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SOME NOTES ON THE LOCAL TOPOLOGY OF A DEFORMATION OF A

FUNCTION-GERM WITH A ONE-DIMENSIONAL CRITICAL SET

HELLEN SANTANA

Abstract. The Brasselet number of a function f with nonisolated singularities describes
numerically the topological information of its generalized Milnor fibre. In this work, we

consider two function-germs f and g on a complex analytic space X such that f has a stratified

isolated singularity at the origin and g has a stratified one-dimensional critical set. We use
the Brasselet number to study the local topology of a deformation of g defined by adding a

large power of f . As an application of this study, we present a new proof of the Lê-Yomdin
formula for the Brasselet number.

Introduction

The Milnor number, defined in [14], is a very useful invariant associated to a complex
function f with a stratified isolated singularity defined over an open neighborhood of the origin
in CN . It gives numerical information about the local topology of the hypersurface V (f) and
computes the Euler characteristic of the Milnor fibre of f at the origin.

In the case where the function-germ has nonisolated singularity at the origin, the Milnor
number is not well defined, but the Milnor fibre is, which led many authors ([19],[8],[3], [7], [13])
to study an extension for this number in more general settings. For example, if we consider a
function with a one-dimensional critical set defined over an open subset of Cn and a generic linear
form l over Cn, Yomdin gave an algebraic proof (Theorem 3.2), in [19], of a relation between the
Euler characteristic of the Milnor fibre of f and the Euler characteristic of the Milnor fibre of
f + lN , N ≫ 1 and N ∈ N, using properties of algebraic sets with one-dimensional critical locus.
In [8], Lê proved (Theorem 2.2.2) this same relation in a more geometric approach and with a
way to obtain the Milnor fibre of f by attaching a certain number of n-cells to the Milnor fibre
of f |{l=0}.

In [13], Massey worked with a function f with critical locus of higher dimension defined
over a nonsingular space and defined the Lê numbers and cycles, which provides a way to
numerically describe the Milnor fibre of this function with nonisolated singularity. Massey
compared (Theorem II.4.5), using appropriate coordinates, the Lê numbers of f and f + lN ,
where l is a generic linear form over Cn and N ∈ N is sufficiently large, obtaining a Lê-Yomdin
type relation between these numbers. He also gave (Theorem II.3.3 ) a handle decomposition
of the Milnor fibre of f , where the number of attached cells is a certain Lê number. Massey
extended the concept of Lê numbers to the case of functions with nonisolated singularities defined
over complex analytic spaces, introducing the Lê-Vogel cycles, and proved the Lê-Yomdin-Vogel
formulas: the generalization of the Lê-Yomdin formulas in this more general sense.

The Brasselet number, defined by Dutertre and Grulha in [7], also describes the local topo-
logical behavior of a function with nonisolated singularities defined over an arbitrarily singular
analytic space: if f : (X, 0) → (C, 0) is a function-germ and V = {{0}, V1, . . . , Vq} is a good
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stratification of X relative to f (see Definition 1.8), the Brasselet number Bf,X(0) is defined by

Bf,X(0) =

q∑
i=1

χ(Vi ∩ f−1(δ) ∩Bϵ)EuX(Vi),

where Bϵ is a closed ball centered at the origin and with radius ϵ in some local embedding of
X and χ denotes the usual Euler characteristic. In [7], the authors proved several formulas
about the local topology of the generalized Milnor fibre of a function germ f using the Brasselet
number, like the Lê-Greuel type formula (Theorem 4.2 in [7]): Bf,X(0)−Bf,Xg (0) = (−1)dimC Xn,
where n is the number of stratified Morse critical points of a Morsification of g|X∩f−1(δ)∩Bϵ

on Vq ∩ f−1(δ) ∩ Bϵ. In [5], Dalbelo and Pereira provided formulas to compute the Brasselet
number of a function defined over a toric variety and in [1], Ament, Nuño-Ballesteros, Oréfice-
Okamoto and Tomazella computed the Brasselet number of a function-germ with a stratified
isolated singularity at the origin and defined over an isolated determinantal variety (IDS) and the
Brasselet number of finite functions defined over a reduced curve. More recently, in [4], Dalbelo
and Hartmann calculated the Brasselet number of a function-germ defined over a toric variety
using combinatorical properties of the Newton polygons. In the global study of the topology
of a function germ, Dutertre and Grulha defined, in [6], the global Brasselet numbers and the
Brasselet numbers at infinity. In that paper, the authors compared the global Brasselet numbers
of a function-germ f with the global Euler obstruction of the fibres of f, defined by Seade, Tibăr
and Verjovsky in [16]. They also related the number of critical points of a Morsification of a
polynomial function f on an algebraic set X to the global Brasselet numbers and the Brasselet
numbers at infinity of f. Therefore, the Brasselet number has been a useful tool in the study of
the topology of function-germs and it will be the main object in this work.

We consider analytic function-germs f, g : (X, 0) → (C, 0), a Whitney stratification W of X,
suppose that f has a stratified isolated singularity at the origin and g has a one-dimensional
stratified critical set.

Consider the good stratification of X induced by f ,

V = {Wλ \Xf ,Wλ ∩Xf \ {0}, {0},Wλ ∈ W}

and suppose that g is tractable at the origin with respect to V (see Definition 1.12). Consider a
decomposition of the critical locus ΣWg into branches bj ,ΣWg =

⋃q
α=1 Σg|Wα

∪{0} = b1∪. . .∪br,
where bj ⊆ Wα, for some α ∈ {1, . . . , q}. Let δ be a regular value of f, 0 < |δ| ≪ 1, and let us
write, for each j ∈ {1, . . . , r}, f−1(δ) ∩ bj = {xi1 , . . . , xik(j)

}. So, in this case, the local degree

mf,bj of f |bj is k(j). Let ϵ be sufficiently small such that the local Euler obstruction of Xg is
constant on bj ∩ Bϵ. In this case, we denote by EuXg (bj) the local Euler obstruction of X at a
point of bj ∩Bϵ and by Bg,X∩f−1(δ)(bj) the Brasselet number of g|X∩f−1(δ) at a point of bj ∩Bϵ.

For a deformation of g, g̃ = g + fN , N ≫ 1, we prove (Proposition 2.5)

Bg,Xf (0) = Bg̃,Xf (0) = Bf,X g̃ (0).

and for 0 < |δ| ≪ ϵ ≪ 1 (Proposition 2.9),

Bf,Xg (0)−Bf,X g̃ (0) =
∑r

j=1 mf,bj (EuXg (bj)−Bg,X∩f−1(δ)(bj)).

As an application of these results, we compare the Brasselet numbers Bg,X(0) and Bg̃,X(0),
and obtain (Theorem 3.4) a topological proof of the Lê-Yomdin formula for the Brasselet number,

Bg̃,X(0) = Bg,X(0) +N

r∑
j=1

mf,bjEuf,X∩g̃−1(α′)(bj),

where 0 ≪ |α′| ≪ 1 is a regular value of g̃. This formula generalizes the Lê-Yomdin formula for
the Euler characteristic of the Milnor fibre in the case of a function with a stratified isolated
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singularity. We note that an algebraic proof can be obtained using the description (see [3]) of
the defect of a function-germ f in terms of the Euler characteristic of vanishing cycles and the
Lê-Vogel numbers associated to f.

In [18], Tibăr provided a bouquet decomposition for the Milnor fibre of g̃ and related it with
the Milnor fibre of g. As a consequence of this strong result, Tibăr gave a Lê-Yomdin formula
to compare the Euler characteristics of these Milnor fibres. In the last section of this work, we
suppose f is a generic linear form l in some local embedding of X. In that case, ml,bj does not
depend on l which allows us to write mbj (in fact, mbj is the algebraic multiplicity of bj). We
apply our results to give an alternative proof for this Lê-Yomdin formula (see Proposition 4.1):

χ(X ∩ g̃−1(α′) ∩Bϵ) = χ(X ∩ g−1(α) ∩Bϵ) + N

r∑
j=1

mbj

(
1− χ(Fj)

)
,

where Fj = X ∩ g−1(α) ∩Hj ∩Dxt
is the local Milnor fibre of g|{l=δ} at a point of the branch

bj , Hj denotes the generic hyperplane l−1(δ) passing through xt ∈ {l = δ} ∩ bj , for

{l = δ} ∩ bj = {xi1 . . . , xik(j)
}

and χ(Fj) does not depend on the choice of xt ∈ {l = δ} ∩ bj .

