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ON BI-LIPSCHITZ INVARIANCE AND THE

UNIQUENESS OF TANGENT CONES

JOSÉ EDSON SAMPAIO AND EURÍPEDES CARVALHO DA SILVA

Abstract. In this note we present some remarks about tangent cones and their invariance

under bi-Lipschitz homeomorphisms. In particular, we prove the bi-Lipschitz invariance of
tangent cones of sets with unique tangent cone. We obtain also some characterizations for

the uniqueness of the tangent cone of a set at a point, for example, the sets which satisfy the
sequence selection property (SSP-sets for short) presented by Koike and Paunescu are just

those sets which have unique tangent cones. The analogues versions at infinity of these results

are also presented.

1. Introduction

The tangent cones at singular points generalize the notion of tangent spaces at smooth points
and the geometry and topology of tangent cones of algebraic or analytic sets are very important
in several questions of Singularity Theory. It is also a subject of interest in Lipschitz Geometry
of Singularities and, in particular, the study on bi-Lipschitz invariance of tangent cones. For
instance, for the subanalytic category, Bernig and Lytchak in [1] proved that if two subanalytic
sets are subanalytically bi-Lipschitz homeomorphic, then their tangent cones are bi-Lipschitz
homeomorphic. Koike and Paunescu proved in [5] that the dimension of tangent cones of sub-
analytic sets is invariant under bi-Lipschitz homeomorphisms and the first author of this article
proved in [9] that if two subanalytic sets are bi-Lipschitz homeomorphic, then their tangent
cones are bi-Lipschitz homeomorphic and with this result he obtained the Lipschitz Regularity
Theorem, which says that if a germ of an analytic set is bi-Lipschitz homeomorphic to a smooth
germ, then it is smooth itself. More recently, Koike and Paunescu proved in [7] that if two
sets which satisfy the SSP -condition (see Definition 4.1) are bi-Lipschitz homeomorphic, then
their tangent cones are bi-Lipschitz homeomorphic. The first author jointly with Fernandes in
[3] proved that if two semialgebraic sets are bi-Lipschitz homeomorphic at infinity, then their
tangent cones at infinity are bi-Lipschitz homeomorphic.

In this article, we prove the following result about bi-Lipschitz invariance of tangent cones
without imposing any regularity on the sets.

Theorem 3.1. Let A ⊂ Rm and B ⊂ Rn be subsets. Let ϕ : (A, p) → (B, q) be a bi-Lipschitz
homeomorphism such that

1

K1
∥x− y∥ ≤ ∥ϕ(x)− ϕ(y)∥ ≤ K2∥x− y∥, ∀x, y ∈ A,

where K1,K2 > 0. Then, for any sequence of positive numbers T = {tj}j∈N such that lim tj = 0,
there exist a subsequence S = {sj}j∈N ⊂ T = {tj}j∈N and a global bi-Lipschitz homeomorphism

2010 Mathematics Subject Classification. 32B20; 32B25; 14P10; 14B05.
Key words and phrases. Lipschitz maps, Tangent cone, definable sets, Sequence selection property.

The first author was partially supported by CNPq-Brazil grant 303811/2018-8.

http://dx.doi.org/10.5427/jsing.2022.25s


394 J. EDSON SAMPAIO AND E. CARVALHO DA SILVA

dϕ : CS(A, p) → CS(B, q) such that dϕ(0) = 0 and

1

K1
∥x− y∥ ≤ ∥dϕ(x)− dϕ(y)∥ ≤ K2∥x− y∥, ∀x, y ∈ CS(A, p).

As a consequence, we obtain that if additionally A (resp. B) has a unique tangent cone at
p (resp. q) (see Definition 2.3), then C(A, p) and C(B, q) are bi-Lipschitz homeomorphic. A
version at infinity of Theorem 3.1 is also presented (see Proposition 4.10).

Another subject studied in this article is the study about the uniqueness of the tangent cones
of sets at a point or at infinity. In general, as it was already remarked in [3], it is not an easy
task to verify whether unbounded subsets have a unique tangent cone at infinity, even in the
case of some classes of analytic subsets, for instance, concerning to such a problem, there is a
still unsettled conjecture by Meeks III ([8], Conjecture 3.15) stating that: any properly immersed
minimal surface in R3 of quadratic area growth has a unique tangent cone at infinity.

