due to Arnol’d [2].

Ak : xk+1 + y2 + z2; k ≥ 1
Dk : xk−1 + xy2 + z2; k ≥ 4
E6 : x3 + y4 + z2

E7 : x3 + xy3 + z2

E8 : x3 + y5 + z2

The results in this section are from Bruce and Wall [6].
The map-germ g : (C3, 0) → (C, 0) is quasihomogeneous of type (w1, w2, w3; d) if

f(λw1x, λw2y, λw3z) = λdf(x, y, z).

The normal forms of simple singularities are quasi homogeneous of the following types:

Ak : (2, k + 1, k + 1; 2k + 2)(k ≥ 1)
Dk : (2, k − 2, k − 1; 2k − 2)(k ≥ 4)
E6 : (4, 3, 6; 12)
E7 : (6, 4, 8; 18)
E8 : (10, 6, 15; 30)

A function f is semiquasihomogeneous with respect to the weights (w1, w2, w3; d) if all terms
of weight < d in its Taylor expansion vanish and those of weight d define a function with an
isolated singularity.
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Lemma 3.2 ([6], Lemma 1(a)). If f(x, y, z) is semiquasihomogeneous with respect to one of
the sets of weights above we can, by change of coordinates, reduce the terms of weight d to
the normal forms for Ak, Dk, E6, E7 or E8 given above,and the resulting function will remain
semiquasihomogeneous.

We also quote the following Lemma [6].

Lemma 3.3 ([6], Lemma 4). Let f = x2
0 + f3(x0, x1, x2). If x0 = 0 cuts f3 = 0 in 3 distinct

lines, a double and a simple line, respectively a triple line, then f = 0 has a D4, D5 respectively
E6 singularity at 0 and no others. Also f has two possible normal forms for the D4 case, and a
unique normal form for D5 and E6.

3.2. The classification theorem of polynomials of type F . In Theorem 3.4 we classify the
fibers f = t of polynomials f for which the degree three homogeneous part f3 has respectively
1, 2 or 3 singularities at infinity. The results of this theorem along with the results of the next
section, are listed in the tables 1-6, we use the notation ∞ to indicate that the singularity is
non-isolated.

Theorem 3.4. (a) Let f3 the unimodular family, f3 ≈ x3
0+x3

1+x3
2−3λx0x1x2, λ

3−1 ̸= 0,
then f is general at infinity.

(b) Let f3 be nodal, f3 ≈ x3
0 + x3

1 + x0x1x2.Then, f is affine equivalent to

a0x0 + a1x1 + a2x2 + a5x0x2 + a7x1x2 + a8x
2
2 + x3

0 + x3
1 + x0x1x2.

In this case, Xt is smooth at infinity or Q = (0 : 0 : 1 : 0) is a singular point at infinity of
type Ak, 1 ≤ k ≤ 5 or Q is a non-isolated singularity. The conditions for each singularity
type are given in Table 1.

(c) Let f3 be cuspidal, f3 ≈ −x3
0 + x2x

2
1. Then f is affine equivalent to

a0x0 + a1x1 + a2x2 + a4x0x1 + a5x0x2 + a8x
2
2 − x3

0 + x2x
2
1.

The following conditions hold: Xt is smooth at infinity or Q = (0 : 0 : 1 : 0) is a singular
point at infinity of type A1, A2, D4, D5, E6 or Q is a non-isolated singularity. The
conditions for each singularity type are given in Table 2.

(d) Let f3 be conic plus tangent, f3 ≈ x2x
2
1 + x2

0x1.Then f is affine equivalent to

a0x0 + a1x1 + a2x2 + a5x0x2 + a7x1x2 + a8x
2
2 + x2x

2
1 + x2

0x1.

It follows that Xt is smooth at infinity or Q = (0 : 0 : 1 : 0) is a singular point at infinity
of type A1, A3, D4, D5, E6 or Q is a non-isolated singularity. The conditions for each
singularity type are given in Table 3.

(e) Let f3 be three concurrent lines, f3 ≈ x3
0 + x3

1.Then f is affine equivalent to

a0x0 + a1x1 + a2x2 + a4x0x1 + a5x0x2 + a7x1x2 + a8x
2
2 + x3

0 + x3
1.

It follows that Xt is smooth at infinity or Q = (0 : 0 : 1 : 0) is a singular point at infinity
of type Ak; 2 ≤ k ≤ 5, D4 or Q is a non-isolated singularity. The conditions for each
singularity are given in Table 4.

(f) Let f3 be conic plus chord, f3 ≈ x3
0 + x0x1x2.Then f is affine equivalent to

a0x0 + a1x1 + a2x2 + a3x
2
0 + a6x

2
1 + a8x

2
2 + x3

0 + x0x1x2.

Then Xt is smooth at infinity or Q = (0 : 0 : 1 : 0) and R = (0 : 1 : 0 : 0) are
singular points at infinity. It follows that Q and R is a singularity of type A1A0, A1A1,
A2A0, A2A1, A3A0, A3A1, A4A0, A4A1, A5A0, A5A1 or a non-isolated singularity. In
Table 5 we give the conditions for each singularity type of the points Q and R.
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(g) Let f3 is triangle, f3 ≈ x0x1x2. Then f is affine equivalent to

a0x0 + a1x1 + a2x2 + a3x
2
0 + a6x

2
1 + a8x

2
2 + x0x1x2.