1. Preliminaries

In this section, we introduce the definitions and results needed to develop this paper.
Let (X, 0) ⊂ (Cn, 0) be an equidimensional reduced complex analytic germ of dimension d in a

open set U ⊂ Cn. Consider a complex analytic Whitney stratification V = {Vλ} of U adapted to
X such that {0} is a stratum. We choose a small representative of (X, 0), denoted byX, such that
0 belongs to the closure of all strata. We write X = ∪q

i=0Vi, where V0 = {0} and Vq is an open
and dense subset in Xreg, where Xreg is the regular part of X. We suppose that V0, V1, . . . , Vq−1

are connected. We write di = dim(Vi), i ∈ {1, . . . , q}. Note that dq = d. Let G(d, n) be the
Grassmannian manifold, x ∈ Xreg and consider the Gauss map ϕ : Xreg → U ×G(d, n) given by
x 7→ (x, Tx(Xreg)).

Let us denote by X̃ the Nash modification of X, by ν : X̃ → X its corresponding analytic
projection map and by T̃ the Nash bundle defined over X̃.

Consider the extension of the tautological bundle T over U×G(d, n). Since X̃ ⊂ U×G(d,N),

we consider T̃ the restriction of T to X̃, called the Nash bundle, and π : T̃ → X̃ the projection
of this bundle. We introduce now the local Euler obstruction, a singular invariant defined by
MacPherson and used as one of the main tools in his proof of the Deligne-Grothendieck conjecture
about the existence and uniqueness of Chern classes for singular varities.

Let φ : U ×G(d,N) → U denote the natural projection over U . If ||z|| =
√
z1z1 + · · ·+ znzn,

the 1-differential form w = d||z||2 over Cn defines a section in T ∗Cn and its pullback φ∗w is a

1- form over U ×G(d, n). Denote by w̃ the restriction of φ∗w over X̃, which is a section of the

dual bundle T̃ ∗.
Choose ϵ small enough for w̃ to be a nonzero section over ν−1(z), 0 < ||z|| ⩽ ϵ, let Bϵ be the

closed ball with center at the origin with radius ϵ and denote by

Obs(T̃ ∗, w̃) ∈ H2d(ν−1(Bϵ), ν
−1(Sϵ),Z)

the obstruction for extending w̃ from ν−1(Sϵ) to ν−1(Bϵ) and Oν−1(Bϵ),ν−1(Sϵ) the fundamental

class in H2d(ν
−1(Bϵ), ν

−1(Sϵ),Z).

Definition 1.1. ([10], p. 425) The local Euler obstruction of X at 0, EuX(0), is given by
the evaluation

EuX(0) = ⟨Obs(T̃ ∗, w̃), Oν−1(Bϵ),ν−1(Sϵ)⟩
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In [2], Brasselet, Lê and Seade gave an alternative way to compute this number, using linear
functions.

Theorem 1.2. ([2], Th. 3.1) For each generic linear form l, there exists ϵ0 such that for all ϵ
with 0 < ϵ < ϵ0 and δ ̸= 0 sufficiently small, the Euler obstruction of (X, 0) is equal to

EuX(0) =

q∑
i=1

χ(Vi ∩Bϵ ∩ l−1(δ)) · EuX(Vi),

where χ is the Euler characteristic, EuX(Vi) is the Euler obstruction of X at a point of Vi,
i = 1, . . . , q and 0 < |δ| ≪ ϵ ≪ 1.

The right side sum in the last formula is related to the local Euler obstruction of X at the
origin when one replaces the linear function l with a function with a stratified isolated singularity
at the origin defined over X. Let f : X → C be a holomorphic function with a stratified isolated
singularity at the origin given by the restriction of a holomorphic function F : U → C and denote
by ∇F (x) the conjugate of the gradient vector field of F in x ∈ U.

For all x ∈ X \ {0}, the projection ζ̂i(x) of ∇F (x) over Tx(Vi(x)) is nonzero, where Vi(x)
is the stratum containing x. Using this projection, in [3], Brasselet, Massey, Parameswaran

and Seade construct a stratified vector field over X, denoted by ∇f(x). Let ζ̃ be the lifting of

∇f(x) as a section of the Nash bundle T̃ over X̃, without singularity over ν−1(X ∩ Sϵ). Let

O(ζ̃) ∈ H2n(ν−1(X ∩Bϵ), ν
−1(X ∩S.ϵ)) be the obstruction cocycle for extending ζ̃ as a nonzero

section of T̃ inside ν−1(X ∩Bϵ).

Definition 1.3. The local Euler obstruction of the function f , Euf,X(0), is the evaluation

of O(ζ̃) on the fundamental class [ν−1(X ∩Bϵ), ν
−1(X ∩ Sϵ)].

The next theorem compares the Euler obstruction of a space X with the Euler obstruction of
function defined over X.

Theorem 1.4. ([3], Th. 3.1) For 0 < |δ| ≪ ϵ ≪ 1,

Euf,X(0) = EuX(0)−
q∑

i=1

χ(Vi ∩Bϵ ∩ f−1(δ)).EuX(Vi)·

The Euler obstruction of a function is closely related to Morse Theory. However, we first
introduce how we may understand this theory in the stratified sense. Let p be a point in a
stratum Vβ of V. A degenerate tangent plane of V at p is an element T of some Grassmanian
manifold such that T = lim

pi→p
Tpi

Vα, where pi ∈ Vα, Vα ̸= Vβ .

Definition 1.5. Let f̃ : (X,x) → (C, 0) be an analytic function, given by the restriction of an

analytic function F̃ : (U, x) → (C, 0). Then x is said to be a generic point of f̃ if the hyperplane

Ker(dxF̃ ) is transverse in Cn to all degenerate tangent planes of the Whitney stratification at
x.

Notice that the condition for x to be a generic point of f̃ is independent of the local embedding
of X or the lifting function of f̃ . Now, let us see the definition of a Morsification of a function.

Definition 1.6. A function germ f̃ : (X,x) → (C, 0) for a point x in a stratum Wi of X is said

to be Morse stratified if x is a generic point of f̃ and f̃ |Wi
: Wi → C has a complex Morse

point in x in case dimWi ≥ 1. Note that a Morse stratified point is an isolated stratified critical
point.
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A stratified Morsification of a germ of an analytic function f : (X, 0) → (C, 0) is a

deformation f̃ such that f̃ only has Morse stratified critical points, so that locally there are only
finitely many of them.

In [17], Seade, Tibăr and Verjovsky proved that the Euler obstruction of a function f can be
computed by the number of Morse critical points of a stratified Morsification of f.

Proposition 1.7. ([17], Prop. 2.3) Let f : (X, 0) → (C, 0) be a germ of an analytic function
with a stratified isolated singularity at the origin. Then,

Euf,X(0) = (−1)dnreg,

where nreg is the number of Morse points in Xreg in a stratified Morsification of f.

In [7], Dutertre and Grulha studied the topology of the fibre of a function f : X → C with
nonisolated singularities. The good properties of the Whitney stratifications were not enough for
their approach since, as we will see, a ”good behaviour” between the strata of the stratification
and the fibres of f is needed.

In [11], Massey not only presents this suitable stratification, but also explains its use in the
study of functions with nonisolated singularities from the Morse Theory perspective.

Let X be a reduced complex analytic space (not necessarily equidimensional) of dimension d
in an open set U ⊆ Cn, let f : (X, 0) → (C, 0) be an analytic map, and let V (f) = Xf = f−1(0).

Definition 1.8. A good stratification of X relative to f is a stratification V of X which
is adapted to V (f) such that {Vλ ∈ V, Vλ ⊈ V (f)} is a Whitney stratification of X \ V (f) and
such that for any pair (Vλ, Vγ) such that Vλ ⊈ V (f) and Vγ ⊆ V (f), the (af )-Thom condition is
satisfied, that is, if p ∈ Vγ and pi ∈ Vλ are such that pi → p and Tpi

V (f |Vλ
−f |Vλ

(pi)) converges
to some T , then TpVγ ⊆ T .

If f : X → C has a stratified isolated critical point and V is a Whitney stratification of X,
then

(1) {Vλ \Xf , Vλ ∩Xf \ {0}, {0}, Vλ ∈ V}
is a good stratification of X relative to f, called the good stratification induced by f.

Definition 1.9. The critical locus of f relative to V, ΣVf, is given by the union

ΣVf =
⋃

Vλ∈V
Σ(f |Vλ

).