In this article we present some characterizations of sets which have a unique tangent cone
at some point and at infinity (see Proposition 4.14). In particular, it is shown that a set has
a unique tangent cone at some point p if and only if that set satisfies the SSP -condition at p.
More precisely, we have the following:

Theorem 4.2. Let X ⊂ Rm be a subset such that p ∈ Rm is a non-isolated point of X. Then
the following statements are equivalents:

(1) X has a unique tangent cone at p;
(2) dist(tv,X) = o(t) for all v ∈ D(X, p);
(3) X satisfies SSP -condition at p.

As a consequence, we recover the main result proved in [7] on bi-Lipschitz invariance of tangent
cones of sets that satisfy the SSP -condition.

2. Preliminaries

All the subsets of Rn are considered equipped with the induced Euclidean metric.

Definition 2.1. Let X ⊂ Rn and Y ⊂ Rm. A mapping f : X → Y is called Lipschitz if there
exists λ > 0 such that

∥f(x1)− f(x2)∥ ≤ λ∥x1 − x2∥
for all x1, x2 ∈ X. A Lipschitz mapping f : X → Y is called bi-Lipschitz if its inverse mapping
exists and is Lipschitz.

Definition 2.2. Let X ⊂ Rm be a subset such that p ∈ X. Given a sequence of real positive
numbers {tj}j∈N such that tj → 0 (resp. tj → +∞), we say that v ∈ Rm is tangent to X at
p (resp. infinity) with respect to {tj}j∈N if there is a sequence of points {xj}j∈N ⊂ X such
that lim

j→+∞
1
tj
(xj − p) = v (resp. lim

j→+∞
1
tj
xj = v).

Definition 2.3. Let X ⊂ Rm be a subset such that p ∈ X and T = {tj}j∈N such that tj → 0
(resp. tj → +∞). We denote the set of all vectors which are tangents to X at p (resp. infinity)
w.r.t. T by CT (X, p) (resp. CT (X,∞)). We say X has a unique tangent cone at p (resp.
infinity), if CT (X, p) = CS(X, p) (resp. CT (X,∞) = CS(X,∞)), for any two sequences of real
positive numbers S = {sj}j∈N and T = {tj}j∈N such that sj → 0 and tj → 0 (resp. sj → +∞
and tj → +∞) and, in this case, we denote such CT (X, p) (resp. CS(X,∞)) by C(X, p) (resp.
C(X,∞)) and we call C(X, p) (resp. C(X,∞)) the tangent cone of X at p (resp. infinity).
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Let us remark that a tangent cone of a set X at p can be non-unique as we can see in the
next example.

Example 2.4. Let

X = {(x, y) ∈ R2; sin(log
1

x2 + y2
) = 0}.

For each j ∈ N, we define tj = (e−jπ)
1
2 and sj = (e−jπ+π/2)

1
2 . Thus, for T = {tj}j∈N and

S = {sj}j∈N, we have (0, 1) ∈ CT (X, 0) \ CS(X, 0) and, thus, CT (X, 0) ̸= CS(X, 0).

A tangent cone of a set X at infinity can also be non-unique as we can see in the next example.

Example 2.5. Let X = {(x, y) ∈ R2; sin(log(x2 + y2 + 1)) = 0}. For each j ∈ N, we define

tj = (ejπ − 1)
1
2 and sj = (ejπ+π/2 − 1)

1
2 . Thus, for T = {tj}j∈N and S = {sj}j∈N, we have

(0, 1) ∈ CT (X,∞) \ CS(X,∞) and, thus, CT (X,∞) ̸= CS(X,∞).

Below we give several general examples of sets which have unique tangent cone at some point,
to illustrate the richness of this class.

Example 2.6. (1) If A =Cone(L) = {tv; v ∈ L and t ∈ [0,+∞)}, for some L ⊂ Sn−1, then
A has a unique tangent cone at 0;

(2) If A is subanalytic or definable in some o-minimal structure, then it has a unique tangent
cone at each p ∈ A. See [4] for the definition of subanalytic, and see [2] for the definitions
of definable and o-minimal.

(3) If A is a finite union of sets, all of which have a unique tangent cone at p, then A has
a unique tangent cone at p.

(4) If A is a C1 submanifold of Rn such that p ∈ A, then it has a unique tangent cone at p
and C(A, p) = TpA, where TpA denotes the tangent space of A at p ∈ Rn.