It follows that Xt is smooth at infinity or Q = (0 : 0 : 1 : 0), R = (0 : 1 : 0 : 0)
or S = (1 : 0 : 0 : 0) are singular points at infinity. The singularities of Q,R and S
are of type A1A0A0, A2A0A0, A3A0A0, A4A0A0, A1A1A0, A1A1A1, A2A1A0, A2A1A1,
A3A0A0, A4A0A0, A3A1A0, A3A1A1, or else a non-isolated singularity. In Table 6 we
give the conditions for each singularity type of the point Q.

Remark 3.5. In the proof below we always keep the same notation x0, x1, x2, x3 for the variables,
even after changing coordinates.

Proof. (a) Is clear from definition.

(b) If f3 is nodal, making changes of coordinatesX0 = x0+h0, X1 = x1+h1 andX2 = x2+h2,
we can eliminate the quadratic terms a3x

2
0, a4x0x1 and a6x

2
1. The homogenization F of f is given

by:

F = a0x0x
2
3 + a1x1x

2
3 + a2x2x

2
3 + x3(a5x0x2 + a7x1x2 + a8x

2
2) + x3

0 + x3
1 + x0x1x2 − tx3

3.

It is easy to verify that if a8 ̸= 0, Xt is smooth at infinity. If a8 = 0, Q = (0 : 0 : 1 : 0) is the
only singular point of Xt at infinity. So if a8 = 0 and x2 = 1, we have:

F (x0, x1, 1, x3) = a0x0x
2
3 + a1x1x

2
3 + a2x

2
3 + a5x0x3 + a7x1x3 + x3

0 + x3
1 + x0x1 − tx3

3.

Let a2 ̸= a5a7. Then Q = (0 : 0 : 1 : 0) is a singularity of type A1.
Let a2 = a5a7. Then

F (x0, x1, 1, x3) = (a5x3 + x1)(x0 + a7x3) + a0x0x
2
3 + a1x1x

2
3 + x3

0 + x3
1 − tx3

3.

We make the change of coordinates X0 = x0 + a7x3, X1 = x1 + a5x3, X3 = x3, and keeping the
same notation xi, i = 0, 1, 2, 3 for the new coordinates, we get

F = x0x1 + a0(x0 − a7x3)x
2
3 + a1(x1 − a5x3)x

2
3 + (x0 − a7x3)

3 + (x1 − a5x3)
3 − tx3

3 = 0.

If γ ̸= t, where

γ = −a0a7 − a1a5 − a37 − a35,

then Q is a singularity of type A2. If γ = t, giving weights (4, 4, 2; 8) it follows that if a0 ̸= −3a27
and a1 ̸= −3a25, then Q is a singularity of type A3. If γ = t, a0 = −3a27, a7 ̸= 0 and a1 ̸= −3a25
(similarly γ = t, a0 ̸= −3a27, a5 ̸= 0 and a1 = −3a25), giving weights (5, 5, 2; 10) it follows that
Q is a singularity of type A4. If γ = t, a0 = −3a27, a7 = 0 and a1 ̸= −3a25 (similarly γ = t,
a0 ̸= −3a27, a5 = 0 and a1 = −3a25), giving weights (6, 6, 2; 12) we get that Q is a singularity of
type A5. If γ = t, a0 = −3a27 and a1 = −3a25, Q is a non-isolated singularity. See Table 1.

(c) If f3 is cuspidal, making changes of coordinates X0 = x0 + h0, X1 = x1 + h1 and
X2 = x2+h2, we can eliminate the quadratic terms a3x

2
0, a6x

2
1 and a7x1x2. The homogenization

F of f is given by:

F = a0x0x
2
3 + a1x1x

2
3 + a2x2x

2
3 + x3(a4x0x1 + a5x0x2 + a8x

2
2)− x3

0 + x2
1x2 − tx3

3.

It is easy to verify that if a8 ̸= 0, Xt is smooth at infinity. If a8 = 0, Q = (0 : 0 : 1 : 0) is the
only singular point of Xt at infinity. So if a8 = 0 and x2 = 1, we have:

F (x0, x1, 1, x3) = a0x0x
2
3 + a1x1x

2
3 + a2x

2
3 + a4x0x1x3 + a5x0x3 − x3

0 + x2
1 − tx3

3.

Let a5 ̸= 0. Then Q = (0 : 0 : 1 : 0) is a singularity of type A1.
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Let a5 = 0 and a2 ̸= 0, then Q is a singularity of type A2. If a2 = a5 = 0, then

F = x2
1 + x1q2(x0x3) + q3(x0, x3),

where q2(x0, x3) = x2
3+a4x0x3 and q3(x0, x3) = a0x0x

2
3−x3

0−tx3
3. The discriminant of the cubic

q3 is D(q3) = 27t2 − 4a30. If D ̸= 0, then q3 = 0 factors into 3 different lines and Q has type D4.
When D = 0 and a0 ̸= 0, the cubic q3 has a double line and a simple line. Let δ = 27a61 − a30a

6
4.

In this case, we have the following possibilities:
(i) D = 0, a0 ̸= 0 and δ ̸= 0, then Q has type D5 for 2 different values of t;
(ii) D = 0, a0 ̸= 0 and δ = 0, then the singularity is non isolated.
When D = 0 and a0 = 0, the cubic q3 has a triple line. In this case, if a1 ̸= 0, Q has type E6,
and if a1 = 0, Q is a non-isolated singularity. See Table 2.

(d) If f3 is conic plus tangent, making changes of coordinates X0 = x0+h0, X1 = x1+h1 and
X2 = x2+h2, we can eliminate the quadratic terms a3x

2
0, a4x0x1 and a6x

2
1. The homogenization

F of f is given by:

F = a0x0x
2
3 + a1x1x

2
3 + a2x2x

2
3 + x3(a5x0x2 + a7x1x2 + a8x

2
2) + x2

0x1 + x2
1x2 − tx3

3.

