
Journal of Singularities
Volume 25 (2022), 422-442

Proc. of 16th International Workshop
on Singularities, São Carlos, 2020

DOI: 10.5427/jsing.2022.25u

DERIVED KZ EQUATIONS

VADIM SCHECHTMAN AND ALEXANDER VARCHENKO

To the 30th anniversary of [SV]

Abstract. In this note we strengthen the results in our previous work by presenting their
derived version. Namely, we define a “derived Knizhnik - Zamolodchikov connection” and
identify it with a “derived Gauss - Manin connection”.

1. Introduction

1.0. Brief review of the paper. The main result of [SV] provided a realization of Knizhnik-
Zamolodchikov equations arising in physics as equations on horizontal sections for a Gauss-Manin
connection.

More explicitly, without going into details to be given below, the KZ connection acts on a
space of functions depending on z ∈ B where B is a domain in Cn with values in a homology
group H0(n,M) where n is a certain Lie algebra, and M a (maybe infinite-dimensional) n-module.
In other words the KZ connection acts on the trivial vector bundle over B with a fiber H0(n,M),
this vector bundle to be denoted H0(n,M).

All homology spaces Hi(n,M) are Λ-graded

Hi(n,M) = ⊕λ∈ΛHi(n,M)λ

where Λ is certain lattice. For a given λ only a finite number of spaces Hi(n,M)λ, 0 ≤ i ≤ N ,
are different from 0. Let us pick λ.

On the other hand one has introduced in op. cit. a fibration (a smooth surjective map)

pλ : Xλ −→ B

and a D-module Lλ over Xλ, and a finite group Σλ (a product of symmetric groups) which acts
on Xλ and Lλ.

One has constructed an isomorphism of the bundle H0(n,M)λ equipped with the KZ connec-
tion with the bundle (RNpλ∗Lλ)

Σλ equipped with the GM connection.
In fact in [SV] for all 0 ≤ i ≤ N there were established isomorphisms

βi,λ : Hi(n,M)λ
∼−→ (RN−ipλ∗Lλ)

Σλ (1.0.1)

of vector bundles over B. However the question of identification of a connection on Hi(n,M)λ
corresponding to the GM connection on (RN−ipλ∗Lλ)

Σλ was left open for i > 0, although a
natural candidate has been given.

In the present note we establish this remaining point. To do this we start from the remark
that by its very definition in op. cit. isomorphisms (1.0.1) are induced by a map of complexes

ηλ = (ηλ,i) : C•(n,M)λ −→ ΩN−•
Xλ/B

(Lλ)
Σλ (1.0.2)

where C•(n,M)λ is the λ-homogeneous part of the Chevalley chain complex, and Ω•
Xλ/B

(Lλ) is
a certain complex of differential form on Xλ, the relative de Rham complex of Lλ.

http://dx.doi.org/10.5427/jsing.2022.25u
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A naive expectation would be that:

(a) for the KZ part:
each term Ci(n,M)λ comes equipped with an integrable connection, these connections are

compatible with differentials and thus induce a connection on the cohomology Hi(n,M)λ;
(b) for the GM part:
similarly, each term Ωj

Xλ/B
(Lλ) comes equipped with an integrable Σλ-equivariant connec-

tion, these connections are compatible with differentials and thus induce a connection on the
cohomology Rjpλ∗Lλ;

(c) the map ηλ is compatible with the connections in (a), (b), and therefore the isomorphisms
βi,λ (1.0.1) identify two connections.

In reality, (a) is literally true (and easy); this is present in [SV].
Point (b) is more delicate: there is no natural connection on the complex Ω•

Xλ/B
(Lλ). Happily,

to define a connection on the cohomology a weaker structure is sufficient:
(b′) there exists a filtered complex such that the term E1 of the corresponding spectral se-

quence (recalled in Appendix) coincides with the de Rham complex of the GM connection on
R•pλ∗Lλ.

This filtered complex is described below: it is a generalization of the Katz - Oda construction
for the GM connection, [KO].

Accordingly, (c) should be replaced by
(c′) the map ηλ may be extended to a map of filtered complexes which, after passing to E1-

terms, induces a map from the de Rham complex of the KZ connection to the de Rham complex
of the GM connection.

Now we will describe some details of what was said above.

1.1. Knizhnik - Zamolodchikov connection. Let g be a complex Lie algebra equipped
with an element

Ω ∈ g⊗ g

having the following property:

1.1.1. Let M1,M2 be arbitrary g-modules. The actions of Ω and g on M1 ⊗M2 commute.

1.1.2. Example. Let g be finite-dimensional, equipped with a non-degenerate invariant
symmetric bilinear form (, ). Denote

Ω =
∑
i

xi ⊗ xi ∈ g⊗ g

where {xi} ⊂ g is any C-base, and {xi} is the dual base, i.e. (xi, x
i) = δij . This element (“the

Casimir”) does not depend on a choice of a base and satisfies 1.1.1.
Let M1, . . . ,Mn be g-modules, n ≥ 1. Denote M = M1 ⊗ . . .⊗Mn.

For a smooth affine complex1 algebraic variety U , Ω•(U) will denote the space of global
sections for its algebraic de Rham complex Ω•

U . Thus Ω0
U = OU is the sheaf of functions, etc.

If M is a vector space, we denote

Ω•(U ;M) := Ω•(U)⊗M.

Let n ≥ 1 be an integer. Let M1, . . . ,Mn be g-modules; set M = M1 ⊗ . . . ⊗Mn. For each
i ̸= j we have an operator

Ωij : M −→ M

1In what follows the base field C of complex numbers may be replaced by any field of characteristics 0.
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acting as Ω on Mi ⊗Mj and as identity on the other factors.
Denote

Un = {z = (z1, . . . , zn) ∈ Cn| zi ̸= zj for all i ̸= j} (1.1.1)

Thus U1 = C.
The KZ connection is an operator

∇KZ : Ω0(Un;M) = O(Un)⊗M −→ Ω1(Un;M)

given by

∇KZ = dDR +ΩKZ := dDR − 1

κ

∑
i<j

Ωij(dzi − dzj)

zi − zj
(1.1.2)

where dDR is the de Rham differential. Here κ ∈ C∗ is a complex parameter.
Thus ∇KZ = dDR if n = 1.
This connection is integrable: if we define, starting from ∇KZ , operators

∇KZ : Ωi(Un;M) −→ Ωi+1(Un;M)

for all i in the usual way then ∇2
KZ = 0 (this amounts to the classical YB equation for the

differential form ΩKZ).