3. bi-Lipschitz Invariance of the tangent cones

Theorem 3.1. Let A ⊂ Rm and B ⊂ Rn be subsets. Let ϕ : (A, p) → (B, q) be a bi-Lipschitz
homeomorphism such that

1

K1
∥x− y∥ ≤ ∥ϕ(x)− ϕ(y)∥ ≤ K2∥x− y∥, ∀x, y ∈ A,

where K1,K2 > 0. Then, for any sequence of positive numbers T = {tj}j∈N such that lim tj = 0,
there exist a subsequence S = {sj}j∈N ⊂ T = {tj}j∈N and a global bi-Lipschitz homeomorphism
dϕ : CS(A, p) → CS(B, q) such that dϕ(0) = 0 and

1

K1
∥x− y∥ ≤ ∥dϕ(x)− dϕ(y)∥ ≤ K2∥x− y∥, ∀x, y ∈ CS(A, p).

Proof. This proof shares its structure with the proof of Theorem 2.19 in [3].
By taking translations, if necessary, we can assume that p = 0 and q = 0. By taking

RN = Rm × Rn and doing the following identifications:

A↔ A× {0} and B ↔ {0} ×B

one can suppose that A,B ⊂ RN and there exists a bi-Lipschitz map φ : RN → RN such that
φ(A) = B (see Lemma 3.1 in [9]). Let K > 0 be a constant such that

(1)
1

K
∥x− y∥ ≤ ∥φ(x)− φ(y)∥ ≤ K∥x− y∥, ∀x, y ∈ RN .

Let {tk}k∈N be a sequence of positive numbers such that lim
k→+∞

tk = 0. For each k ∈ N, let us

define the mappings φk, ψk : RN → RN given by φk(v) =
1
tk
φ(tkv) and ψk(v) =

1
tk
φ−1(tkv). For
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each integer m ≥ 1, let us define φk,m := φk|Bm
: Bm → RN and ψk,m := ψk|BmK

: BmK → RN ,

where Br denotes the Euclidean closed ball of radius r and with center at the origin in RN . Since

1

K
∥x− y∥ ≤ ∥φk,1(x)− φk,1(y)∥ ≤ K∥x− y∥, ∀x, y ∈ B1, ∀k ∈ N

and
1

K
∥u− v∥ ≤ ∥ψk,1(u)− ψk,1(v)∥ ≤ K∥u− v∥, u, v ∈ BK , ∀k ∈ N,

there exist a subsequence {kj,1}j∈N ⊂ N and Lipschitz mappings dφ1 : B1 → RN and

dψ1 : BK → RN such that φkj,1,1 → dφ1 uniformly on B1 and ψkj,1,1 → dψ1 uniformly on

BK (notice that {φk,1}k∈N and {ψk,1}k∈N have uniform Lipschitz constants). Furthermore, it is
clear that

1

K
∥u− v∥ ≤ ∥dφ1(u)− dφ1(v)∥ ≤ K∥u− v∥, ∀u, v ∈ B1

and
1

K
∥z − w∥ ≤ ∥dψ1(z)− dψ1(w)∥ ≤ K∥z − w∥, ∀z, w ∈ BK .

Likewise as above, for each m > 1, we have

1

K
∥x− y∥ ≤ ∥φk,m(x)− φk,m(y)∥ ≤ K∥x− y∥, x, y ∈ Bm, ∀k ∈ N

and
1

K
∥u− v∥ ≤ ∥ψk,m(u)− ψk,m(v)∥ ≤ K∥u− v∥, u, v ∈ BmK , ∀k ∈ N.

Therefore, for each m > 1, there exist a subsequence {kj,m}j∈N ⊂ {kj,m−1}j∈N and Lipschitz

mappings dφm : Bm → RN and dψm : BmK → RN such that φkj,m,m → dφm uniformly on Bm

and ψkj,m,m → dψm uniformly on BmK with dφm|Bm−1
= dφm−1 and dψm|B(m−1)K

= dψm−1.

Furthermore,

(2)
1

K
∥u− v∥ ≤ ∥dφm(u)− dφm(v)∥ ≤ K∥u− v∥, ∀u, v ∈ Bm

and

(3)
1

K
∥z − w∥ ≤ ∥dψm(z)− dψm(w)∥ ≤ K∥z − w∥, ∀z, w ∈ BmK .