It is easy to verify that if a8 ̸= 0, Xt is smooth at infinity. If a8 = 0, Q = (0 : 0 : 1 : 0) is the
only singular point of Xt at infinity. So if a8 = 0 and x2 = 1, we have:

F (x0, x1, 1, x3) = a0x0x
2
3 + a1x1x

2
3 + a2x

2
3 + a5x0x3 + a7x1x3 + x2

0x1 + x2
1x2 − tx3

3.

Let a5 ̸= 0. Then Q = (0 : 0 : 1 : 0) is a singularity of type A1.

Let a5 = 0, completing square and making the change X1 = x1+
a7

2 x3, we get that if a2− a2
7

4 ̸= 0,

then Q is a singularity of type A3. If a2− a2
7

4 = 0, making changes of coordinates X1 = x1− a7

2 x3

and giving weights (2, 3, 2; 6), then F = x2
1 + q3(x0, x3), where

q3(x0, x3) = a0x0x
2
3 −

a7
2
x2
0x3 −

a1a7
2

x3
3 − tx3

3.

Analyzing the discriminant D(q3) of q3 we have

D(q3) = a27(a
2
0 − 2ta7 − a1a

2
7) = 0 ⇒ t = γ,

where

γ =
a20 − a1a

2
7

2a7
if a7 ̸= 0 or a7 = 0.

If a7 ̸= 0 and t ̸= γ, giving weights (2, 3, 2; 6), then Q is a singularity of type D4. If a7 ̸= 0 and
t = γ, giving weights (2, 4, 3; 8), then Q is a singularity of type D5. If a7 = 0 and a0 ̸= 0, then
Q is a singularity of type D5 for all values of t. If a0 = 0 and t ̸= 0, Q is a singularity of type
E6. Now if t = 0, then Q is a non-isolated singularity. See Table 3.

(e) If f3 is three concurrent lines, making changes of coordinates X0 = x0 +h0, X1 = x1 +h1

and X2 = x2 + h2, we can eliminate the quadratic terms a3x
2
0 and a6x

2
1. Note the symmetry in

x0, x1. The computations below and Table 4 are up to this symmetry. The homogenization F
of f is given by:

F = a0x0x
2
3 + a1x1x

2
3 + a2x2x

2
3 + x3(a4x0x1 + a5x0x2 + a7x1x2 + a8x

2
2) + x3

0 + x3
1 − tx3

3.

It is easy to verify that if a8 ̸= 0, Xt is smooth at infinity. If a8 = 0, Q = (0 : 0 : 1 : 0) is the
only singular point of Xt at infinity. So if a8 = 0 and x2 = 1, we have:

F (x0, x1, 1, x3) = a0x0x
2
3 + a1x1x

2
3 + a2x

2
3 + a4x0x1x3 + a5x0x3 + a7x1x3 + x3

0 + x3
1 − tx3

3.

If a5 ̸= 0 (similarly a7 ̸= 0), making changes of coordinates X0 = a2x3 + a5x0 + a7x1, to get
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F = x0x3 +Ax0x
2
3 +Bx3

3 + Cx2
1x3 +Dx0x1x3 + Ex1x

2
3

+ Fx3
1 −Gx2

0x1 −Hx2
0x3 + Ix0x

2
1 + x3

0 − tx3
3,

where

A =
a0
a5

+
3a22
a35

, B =
−a0a2
a5

− a32
a35

, C = −a4a7
a5

− 3a2a
2
7

a35
, D =

a4
a5

+
6a2a7
a35

,

E =
−a0a7
a5

+ a1 −
a2a4
a5

− 3a22a7
a35

, F = 1− a37
a35

, G =
3a7
a35

, H =
3a2
a35

, I =
3a27
a35

Taking weights (3, 2, 3; 6), we have that if F ̸= 0, Q is a singularity of type A2. If a5 ̸= 0 and
F = 0, such as a7 ̸= 0, giving weights (4, 2, 4; 8) it follows that if IC ̸= 0, Q is a singularity of
type A3. If a5 ̸= 0, a35 = a37 and C = 0, making changes of coordinates x0 = X0 − Ex1x3 and
x3 = X3 − Ix2

1, that E ̸= 0, Q is a singularity of type A4. If E = 0 and B ̸= t, Q is a singularity
of type A5. If B = t, then Q is a non-isolated singularity.

If a5 = a7 = 0 and a2 ̸= 0, giving weights (2, 2, 3; 6), then Q is a singularity of type D4. Now
if a2 = 0, then Q is a non-isolated singularity. See Table 4.

(f) If f3 is conic plus chord, making changes of coordinates X0 = x0 + h0, X1 = x1 + h1

and X2 = x2 + h2, we can eliminate the quadratic terms a4x0x1, a5x0x2 and a7x1x2. The
homogenization F of f is given by:

F = a0x0x
2
3 + a1x1x

2
3 + a2x2x

2
3 + x3(a3x

2
0 + a6x

2
1 + a8x

2
2) + x3

0 + x0x1x2 − tx3
3.

It is easy to verify that if a6.a8 ̸= 0, Xt is smooth at infinity. If a8 = 0, Q = (0 : 0 : 1 : 0) is
the singular point of Xt at infinity. If a6 = 0, R = (0 : 1 : 0 : 0) is the singular point of Xt at
infinity. Let a8 = 0 and x2 = 1, we have:

F (x0, x1, 1, x3) = a0x0x
2
3 + a1x1x

2
3 + a2x

2
3 + a3x

2
0x3 + a6x

2
1x3 + x3

0 + x0x1x2 − tx3
3.