Definition 1.10. If V = {Vλ} is a stratification of X, the symmetric relative polar variety

of f and g with respect to V, Γ̃f,g(V), is the union ∪λΓ̃f,g(Vλ), where Γf,g(Vλ) denotes the
closure in X of the critical locus of (f, g)|Vλ\(Xf∪Xg), X

f = X ∩{f = 0} and Xg = X ∩{g = 0}.
Definition 1.11. Let V be a good stratification of X relative to a function f : (X, 0) → (C, 0).
A function g : (X, 0) → (C, 0) is prepolar with respect to V at the origin if the origin is a
stratified isolated critical point, that is, 0 is an isolated point of ΣVg.

Definition 1.12. A function g : (X, 0) → (C, 0) is tractable at the origin with respect to

a good stratification V of X relative to f : (X, 0) → (C, 0) if dim0 Γ̃1
f,g(V) ≤ 1 and, for all

strata Vα ⊆ Xf , g|Vα has no critical points in a neighbourhood of the origin except perhaps at
the origin itself.

We present now the definition of the Brasselet number. Let f : (X, 0) → (C, 0) be a complex
analytic function germ and let V be a good stratification of X relative to f. We denote by
V1, . . . , Vq the strata of V that are not contained in {f = 0} and we assume that V1, . . . , Vq−1

are connected and that Vq is an open and dense subset of Xreg \ {f = 0}. Note that Vq could be
not connected.
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Definition 1.13. Suppose that X is equidimensional. Let V be a good stratification of X
relative to f. The Brasselet number of f at the origin, Bf,X(0), is defined by

Bf,X(0) =
∑q

i=1 χ(Vi ∩ f−1(δ) ∩Bϵ) · EuX(Vi),

where 0 < |δ| ≪ ϵ ≪ 1.

Remark: If V i
q is a connected component of Vq, EuX(V i

q ) = 1.
Notice that if f has a stratified isolated singularity at the origin, then

Bf,X(0) = EuX(0)− Euf,X(0);

see Theorem 1.4.

1.1. On the Brasselet number of germs with a one-dimensional critical set. Let
f, g : (X, 0) → (C, 0) be complex analytic function-germs such that f has a stratified isolated
singularity at the origin. Let W be the Whitney stratification of X and V be the good stratifica-
tion of X induced by f. Suppose that ΣWg is one-dimensional and that ΣWg∩{f = 0} = {0}. In
this context, let us recall the following definition introduced by Dutertre and Grulha. A partial
Morsification of g : X ∩ f−1(δ) ∩Bϵ → C is a function g̃ : X ∩ f−1(δ) ∩Bϵ → C which is a local
Morsification of all isolated critical points of g in X ∩ f−1(δ)∩{g ̸= 0}∩Bϵ and which coincides
with g outside a small neighbourhood of these critical points.

In [15], the author presents several properties about the topology of a function-germ g with
a stratified one-dimensional critical set using Brasselet numbers. The approach of that work is
appropriate to our goal here. Let us compile some results we will use.

We start with the stratifications needed to compute the Brasselet numbers we are interested
in. If Vf denote the set of strata of V contained in {f = 0}, by the First Stratification Lemma
(Lemma 3.1 of [15]),

V ′ = {Vi \ ΣWg, Vi ∩ ΣWg, Vi ∈ V} ∪ Vf

is a good stratification of X relative to f, such that V ′{g=0} is a good stratification of Xg relative
to f |Xg , where

V ′{g=0} =
{
Vi ∩ {g = 0} \ ΣWg, Vi ∩ ΣWg, Vi ∈ V

}
∪ Vf ∩ {g = 0},

and Vf ∩ {g = 0} denotes the collection of strata of type V f ∩ {g = 0}, with V f ∈ Vf . Also, by
the Second Stratification Lemma (Lemma 4.1 of [15]), the refinement of V,

V ′′ = {Vi \ {g = 0}, Vi ∩ {g = 0} \ ΣWg, Vi ∩ ΣWg, Vi ∈ V} ∪ {0}.

Then V ′′ is a good stratification of X relative to g and V ′′ ∩Xf , denoted by V ′′{f=0},

V ′′{f=0} = {Vi ∩ {f = 0} \ {g = 0}, Vi ∩ {f = 0} ∩ {g = 0} \ ΣWg, Vi ∈ Vf} ∪ {0},
is a good stratification of Xf relative to g|Xf . Moreover, f is prepolar at the origin with respect
to V ′′ relative to g.

We write the set ΣWg as a union of branches bj ,ΣWg =
⋃q

α=1 Σg|Wα
∪ {0} = b1 ∪ . . . ∪ br,

where bj ⊆ Wα, for some α ∈ {1, . . . , q}. Let us now enunciate the results we will need.

Theorem 1.14. ([15], Th. 3.2) Suppose that g is tractable at the origin with respect to V relative
to f. Then, for 0 < |δ| ≪ ϵ ≪ 1,

Bf,X(0)−Bf,Xg (0)−
∑r

j=1 mf,bj (EuX(bj)− EuXg (bj)) = (−1)d−1m,

where m is the number of stratified Morse critical points of a partial Morsification of
g : X ∩ f−1(δ) ∩Bϵ → C appearing on Xreg ∩ f−1(δ) ∩ {g ̸= 0} ∩Bϵ.

Theorem 1.15. ([15], Th. 4.8) Suppose that g is tractable at the origin with respect to V relative
to f. Then, for 0 ≪ |δ| ≪ ϵ ≪ 1,
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Bg,Xf (0) = Bf,Xg (0)−
∑r

j=1 mf,bj (EuXg (bj)−Bg,X∩f−1(δ)(bj)).

Theorem 1.16. ([15], Th. 4.10) Suppose that g is tractable at the origin with respect to the
good stratification V of X induced by f. For 0 < |α| ≪ |δ| ≪ ϵ ≪ 1,

Bg,X(0)−Bf,X(0) = (−1)d−1(n−m)−
∑r

j=1 mf,bj (EuX(bj)−Bg,X∩{f=δ}(bj)),

where n (resp. m) is the number of stratified Morse critical points of a Morsification of
f : X∩g−1(α)∩Bϵ → C (resp. g : X∩f−1(δ)∩Bϵ → C) appearing on Ts∩g−1(α)∩{f ̸= 0}∩Bϵ

(resp. Vt ∩ f−1(δ) ∩ {g ̸= 0} ∩Bϵ), where 0 < |δ| ≪ 1 is a regular value of f and 0 < |α| ≪ 1 is
a regular value of g.

Lemma 1.17. ([15], Lemma 5.2) For a generic linear form l, the function g is tractable at the
origin with respect to the good stratification V of X induced by l.

Proposition 1.18. ([15],Prop. 5.6) If H = l−1(0) we have Bg,X∩H(0) ≥ EuXg (0), if d is even,
and Bg,X∩H(0) ≤ EuXg (0), if d is odd.

2. A deformation of a function-germ with one-dimensional critical set

Let g̃ : (X, 0) → (C, 0) be the function-germ given by g̃(x) = g(x) + fN (x), N ≫ 1. We begin
this section with a discussion about the singular locus of the function g̃ = g + fN .

Proposition 2.1. For a sufficiently large N, g̃ has a stratified isolated singularity at the origin
with respect to the Whitney stratification W of X.

Proof. Let x be a critical point of g̃, Ux be a neighborhood of x and G and F be analytic
extensions of g and f to Ux, respectively. If V (x) is a stratum of W containing x ̸= 0,

dxG̃|V (x) = 0 ⇔ dxG|V (x) +N(F (x))N−1dxF |V (x) = 0

If dxG|V (x) = 0, then N(F (x))N−1dxF |V (x) = 0, hence x ∈ {F = 0}. Then
x ∈ ΣWg ∩ {f = 0} = {0}.

If dxG|V (x) ̸= 0, we have G ̸= 0. Since dxG̃|V (x) = 0, by Proposition 1.3 of [11], G̃ = 0, which

implies that F ̸= 0. On the other hand, if dxG|V (x) ̸= 0, dxG|V (x) = −N(F (x))N−1dxF |V (x),

and then x ∈ Γ̃f,g(V (x)). Suppose that x is arbitrarily close to the origin. Since f has a
stratified isolated singularity at the origin, we can define for the stratum V (x), the function
β : (0, ϵ) → R, 0 < ϵ ≪ 1,

β(u) = inf

{ ||dzg|V (x)||
||dzf |V (x)||

; z ∈ Γ̃f,g(V (x)) ∩ {|f |V (x)(z)| = u, u ̸= 0}
}
,

where ||.|| denotes the operator norm, (defined, for each linear transformation T : V → W
between normed vector fields, by supv∈V,||v||=1||T (v)||). Notice that, for each stratum Wi ∈ W,

Γ̃f,g(Wi) = Γ̃f,g(Wi \ {f = 0}).