Let us define dφ, dψ : RN → RN by dφ(x) = dφm(x), if x ∈ Bm and dψ(x) = dψm(x), if
x ∈ BmK and, for each j ∈ N, let sj = kj,j .

Let F ⊂ RN be a compact subset. Let us take m ∈ N such that F ⊂ Bm ⊂ BmK .
Thus, {sj}j>m is a subsequence of {kj,m}j∈N and, since φkj,m,m → dφm uniformly on Bm

and ψkj,m,m → dψm uniformly on BmK , it follows that φsj → dφ and ψsj → dψ uniformly on

F . This shows that φsj → dφ and ψsj → dψ uniformly on compact subsets of RN . Thus, it

follows from inequalities (2) and (3) that dφ, dψ : RN → RN are bi-Lipschitz homeomorphisms.
Since ψk ◦ φk = idRN φk ◦ ψk = idRN , for all k ∈ N, we obtain that dψ = (dφ)−1.

Claim 1. dϕ(CS(A, 0)) = CS(B, 0), where dϕ := dφ|CS(A,0) and S = {sj}j∈N.

By symmetry, it is enough to verify that dφ(CS(A, 0)) ⊂ CS(B, 0). In order to do that, let
v ∈ CS(A, 0). Thus, there is a sequence {xj} ⊂ A such that lim

j→+∞
xj

sj
= v. Then, we obtain∥∥∥φ(sjv)

sj
− φ(xj)

sj

∥∥∥ ≤ K∥v − xj

sj
∥ → 0 as j → +∞.
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Therefore,

lim
j→+∞

φ(sjv)
sj

= lim
j→+∞

φ(xj)
sj

= dφ(v) = dϕ(v).

Since φ|X\K = ϕ, we have

(4) lim
j→+∞

ϕ(xj)
sj

= dϕ(v) ∈ CS(B, 0).

Therefore, dϕ(CS(A, 0)) = CS(B, 0).

Claim 2. 1
K1

∥v − w∥ ≤ ∥dϕ(v)− dϕ(w)∥ ≤ K2∥v − w∥, ∀v, w ∈ CS(A, 0).

In fact, if v, w ∈ CS(A, 0), there are sequences {xj}, {yj} ⊂ A such that lim
j→+∞

xj

sj
= v and

lim
j→+∞

yj

sj
= w. Thus, by the hypothesis of the theorem, we obtain

1
K1

∥∥∥xj

sj
− yj

sj

∥∥∥ ≤
∥∥∥ϕ(xj)

sj
− ϕ(yj)

sj

∥∥∥ ≤ K2

∥∥∥xj

sj
− yj

sj

∥∥∥.
Passing to the limit j → +∞ and using (4), we obtain

1

K1
∥v − w∥ ≤ ∥dϕ(v)− dϕ(w)∥ ≤ K2∥v − w∥.

□

As a corollary of Theorem 3.1, we have the generalised result of Theorem 3.2 in [9] to the
case of sets with unique tangent cones.

Corollary 3.2. Let A ⊂ Rm and B ⊂ Rn be subsets such that A and B have a unique tangent
cone at p ∈ Rm and q ∈ Rn, respectively. If (A, p) and (B, q) are bi-Lipschitz homeomorphic,
then C(A, p) and C(B, q) are bi-Lipschitz homeomorphic as well.

Let us recall the notion of direction set.

Definition 3.3. Let A be a set-germ at p ∈ Rn such that p is a non-isolated point of A. We
define the direction set D(A, p) of A at p ∈ Rn by

D(A, p) := {v ∈ Sn−1 | ∃{xi} ⊂ A \ {p}, xi → p ∈ Rn s.t.
xi − p

∥xi − p∥
→ v, i→ ∞}.

Here Sn−1 denotes the unit sphere centered at 0 ∈ Rn.

Thus, we have the main result of [5].

Corollary 3.4 (Main Theorem in [5]). Let A, B ⊂ Rn be subanalytic set-germs at 0 ∈ Rn such
that 0 ∈ A ∩ B, and let h : (Rn, 0) → (Rn, 0) be a bi-Lipschitz homeomorphism. Suppose that
h(A), h(B) are also subanalytic. Then we have the equality of dimensions,

dim(D(h(A)) ∩D(h(B))) = dim(D(A) ∩D(B)).