If a2, a6 ̸= 0 and a8 = 0, Q is a singularity of type A1 and R is of type A0. If a1, a2 ̸= 0
and a6 = a8 = 0, both singularities Q and R of type A1. If a2 = a8 = 0 and t ̸= 0, Q is a
singularity of type A2, with this information if a1 = a6 = 0, R is a singularity of type A2. If
a2 = a8 = t = 0, giving weights (4, 4, 2; 8) it follows that if a0a1 ̸= 0, Q is a singularity of
type A3. If a1 = a2 = a8 = t = 0, giving weights (5, 5, 2; 10) it follows that if a0a6 ̸= 0, Q
is a singularity of type A4. If a0 = a1 = a2 = a8 = t = 0, then Q is a singularity of type
non-isolated. If a1 = a2 = a6 = a8 = t = 0, then Q is a singularity of type non-isolated. If
a0 = a2 = a8 = t = 0, giving weights (5, 5, 2; 10) it follows that if a1a3 ̸= 0, Q is a singularity of
type A4. If a0 = a2 = a3 = a8 = t = 0, giving weights (5, 5, 2; 10) it follows that if a1 ̸= 0, Q is
a singularity of type A5. If a0 = a1 = a2 = a8 = t = 0, then Q is a non-isolated singularity. Q
and R points are symmetric, see Table 5.

(g) If f3 is triangle, making changes of coordinates X0 = x0 + h0, X1 = x1 + h1 and
X2 = x2 + h2, we can eliminate the quadratic terms a4x0x1, a5x0x2 and a7x1x2. The ho-
mogenization F of f is given by:

F = a0x0x
2
3 + a1x1x

2
3 + a2x2x

2
3 + x3(a3x

2
0 + a6x

2
1 + a8x

2
2) + x0x1x2 − tx3

3.

It is easy to verify that if a3 = a6.a8 ̸= 0, Xt is smooth at infinity. If a8 = 0, Q = (0 : 0 : 1 : 0)
is the singular point of Xt at infinity. If a6 = 0, R = (0 : 1 : 0 : 0) is the singular point of Xt

at infinity. If a3 = 0, S = (1 : 0 : 0 : 0) is the singular point of Xt at infinity. Let a8 = 0 and
x2 = 1, we have:

F (x0, x1, 1, x3) = a0x0x
2
3 + a1x1x

2
3 + a2x

2
3 + a3x

2
0x3 + a6x

2
1x3 + x0x1x2 − tx3

3.
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If a2, a3, a6 ̸= 0 and a8 = 0, Q is a singularity of type A1, R is a singularity of type A0

and S(1 : 0 : 0 : 0) is a singularity of type A0. If a0, a1, a2 ̸= 0 and a3 = a6 = a8 = 0, all
singularities Q, R and S are of type A1. If a2 = a8 = 0 and t ̸= 0, Q is a singularity of type
A2, with this information if a1 = a6 = 0, R is a singularity of type A2 and a0 = a3 = 0, S is a
singularity of type A2. If a2 = a8 = t = 0, giving weights (4, 4, 2; 8) it follows that if a0a1 ̸= 0,
Q is a singularity of type A3. If a1 = a2 = a8 = t = 0, giving weights (5, 5, 2; 10) it follows
that if a0a6 ̸= 0, Q is a singularity of type A4. If a0 = a1 = a2 = a8 = t = 0, then Q is a
non-isolated singularity. If a1 = a2 = a6 = a8 = t = 0, then Q is a non-isolated singularity. If
a0 = a2 = a8 = t = 0, giving weights (5, 5, 2; 10) it follows that if a1a3 ̸= 0, Q is a singularity of
type A4. If a0 = a2 = a3 = a8 = t = 0, giving weights (5, 5, 2; 10) it follows that if a1 ̸= 0, Q is
a singularity of type A5. If a0 = a1 = a2 = a8 = t = 0, then Q is a non-isolated singularity. Q,
R and S points are symmetric, see Table 6. □

3.3. Classification of polynomials of type B. In Proposition 3.6 we give the classification
of polynomials of degree 3, classifying the isolated singularities at infinity of f = f1 + f2 + f3,
in the cases in which f3 has non isolated singularities. We denote this class of polynomials by
B \ F .

Proposition 3.6. (a) Let f3 = x0x
2
1 (double line plus simple line). After a change of coordinates

which leaves invariant the cubic f3, we get the following possibilities for the singular points at
infinity:

(1) Two points Q = (1 : 0 : 0 : 0) and R = (−a8 : 0 : a5 : 0), where Q has type A1, R has
type Ak, 2 ≤ k ≤ 5, or non-isolated singularity.

(2) One point Q = (1 : 0 : 0 : 0) with type A3, D4, D5 or non-isolated singularity.
(3) One point R = (0 : 0 : 1 : 0) with type A4 or D5.

(b) Let f3 = x3
1 (triple line). After a change of coordinates which leaves invariant the cubic f3,

we get that the singular points at infinity are:

(1) If Q = (1 : 0 : 0 : 0) with type type A2, R = (0 : 0 : 1 : 0) with A2, or non-isolated
singularity.

(2) If Q = (1 : 0 : 0 : 0), with type A5 or non-isolated singularity.