Since g is tractable at the origin with respect to V,dim0 Γ̃f,g(V) ≤ 1. Therefore,

dim0 Γ̃f,g(Wi) = dim0 Γ̃f,g(Wi \ {f = 0}) ≤ 1.

Hence Γ̃f,g(V (x)) ∩ {|f | = u, u ̸= 0} is a finite number of points and β is well defined.
Since the function β is subanalytic, α(R) = β(1/R), for R ≫ 1, is subanalytic. Then, by [9],

there exists n0 ∈ N such that 1
α(R) < Rn0 , which implies β(1/R) > (1/R)n0 , that is, β(u) > un0 .

Hence, for z ∈ Γ̃f,g(V (x)) ∩ {|f(z)| = u}, u ≪ 1, we have
||dzg|V (x)||
||dzf |V (x)||

≥ β(u) > un0 , which implies, ||dzg|V (x)|| > |f |V (x)(z)|n0 ||dzf |V (x)||.
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On the other hand, since N is sufficiently large, we can suppose N > n0. Since
g̃(z) = g(z) + fN (z), using the previous inequality that, for the critical point x of g̃,

N |f |V (x)(x)|N−1||dxf |V (x)|| = ||dxg|V (x)|| > |f |V (x)(x)|n0 ||dxf |V (x)||,

which implies that N |f |V (x)(x)|N−1−n0 > 1. Since x was taken sufficiently close to the origin,
f |V (x)(x) is close to zero. Hence, |f |V (x)(x)| ≪ 1, which implies that N − 1−n0 < 0. Therefore,
N ≤ n0, which is a contradiction. So, there is no x sufficiently close to the origin such that
dxg̃ = 0. Therefore, g̃ has a stratified isolated singularity at the origin. ■

We will now see how g̃ behaves with respect to the good stratification V of X induced by f.

Proposition 2.2. If g is tractable at the origin with respect to the good stratification V of X
induced by f, then g̃ is prepolar at the origin with respect to V.

Proof. By Proposition 2.1, g̃ is prepolar at the origin with respect to V. So it is enough to
verify that g̃|Vi∩{f=0} is nonsingular or has a stratified isolated singularity at the origin, where
Vi is a stratum from the Whitney stratification V of X. Suppose that x ∈ Σg̃|Vi∩{f=0}. Then

dxg̃ = dxg + Nf(x)N−1dxf = 0, which implies that dxg = 0. But g has no critical point on
Vi ∩ {f = 0}, since g is tractable at the origin with respect to V. Therefore, g̃ is prepolar at the
origin with respect to V. ■

Corollary 2.3. Let Ṽ be the good stratification of X induced by g̃. Then f is prepolar at the
origin with respect to Ṽ.

Proof. Use Proposition 2.2 and Lemma 6.1 of [7]. ■
Using the previous results, we can relate the relative symmetric polar varieties Γ̃f,g̃(V) and

Γ̃f,g(V).

Remark 2.4. Let us describe Γ̃f,g̃(V). Let Σ(g̃, f) = {x ∈ X; rk(dxg̃, dxf) ≤ 1}. Since f
is prepolar at the origin with respect to the good stratification induced by g̃, f |Wi∩{g̃=0} is
nonsingular, for all Wi ∈ W, i ̸= 0. Also g̃ is prepolar at the origin with respect to the good
stratification induced by f, which implies that g̃|Wi∩{f=0} is nonsingular, for all Wi ∈ W, i ̸= 0.
Nevertheless, since f and g̃ have a stratified isolated singularity at the origin, ΣW g̃∪ΣWf = {0}.
Therefore, the map (f, g) has no singularities in {g = 0} or in {f = 0}. Hence, Σ(g̃, f) = Γ̃f,g̃(V).
So, it is sufficient to describe Σ(g̃, f). Let x ∈ Σ(g̃, f), then

rk(dxg̃, dxf) ≤ 1 ⇔
(
dxg̃ = 0

)
or

(
dxf = 0

)
or

(
dxg̃ = λdxf

)
⇔

(
dxg̃ = 0

)
or

(
dxf = 0

)
or

(
dxg = (−Nf(x)N−1 + λ)dxf

)
Since x ̸∈ {f = 0}, dxf ̸= 0. And since g̃ has a stratified isolated singularity at the origin,

dxg̃ ̸= 0. If −Nf(x)N−1 + λ = 0, then dxg = 0, that is, x ∈ ΣWg. If −Nf(x)N−1 + λ ̸= 0, then

dxg is a nonzero multiple of dxf, that is, x ∈ Γ̃f,g(V). Therefore,

Σ(g̃, f) ⊆ ΣWg ∪ Γ̃f,g(V).
On the other hand, if x ∈ ΣWg, then dxg = 0, and

dxg̃ = dxg +Nf(x)N−1dxf = Nf(x)N−1dxf.

So, x ∈ Σ(g̃, f). If x ∈ Γ̃f,g(V), dxg = λdxf, and

dxg̃ = dxg +Nf(x)N−1dxf = (λ+N)f(x)N−1dxf,

which implies x ∈ Σ(g̃, f). Therefore, Γ̃f,g̃(V) = Σ(g̃, f) = ΣWg ∪ Γ̃f,g(V).

Proposition 2.5. Suppose that g is tractable at the origin with respect to the good stratification
V of X induced by f. Then, for N ≫ 1,
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Bg,Xf (0) = Bg̃,Xf (0) = Bf,X g̃ (0).

Proof. Since g̃ = g + fN , over {f = 0}, g̃ = g. Therefore, Bg,Xf (0) = Bg̃,Xf (0). On the other

hand, by Corollary 2.3, f is prepolar at the origin with respect to the good stratification Ṽ of X
induced by g̃ and so is g̃ with respect to V, by Proposition 2.2. Hence, by Corollary 6.3 of [7],
Bf,X g̃ (0) = Bg̃,Xf (0). ■

Corollary 2.6. Let l be a generic linear form in Cn and H = l−1(0). Then

Bg,X∩H(0) = Bg̃,X∩H(0) = EuX g̃ (0).

Proof. By Lemma 1.17, g is tractable at the origin with respect to the good stratification V
of X induced by l. Hence, the formula follows directly by Proposition 2.5, using the equality
Bg,Xl(0) = Bg̃,Xl(0), and Corollary 6.6 of [7]. ■

Corollary 2.7. Let N ∈ N be a sufficiently large number.

(1) If d is even, EuX g̃ (0) ≥ EuXg (0);
(2) If d is odd, EuX g̃ (0) ≤ EuXg (0).

Proof. Use Proposition 1.18 and Corollary 2.6. ■

In order to compare the Brasselet numbers Bf,Xg (0) and Bf,X g̃ (0) we need to understand the
stratified critical set of g. Let ϵ be sufficiently small such that the local Euler obstructions of X
and of Xg are constant on bj ∩Bϵ. Denote by EuX(bj) (respectively, EuXg (bj)) the local Euler
obstruction of X (respectively, Xg) at a point of bj ∩Bϵ.

Remark 2.8. If ϵ is sufficiently small and xl ∈ bj , l ∈ {i1, . . . , ik(j)}, Bg,X∩f−1(δ)(xl) is con-
stant on bj ∩ Bϵ (see Remark 4.5 of [15]). Then we denote Bg,X∩f−1(δ)(xl) by Bg,X∩f−1(δ)(bj).
Since Bg,X∩f−1(δ)(xl) = EuX∩f−1(δ)(xl)− Eug,X∩f−1(δ)(xl), we also denote Eug,X∩f−1(δ)(xl) by
Eug,X∩f−1(δ)(bj).

Proposition 2.9. Suppose that g is tractable at the origin with respect to the good stratification
V of X relative to f. Then, for 0 < |δ| ≪ ϵ ≪ 1,

Bf,Xg (0)−Bf,X g̃ (0) =
∑r

j=1 mf,bj (EuXg (bj)−Bg,X∩f−1(δ)(bj)).