4. Characterizations of sets with a unique tangent cone

Definition 4.1. Let A be a set-germ at p ∈ Rn such that p is a non-isolated point of A. We
say that A satisfies SSP-condition at p, if for any sequence of points {am} of Rn tending to
p ∈ Rn, such that limm→∞

am−p
∥am−p∥ ∈ D(A, p), there is a sequence of points {bm} ⊂ A such that,

∥am − bm∥ ≪ ∥am − p∥, ∥bm − p∥,

i.e. limm→∞
∥am−bm∥
∥am−p∥ = limm→∞

∥am−bm∥
∥bm−p∥ = 0.
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Recall that for X ⊂ Rn and x ∈ Rn, dist(x,X) = inf
y∈X

∥x − y∥ and the Hausdorff distance

between two bounded sets A,B ⊂ Rn is given by

dH(A,B) = max{sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)}.

For a set-germ A at p ∈ Rn such that p is a non-isolated point of A, we put

LD(A, p) := {ta ∈ Rn | a ∈ D(A, p), t ≥ 0},
and call it the real tangent cone of A at p ∈ Rn.

Theorem 4.2. Let X ⊂ Rm be a subset such that p ∈ Rm is a non-isolated point of X. Then
the following statements are equivalents:

(1) X has a unique tangent cone at p;
(2) dist(tv,X) = o(t) for all v ∈ D(X, p);
(3) X satisfies SSP -condition at p.

Remark 4.3. The equivalence between (1) and (2) of Theorem 4.2 was already pointed out by
Koike and Paunescu in [6, Remark 2.8] and [7, Proposition 2.4]. However, for convenience, we
present the proofs here.

Proof of Theorem 4.2. Without loss of generality, we assume p = 0.
We are going to show that: (1) ⇒ (2). Let us remark that this proof resembles with the

proof of Proposition 2.7 in [6]. Suppose by contradiction that X has a unique tangent cone at
0 and dist(tv,X) ̸= o(t), so there exists v ∈ D(X, 0), ϵ > 0 and a sequence of real numbers
T = {tk}k∈N such that

dist(tnv,X)

tn
≥ ϵ > 0, ∀n.

Since X has a unique tangent cone at 0, we have v ∈ D(X, 0) implies v ∈ CT (X, 0), so there
exists a sequence {xk}k∈N ⊂ X such that lim

n→+∞
xn

tn
= v.

On the other hand, we have

dist(tnv,X)

tn
≤ ∥tnv − xn∥

tn
,

and note that lim
n→+∞

tnv−xn

tn
= 0, consequently

ϵ ≤ lim
n→+∞

dist(tnv,X)

tn
= 0,

which gives a contradiction. Therefore, dist(tv,X) = o(t) for all v ∈ D(X, 0).
Now we are going to show that: (2) ⇒ (3). So, assume dist(tv,X) = o(t), for all v ∈ D(X, 0).

Let {an} be a sequence of points of Rm tending to 0 ∈ Rm, such that lim
n→∞

an

∥an∥ = v ∈ D(X, 0).

For each n, we define tn = ∥an∥ and let bn ∈ X such that

(5) dist(tnv,X) > ∥tnv − bn∥ − ∥tn∥2.
We have also the following

∥an − bn∥
∥an∥

≤ ∥an − tnv∥
tn

+
∥tnv − bn∥

tn
.

Since by assumption dist(tv,X) = o(t), it follows from inequality (5) and the choice of an that

lim
n→+∞

∥an − bn∥
∥an∥

= 0.
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Now note that ∥an−bn∥
∥bn∥ = ∥an∥

∥bn∥
∥an−bn∥

∥an∥ .

Claim. The sequence
{

∥an∥
∥bn∥

}
n∈N

is a bounded sequence.

Indeed, by taking a subsequence, if necessary, assume that lim
n→+∞

∥an∥
∥bn∥ = ∞ or equivalently

lim
n→+∞

∥bn∥
∥an∥ = 0. Then,

lim
n→+∞

dist(tnv,X)

tn
≥ lim

n→+∞
∥v − bn

tn
∥ − lim

n→+∞
tn = ∥v∥ > 0,

which generates a contradiction, since dist(tv,X) = o(t).

Thus,
{

∥an∥
∥bn∥

}
n∈N

is a bounded sequence, which implies limn→+∞
∥an−bn∥

∥bn∥ = 0.