In other words, ∇KZ is an integrable connection (i.e. it defines a structure of a DUn
-module)

on the trivial bundle M over Un with fiber M .

1.2. The Chevalley complex and the derived KZ. Let n ⊂ g be a Lie subalgebra.
We will be interested in Chevalley chain complexes

C•(n,M) : . . . −→ Λ2n⊗M −→ n⊗M −→ M −→ 0

where d(g ⊗ x) = gx,

d(g1 ∧ g2 ⊗ x) = g1 ⊗ g2x− g2 ⊗ g1x− [g1, g2]⊗ x,

etc., cf. [SV], (5.4.2).
Let C•(n,M) denote the trivial vector bundle over Un with a fiber C•(n,M), so it is a complex

of vector bundles.

We define the derived KZ connection as an integrable connection on C•(n,M) given by the
same formula as above,

∇KZ = dDR +ΩKZ := dDR − 1

κ

∑
i<j

Ωij(dzi − dzj)

zi − zj
(1.2.1)

where now the operators

Ωij : Cl(n,M) = Λln⊗M −→ Cl(n,M)

are acting through the factor M .
Whence we get the corresponding de Rham complex

Ω•
KZ(Un, C•(n,M)) = DR(C•(n,M),∇KZ)(Un). (1.2.2)

It is a double complex: the commutation of the Chevalley differential with ∇KZ follows from
1.1.1.

We call it the KZ-Chevalley complex.

In fact this complex appears avant la lettre already in [SV] 7.2.3.
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1.3. Derived Gauss - Manin connection. Let N ≥ 0 be an integer. Consider the affine
space Cn+N with coordinates z1, . . . , zn, t1, . . . , tN , and inside it an open subspace

Un,N = {zi ̸= zj , zi ̸= ta, ta ̸= tb}.

We have an obvious projection
p : Un,N −→ Un.

The de Rham algebra Ω•(Un,N ) is the total complex of a bicomplex

Ω•(Un,N ) = TotΩ••(Un,N )

where Ωpq(Un,N ) is the space of forms containing p differentials dzm and q differentials dti, the
full de Rham differential being the sum

dDR = dz + dt.

The relative de Rham complex is by definition

Ω•(Un,N/Un) = (Ω0•(Un,N ), dt);

one has a projection
p : Ω•(Un,N ) −→ Ω•(Un,N/Un)

Let L be a DUn,N
-module, i.e. a quasicoherent OUn,N

-module equipped with an integrable
connection

∇ : L −→ Ω1
Un,N

⊗ L;

its de Rham complex is

DR(L) : 0 −→ L
∇−→ Ω1

Un,N
⊗ L

∇−→ Ω2
Un,N

⊗ L −→ . . .

By definition, the de Rham complex of the derived Gauss - Manin connection on the direct
image Rp∗L, to be denoted DR(Rp∗L), is the same complex DR(L) equipped with a decreasing
filtration

F 0
zDR(L) = DR(L) ⊃ F 1

zDR(L) ⊃ . . . (1.3.1)

where F i
zDR(L) is the subcomplex containing ≥ i differentials dza.

Note that the utmost left column of F 0/F 1 is the relative de Rham complex representing
Rp∗L whose cohomology are the sheaves Rip∗L. These sheaves carry the usual GM connections
∇i.

The complexes Ei(DR(Rp∗L), F
•
z ) defined in the Appendix, A2.1 (the components of the

E1 term of the spectral sequence for our filtered complex) are nothing else but the de Rham
complexes of Rip∗L:

Ei(DR(Rp∗L), F
•
z )

∼
= DR(Rip∗L,∇i).

This isomorphism justifies the above definition.
1.3.1. Remark. For the case of a trivial connection on OUn,N

the above construction is
nothing else but the Katz - Oda definition of the usual GM connection, [KO].

1.4. Coulomb D-modules. Let V be a finite-dimensional complex vector space equipped
with a symmetric bilinear form (, ). Let

µ = (µ1, . . . , µn) ∈ V n, α = (α1, . . . , αN ) ∈ V N ,

and κ ∈ C∗.
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We associate to these data a D-module L(µ, α), to be called a Coulomb 2 D-module, over
Un,N : by definition it is the structure sheaf OUn,N

equipped with a connection

∇(µ, α) = dDR +
1

κ
ω(µ, α)

where
ω(µ, α) =

∑
i<j

(µi, µj)d ln(zi − zj)−

−
∑
i,a

(µi, αa)d ln(zi − ta) +
∑
a<b

(αa, αb)d ln(ta − tb).

1.5. On the other hand we can associate with the data (V, µ, α) above a Lie algebra g = g(α)
(“a Kac-Moody algebra without Serre relations”) and a collection of “contragradient Verma”
g-modules M(µ1)

c, . . . ,M(µn)
c.

For example if V is one-dimensional and α1 = . . . = αN then g = sl2.
Let

M = M(µ1)
c ⊗ . . .⊗M(µn)

c,

and consider the total complex of the de Rham complex (1.2.2) TotΩ•(Un, C•(n,M)). It is
Λ-graded where Λ =

∑
i Zαi ⊂ V , and it carries a decreasing filtration

F •
z TotΩ•(Un, C•(n,M))

where
F •
z TotΩ•(Un, C•(n,M)) ⊂ TotΩ•(Un, C•(n,M))

is the subcomplex of differential forms containing ≥ i differentials dza.
Let λ =

∑
i αi ∈ Λ. Our main result defines a map from the λ-homogeneous component of

this filtered complex to the filtered complex (DR(Rp∗L(µ, α), F
•
z ).

For details see Theorem 3.8 and Corollary 3.9.
1.6. This paper studies the dependence on parameters of integrals of closed holomorphic

forms over cycles. The study of such functions is the classical topic of singularity theory.

Plan of the paper

In the next §2 we discuss in detail the case g = sl2. The general case is discussed in §3. In
the Appendix we recall some standard homological algebra of filtered complexes.

1.7. Acknowledgements. We are grateful to B.Toen and D.Gaitsgory for useful conversa-
tions, and to the anonymous referee for very helpful remarks. A. Varchenko was supported in
part by NSF grant DMS-1954266.