Proof. Use Theorem 1.15 and Proposition 2.5. ■

Corollary 2.10. For 0 < |δ| ≪ ϵ ≪ 1,

EuXg (0)− EuX g̃ (0) =

r∑
j=1

mbj (EuXg (bj)−Bg,X∩l−1(δ)(bj)).(2)

Proof. By Lemma 1.17, g is tractable at the origin with respect to the good stratification V of
X induced by a generic linear form l. Hence, the formula follows directly from Proposition 2.9,
using that Bl,Xg (0) = EuXg (0) and that Bl,X g̃ (0) = EuX g̃ (0). ■

Remark 2.11. Since l is a generic linear form over Cn, l−1(δ) intersects X∩{g = 0} transversely
and using Corollary 6.6 of [7], we have

EuXg (bj) = EuXg∩l−1(δ)(bj ∩ l−1(δ)) = Bg,X∩l−1(δ)∩L(bj ∩ l−1(δ)),

where L is a generic hyperplane in Cn passing through xl ∈ bj ∩ l−1(δ), j ∈ {1, . . . , r} and
l ∈ {i1, . . . , ik(j)}. Denoting Bg,X∩l−1(δ)∩L(bj ∩ l−1(δ)) by B′

g,X∩l−1(δ)(bj), the formula obtained

in Corollary 2.10 can be written as

EuXg (0)− EuX g̃ (0) =
∑r

j=1 mbj (B
′
g,X∩l−1(δ)(bj)−Bg,X∩l−1(δ)(bj)).
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Let m be the number of stratified Morse points of a partial Morsification of g|X∩f−1(δ)∩Bϵ

appearing on Xreg ∩ f−1(δ) ∩ {g ̸= 0} ∩ Bϵ and m̃ be the number of stratified Morse points of
a Morsification of g̃|X∩f−1(δ)∩Bϵ

appearing on Xreg ∩ f−1(δ) ∩ {g̃ ̸= 0} ∩ Bϵ. The next lemma
shows how to compare m and m̃. In the following we keep the same description of ΣWg.

Corollary 2.12. Suppose that g is tractable at the origin with respect to the good stratification
V of X relative to f. Then

m̃ = (−1)d−1
r∑

j=1

mf,bjEug,X∩f−1(δ)(bj) +m.

Proof. By Theorem 1.16,

Bf,X(0)−Bf,Xg (0)−
∑r

j=1 mf,bj (EuX(bj)− EuXg (bj)) = (−1)d−1m,

and by Proposition 2.2, g̃ is prepolar at the origin with respect to V, by Theorem 4.4 of [7],

Bf,X(0)−Bf,X g̃ (0) = (−1)d−1m̃.

Using Proposition 2.9, we obtain that

m̃ = m+ (−1)d−1
r∑

j=1

mf,bj (EuX(bj)−Bg,X∩f−1(δ)(bj)).

Since f has a stratified isolated singularity at the origin, f−1(δ) intersects each stratum
of {f = 0} transversely. So, EuX(Vi) = EuX∩f−1(δ)(S), for each connected component of

Vi ∩ f−1(δ). In particular, EuX(bj) = EuX∩f−1(δ)(bj). The formula holds by Theorem 1.4,
EuX(bj)−Bg,X∩f−1(δ)(bj) = Eug,X∩f−1(δ)(bj). ■

Proposition 2.13. Let α̃ be a regular value of g̃ and let αt be a regular value of f ,
0 < |α̃| ≪ |αt| ≪ 1. If g is tractable at the origin with respect to V relative to f, then
Bg,X∩f−1(αt)(bj) = Bf,X∩g̃−1(α̃)(bj).

Proof. Let xt ∈ {f = αt} ∩ bj , Dxt
be the closed ball with center at xt and radius rt,

0 < |α− δ| ≪ |αt| ≪ rt ≪ 1. We have

Bg,X∩f−1(αt)(xt) =
∑

χ(Wi ∩ f−1(αt) ∩ g−1(α− δ) ∩Dxt
)EuX∩f−1(αt)(Wi ∩ f−1(αt))

=
∑

χ(Wi ∩ f−1(αt) ∩ g−1(α− δ) ∩Dxt)EuX(Wi).

Let g(xt) = α, g̃(xt) = α′ and f(xt) = αt. Then

p ∈ f−1(αt) ∩ g−1(α− δ) ⇔ g(p) = α− δ and f(p) = αt

⇔ g(p) = g(xt)− δ and f(p) = αt

⇔ g(p) + αN
t = α+ αN

t − δ and f(p) = αt

⇔ g(p) + fN (p) = g(xt) + fN (xt)− δ and f(p) = αt

⇔ g̃(p) = g̃(xt)− δ and f(p) = αt

⇔ g̃(p) = α′ − δ and f(p) = αt.

Therefore, denoting α̃ = α′ − δ,

Bg,X∩f−1(αt)(xt) =
∑

χ(Wi ∩ f−1(αt) ∩ g−1(α− δ) ∩Dxt
)EuX(Wi)

=
∑

χ(Wi ∩ f−1(αt) ∩ g̃−1(α̃) ∩Dxt
)EuX∩g̃−1(α̃)(Wi ∩ g̃−1(α̃))

= Bf,X∩g̃−1(α̃)(xt).

■
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An immediate consequence of the last proposition is the following.

Corollary 2.14. Let α̃ be a regular value of g̃ and αt a regular value of f, 0 ≪ |α̃| ≪ |αt| ≪ 1.
If g is tractable at the origin with respect to V, then Eug,X∩f−1(αt)(bj) = Euf,X∩g̃−1(α̃)(bj).

Proof. Let xt ∈ {f = αt} ∩ bj , and Dxt be the closed ball with center at xt and radius
rt, 0 < |α′| ≪ |αt| ≪ rt ≪ 1. The equality holds by Proposition 2.13. ■

3. Lê-Yomdin formula for the Brasselet number

Let f, g : (X, 0) → (C, 0) be complex analytic function-germs such that f has a stratified
isolated singularity at the origin. Let W be the Whitney stratification of X and V be the good
stratification of X induced by f. Suppose that ΣWg is one-dimensional and that

ΣWg ∩ {f = 0} = {0}.

Suppose that g is tractable at the origin with respect to V. By the First Stratification Lemma,

V ′ =
{
Vi \ ΣWg, Vi ∩ ΣWg, Vi ∈ V

}
∪ Vf

is a good stratification of X relative to f, where Vf denotes the collection of strata of V contained
in {f = 0} and

V ′′ = {Vi \ {g = 0}, Vi ∩ {g = 0} \ ΣWg, Vi ∩ ΣWg, Vi ∈ V} ∪ {0},

is a good stratification of X relative to g. Let us denote by Ṽ the good stratification of X induced
by g̃ = g + fN , N ≫ 1.

Let α be a regular value of g, α′ a regular value of g̃, 0 < |α|, |α′| ≪ ϵ ≪ 1, n be the number
of stratified Morse points of a Morsification of f |X∩g−1(α)∩Bϵ

appearing on

Xreg ∩ g−1(α) ∩ {f ̸= 0} ∩Bϵ

and ñ be the number of stratified Morse points of a Morsification of f |X∩g̃−1(α′)∩Bϵ
appearing

on Xreg ∩ g̃−1(α′) ∩ {f ̸= 0} ∩Bϵ.

Proposition 3.1. Suppose that g is tractable at the origin with respect to V. Then,
Bg,X(0)−Bg̃,X(0) = (−1)d−1(n− ñ).

Proof. By 1.16,

Bg,X(0)−Bf,X(0) = (−1)d−1(n−m)−
∑r

j=1 mf,bj (EuX(bj)−Bg,X∩{f=δ}(bj)),

where m is the number of stratified Morse points of a Morsification of g|X∩f−1(δ)∩Bϵ
appearing

on Xreg ∩ f−1(δ) ∩ {g ̸= 0} ∩Bϵ, for 0 < |δ| ≪ ϵ ≪ 1.
By Lemma 2.2, g̃ is prepolar at the origin with respect to V. So, by Corollary 6.5 of [7],

Bg̃,X(0)−Bf,X(0) = (−1)d−1(ñ− m̃),

where m̃ is the number of stratified Morse points of a Morsification of g̃|X∩f−1(δ)∩Bϵ
appearing

on Xreg ∩ f−1(δ) ∩ {g̃ ̸= 0} ∩Bϵ.
Using Corollary 2.12 and Theorem 1.4, we have the formula. ■

Lemma 3.2. Suppose that g is tractable at the origin with respect to V relative to f. If N ≫ 1
is bigger than the maximum gap ratio of all components of the symmetric relative polar curve
Γ̃f,g(V) and Proposition 2.1 is satisfied, then(

[Γ̃f,g(V)].[V (g)]
)
0
=

(
[Γ̃f,g(V)].[V (g̃)]

)
0
.
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Proof. Since g is tractable at the origin with respect to V, Γ̃f,g(V) is a curve. Let us write

[Γ̃f,g(V)] =
∑

v mv[v], where each component v of Γ̃f,g(V) is a reduced irreducible curve at the
origin. Let αv(t) be a parametrization of v such that αv(0) = 0. By page 974 of [11], each
component v intersects V (g − g(p)) at a point p ∈ v, p ̸= 0, sufficiently close to the origin and
such that g(p) ̸= 0. So,

codimX{0} = codimXV (g) + codimXv.