Proof. (a) Let f3 = x0x
2
1, making changes of coordinates X0 = x0 + h0, X1 = x1 + h1 and

X2 = x2 + h2, we can eliminate the quadratic terms a4x0x1 and a6x
2
1. In this case, the set

grad(f3) = 0 gives a P1 at infinity. That is, Singf3 = P1 = {(x0 : 0 : x2 : 0), (x0, x2) ∈ C2}. The
singularities at infinity are the points of the intersection Singf3 ∩{f2 = 0}. Hence, they are the
solutions f2(x0, 0, x2) = a3x

2
0 + a5x0x2 + a8x

2
2 = 0. We assume that ((a3, a5, a8) ̸= (0, 0, 0)). We

distinguish two cases:
(i) a25 − 4a3a8 ̸= 0 and (ii) a25 − 4a3a8 = 0.

(i) When a25 − 4a3a8 ̸= 0, the polynomial f2(x0, 0, x2) = 0 has two distinct roots (α1x0 + β1x2),
(α2x0 + β2x2).

If a8 ̸= 0 then we can make x2 = α1x0 + β1x2 to eliminate a3. In this case a5 ̸= 0. Then the
solutions are Q = (1 : 0 : 0 : 0) and R = (−a8 : 0 : a5 : 0). So we have

F = a0x0x
2
3 + a1x1x

2
3 + a2x2x

2
3 + a5x0x2x3 + a7x1x2x3 + a8x

2
2x3 + x0x

2
1 − tx3

3.

The Hessian of F at the point Q = (1 : 0 : 0 : 0), Hess(F )(1 : 0 : 0 : 0) =
a2
5

4 . Since a5 ̸= 0,
then Q = (1 : 0 : 0 : 0) is always A1. The Hessian of F at the point R = (−a8 : 0 : a5 : 0),
Hess(F )(−a8 : 0 : a5 : 0) = 2a5a8, R is a singularity of type A1.

If a8 = 0, the solutions are Q = (1 : 0 : 0 : 0) and R = (0 : 0 : 1 : 0), since

Hess(F )(1 : 0 : 0 : 0) =
a25
4

̸= 0,
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then Q = (1 : 0 : 0 : 0) is always A1. Now let’s analyze the point R. Making changes of
coordinates x0 = 1

a5
(X0 − a2x3 − a7x1) we have on the chart x2 = 1 :

F = X0x3 +
a0
a5

(X0 − a2x3 − a7x1)x
2
3 + a1x1x

2
3

+
1

a5
(X0 − a2x3 − a7x1)x

2
1 +

a3
a25

(X0 − a2x3 − a7x1)
2x3 − tx3

3

If a7 ̸= 0, R is a singularity of type A2, if a7 = 0 and a2 ̸= 0 R is a singularity of type A3. If
a2 = 0 and a1 ̸= 0 R is a singularity of type A4, if a1 = 0 and t ̸= 0, R is a singularity of type
A5 and finally t = 0, then R is a non-isolated singularity.

(ii) When a25 − 4a3a8 = 0, the polynomial f2(x0, 0, x2) = 0 has only one root, αx0 + βx2.
If a8 ̸= 0 then we can make x2 = αx0 + βx2 to eliminate a3 and a5. In this case, the only

solution is Q = (1 : 0 : 0 : 0) and on the chart x0 = 1 :

F = a0x
2
3 + a1x1x

2
3 + a2x2x

2
3 + a8x

2
2x3 + x0x

2
1 − tx3

3

Giving weights (4, 2, 4; 8), if a0 ̸= 0, Q is a singularity of type A3, otherwise if a0 = 0 completing
square we have

F = (x1 +
a1
2
x2
3)−

a21
4
x4
3 + a2x2x

2
3 + a8x

2
2x3 − tx3

3 =

x2
1 −

a21
4
x4
3 + x3q(x2, x3).

Discriminant of q is

D(q) = −4a8t− a22.

If D(q) ̸= 0 what is t ̸= −a2
2

4a8
and a1 ̸= 0, Q is a singularity of type D4. If D(q) = 0 what is

t =
−a2

2

4a8
and a1 ̸= 0, Q is a singularity of type D5 and finally a1 = 0, then Q is a non-isolated

singularity.
If a8 = 0, a3 ̸= 0, then the solution is R = (1 : 0 : 0 : 0). The calculations are similar to the

first case, we get A4 if a7 ̸= 0 and D5 when a7 = 0. If a3 = a5 = a8 = 0 the function is no longer
of B-type.

(b) Let f3 = x3
1, making changes of coordinates X0 = x0+h0, X1 = x1+h1 and X2 = x2+h2,

we can eliminate the quadratic term a6x
2
1. In this case, the set grad(f3) = 0 gives a P1 at infinity.

That is, Singf3 = P1 = {(x0 : 0 : x2 : 0), (x0, x2) ∈ C2}. The singularities at infinity are the
points of the intersection Singf3 ∩ {f2 = 0}. Hence, they are the solutions

f2(x0, 0, x2) = a3x
2
0 + a5x0x2 + a8x

2
2 = 0.

We assume that ((a3, a5, a8) ̸= (0, 0, 0)). We distinguish two cases:
(i) a25 − 4a3a8 ̸= 0 and (ii) a25 − 4a3a8 = 0.
(i) When a25 − 4a3a8 ̸= 0, the polynomial f2(x0, 0, x2) = 0 has two distinct roots Q and R.