§2. The case g = sl2

2.0. Setup. We consider the Lie algebra g = sl2 with standard generators e, f, h; let
n := Cf ⊂ g (resp. n+ := Ce) be the lower (resp. upper) triangular subalgebra. We will identify
n+ with n∗, with e being dual to f .

2 “Loi fondamentale de l’Élictricité. La force répulsive des deux petits globes électrisés de la même nature
d’électricité, est en raison inverse du carré de la distance du centre de deux globes.” Charles-Augustin de Coulomb,
Premier Mémoire sur l’Électricité et le Magnétisme, 1785.
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The Casimir element is
Ω =

1

2
h⊗ h+ e⊗ f + f ⊗ e.

2.0.1. Invariance lemma. Let M1,M2 be arbitrary g-modules. The actions of Ω and g on
M1 ⊗M2 commute.

Proof: exercise for the reader.

2.1. Chevalley complex.
If M is a g-module, C•(n

∗,M∗) = C•(n+,M
∗) will denote the Chevalley chain complex

0 −→ n∗ ⊗M∗ d∗

−→ M∗ −→ 0 (2.1.1)

living in degrees −1, 0. Here the action of n∗ on the dual space M∗ is given by

(f∗α)(x) = α(ex), x ∈ M, α ∈ M∗ (2.1.1a)

where f∗ ∈ n∗ is defined by f∗(f) = 1.
Next, C•(n,M c) will denote the dual complex

0 −→ M
d−→ n⊗M −→ 0, d(x) = f ⊗ ex (2.1.2)

living in degrees 0, 1.
For m ∈ C, M(m) will denote the Verma module with a vacuum vector v such that hv = mv,

ev = 0. It is N-graded:
M(m) = ⊕k≥0M(m)k

where M(m)k = Cfkv.
Fix a natural n ≥ 1 and an n-tuple m = (m1, . . . ,mn) ∈ Cn, and consider the tensor product

M(m) = M(m1)⊗ . . .⊗M(mn)

The above grading on each M(mi) gives rise to an N-grading on M(m):

M(m) = ⊕k≥0M(m)k

where
M(m)k = ⊕k1+...+kn=kM(m1)k1 ⊗ . . .⊗M(mn)kn .

For a multi-index a = (k1, . . . , kn) we denote

|a| =
n∑

i=1

ai, (2.1.3)

and
fav := fa1v1 ⊗ . . .⊗ fanvn ∈ M(m)|a|. (2.1.4)

The Chevalley complex acquires a grading as well:

C•(n,M(m)c) = ⊕k≥0C
•(n,M(m)c)k,

with
C•(n,M(m)c)k : 0 −→ M(m)k −→ n⊗M(m)k−1 −→ 0. (2.1.5)

2.2. Logarithmic forms. Recall that κ ∈ C∗ is fixed.
We fix an integer N ≥ 0 and consider the space Un,N (see 1.4 above).
We are going to define certain logarithmic forms on this space. For a function u we denote

d lnu :=
du

u
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The symmetric group ΣN acts on forms from Ω•(Un,N ) by permuting variables t1, . . . , tN .
For a differential form w we define by Alt w the skew-symmetrization of w with respect to

the ΣN -action,

Alt w(t1, . . . , tN ) =
∑

σ∈ΣN

(−1)σw(tσ(1), . . . , tσ(N)).

All forms appearing in our constructions are skew-symmetric. They are given by the following
formulas. For a = (a1, . . . , an) ∈ Nn, |a| :=

∑
ai = N , we define

wa =
1

a1! . . . an!
Alt ua,

where

ua = d ln(t1 − z1) ∧ · · · ∧ d ln(ta1
− z1) +

+ d ln(ta1+1 − z2) ∧ · · · ∧ d ln(ta1+a2
− z2) +

· · ·+ d ln(ta1+···+an−1+1 − zn) ∧ · · · ∧ d ln(tN − zn).

Similarly, for b = (b1, . . . , bn), |b| = N − 1, we define

wb =
1

b1! . . . bn!
Alt ub,

where

ub = −κ

(
d ln(t2 − z1) ∧ · · · ∧ d ln(tb1+1 − z1) +

+ d ln(tb1+2 − z2) ∧ · · · ∧ d ln(tb1+b2+1 − z2) +

· · ·+ d ln(tb1+···+bn−1+2 − zn) ∧ · · · ∧ d ln(tN − zn)

)
.

In this formula we start from the variable t2 and have the factor −κ in front of the exterior
product.

For example if N = 2, a = (2, 0), b = (1, 0), then

wa = d ln(t1 − z1) ∧ d ln(t2 − z1)

wb = −κ(d ln(t2 − z1) + d ln(t1 − z2)).

2.3. Coulomb D-module. Define a “Coulomb interaction” closed 1-form

ωm :=
∑

1≤s<u≤n

msmu

2
d ln(zs − zu) +

∑
1≤i<j≤N

2 d ln(ti − tj)−

−
N∑
i=1

n∑
s=1

ms d ln(ti − zs) ∈ Ω1(Un,N ) (2.3.1)

Define a differential ∇m on the graded space Ω•(Un,N )

∇m := dDR +
1

κ
ωm : Ωi(Un,N ) −→ Ωi+1(Un,N )

Note that ∇2
m = 0 since dDRωm = 0.

We will denote by Ω•
m(Un,N ) the space Ω•(Un,N ) equipped with the differential ∇m.

This is nothing else but the complex of global sections for the de Rham complex DR(L(m, N))
of the Coulomb D-module L(m) = L(m, N) over Un,N which is by definition the structure sheaf
OUn,N

equipped with a connection ∇m := dDR + 1
κωm.
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2.4. Coulomb - KZ - Chevalley complex and a canonical N-cocycle in it. Recall a
Chevalley complex C•(n,M(m)c)N .