Also, each component (reduced irreducible curve at the origin) ṽ of Γ̃f,g̃(V) intersects

V (g̃ − g̃(p)) at such point p ∈ ṽ, p ̸= 0 and g̃(p) ̸= 0. But since Γ̃f,g̃(V) = Γ̃f,g(V) ∪ ΣWg,
we also have that v intersects V (g̃ − g̃(p)) at the point p, so

codimX{0} = codimXV (g̃) + codimXv.

Therefore, by A.9 of [13] ,

([v].[V (g)])0 = multtg(αv(t))

([v].[V (g̃)])0 = min{multtg(αv(t)),multtf
N (αv(t))}

Now,

multtf
N (αv(t)) = N ([v].[V (f)])0 and multtg(αv(t)) = ([v].[V (g)])0 .

The gap ratio of v at the origin for g with respect to f is the ratio of intersection numbers
([v].[V (g)])0
([v].[V (f)])0

. So, if N >
([v].[V (g)])0
([v].[V (f)])0

, then multtf
N (αv(t)) > multtg(αv(t)).

Making the same procedure over each component v of Γ̃f,g(V) and using that N is bigger

then the maximum gap ratio of all components v of Γ̃f,g(V) and Proposition 2.1 is satisfied, we
conclude that (

[Γ̃f,g(V)].[V (g)]
)
0
=

(
[Γ̃f,g(V)].[V (g̃)]

)
0
.

■
Our next goal is give another proof for the Lê-Yomdin formula for the Brasselet number. For

that we need to compare n and ñ.

Lemma 3.3. If N is bigger than the maximum gap ratio of all components of the symmetric
relative polar curve Γ̃f,g(V) and Proposition 2.1 is satisfied, if 0 < |α|, |α′| ≪ ϵ ≪ 1, then

ñ = n+ (−1)d−1N

r∑
j=1

mf,bjEuf,X∩g̃−1(α′)(bj).

Proof. We start describing the critical points of f |g−1(α)∩Bϵ
. We have

x ∈ Σf |g−1(α)∩Bϵ
⇔ x ∈ g−1(α) ∩Bϵ and rk(dxg, dxf) ≤ 1

⇔ x ∈ g−1(α) ∩Bϵ and
(
dxg = 0

)
or

(
dxf = 0

)
or

(
dxg = λdxf, λ ̸= 0

)
.

Since f has a stratified isolated singularity at the origin and, by Proposition 1.3 of [11],

ΣWg ⊂ {g = 0}, we have that Σf |g−1(α)∩Bϵ
= g−1(α) ∩ Bϵ ∩ Γ̃f,g(V). Therefore, n counts

the number of Morse points of a Morsification of f |g−1(α)∩Bϵ
coming from g−1(α)∩Bϵ∩ Γ̃f,g(V).

Now, let us describe Σf |g̃−1(α′)∩Bϵ
.

x ∈ Σf |g̃−1(α′)∩Bϵ
⇔ x ∈ g̃−1(α′) ∩Bϵ and rk(dxg̃, dxf) ≤ 1

⇔ x ∈ g̃−1(α′) ∩Bϵ and
(
dxg̃ = 0

)
or

(
dxf = 0

)
or

(
dxg̃ = λ′dxf, λ

′ ̸= 0
)
.

Since f and g̃ has a stratified isolated singularity at the origin, we have that

Σf |g̃−1(α′)∩Bϵ
= g̃−1(α′) ∩Bϵ ∩ Γ̃f,g̃(V).
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Since Γ̃f,g̃(V) = Γ̃f,g(V) ∪ ΣWg,

Σf |g̃−1(α′)∩Bϵ
=

(
ΣWg ∩ g̃−1(α′) ∩Bϵ

)
∪
(
Γ̃f,g(V) ∩ g̃−1(α′) ∩Bϵ

)
.

Notice that, since ΣWg ∩ {f = 0} = {0},ΣWg ∩ g̃−1(α′) ∩Bϵ ⊂ {f ̸= 0}. Also, by definition,

Γ̃f,g(V) \ {0} ⊂ {f ̸= 0} Therefore, ñ counts the number of Morse points of a Morsification of
f |g̃−1(α′)∩Bϵ

coming from

g̃−1(α′) ∩Bϵ ∩ ΣWg ∩ {f ̸= 0} ∩ {g = 0}

and from

g̃−1(α′) ∩Bϵ ∩ Γ̃f,g(V) ∩ {f ̸= 0} ∩ {g ̸= 0}.
By Lemma 3.2, the number of Morse points of a Morsification of f |g̃−1(α′)∩Bϵ

appearing on

g̃−1(α′) ∩Bϵ ∩ Γ̃f,g(V) ∩ {f ̸= 0} ∩ {g ̸= 0} is precisely n. Let us describe the number of Morse
points of a Morsification of f |g̃−1(α′)∩Bϵ

appearing on g̃−1(α′) ∩Bϵ ∩ΣWg ∩ {f ̸= 0} ∩ {g = 0}.
Using that ΣWg ⊂ {g = 0},

x ∈ g̃−1(α′) ∩Bϵ ∩ ΣWg ⇔ g̃(x) = α′ and dxg = 0

⇔ g(x) + f(x)N = α′ and dxg = 0

⇔ f(x)N = α′ and dxg = 0

⇔ f(x) ∈ {α0, . . . , αN−1} and dxg = 0,

where {α0, . . . , αN−1} are the N -th roots of α′. Therefore,

g̃−1(α′) ∩Bϵ ∩ ΣWg =

N−1⋃
i=0

f−1(αi) ∩Bϵ ∩ ΣWg.

Since ΣWg is one-dimensional, f−1(αi)∩ΣWg is a finite set of critical points of f |g̃−1(α′)∩Bϵ
.

Since Γ̃f,g̃(V) = ΣWg ∪ Γ̃f,g(V), each branch bj of ΣWg is a component of Γ̃f,g̃(V). If Vi(j) is
the stratum of V ′′ containing bj , then f |Vi(j)∩g̃−1(α′) has a stratified isolated singularity at each

point xl ∈ bj ∩ f−1(αi) ∩ g̃−1(α′), j ∈ {1, . . . , r} and l ∈ {i1, . . . , ik(j)} (page 974, [11]). Using
Proposition 1.7, we can count the number nl of Morse points of a Morsification of f |g̃−1(α′)∩Bϵ

in a neighborhood of each xl,

Euf,X∩g̃−1(α′)(xl) = (−1)d−1nl.

Since the Euler obstruction of a function is constant on each branch bj , so is the Euler
obstruction of a function and we can denote Euf,X∩g̃−1(α′)(xl) by Euf,X∩g̃−1(α′)(bj), for all

xl ∈ bj ∩f−1(αi)∩ g̃−1(α′). Therefore, if bj ∩f−1(αi)∩ g̃−1(α′) = {xj1 , . . . , xjmf,bj
}, the number

of Morse points of a Morsification of f |g̃−1(α′)∩Bϵ
appearing on(

Xreg \ {g̃ = 0}
)
∩ bj ∩ {g̃ = α′} ∩Bϵ ∩ {f = αi}

is

nj1 + · · ·+ njmf,bj
= (−1)d−1mf,bjEuf,X∩g̃−1(α′)(xl).

Making the same analysis over each αi ∈ N
√
α′, the number of Morse points of a Morsification

of f |g̃−1(α′)∩Bϵ
appearing in Xreg \ {g̃ = 0} ∩ {g = 0} ∩ {g̃ = α′} ∩Bϵ is

(−1)d−1N

r∑
j=1

mf,bjEuf,X∩g̃−1(α′)(bj).

■
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Theorem 3.4. Suppose that g is tractable at the origin with respect to V. If 0 < |α|, |α′| ≪ ϵ
and N is bigger than the maximum gap ratio of each component of the symmetric relative polar
curve Γ̃f,g(V) and Proposition 2.1 is satisfied, then

Bg̃,X(0) = Bg,X(0) +N

r∑
j=1

mf,bjEuf,X∩g̃−1(α′)(bj).