By a projective transformation, leaving invariant x1 = 0 are can arrange Q = (1 : 0 : 0 : 0) and
R = (0 : 0 : 1 : 0). Therefore we can assume a3 = a8 = 0. So we have

F = a0x0x
2
3 + a1x1x

2
3 + a2x2x

2
3 + a4x0x1x3 + a5x0x2x3 + a7x1x2x3 + x3

1 − tx3
3

The Hessian of F at the point Q, Hess(F )(1 : 0 : 0 : 0) = 0. Then when a4a5 ̸= 0,
Q = (1 : 0 : 0 : 0) is always A2. The Hessian of F at the point R, Hess(F )(0 : 0 : 1 : 0) = 0, if
a4a5 ̸= 0, R is a singularity of type A2.
If a4a5 = 0 than f is a non-isolated singularity.

(ii) When a25 − 4a3a8 = 0, the polynomial f2(x0, 0, x2) = 0 has only one root, Q.
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By a projective transformation, leaving invariant x1 = 0 are can arrange Q = (1 : 0 : 0 : 0),
a3 = 0 and therefore also a5 = 0, a8 ̸= 0. On chart x0 = 1 :

F = a0x
2
3 + a1x1x

2
3 + a2x2x

2
3 + a4x0x1x3 + a7x1x2x3 + a8x

2
2x3 + x3

1 − tx3
3.

If a4 ̸= 0, making changes of coordinates x1 = 1
a4
(X1 − a0x3 − a8x

2
2) and giving weights

(6, 2, 6; 12), Q is a singularity of type A5, if a4 = 0 Q is a non-isolated singularity. If a8 = 0,
then f is not of B-type. □

4. Equisingularity at infinity

In this section we compute the invariants of the singularities in order to study the topology
of the Milnor fiber. The jump λ on the Milnor number at infinity will play an important role in
the description of the topology of the regular fiber.

A careful description of regularity conditions, equisingularity and topological triviality at
infinity has given by M. Tibăr in [17] (see also [14], [13] and [15]).

As usual, the notation Ak → Ak+1 means that the singularity at infinity jumped from Ak to
Ak+1 for some value of the atypical set. For non-isolated singularities we replace λ by ∗.

Using the formulas (1) and (2) of the section 2 it is possible to calculate the Betti number b2
and the Milnor number µ of the generic fiber.

Definition 4.1. Let f be a polynomial of types F or B. We say that f = t0 has no Milnor-
jumps at infinity at the point Q if there is a neighborhood D of t0 in C, such that the jump

λ = µQ
t0 − µQ

t is equal to zero, ∀t ∈ D, where µt is the Milnor number of F at the point Q.

Applying the results of Theorem 3.4 and Proposition 3.6 we can calculate λ. Knowing λ and
using the formulas (1) and (2), we can calculate b2 and µ.

For example if f3 is nodal and the singularity of Q is of type A3 for f = t0 and A2 for
f = t, t ̸= t0, it follows that λ = 1. From (1) we get that b2 = µ + λ = 8 − (2 + 1) = 5. As
λ = 1, we get µ = 4.

In the case where f has more than one singularity, we need to check the possible combinations
of all singularities.

For example, if f3 is conic plus chord, let’s say R is a singularity of type A1 and Q is a
singularity of type A2 for f ̸= t0 and A3 for f = t0. Then, for A3A1 singularities, we have λ = 1,
b2 = 3 and µ = 2.

In Theorem 4.2 and 4.3 we apply the classification given in Theorem 3.4 and Proposition 3.5
to get information about the topology of the generic fiber f = t for polynomials of type F and
B.

Theorem 4.2. Let f be of F-type. We consider the family f = t. The following Tables 1 to 6
give all possibilities for the singularities of Xt at the point Q respectively R and S at infinity.

(i) In all cases with singularities of types A0 and A1 only there are no jumps.
(ii) All jumps (λ ̸= 0) are indicated in the tables. The t- values are indicated in the proof.
(iii) If there are no jumps (λ = 0) then the family f = t is equisingular at infinity.

Proof. First, notice that (i) and (iii) follow easily. In fact, in all cases with singularities of type
A0 and A1 only, there are no jumps, that is, λ = 0. In these cases the family f = t is equisingular
at infinity.

To prove (ii) we follow the proofs in Theorem 3.4. Especially the places where t appears in
the (in)equalities gives rise to the jumps. The tables contain all necessary information. Special
care is needed for combinations of several critical points at infinity P,Q or S.

The invariants λ, µ and b2 of the generic fiber Xt take into account the combinations of
singularities Q,R and S. □
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Nodal : f3 = x3
0 + x3

1 + x0x1x2

f = a0x0 + a1x1 + a2x2 + a5x0x2 + a7x1x2 + a8x
2
2 + x3

0 + x3
1 + x0x1x2

Q(0 : 0 : 1 : 0) ̸= 0 = 0 λ µ b2
A0 a8 0 7 7
A1 a2 − a5a7 a8 0 6 6
A2 → A3 γ, a0 + 3a27, a1 + 3a25 a8, a2 − a5a7 1 4 5
A2 → A4 γ, a1 + 3a25, a7 a8, a2 − a5a7, a0 + 3a27 2 3 5
A2 → A5 γ, a1 + 3a25 a8, a2 − a5a7, a0 + 3a27, a7 3 2 5
A2 → A∞ γ a8, a2 − a5a7, a0 + 3a27, a1 + 3a25 * − −

All jumps occur if t = γ,where γ = −a0a7 − a1a5 − a37 − a35

Table 1.