Consider a double complex which as a bigraded vector space is a tensor product

C••
m,N := {Cpq

m,N}
where

Cpq
m,N := Ωp(Un,N )⊗ Cq(n,M(m)c)N

Note that the components are nontrivial only if 0 ≤ q ≤ 1.
By definition it is equipped with two differentials:
— the horizontal one is a KZ - Coulomb differential

∇KZ,Coul = dDR +
1

κ
ωm − 1

κ
ωKZ

where
ωKZ :=

∑
1≤i<j≤n

Ωijd ln(zi − zj) (2.4.1)

It acts on the index p:

∇KZ,Coul : Ω
p(Un,N )⊗ Cq(n,M(m)c)N −→ Ωp+1(Un,N )⊗ Cq(n,M(m)c)N

— the vertical one is the Chevalley differential dCh acting on the second factor.
We will be interested in the associated total complex

C•
m,N := TotC••

m,N ,

to be called the Coulomb - KZ - Chevalley complex.
Recall the notations (2.1.4).
Define elements

I0 :=
∑

|a|=N

wa ⊗ f (a)v ∈ CN0
m,N

I1 :=
∑

|b|=N−1

wb ⊗ (f ⊗ f (b)v) ∈ CN−1,1
m,N

I := I0 + I1 ∈ CN
m,N

2.5. Theorem. I is a cocycle in C•
m,N of total degree N . In components:

∇KZ,CoulI0 = 0 (2.5.1)

dChI0 +∇KZ,CoulI1 = 0. (2.5.2)

Proof. We deduce Theorem 2.5 from the two main results in [SV]. The first of them is
[SV, Theorem 6.16.2] on the relation between the Lie algebra differential and the de Rham
differential. The second is [SV, Theorem 7.2.5′′] on the relation between the KZ equations and
the Gauss-Manin connection.

Since all forms wa are closed the equation (2.5.1) may be rewritten as

1

κ

(
ωm − ωKZ

)
I0 = 0.

This equation is the statement of [SV, Theorem 7.2.5”] applied to the sl2 case.
Equation (2.5.2) may be rewritten as

1

κ

(
ωm − ωKZ

)
I1 + dChI0 = 0

and it can be split into two equations.
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One of these equations follows from [SV, Theorem 7.2.5”] applied to the situation with
N − 1 of t-variables instead of the N variables t1, . . . , tN , and the other equation follows
from [SV, Theorem 6.16.2].

More precisely, consider the splitting
1

κ
ωmI1 = P1 + P2,

where P1,P2 are defined as follows. We have

I1 =
∑

|b|=N−1

∑
σ∈SN

(−1)σub(tσ(2), . . . , tσ(N))⊗
(
f ⊗ f (b)v

)
and ωm is the sum of 1-forms, ωm =

∑
α ωα, see (2.3.1). We say that a summand

(−1)σωα ∧ ub(tσ(2), . . . , tσ(k))⊗
(
f ⊗ f (b)v

)
belongs to P1 if ωα does not have the variable tσ(1), otherwise it belongs to P2.

2.5.1. Lemma. We have
P1 −

1

κ
ωKZI1 = 0, (2.5.1.1)

P2 + dChI0 = 0. (2.5.1.2)

Proof of the Lemma. Equation (2.5.1.2) follows from [SV], Theorem 6.16.2. Equation
(2.5.1.1) follows from [SV], Theorem 7.2.5′′. □

This implies (2.5.2) and achieves the proof of 2.5. □

2.6. Interpretation of the cocycle I as a map η : DR(KZ) −→ DR(GM). Note that
the Coulomb de Rham complex Ω•

m(Un,N ) is a dg-module over the de Rham algebra Ω•(Un,N )
which in turn is a Ω•(Un)-algebra due to the projection p : Un,N −→ Un.

Consider the trivial vector bundle M(m) over Un with a fiber M(m); it carries the integrable
KZ connection

∇KZ = dz −
1

κ
ωKZ (2.6.1)

which makes of it a DUn
-module. The space of global sections of its de Rham complex will be

DR(M(m))(Un) = Ω•(Un)⊗C M(m).

As usual this object is N-graded.
Next we can pass to Chevalley chains and consider a complex of vector bundles

C•(n
∗,M(m)∗N ) = Un × C•(n

∗,M(m)∗N ),

whose dual will be
C•(n,M(m)cN ) = Un × C•(n,M(m)cN ).

Both complexes carry KZ connections induced by (2.6.1); therefore we may consider their
de Rham complexes which are Ω•

Un
-modules.

Our main hero, the KZ - Coulomb - Chevalley complex may be rewritten in a form

C••
m,N = DR(C•(n,M(m)cN )(Un)⊗Ω•(Un) Ω

•
m(Un,N )

By linear algebra, to give a 0-cocycle

Z ∈ Tot(A• ⊗B•)0

in the total complex of a tensor product of two complexes A•⊗B• is equivalent to giving a map
of complexes

η(Z) : A•∗ −→ B•.
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Therefore our cocycle I gives rise to a map between two complexes

η = η(I) : DR(C•(n
∗,M(m)∗N )(Un) −→ Ω•

m(Un,N )[N ] (2.6.2)

Both complexes are filtered:
namely, we define

F iDR(C•(n
∗,M(m)∗N )(Un) ⊂ DR(C•(n

∗,M(m)∗N )(Un)

to be the subcomplex of forms of degree ≥ i, and

F i
zΩ

•
m(Un,N ) ⊂ Ω•

m(Un,N )

to be the subcomplex of forms containing ≥ i differentials dza.
2.6.1. Key fact. The map η is compatible with the filtrations. □
As a corollary , the induced map of E1-terms of the corresponding spectral sequences gives

rise to maps between the de Rham complexes

ηi : DR(Hi(n
∗,M(m)∗N ),∇KZ) −→ DR(RpN−i

∗ L(m, N),∇GM),

0 ≤ i ≤ 1, cf 1.3.
By construction these maps land in the subsheaves of anti-invariants

ηi : DR(Hi(n
∗,M(m)∗N ),∇KZ) −→ DR(RpN−i

∗ L(m, N)ΣN ,−,∇GM),

Let us sum up our results.
2.7. Theorem. The map (2.6.2) is a morphism of filtered complexes. The induced map of

E1 terms for the corresponding spectral sequences is a pair of morphisms

ηi : DR(Hi(n
∗,M(m)∗N ),∇KZ) −→ DR(RpN−i

∗ L(m, N)ΣN ,−,∇GM),

0 ≤ i ≤ 1.
Here ηi is a map from the de Rham complex of Hi(n

∗,M(m)∗N ) equipped with the KZ connec-
tion to the de Rham complex of RpN−i

∗ L(m, N)ΣN ,− equipped with the Gauss-Manin connection,
or, which is the same, a morphism of lisse D-modules over Un:

ηi : (Hi(n
∗,M(m)∗N ),∇KZ) −→ (RpN−i

∗ L(m, N)ΣN ,−,∇GM).