Therefore X satisfies the SSP -condition at 0.
Finally, we are going to show that: (3) ⇒ (1). Assume that X satisfies SSP -condition

at 0. Let T = {tn}n∈N and S = {sn}n∈N be sequences of positive numbers tending to 0. Take
v ∈ CT (X, 0)\{0}, so there exists a sequence of points {xn}n∈N ⊂ X such that limn→+∞

xn

tn
= v.

Now we define the sequence {an} given by an = snv and note that limn→∞ an = 0 and

lim
n→∞

an
∥an∥

= lim
n→∞

an/sn
∥an/sn∥

=
v

∥v∥
∈ D(X, 0).

Since X satisfies SSP -condition at 0, there exists a sequence {bn} ⊂ X such that

lim
n→+∞

∥an − bn∥
∥an∥

= 0,

then

lim
n→+∞

bn
∥an∥

=
v

∥v∥
and consequently

lim
n→+∞

bn
sn

= v ∈ CS(X, 0).

Thus, CT (X, 0) ⊂ CS(X, 0). Analogously, we can also prove CT (X, 0) ⊂ CS(X, 0), which implies
that X has a unique tangent cone at 0. □

As a consequence of Corollary 3.2 and Theorem 4.2, we have obtained the following results
proved in [7].

Corollary 4.4 (Theorem 3.6 in [7]). Let A, B ⊂ Rn be set-germs at 0 ∈ Rn such that 0 ∈ A∩B,
and let ϕ : A → B be a bi-Lipschitz homeomorphism. If both A,B satisfy SSP -condition at 0,

then d
˜̃
ϕ(LD(A, 0)) = LD(B, 0).

Corollary 4.5 (Theorem 3.12 in [7]). Let A, B ⊂ Rn be set-germs at 0 ∈ Rn such that 0 ∈ A∩B,
and let h : (Rn, 0) → (Rn, 0) be a bi-Lipschitz homeomorphism. Suppose that A, B, h(A), h(B)
satisfy SSP -condition at 0. Then we have the equality of dimensions,

dim(D(h(A), 0) ∩D(h(B), 0)) = dim(D(A, 0) ∩D(B, 0)).

Definition 4.6. We say that X ⊂ Rm has a unique directional cone at p ∈ X \ {p} if for
any sequence of positive numbers {tj}j∈N tending to 0 and Xtj = [ 1tj (X − p)] ∩ Sm−1, we have

that lim
j→+∞

dH(Xtj , D(X, p)) = 0.

Thus, we have also the following.
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Proposition 4.7. Let X ⊂ Rm be a subset such that p ∈ Rm is a non-isolated point of X. If
X has a unique directional cone at p then X has a unique tangent cone at p.

Proof. We may assume that p = 0. Let {tj}j∈N be a sequence of positive numbers tending to 0. It
is enough to prove that CT (X, 0) = LD(X, 0). Indeed, it is obvious that CT (X, 0) ⊂ LD(X, 0).
Now, let w ∈ LD(X, 0) \ {0}. Then there exist v ∈ D(X, 0) and λ > 0 such that w = λv.
For each j, define sj = λtj . By assumption lim

j→+∞
dH(Xsj , D(X, 0)) = 0, hence there exists a

sequence of points {yj}j∈N ⊂ X with ∥yj∥ = sj and lim
j→+∞

yj

sj
= v. Thus,

yj
tj

= λ
yj
sj

→ λv = w.

Therefore LD(X, 0) ⊂ CT (X, 0), which proves that CT (X, 0) = LD(X, 0). □

Surprisingly, the converse of Proposition 4.7 does not hold true, as we can see in the next
examples.

Example 4.8. Let X = (R2 \
∞⋃

n=1
S2(0; 1/n)) ∪ {(x, y); y = 0}. We have that X has a unique

tangent cone at 0, but lim
j→+∞

dH(X1/j , D(X, 0)) ̸= 0, where X1/j = (jX) ∩ S1 = {(±1, 0)}.

In fact, we can also obtain an example with X being a closed set.

Example 4.9. For each j ∈ N, let

Rj = {(r cos θ, r sin θ) ∈ R2; θ ∈ (−π/4, π/4)

and r ∈ (1/j − 1/j3, 1/j + 1/j3)}. Let R =
∞⋃
j=1

Rj and X = R2 \ R. We have that X has a

unique tangent cone at 0, which is R2. In fact, let T = {tj}j∈N be a sequence of positive numbers
tending to 0 and let v = (x, y) ∈ R2 \ {(0, 0)}. We define

aj =

{
tjv, if tjv ̸∈ R,
(tj +

2
m3∥v∥ )v, if tjv ∈ Rm.