Cuspidal: f3 = −x3
0 + x2

1x2

f = a0x0 + a1x1 + a2x2 + a4x0x1 + a5x0x2 + a8x
2
2 − x3

0 + x2
1x2

Q(0 : 0 : 1 : 0) ̸= 0 = 0 λ µ b2
A0 a8 0 6 6
A1 a5 a8 0 5 5
A2 a2 a8, a5 0 4 4
D4 → D5 D, δ a8, a2, a5 2 0 2
D4 → ∞ D a8, a2, a5, δ − − −
D4 → E6 a1 a8, a2, a5, a0 2 0 2

All jumps occur if D = 27t2 − 4a30, δ = 27a61 − a30a
6
4

Table 2.

In the following tables, each line corresponds to a class of polynomial (up to affine equivalence)
with the same behavior near the boundary H∞. We list only cases with isolated singularities,
but in some cases we also list the “next” non-isolated class.

The notation X → Y means that X is the generic type, which jumps to Y nongeneric.
The expression γ ̸= t in each table expresses the condition that the fibers t ̸= γ are generic

and t = γ is the exceptional fiber. The last line of each table characterizes the values of t for
which the jump occurs.

In Theorem 4.3, we discuss the topology of the generic fiber of B− type polynomials
f = f1 + f2 + f3. The results are consequence of the formula (2) for b2 in Section 2, and
the following formulas for the top Betti defect, ∆n−1(f), given by Siersma and Tibar in [14],
[13] and [15].

∆n−1(f) = (d− 1)n − bn−1(f)

∆n−1(f) =
∑

p∈
∑∞

f ∩{fd−1=0}

µp(X0) + (−1)n∆χ∞,

where

∆χ∞ := χn−1,d − χ({fd = 0}),
and

χn−1,d = n− 1

d
{1 + (−1)n−1(d− 1)n}
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Conic plus tangent: f3 = x2
0x1 + x2

1x2

f = a0x0 + a1x1 + a2x2 + a5x0x2 + a7x1x2 + a8x
2
2 + x2

0x1 + x2
1x2

Q(0 : 0 : 1 : 0) ̸= 0 = 0 λ µ b2
A0 a8 0 5 5
A1 a5 a8 0 4 4

A3 a2 − a2
7

4 a8, a5 0 2 2

D4 → D5 γ, a7 a8, a2 − a2
7

4 , a5 1 0 1
D5 a0 a8, a2, a5, a7 0 0 0
E6 → ∞ a8, a2, a5, a0, a7 ∗ − −
The jumps occur if t = γ,where γ =

a2
0−a1a

2
7

2a7
except if Qis non-isolated, when t = 0

Table 3.

Three concurrent lines: f3 = x3
0 + x3

1

f = a0x0 + a1x1 + a2x2 + a4x0x1 + a5x0x2 + a7x1x2 + a8x
2
2 + x3

0 + x3
1

Q(0 : 0 : 1 : 0) ̸= 0 = 0 λ µ b2
A0 a8 0 4 4
A2 a5, a

3
5 − a37 a8 0 2 2

A3 a5, γ a8, a
3
5 − a37 0 1 1

A4 a5, E a8, a
3
5 − a37, γ 0 0 0

A5 → ∞ a5, B a8, a
3
5 − a37, γ, E 0 1 1

D4 a2 a8, a5, a7 0 0 0
∞ a8, a2, a5, a7 − − −
γ = −a4a7

a−5 − 3a2a
2
7

a3
5

, E = −a4a7

a5
− 3a2a

2
7

a3
5

, B = −a0a2

a5
− a3

2

a3
5
.There are no jumps in this case

Table 4.

Conic plus chord:f3 = x3
0 + x0x1x2

f = a0x0 + a1x1 + a2x2 + a3x
2
0 + a6x

2
1 + a8x

2
2 + x3

0 + x0x1x2

Q(0 : 0 : 1 : 0) R(0 : 1 : 0 : 0) ̸= 0 = 0 λ µ b2
A0 A0 a6, a8 0 6 6
A1 A0 a6, a2 a8 0 5 5
A1 A1 a1, a2 a6, a8 0 4 4
A2 → A3 A0 a6, a0, a1 a2, a8 1 3 4
A2 → A3 A1 a1, a0 a2, a6, a8 1 2 3
A2 → A4 A0 a0, a6 a1, a2, a8 2 2 4
A2 → A4 A0 a1, a3, a6 a0, a2, a8 2 2 4
A2 → A4 A1 a1, a3 a0, a2, a6, a8 2 1 3
A2 → A5 A0 a1, a6 a0, a2, a3, a8 3 1 4
A2 → A5 A1 a1 a2, a3, a6, a8 3 0 3
A2 → ∞ ∞ a1, a2, a3, a6, a8 ∗ − −

All jumps occur if t = 0.

Table 5.
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denotes the Euler characteristic of the smooth hypersurface V n−1,d
gen of degree d in Pn−1.

Theorem 4.3. Let f be of type B \F-type. We consider the family f = t. The following Tables
7 and 8 give all possibilities for the singularities of Xt at a point Q at infinity.

Proof. (a) We first consider f = f1 + f2 + f3, were f3(x0, x1, x2) = x0x
2
1 and the singularities at

infinity are Q = (0 : 0 : 1 : 0) and R = (−a8 : 0 : a5 : 0). If a25 ̸= 4a3a8, Q ̸= R, it follows from
Proposition 3.5 that Q is a singular point of type A1 and R is Ak, 1 ≤ k ≤ 5.

To compute b2(f), note that ∆χ∞ = −3. When (Q,R) is A1Ak we have

∆2(f) = 1 + k + 3 = k + 4 ⇒ b2(f) = 8− (k + 4).

If Q = R, a singularity is of type A3, D4 or D5, in these cases we have

∆2(f) = µp(X) + 3 ⇒ b2(f) = 8− (µp(X) + 3).