These maps are isomorphisms for generic κ.
2.8. Corollary: integral solutions for higher KZ. Let us return to the notations of 2.1.
Consider the complex C•(n,M(m)c)N , see (2.1.3)

0 −→ M(m)N −→ n⊗M(m)N−1 −→ 0

which we denote here for brevity

C• : 0 −→ C0 d−→ C1 −→ 0,

and the dual complex

C∗• : 0 −→ C1∗ d∗

−→ C0∗ −→ 0

In this subsection we consider the analytic version of our varieties and D-modules.
For any z = (z1, . . . , zn) ∈ Un we denote by F (z) the fiber

F (z) := p−1(z) = {(t1, . . . , tN ) ∈ CN | ti ̸= tj ; ti ̸= za} ⊂ CN .

We will deal with the analytic Coulomb D-module Lan(m) over Un,N . Consider its de Rham
complex

Ωan•
m := DR(Lan(m)).
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For each z ∈ Un let Ω•
m(z) denote the restriction of Ωan•

m to the fiber F (z); inside it we have the
skew-symmetric part

Ω•
m(z)ΣN ,− ⊂ Ω•

m(z)

Next, inside Ω•
m(z)ΣN ,− consider the finite-dimensional Aomoto subcomplex of differential forms

with logarithmic singularities along all hyperplanes ti = tj and ti = za; let us denote this
subcomplex

A•(z) : 0 −→ AN−1(z)
dA(z)−→ AN (z) −→ 0,

the differential dA(z) being the multiplication by the one-form

1

κ
ωm(z) =

1

κ

( ∑
1≤i<j≤N

2 d ln(ti − tj)−
N∑
i=1

n∑
s=1

ms d ln(ti − zs)

)
∈ Ω1(F (z))

cf. (2.3.1). This subcomplex will have only two nontrivial components living in degrees N − 1
and N .

We denote by
W i(z) := Hi(A•(z)), i = N − 1, N,

its cohomology.

Global maps ηi

The space
C0 = M(m)N

admits a base {fav, |a| = N}; let us denote by {fa∨} the dual base of C0∗.
Similarly, the space

C1 = n⊗M(m)N−1

admits a base {f ⊗ f bv, |b| = N − 1}; let us denote {f∨ ⊗ f b∨} the dual base of C1∗.
Define two maps

ηi : Ci∗ −→ ΩN−i(Un,N ), i = 0, 1,

by
η0(fa∨) = wa,

and
η1(f∨ ⊗ f b∨) = wb.

Denote
AN−i := ηi(Ci∗) ⊂ ΩN−i(Un,N ).

Let z ∈ Un. The restriction to the fiber F (z) induces maps

AN−i −→ AN−i(z);

composing them with the maps ηi we get maps

ηi(z) : Ci∗ −→ AN−i(z)

According to [SV] these maps are isomorphisms; moreover, they induce an isomorphism of com-
plexes

η•(z) : C∗• ∼−→ A•(z)[N ]

where on the left we have the Chevalley differential whereas on the right we have the twisted de
Rham differential in the de Rham complex of the fiber.
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Chains of the Betti realization

For each z let Lm(z) denote the restriction of L(m) to F (z); let

Lm(z)∨ = Hom(Lm(z),Oan
F (z))

be the dual D-module. Let
Lm(z)∨hor ⊂ Lm(z)∨

be the subsheaf of horizontal sections; it is a locally constant sheaf over F (z).
Let C•(F (z),Lm(z)∨hor) denote the complex

0 −→ C2N (F (z),Lm(z)∨hor) −→ . . . −→ C0(F (z),Lm(z)∨hor) −→ 0

of finite singular chains with coefficients in Lm(z)∨hor. We will be dealing with subspaces of
i-cycles

Zi(F (z),Lm(z)∨hor) ⊂ Ci(F (z),Lm(z)∨hor)

and with homology spaces Hi(F (z),Lm(z)∨hor).
2.8.1. GM connection: Betti realization. When z varies, these complexes form a

complex of (infinite-dimensional) vector bundles over Un, denoted by C•(F (z),Lm(z)∨hor). Each
term Ci(F (z),Lm(z)∨hor) carries a flat connection.

Indeed, given z0 and a finite singular chain

γ(z0) ∈ Ci(F (z0),Lm(z0)
∨hor),

we can move z in a small neighbourhood V ∋ z0 such that nothing changes topologically; this
provides a parallel transport of γ(z0) over V , i.e. a flat family of chains

{γ(z) ∈ Ci(F (z),Lm(z)∨hor)}z∈V . (2.8.1.1)

These connections are obviously compatible with boundary, i.e. we get a flat connection on the
complex C•(F (z),Lm(z)∨hor). This is the Betti incarnation of the derived GM connection.

It induces flat connections on the bundles of cycles Zi(F (z),Lm(z)∨hor) and on the homology
Hi(F (z),Lm(z)∨hor).

□
We can integrate i-forms against i-chains, i.e. we have pairings∫

: Ci(F (z),Lm(z)∨hor)⊗ Ωi
m(z) −→ C.

Let
{γi(z) ∈ Zi(F (z),Lm(z)∨hor)}z∈V (2.8.1)

be a flat family of cycles over a small open V ⊂ Un whose classes in Hi(F (z),Lm(z)∨hor) form
a flat section of the GM connection.

Let i = N . For each x ∈ C0∗ and z ∈ V we get a number∫
γN (z)

η0(z)(x) ∈ C;

it is linear with respect to x, so we’ve got an element∫
γN (z)

η0(z)(•) ∈ (C0∗)∗ = C0 = M(m)N . (2.8.2)

Note that if x = d∗y then η0(z)(x) is a coboundary in Ωan
m (z), so the integral is zero since γN (z)

is a cycle. This means that (2.8.2) belongs to the subspace of “singular vectors”

(Coker(d∗))∗ = Ker d = Ker(e : M(m)N −→ M(m)N−1).
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Similarly if i = N − 1 then for each x ∈ C1∗ and z ∈ V we get a number∫
γN−1(z)

η1(z)(x) ∈ C;

which is linear with respect to x, so we’ve got an element∫
γN−1(z)

η1(z)(•) ∈ (C1∗)∗ = C1 = M(m)N−1.

Its image in
(Ker(d∗))∗ = C1/dC0 = Coker(e : M(m)N −→ M(m)N−1)

depends only on the homology class

γN−1(z) ∈ Hi(F (z),Lm(z)∨hor).