Proof. It follows by Proposition 3.1 and Lemma 3.3. ■
This formula gives a way to compare the numerical data associated to the generalized Milnor

fibre of a function g with a one-dimensional singular locus and and to the generalized Milnor
fibre of the deformation g̃ = g + fN , for N ≫ 1 sufficiently large. This is what Lê [8] and
Yomdin [19] have done in the case where g is defined over a complete intersection in Cn, g has
a one-dimensional critical locus and f is a generic linear form over Cn. Therefore, Theorem 3.4
generalizes this Lê-Yomdin formula.

For X = Cn, let us consider W = {Cn \ {0}, {0}} the Whitney stratification of Cn. If f has a
stratified isolated singularity at the origin, the good stratification V of Cn induced by f is given
by V = {Cn \ {f = 0}, {f = 0} \ {0}, {0}}.

Corollary 3.5. Suppose that g is tractable at the origin with respect to V relative to f. If α and
α′ are regular values of g and g̃, respectively, with 0 < |α|, |α′| ≪ ϵ, then

χ(g̃−1(α′) ∩Bϵ) = χ(g−1(α) ∩Bϵ) + (−1)n−1N

r∑
j=1

mf,bjµ(g|f−1(δji )
, bj),

where µ(g|f−1(δji )
, bj) denotes the Milnor number of g|X∩f−1(δji )∩Bϵ

at a point xji of the branch

bj , with f(xji) = δji .

Proof. By the Second Stratification Lemma, V ′ = {Cn\{f = 0}∪ΣWg, {f = 0}\{0},ΣWg, {0}}
is a good stratification of Cn relative to f. Also, V ′′, given by{
Cn \ {f = 0} ∪ {g = 0}, {f = 0} \ {g = 0}, {g = 0} \ {f = 0} ∪ ΣWg,

{f = 0} ∩ {g = 0} \ ΣWg,ΣWg, {0}
}
,

is a good stratification of Cn relative to g.
By definition of the Brasselet number, if 0 < |α| ≪ ϵ ≪ 1,

Bg,X(0) =
∑

Vi∈V′′

χ(Vi ∩ g−1(α) ∩Bϵ)EuCn(Vi)

= χ
(
(Cn \ {f = 0} ∪ {g = 0}) ∩ g−1(α) ∩Bϵ

)
EuCn(Cn \ {f = 0} ∪ {g = 0})

+ χ
(
({f = 0} \ {g = 0}) ∩ g−1(α) ∩Bϵ

)
EuCn({f = 0} \ {g = 0})

= χ
(
(Cn \ {g = 0}) ∩ g−1(α) ∩Bϵ

)
= χ(g−1(α) ∩Bϵ).

The good stratification of Cn induced by g̃ is Ṽ = {{g̃ = 0},Cn \ {g̃ = 0}, {0}} and then, if
0 < |α′| ≪ ϵ ≪ 1,

Bg̃,X(0) = χ(Cn \ {g̃ = 0} ∩ g−1(α) ∩Bϵ)EuCn(Cn \ {0}) = χ(g̃−1(α′) ∩Bϵ).
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Since f |g̃−1(α′)∩Bϵ
is defined over Cn and has a stratified isolated singularity at each xji ∈ bj ,

considering a small ball Bϵ(xji) with radius ϵ and center at xji , for 0 < |δ| ≪ ϵ ≪ 1,

Euf,g̃−1(α′)(xji) = (−1)n−1µ
(
f |g̃−1(α′), xji

)
= (−1)n−1(−1)n−1

[
χ
(
(f |g̃−1(α′))

−1(δ) ∩Bϵ(xji)
)
− 1

]
= χ

(
f−1(δji − δ) ∩ g̃−1(α′) ∩Bϵ(xji)

)
− 1, f(xji) = δji

∗
= χ

(
f−1(δji) ∩ g̃−1(α′ − δ) ∩Bϵ(xji)

)
− 1

= χ
(
f−1(δji) ∩ g−1(α′ − δNji − δ) ∩Bϵ(xji)

)
− 1, g(xji) = α′ − δNji

= χ
(
(g|f−1(δji )

)−1(δ) ∩Bϵ(xji)
)
− 1

= (−1)n−1µ
(
g|f−1(δji )

, xji

)
,

where the equality (∗) is justified by Proposition 6.2 of [7]. Therefore, applying Theorem 3.4,
we obtain

χ(g̃−1(α′) ∩Bϵ) = χ(g−1(α) ∩Bϵ) + (−1)n−1N
r∑

j=1

mf,bjµ(g|f−1(δji )
, bj).

■
Another consequence of Theorem 3.4 is a different proof for the Lê-Yomdin formula proved

by Massey in [13] in the case of a function with a one-dimensional singular locus. For that
we will need the definition of the Lê-numbers. We present here the case for functions defined
over a nonsingular subspace of Cn, and we recommend Part I of [13] for the general case. Let
h : (U, 0) ⊆ (Cn, 0) → (C, 0) be an analytic function such that its critical locus Σh is a s-
dimensional set. For 0 ≤ k ≤ n, the k-th relative polar variety Γk

h,z of h with respect to z

is the scheme V
(

∂h
∂zk

, . . . , ∂h
∂zn

)
/Σh, where z = (z1, . . . , zn) are fixed local coordinates and the

k-th polar cycle of h with respect to z is the analytic cycle [Γk
h,z]. The k-th Lê cycle [Λk

h,z]

of h with respect to z is the difference of cycles
[
Γk+1
h,z ∩ V ( ∂h

∂zk
)
]
− [Γk

h,z].

Definition 3.6. The k-th Lê number of h in p with respect to z, λk
h,z, is the intersection

number

(Λk
h,z.V (z0 − p0, . . . , zk−1 − pk−1))p,

provided this intersection is purely zero-dimensional at p.
If this intersection is not purely zero-dimensional, the k-th Lê number of h at p with respect

to z is said to be undefined.

Corollary 3.7. Let V be the good stratification of an open set (U, 0) ⊆ (Cn+1, 0) induced by
a generic linear form l defined over Cn+1. Let N ≥ 2, z = (z0 . . . , zn) be a linear choice of
coordinates such that λi

g,z(0) is defined for i = 0, 1, and z̃ = (z1 . . . , zn, z0) be the coordinates for

g̃ = g+lN such that λ0
g̃,z̃ is defined. If N is greater then the maximum gap ratio of each component

of the symmetric relative polar curve Γ̃f,g(V) and such that Proposition 2.1 is satisfied, then

λ0
g̃,z̃(0) = λ0

g,z(0) + (N − 1)λ1
g,z(0).

Proof. By 1.17, g is tractable at the origin with respect to the good stratification V induced by
l. Without loss of generality, we can suppose that l = z0. Let Fg,0 be the Milnor fibre of g at the
origin and Fg̃,0 be the Milnor fibre of g̃ at the origin. Since g has a one-dimensional critical set,
the possibly nonzero Lê numbers are λ0

g,z(0) and λ1
g,z(0) and, since g̃ has a stratified isolated
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singularity at the origin, the only possibly nonzero Lê number is λ0
g̃,z̃(0). By Theorem 4.3 of [12],

χ(Fg,0) = 1 + (−1)nλ0
g,z(0) + (−1)n−1λ1

g,z(0)

and

χ(Fg̃,0) = 1 + (−1)nλ0
g̃,z̃(0).

In [13], on page 49, Massey remarked that for 0 < |δ| ≪ ϵ ≪ 1,

λ1
g,z(0) =

r∑
j=1

mbjµ(g|l−1(δ), bj).

Therefore, the formula holds by Corollary 3.5. ■

4. Applications to generic linear forms

Let g : (X, 0) → (C, 0) be a complex analytic function-germ and l be a generic linear
form in Cn. Let W = {{0},W1, . . . ,Wq} be a Whitney stratification of X and V be the good
stratification of X induced by l. Suppose that ΣWg is one-dimensional.

Let V ′ be the good stratification of X relative to l, V ′′ be the good stratification of X relative
to g and Ṽ be the good stratification of X induced by g̃ = g+ lN , N ≫ 1, taken as in Section 4.