Triangle: f3 = x0x1x2

f = a0x0 + a1x1 + a2x2 + a3x
2
0 + a6x

2
1 + a8x

2
2 + x0x1x2

Q(0 : 0 : 1 : 0) R(0 : 1 : 0 : 0) S(0 : 0 : 1 : 0) ̸= 0 = 0 λ µ b2
A0 A0 A0 a3, a6, a8 0 5 5
A1 A0 A0 a6, a2, a3 a8 0 4 4
A1 A1 A0 a0, a2, a6 a3, a8 0 3 3
A1 A1 A1 a0, a1, a2 a3, a6, a8 0 2 2
A2 → A3 A0 A0 a3, a6, a0, a1 a2, a8 1 2 3
A2 → A3 A1 A0 a0, a1, a6 a2, a3, a8 1 1 2
A2 → A3 A1 A1 a0, a1 a2, a3, a6, a8 1 0 1
A2 → A4 A0 A0 a0, a3, a6 a1, a2, a8 2 1 3
A2 → A4 A0 A0 a1, a3, a6 a0, a2, a8 2 1 3

All jumps occur if t = 0.

Table 6.

double line plus simple line:f3 = x0x
2
1

f = a0x0 + a1x1 + a2x2 + a3x
2
0 + a5x0x2 + a7x1x2 + a8x

2
2 + x0x

2
1

Q(1 : 0 : 0 : 0) R(−a8 : 0 : a5 : 0) ̸= 0 = 0 λ µ b2
A1 A1 γ, a8 0 3 3
A1 A2 γ, a7 a8 0 2 2
A1 A3 γ, a2 a7, a8 0 1 1
A1 A4 γ, a1 a2, a7, a8 0 0 0
A1 A5 → ∞ γ a1, a2, a7, a8 − − −
A3 a0, a8 γ 0 2 2
D4 → D5 a1, a8 γ 1 0 1
D4 → ∞ a1, γ − − −

A4 a3, a7 a8, a5 0 1 1
D5 a3 a5, a7, a8 0 0 0

γ = a25 − 4a3a8.All jumps occur if t =
−a2

2

16a8
.

Table 7.
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The results appear in Table 7.
(b)We first consider f = f1+f2+f3, where f3(x0, x1, x2) = x3

1 and the singularities at infinity
are Q = (0 : 0 : 1 : 0) and R = (−a8 : 0 : a5 : 0). If a25 ̸= 4a3a8, Q ̸= R, follow Proposition 3.5
Q is a singular point of type A2 and R is A2. To compute b2(f), note that ∆χ∞ = −2. When
(Q,R) is A2A2 we have ∆2(f) = 2 + 2 + 2 = 6 ⇒ b2(f) = 8− 6 = 2. If Q = R, a singularity is
of type A5, in these case we have ∆2(f) = µp(X) + 2 ⇒ b2(f) = 8 − (µp(X) + 2). The results
appear in Table 8. □

5. Examples of Broughton type and global fibrations

In this section we assume that the singularities of all polynomials are of type F or B .

Definition 5.1. A polynomial f : Cn → C is of Broughton type if f has no affine singularities,
but the set of atypical values Atyp(f) is non empty.

According to our notations, if f has no singularities in C3, then (a0, a1, a2) ̸= (0, 0, 0).

Theorem 5.2. Let f = f1 + f2 + f3, where f is polynomial of degree 3 of type F or B on C3.
If f is a polynomial of Broughton type then λ ̸= 0, µ = 0 and the following conditions hold.

(i) f3 is cuspidal and the only singularity at infinity of two special fibers is of type D5 or a
single fiber of type E6.

(ii) f3 is conic plus tangent and the only singularity at infinity of the special fibers is of type
D5.

(iii) f3 is conic plus chord and the combination of the singularities at infinity of the special
fiber is of type A1A5.

(iv) f3 is triangle and the combination of the singularities at infinity of the special fiber is of
type A1A1A3.

(v) f3 is double line plus simple line and the singularities at infinity of the special fiber is of
type D5.

Proof. The proof follows directly from the Tables. □

Example 5.3. Let f3 be three concurrent lines or f3 is nodal. Then

f(x0, x1, x2) = f1(x0, x1, x2) + f2(x0, x1, x2) + f3(x0, x1, x2)

is not a polynomial of Broughton type.

Proof. See the tables. □

Theorem 5.4. Let f = f1 + f2 + f3 : C3 → C a polynomial of degree 3 of type F or B. Then f
is a global fibration iff λ = µ = 0, which is one of the following cases:

triple line:f3 = x3
1

f = a0x0 + a1x1 + a2x2 + a3x
2
0 + a4x0x1 + a5x0x2 + a7x1x2 + a8x

2
2 + x3

1

Q(1 : 0 : 0 : 0) R(0 : 0 : 1 : 0) ̸= 0 = 0 λ µ b2
A2 A2 γ a8 0 2 2
A5 a4, a8 γ 0 1 1
∞ a0, a8 γ, a4 − − −

γ = a25 − 4a3a8.There are no jumps in this case

Table 8.
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(i) f3 is conic plus tangent and the only singularity at infinity of the special fiber is of type D5.
(ii) f3 is three concurrent lines and the only singularity at infinity of the special fiber is of type
D4 or A4.
(iii) f3 is double line plus simple line and the only singularity at infinity of the special fiber is of
type A4 or D5.

Proof. λ = µ = 0 for F , B- class ⇔ global fibration follows from ([14], Corollary 5.8). □
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