2.8.1. Theorem. (a) For any local flat family of N -cycles

{γN (z) ∈ ZN (F (z),Lm(z)∨hor)}z∈V , V ⊂ Un,

the linear map
∫
γ(z)

defines a solution of the KZ equations with values in Ker(d), i.e. in the
weight component of

Ker e : M(m) −→ M(m)

of weight
∑n

s=1 mi − 2N . For generic κ any solution of the KZ equations in this space is given
by a suitable family γN (z).

(b) For any local flat family of (N − 1)-cycles

{γN−1(z) ∈ ZN−1(F (z),Lm(z)∨hor)}z∈V , V ⊂ Un,

the linear map
∫
γ(z)

defines a solution of the KZ equations with values in Coker(d), i.e. in the
weight component of M(m)/eM(m) of weight

∑n
s=1 mi − 2(N − 1). For generic κ any solution

of the KZ equations in this space is given by a suitable family γN−1(z).
Proof. Part (a) is proved in [SV], whereas part (b) is new and follows from Theorem 2.7 □

See [CV], where the dimensions of the spaces Ker d and Coker d are calculated for nonnegative
integers m1, . . . ,mn.

2.9. Exotic (dual) KZ equations.
Let N = 1, n = 2. Let us look up more attentively at the KZ - Coulomb part of our cocycle.
So we have a 2-dimensional subspace

M1 ⊂ M(m1)⊗M(m2)

with a base {fv1 ⊗ v2, v1 ⊗ fv2} whose elements we will write as columns.
The Casimir Ω acts on this subspace by the matrix

Ω =

(
(m1 − 2)m2/2 m2

m1 m1(m2 − 2)/2

)
Consider a double Coulomb - KZ complex Ω••(M): as a graded space

Ω••(M1) := Ω••(U2,1)⊗M1

where Ωij are differential forms in z, t, of degree i (resp. j) with respect to z (resp. to t).
The first (horizontal) differential is a KZ connection

d′ = ∇KZ = dz −
1

κ

Ω(dz1 − dz2)

z1 − z2
= dz +A1dz1 +A2dz2
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where dz means de Rham with respect to z, whereas the second (vertical) differential

d′′ = dt

(de Rham with respect to t)
The identity ∇2

KZ = 0 means that the KZ connection is integrable.
In coordinates:

∂z2A1 − ∂z1A2 − [A1, A2] = 0,

in our case [A1, A2] = 0.
Now we will descibe the relevant part of the cocycle I from Theorem 2.5.
Consider a form

ω01 = I =

(
(t− z1)

−1Φdt
(t− z2)

−1Φdt

)
=

(
I1
I2

)
∈ Ω01(M1)

2.9.1. Claim. We have
d′′ω01 = 0,

(obvious), and
d′ω01 = d′′ω10 (2.9.1)

where
ω10 = J1dz1 + J2dz2 ∈ Ω10(M1),

with
J1 =

(
−(t− z1)

−1Φ
0

)
, J2 =

(
0

−(t− z2)
−1Φ

)
.

2.9.2. Claim. We have
d′ω10 = 0,

in coordinates
−∂z2J1 + ∂z1J2 −

1

κ

ΩJ2
z1 − z2

+
1

κ

ΩJ1
z1 − z2

= 0. (2.9.2)

The last differential equation is called the dual KZ equation: it is a system of two linear
differential equations on two functions (nonzero coordinates of vectors J1, J2).

The equation does not depend on t, whereas our vectors J1, J2 do. For all t the couple

(J1(t, z), J2(t, z))

is a solution of (2.9.2).

§3. Kac-Moody case

3.1. Kac-Moody algebras without Serre relations. We start with the data from [SV],
6.1. Let h be a finite-dimensional vector space equipped with a non-degenerate symmetric
bilinear form (, ).

We fix a finite set of non-zero covectors {α1, . . . , αr} ⊂ h∗ whose elements are called simple
roots; let B = (bij) where bij = (αi, αj) (this is “the symmetrized Cartan matrix”).

We denote by
hi = b(αi)

where b : h∗
∼−→ h is the isomorphism induced by (, ).

We define g = g(B) as a Lie algebra with generators ei, fi, 1 ≤ i ≤ r, and h and relations

[ei, fj ] = δijhi,

[h, ei] = αi(h)ei, [h, fi] = −αi(h)fi,
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[h, h′] = 0, h, h′ ∈ h

We denote by n = n− ⊂ g (resp. by n+) the Lie subalgebra generated by all elements fi
(resp. ei); it is a free Lie algebra with these generators.

We have the triangular decomposition

g = n− ⊕ h⊕ n+

Root lattice

Let
Λ =

∑
i

Zαi ⊂ h∗

denote the abelian subgroup generated by αi.
We will use the notations for “positive” and “negative” submonoids:

Λ≥0 :=

r∑
i=1

Z≥0αi ⊂ Λ, Λ>0 := Λ≥0 \ {0};

Λ≤0 := −Λ≤0,Λ<0 := Λ≤0 \ {0}

Principal gradation

Our algebra g is Λ-graded:
g = ⊕λ∈Λ gλ

where
gλ = {x ∈ g| [h, x] = λ(h)x for all h ∈ h}

with
h = g0,

n := n− = ⊕λ∈Λ<0 gλ = ⊕λ∈Λ<0 nλ

n+ = ⊕λ∈Λ>0
gλ = ⊕λ∈Λ>0

nλ

Verma modules

For µ ∈ h∗ M(µ) will denote a g-module with one generator v = vµ and relations

hvµ = µ(h)eµ, eivµ = 0.

It is (µ+ Λ≤0)-graded:
M(µ) = ⊕λ∈µ+Λ≤0

M(µ)λ

where
M(µ)λ = {x ∈ M(µ)| hx = λ(h)x}

A map
Un −→ M(µ), x 7→ xvµ

is an isomorphism of vector spaces.
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Notation: duals for Λ-graded spaces

In the sequel we will be dealing with various Λ-graded spaces V = ⊕λ∈ΛVλ with finite-
dimensional components Vλ. In that case V ∗

λ will denote the restricted dual:

V ∗ = ⊕λ∈ΛV
∗
λ .