Let α be a regular value of g, α′ a regular value of g̃, 0 < |α|, |α′| ≪ ϵ ≪ 1, n be the number of
stratified Morse points of a Morsification of l|X∩g−1(α)∩Bϵ

appearing on Xreg∩g−1(α)∩{l ̸= 0}∩
Bϵ, ni be the number of stratified Morse points of a Morsification of l|Wi\({g=0}∪{l=0})∩g−1(α)∩Bϵ

appearing on Wi ∩ g−1(α) ∩ {l ̸= 0} ∩ Bϵ, ñ be the number of stratified Morse points of a
Morsification of l|X∩g̃−1(α′)∩Bϵ

appearing on

Xreg ∩ g̃−1(α′) ∩ {l ̸= 0} ∩Bϵ

and ñi be the number of stratified Morse points of a Morsification of l|Wi\{g̃=0}∩g̃−1(α′)∩Bϵ

appearing on

Wi ∩ g̃−1(α′) ∩ {l ̸= 0} ∩Bϵ,

for each Wi ∈ W.
As before, we write ΣWg as a union of branches b1 ∪ . . . ∪ br and we suppose that

{l = δ} ∩ bj = {xi1 , . . . , xik(j)
}.

The number ml,bj of points in {l = δ} ∩ bj is equal to the algebraic multiplicity of bj , that is,
it does not depend on the generic linear form l. Hence, we write mbj instead of ml,bj . For each
t ∈ {i1, . . . , ik(j)}, let Dxt be the closed ball with center at xt and radius rt,

0 < |α|, |α′| ≪ |δ| ≪ rt ≪ ϵ ≪ 1,

be sufficiently small for the balls Dxt
to be pairwise disjoint and the union of balls

Dj = Dxi1
∪ . . . ∪ Dxik(j)

to be contained in Bϵ and ϵ sufficiently small such that the local

Euler obstruction of X at a point of bj ∩Bϵ is constant.
In [18], Tibăr gave a bouquet decomposition for the Milnor fibre of g̃ in terms of the Milnor

fibre of g. Let us denote by Fg the local Milnor fibre of g at the origin, Fg̃ the local Milnor fibre
of g̃ at the origin and Fj the local Milnor fibre of g|{l=δ} at a point of the branch bj . Then there
is a homotopy equivalence

Fg̃
ht≃ (Fg ∪ E)

∨r
j=1

∨
Mj

S(Fj),
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where
∨

denotes the wedge sum of topological spaces, Mj = Nmbj − 1, S(Fj) denotes the
topological suspension over Fj , E := ∪r

j=1Cone(Fj) and Fg ∪ E is the attaching to Fg of one
cone over Fj ⊂ Fg for each j ∈ {1, . . . , r}. As a consequence of this theorem, Tibăr proved a
Lê-Yomdin formula for the Euler characteristic of these Milnor fibres.

In the following, we present a new proof for this formula using our previous results.

Proposition 4.1. Suppose that g is tractable at the origin with respect to V. If
0 < |α|, |α′| ≪ |δ| ≪ ϵ ≪ 1,

then

χ(X ∩ g̃−1(α′) ∩Bϵ)− χ(X ∩ g−1(α) ∩Bϵ) = N

r∑
j=1

mbj

(
1− χ(Fj)

)
,

where Fj = X ∩ g−1(α)∩Hj ∩Dxt
is the local Milnor fibre of g|{l=δ} at a point of the branch bj

and Hj denotes the generic hyperplane l−1(δ) passing through xt ∈ bj , for t ∈ {i1, . . . , ik(j)}.

Proof. For a stratum Vi = Wi \ ({g = 0} ∪ {l = 0}) in V ′′, Wi ∈ W, let Ni be a normal slice to
Vi at xt ∈ bj (i.e. a complex submanifold germ in a local embedding intersecting Vi transversally
and only in the point xt), for t ∈ {i1, . . . , ik(j)} and Dxt

a closed ball of radius rt centered at
xt. Considering the constructible function 1X , the normal Morse index along Vi is by definition
given by

η(Vi,1X) = χ(Wi \ ({g = 0} ∪ {l = 0}) ∩Ni ∩Dxt
)

− χ(Wi \ ({g = 0} ∪ {l = 0}) ∩Ni ∩ {g = α} ∩Dxt)

= χ(Wi ∩Ni ∩Dxt)− χ(Wi ∩Ni ∩ {g = α} ∩Dxt)

= 1− χ(lWi),

since Wi ∩Ni ∩Dxt
is contractible and the Milnor fibre of g|X∩Ni

in xt is a complex link lWi
of

X with respect to Wi.
For a stratum Ṽi = Wi \ ({g̃ = 0} ∈ Ṽ, Wi ∈ W, let Ñi be a normal slice to Ṽi at xt ∈ bj , for

t ∈ {i1, . . . , ik(j)}. Considering the constructible function 1X , the normal Morse index along Ṽi

is by definition given by

η(Ṽi,1X) = χ(Wi \ ({g̃ = 0} ∪ {l = 0}) ∩ Ñi ∩Dxt)

= χ((Wi \ {g̃ = 0}) ∩ Ñi ∩Dxt
)− χ((Wi \ {g̃ = 0}) ∩ Ñi ∩ {g̃ = α′} ∩Dxt

)

= χ(Wi ∩ Ñi ∩Dxt
)− χ(Wi ∩ Ñi ∩ {g̃ = α′} ∩Dxt

)

= 1− χ(lWi
),

since Wi ∩ Ñi ∩Dxt
is contractible and the Milnor fibre of g̃|X∩Ñi

in xt is a complex link lWi
of

X with respect to Wi.
Then applying Theorem 4.2 of [7] for 1X , we obtain that

χ(X ∩ g̃−1(α′) ∩Bϵ)− χ(X ∩ g̃−1(α′) ∩ l−1(0) ∩Bϵ) =
∑q

i=1(−1)di−1ñi(1− χ(lWi
))

and that

χ(X ∩ g−1(α) ∩Bϵ)− χ(X ∩ g−1(α) ∩ l−1(0) ∩Bϵ) =
∑q

i=1(−1)di−1ni(1− χ(lWi)),

where di = dimWi.
Therefore, since χ(X ∩ g̃−1(α′) ∩ l−1(0) ∩Bϵ) = χ(X ∩ g−1(α) ∩ l−1(0) ∩Bϵ),

χ(X ∩ g̃−1(α′) ∩Bϵ)− χ(X ∩ g−1(α) ∩Bϵ) =

q∑
i=1

(−1)di−1(ñi − ni)(1− χ(lWi
)).
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Applying Lemma 3.3 and Corollary 2.14, we obtain, for each i,

ñi = ni + (−1)di−1N

r∑
j=1

mbjEul,Wi∩g̃−1(α′)(bj)

= ni + (−1)di−1N

r∑
j=1

mbjEug,Wi∩Hj
(bj),

where Hj denotes the generic hyperplane l−1(δ) passing through xt ∈ bj , for t ∈ {i1, . . . , ik(j)}.
Hence

χ(X ∩ g̃−1(α′) ∩Bϵ)− χ(X ∩ g−1(α) ∩Bϵ) = N

q∑
i=1

( r∑
j=1

mbjEug,Wi∩Hj
(bj)

)(
1− χ(lWi)

)
= N

r∑
j=1

mbj

(
1− χ

(
X ∩ g−1(α) ∩Hj ∩Dxt

))
= N

r∑
j=1

mbj

(
1− χ(Fj)

)
,

for t ∈ {i1, . . . , ik(j)}. ■
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[12] Massey, D. The Lê-Ramanujam problem for hypersurfaces with one-dimensional singular sets, Mathe-

matische Annalen, Springer, v. 282, n 1 (1988), p. 33-49. DOI: 10.1007/bf01457011

[13] Massey, D. Numerical control over complex analytic singularities, American Mathematical Society,
(2003).

[14] Milnor, J. W., Singular Points of Complex Hypersurfaces, Annals of Mathematics Studies, 25, Princeton,
New Jersey, (1968).

[15] Santana, H. Brasselet number and function-germs with a one-dimensional critical set, Bulletin Brazilian

Mathematical Society, New Series, (2020), p. 1-33. DOI: 10.1007/s00574-020-00212-x

https://doi.org/10.1007/s00574-016-0198-y
https://doi.org/10.1016/s0040-9383(99)00009-9
https://doi.org/10.1112/s0024610704005447
https://doi.org/10.1007/s00229-019-01125-w
https://doi.org/10.1142/s0129167x16500841
https://doi.org/10.1017/prm.2019.30
https://doi.org/10.1016/j.aim.2013.10.023
https://doi.org/10.2307/1971080
https://doi.org/10.1016/0040-9383(95)00054-2
https://doi.org/10.1007/bf01457011
https://doi.org/10.1007/s00574-020-00212-x


DEFORMATIONS OF A FUNCTION-GERM WITH A 1-DIMENSIONAL CRITICAL SET 421
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