Thus, {aj} ⊂ X and lim
aj

tj
= v. This shows that CT (X, 0) = R2. However,

lim
j→+∞

dH(X1/j , D(X, 0)) ̸= 0,

where X1/j = (jX) ∩ S1.

4.1. Looking at infinity. With an easy adaptation of the proof of Theorem 3.1, we obtain also
the following:

Proposition 4.10. Let A ⊂ Rm and B ⊂ Rn be non-empty subsets. Assume that there exist
compact sets K ⊂ Rm and K̃ ⊂ Rn ϕ : A \K → B \ K̃ be a bi-Lipschitz homeomorphism such
that

1

K1
∥x− y∥ ≤ ∥ϕ(x)− ϕ(y)∥ ≤ K2∥x− y∥, ∀x, y ∈ A \K,

where K1,K2 > 0. Then, for any sequence of positive numbers T = {tj}j∈N such that
lim tj = +∞, there exist a subsequence S = {sj}j∈N ⊂ T = {tj}j∈N and a global bi-Lipschitz
homeomorphism dϕ : CS(A,∞) → CS(B,∞) such that dϕ(0) = 0 and

1

K1
∥x− y∥ ≤ ∥dϕ(x)− dϕ(y)∥ ≤ K2∥x− y∥, ∀x, y ∈ CS(A,∞).
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As a corollary of Proposition 4.10, we have the generalized result of Theorem 2.19 in [3] to
the case of sets with unique tangent cones.

Corollary 4.11. Let A ⊂ Rm and B ⊂ Rn be non-empty subsets which have unique tangent
cone at infinity. Assume that there exist compact sets K ⊂ Rm and K̃ ⊂ Rn such that A\K and

B\K̃ are bi-Lipschitz homeomorphic, then C(A,∞) and C(B,∞) are bi-Lipschitz homeomorphic
as well.

Definition 4.12. Let A be a set-germ at p ∈ Rn such that p is a non-isolated point of A. We
define the direction set of A at infinity, D(A,∞), by

D(A,∞) := {v ∈ Sn−1 | ∃{xi} ⊂ A s.t. ∥xi∥ → +∞ and
xi
∥xi∥

→ v, i→ ∞}.

We put LD(A,∞) := {ta ∈ Rn | a ∈ D(A,∞), t ≥ 0}.

Definition 4.13. Let A ⊂ Rn be an unbounded set. We say that A satisfies SSP-condition
at infinity, if for any sequence of points {am} of Rn tending to infinity such that

lim
m→∞

am
∥am∥

∈ D(A,∞),

there is a sequence of points {bm} ⊂ A such that,

lim
m→∞

∥am − bm∥
∥am∥

= lim
m→∞

∥am − bm∥
∥bm∥

= 0.

Thus, with easy adaptations of the proofs of Theorem 4.2 and Proposition 4.7, we obtain also
the following results at infinity.

Proposition 4.14. Let X ⊂ Rm be an unbounded subset. Then the following statements are
equivalents:

(1) X has a unique tangent cone at infinity;

(2) dist(tv,X) = o∞(t) for all v ∈ D(X,∞), where g(t) = o∞(t) means lim
t→+∞

g(t)
t = 0;

(3) X satisfies the SSP -condition at infinity.

Proposition 4.15. Let X ⊂ Rm be an unbounded closed subset. Assume that for any se-
quence of positive numbers {tj}j∈N tending to +∞ and Xtj = ( 1

tj
X) ∩ Sm−1, we have that

lim
j→+∞

dH(Xtj , D(X,∞)) = 0. Then X has a unique tangent cone at infinity.

We finish this article with an example which shows that the converse of Proposition 4.15 does
not hold.

Example 4.16. For each j ∈ N, let

Rj = {(r cos θ, r sin θ) ∈ R2; θ ∈ (−π/4, π/4)

and r ∈ (j − 1/j3, j + 1/j3)}. Let R =
∞⋃
j=1

Rj and X = R2 \ R. We have that X has a

unique tangent cone at infinity, which is R2. However, lim
j→+∞

dH(Xj , D(X,∞)) ̸= 0, where

Xj = ( 1jX) ∩ S1.
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