Double

The Borel Lie subalgebra
b := n⊕ h ⊂ g

carries a structure of a Lie bialgebra (see [D]) described in [SV], 6.14.1. This means in particular
that we have a cobracket map

b −→ b ∧ b

which gives, after the passage to duals, a Lie algebra structure on the space b∗. The projection
b −→ n induces an embedding n∗ ↪→ b∗, and the subspace n∗ is a Lie subalgebra of b∗.

This allows one to define its Drinfeld double g̃ = D(b); it is a Lie algebra which as a vector
space is

g̃ = b⊕ b∗ = n⊕ h⊕ h∗ ⊕ n∗.

If M is a Verma module, one introduces a structure of a b∗-module on M∗ which, together
with an obvious structure of a a b-module gives rise to a D(b)-module structure on M∗, see [SV],
6.16.

3.2. Chevalley complexes. We fix n ≥ 1 and an n-tuple of weights

µ = (µ1, . . . , µn) ∈ h∗n

Consider
M(µ) = M(µ1)⊗ . . .⊗M(µn)

The Λ-gradations on each M(µi) gives rise to a Λ-gradation on their tensor product M(µ).
Each M(µi)

∗ is a g̃-module, whence the tensor product

M(µ)∗ = M(µ1)
∗ ⊗ . . .⊗M(µn)

∗

is a g̃-module as well. In particular due to the inclusions of Lie algebras

n∗ ⊂ b∗ ⊂ D(b∗) = g̃

M(µ)∗ is a n∗-module.
We will be interested in Chevalley homology complexes:

C•(n
∗,M(µ)∗) : . . . −→ Λ2n∗ ⊗M(µ)∗ −→ n∗ ⊗M(µ)∗ −→ M(µ)∗ −→ 0 (3.2.1)

They are analogues of (2.1.1).
They carry a Λ-grading induced by gradings on n and M(µ):

C•(n
∗,M(µ)∗) = ⊕λ∈ΛC•(n

∗,M(µ)∗)λ

where we denote by C•(n
∗,M(µ)∗)λ the subcomplex of weight |µ|+ λ, |µ| :=

∑n
a=1 µa.

3.3. The Casimir element and KZ equation.
We have an invariant Casimir element

Ω ∈ g̃⊗̂g̃∗ (3.3.1)
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defined in [SV], 7.2. Namely,

Ω :=
∑

λ∈Λ<0

Ωλ +Ω0 +
∑

λ∈Λ>0

Ωλ ∈

∈ n⊗ n∗ ⊕ h⊗ h∗ ⊕ h∗ ⊗ h⊕ n∗ ⊗ n

where
Ω0 =

1

2
(Ωh +Ωh∗)

and Ωλ ∈ nλ ⊗ n∗λ for λ < 0 (resp. ∈ n∗λ ⊗ nλ for λ > 0) are canonical elements.
Recall the space Un from 1.1.
Let C•(n

∗,M(µ)∗) = C•(n
∗,M(µ)∗) be the trivial vector bundle over Un with a fiber C•(n

∗,M(µ)∗);
it is a Λ-graded complex of vector bundles:

C•(n
∗,M(µ)∗) = ⊕λ∈ΛC•(n

∗,M(µ)∗)λ

For

λ = −
r∑

i=1

kiαi ∈ Λ≤0

with
∑r

i=1 ki = N the complex C•(n
∗,M(µ)∗)λ lives in degrees [−N, 0].

The invariant Casimir element allows one to define the KZ connection on each C•(n
∗,M(µ)∗)λ,

see 1.2.

3.4. A Coulomb D-module and its de Rham complex. Pick

λ = −
r∑

i=1

kiαi ∈ Λ≤0;

let N =
∑

ki.
Consider the space Cn,N = Cn+N with coordinates z1, . . . , zn, t1, . . . , tN and a subspace

Un,N = {(z, t) ∈ Cn,N | zi ̸= zj , ti ̸= tj , zi ̸= tj}
We have a projection

p = pn,N : Un,N −→ Un

We shall use a notation [k] = {1, . . . , k}.
Pick a map of sets

π : [N ] −→ [r]

such that
|π−1(i)| = ki, i ∈ [r].

We will denote by
Σπ

∼
= Σk1

× . . .× Σkr

a subgroup of the symmetric group respecting all the fibers π−1(i).
A Coulomb D-module L(µ, λ)
By definition L(µ, λ) is a DUn,N

-module which is OUn,N
equipped with an integrable connec-

tion
∇µ,λ = dDR +

1

κ
ωµ,λ

where ωµ,λ is a closed differential 1-form

ωµ,λ =
∑

1≤i<j≤n

(µi, µj)
dzi − dzj
zi − zj

−
∑

i∈[n],k∈[N ]

(µi, απ(k))
dzi − dtk
zi − tk
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+
∑

1≤k<l≤N

(απ(k), απ(l))
dtk − dtl
tk − tl

(3.4.1)

It gives rise to the de Rham complex

Ω•
µ,λ(Un,N ) := DR(L(µ, λ))(Un,N ) = (Ω•(Un,N ),∇µ,λ)

We will be interested in the subcomplex of Σπ-skew-invariants

Ω•
µ,λ(Un,N )Σπ,− ⊂ Ω•

µ,λ(Un,N )

3.5. Relative de Rham complexes and derived Gauss-Manin.
(a) The de Rham complex Ω•(Un,N ) is the total complex of a bicomplex

Ω•(Un,N ) = TotΩ••(Un,N )

where Ωpq(Un,N ) is the space of forms containing p differentials dzm and q differentials dti, the
full de Rham differential being the sum

dDR = dz + dt.

The relative de Rham complex is by definition

Ω•(Un,N/Un) = (Ω0•(Un,N ), dt);

one has a projection
p : Ω•(Un,N ) −→ Ω•(Un,N/Un)

(b) Coulomb twisting
Similarly the form

ωµ,λ = ωµ,λ,z + ωµ,λ,t

with
ωµ,λ,t =

∑
i∈[n],k∈[N ]

(µi, απ(k))
dtk

zi − tk
+

∑
1≤k<l≤N

(απ(k), απ(l))
dtk − dtl
tk − tl

which is dt-closed.
We define

Ω•
µ,λ(Un,N/Un) := (Ω•(Un,N/Un), dt +

1

κ
ωµ,λ,t)

We have an epimorphism of complexes

p : Ω•
µ,λ(Un,N ) −→ Ω•

µ,λ(Un,N/Un) (3.5.1)

(c) Derived Gauss - Manin connection.
The complex Ω•

µ(Un,N ) is the total complex of a double complex

Ω••
µ,λ(Un,N ) := (Ω••(Un,N ),∇µ,λ,z +∇µ,λ,t)

where
∇µ,λ,z = dz +

1

κ
ωµ,λ,z, ∇µ,λ,t = dz +

1

κ
ωµ,λ,t.

We shall write the differential ∇µ,z (resp. ∇µ,t) horizontally (resp. vertically).
The map p (3.5.1) is nothing but the projection to the utmost left vertical component.
We can identify Ω••

µ,λ(Un,N ) with the de Rham complex of the connection ∇µ,λ,z on the
complex Ω•

µ,λ(Un,N/Un):

∇µ,λ,z : Ω•
µ,λ(Un,N/Un) = Ω0•

µ,λ(Un,N ) −→ Ω•
µ,λ(Un,N/Un)⊗ Ω1(Un) = Ω1•

µ,λ(Un,N )

This is the derived GM connection on the complex Rp∗L(µ, λ)(Un).
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3.7. A map η and its lifting η̃.
In [SV] a map of complexes

η : C•(n
∗,M(µ)∗)λ −→ Ω•

µ,λ(Un,N/Un)
Σπ,−[N ] (3.7.1)

has been defined, see op. cit. (7.2.4).
Here we consider both complexes appearing in (3.7.1) as cohomological complexes concen-

trated in degrees [−N, 0].
For each z ∈ Un consider a fiber

Uz = Un,N ;z := p−1(z)

We can compose η with the restriction map

rz : Ω•
µ,λ(Un,N/Un) −→ Ω•

µ,λ(Un,N ;z)

to get
ηz = rz ◦ η : C•(n−,M(µ)∗)λ −→ Ω•

µ,λ(Un,N ;z)
Σπ,−[N ]

A remarkable feature of the mappings ηz is the following:
for generic values of κ the maps ηz are quasi-isomorphisms for all z ∈ Un.
Here “generic” means κ ∈ C\ (an explicitly given discrete countable subset).

Main result

We start with a definition of a map of graded O(Un)-modules

η̃ : C•(n
∗,M(µ)∗)λ −→ Ω•

µ,λ(Un,N )Σπ,−[N ] (3.7.2)

which lifts η, i.e. such that
η = p ◦ η̃.

Here is a picture:
Ω•

µ,λ(Un,N )Σπ,−[N ]

η̃ ↗ ↓ p

C•(n
∗,M(µ)∗)λ

η−→ Ω•
µ,λ(Un,N/Un)

Σπ,−[N ]

The definition of η̃ is a modification of that of η. Namely, for a monomial

x ∈ Ci(n
∗,M(µ)∗)λ

the corresponding differential form

η(x) ∈ ΩN−i
µ,λ (Un,N/Un)

contains fractions of the form dti/(ti − zp). To obtain η̃(x) we replace all these fractions by
d ln(ti − zp). That’s it.

Compare the definition of forms ua, ub in 2.2 for g = sl2.
The map η̃ induces a map of Ω•(Un,N )-modules

η̃ : Ω•(Un,N )⊗Ω•(Un) C•(n
∗,M(µ)∗)λ −→ Ω•

µ,λ(Un,N )Σπ,−[N ] (3.7.3)

The space on the left is the underlying space of the De Rham complex for the derived KZ; it
carries the KZ differential ∇KZ .

3.8. Theorem. (a) The map η̃ (3.7.3) commutes with the differentials on both sides.
(b) Both sides of (3.7.3) carry natural decreasing filtrations in z direction, and the map η̃

respects these filtrations.
In other words, we’ve got a map of filtered complexes
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DR(derived KZ) η̃−→ DR(derived GM)
∥ ∥

TotΩ•
KZ(Un, C•(n

∗,M(µ)∗)λ)
η̃−→ Tot(Ω••

µ,λ)(Un,N )Σπ,−[N ]

(3.8.1)

The proof is similar to that of Section 2.

3.9. Corollary. The map η̃ induces maps of DUn
-modules (which are isomorphisms for

generic κ)
ηi : (Hi(n

∗,M(µ)∗)λ,∇KZ) −→ (RN−ip∗L(µ, λ)
Σπ,−,∇GM )

for all 0 ≤ i ≤ N .
For i = 0 such a mapping has been constructed in [SV].
As in Section 2, we get from this an integral representation for the solutions.

Appendix

We recall here some standard constructions from homological algebra.
A.1. Bicomplexes. A a bicomplex in an abelian category C is a collection of objects

A•• = {Apq, p, q ∈ Z}, and arrows

dpqh : Apq −→ Ap+1,q, dpqv : Apq −→ Ap,q+1

such that
d2h = d2v = 0, dhdv = dvdh

One associates to it a simple complex, to be denoted

A• = TotA••

with components
Ai = ⊕p+q=iA

pq

and a differential d : Ai −→ Ai+1 with components

dpq = dpqh + (−1)pdpqv : Apq −→ Ap+1,q ⊕Ap,q+1.

A.2. Filtered complexes. Let A• be a simple complex. Consider a decreasing filtration by
subcomplexes on it:

F 0A• = A• ⊃ F 1A• ⊃ . . . .

We associate to it a collection of complexes

E(A•, F )i : 0 −→ Hi(F 0A•/F 1A•) −→ Hi+1(F 1A•/F 2A•) −→ . . . , (A.2.1)

i ≥ 0, where a differential

Hi+p(F pA•/F p+1A•) −→ Hi+p+1(F p+1A•/F p+2A•)

is the boundary map for the short exact sequence

0 −→ F p+1A•/F p+2A• −→ F pA•/F p+2A• −→ F pA•/F p+1A• −→ 0

(This is nothing else but the E1 term of the spectral sequences for (A•, F •).)

A.3. Example. Suppose that A• = TotA•• with Apq = 0 for p < 0, and a filtration is
defined by

F iAj = ⊕p≥i,p+q=jA
pq.

Then a p-th graded piece
F pA•/F p+1A• = {Apq, q ∈ Z},
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and the differential induced by d on it coincides with the vertical differential dv.
It follows that a complex E(A•, F •)i is identified with

0 −→ Hi
v(A

•0) −→ Hi
v(A

•1) −→ . . . ,

with a differential induced by dh.
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