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ANALOGUES OF THE ATIYAH–WALL EXACT SEQUENCES
FOR COBORDISM GROUPS OF SINGULAR MAPS

ANDRÁS CSÉPAI

Abstract. Classical results of Rohlin, Dold, Wall and Atiyah yield two exact sequences that
connect the cobordism groups of oriented and unoriented manifolds. In this paper we present
analogous exact sequences connecting the oriented and unoriented cobordism groups of maps
with prescribed singularities. This gives positive answer to a fifteen-year-old question posed
by Szűcs and has interesting consequences even in the case of cobordisms of immersions.

Part 0. Introduction

1. Classical results

In the 1950’s much work was done on the determination of the structures and generators of
the oriented and unoriented abstract cobordism rings Ω∗ and N∗. One of the main tools for these
computations was the existence of two exact sequences which resulted from individual works of
Rohlin [Ro], Dold [Do], Wall [Wa1] and finally from a conceptual method by Atiyah [At].

Recall that the elements of Ωn are represented by oriented closed smooth (C∞) n-manifolds
and two such manifolds are cobordant if they together bound an oriented compact (n + 1)-
manifold with boundary with matching orientations; the elements of Nn are similar but without
orientations. Between these two groups stands the cobordism group Wn of the so-called Wall
manifolds (see e.g. [St]) i.e. closed manifolds whose first Stiefel–Whitney class is the mod 2
reduction of an integer cohomology class; two such manifolds are cobordant if they together
bound a compact (n + 1)-manifold with boundary with matching integer first Stiefel–Whitney
classes. Now the forgetful homomorphism from Ωn to Nn (i.e. the map we get by ignoring the
orientation) is the composition Ωn →Wn → Nn of two forgetful homomorphisms.

The classical Atiyah–Wall exact sequences (see [At, theorems 4.2 and 4.3]) are a long exact
sequence

. . .→ Ωn → Ωn →Wn → Ωn−1 → . . . (I)

and a short exact sequence
0→Wn → Nn → Nn−2 → 0 (II)

containing these forgetful homomorphisms.
The main result of the present paper is the generalisation of these sequences to the cobordism

theory of singular maps which answers an open question of Szűcs proposed in [Sz2, section
19]. The precise statements of this result can be found in theorems I and II at the end of the
next section after recalling and introducing the necessary definitions. Theorem I and theorem II
generalise the sequences (I) and (II) respectively to cobordism groups of singular maps and they
will be proved in part I and part II respectively; then in part III we shall apply them to compute
various cobordism groups and finally to obtain analogous exact sequences for bordism groups.
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2. Cobordism groups of singular maps

Throughout this paper we consider smooth (C∞) maps of n-manifolds to (n + k)-manifolds
where k is a fixed positive integer and n is arbitrary. If we want to indicate the dimension of
a manifold, we put it in a superindex (i.e. Mn means that M is a manifold of dimension n)
but in most cases we omit this index. If we do not state otherwise, then we also always make
the technical assumption that any smooth map between manifolds f : M → P is such that
f−1(∂P ) = ∂M and f is transverse to the boundary ∂P .

Definition 2.1. Two smooth map germs
η : (Rn, 0)→ (Rn+k, 0) and ϑ : (Rn, 0)→ (Rn+k, 0)

are said to be left-right equivalent (in some sources also called A -equivalent) if there are diffeo-
morphism germs φ and ψ of (Rn, 0) and (Rn+k, 0) respectively such that ϑ = ψ ◦ η ◦ φ−1. The
suspension of the germ η is the germ

η × idR1 : (Rn+1, 0)→ (Rn+k+1, 0).
By the singularity class (or simply singularity) of η we mean the equivalence class of η in the
equivalence relation generated by left-right equivalence and suspension. The singularity class of
η is denoted by [η].

Observe that in each singularity class the codimension k of the germs is fixed but the dimension
n is not. We will now recall classical properties of singularities; the details can be found e.g. in
[Ma1], [Ma2] (and the preceding papers of Mather in this series) and [GWdPL].

Definition 2.2. For manifolds Mn, Pn+k the product of the diffeomorphism groups of M and
P has an action on the space C∞(M,P ) of smooth maps f : M → P defined by the formula
(φ,ψ) 7→ ψ ◦ f ◦ φ−1. Two maps f, g : M → P are said to be left-right equivalent if they are in
the same orbit of this action, i.e. g = ψ ◦f ◦φ−1 for some diffeomorphisms φ of M and ψ of P . A
map f : M → P is said to be stable if it is in the interior of an orbit, i.e. it has a neighbourhood
U ⊂ C∞(M,P ) such that every element of U is left-right equivalent to f . We define a map germ
a stable germ if it is the germ of a stable map (see [GWdPL] and [Ma1]).

In the present paper we only consider stable germs. Note that if the germ η is stable, then
every germ representing the singularity [η] is also stable, hence it is justified to call singularities
of stable germs stable singularities.

Remark 2.3. The restriction to only study maps with stable germs is quite mild, in the so-
called nice dimensions stable maps form an open dense subset in the space of smooth maps; see
[Ma2].

Let us now fix a set τ of singularities of stable k-codimensional germs.

Definition 2.4. A smooth map f : Mn → Pn+k is said to be a τ -map if all of its germs belong
to singularity classes in τ . For a singularity class [η] ∈ τ a point p ∈M is said to be an [η]-point
if the germ of f at p is equivalent to η; the set of [η]-points in M is denoted by [η](f). By a
slight abuse of notation we will sometimes write η(f) instead of [η](f) for better readability.

Definition 2.5. For a singularity class [η] the minimal number m for which there is a germ
ϑ : (Rm, 0) → (Rm+k, 0) in the singularity class [η] is called the codimension of the singularity
[η] and is denoted by codim[η].

Remark 2.6. If f : M → P is a τ -map, then M is naturally stratified by the submanifolds η(f)
for all [η] ∈ τ ; see e.g. [GWdPL]. Here η(f) is a submanifold of M of codimension codim[η].
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Example 2.7.

(1) If τ only contains the class Σ0 of regular germs (i.e. those with maximal-rank derivative
at 0), then τ -maps are just the immersions.

(2) If τ consists of Σ0 and all stable singularities of type Σ1, that is, singularities with
representatives whose derivative at 0 has corank 1, then τ -maps are called Morin maps.
Further restricting the set τ of allowed singularities we can obtain e.g. the so-called
fold maps (i.e. {Σ0,Σ1,0}-maps) and cusp maps (i.e. {Σ0,Σ1,0,Σ1,1,0}-maps) where fold
(Σ1,0) and cusp (Σ1,1,0) are the two simplest types of Morin singularities; see [Mor].

In the following we shall work with τ -maps to a fixed target manifold P up to a cobordism
relation defined as follows:

Definition 2.8. We call two τ -maps f0 : Mn
0 → Pn+k and f1 : Mn

1 → Pn+k (with closed source
manifolds M0 and M1) τ -cobordant if there is

(i) a compact manifold Wn+1 with boundary such that ∂W = M0 ⊔M1,
(ii) a τ -map F : Wn+1 → P × [0, 1] such that for i = 0, 1 we have F−1(P × {i}) = Mi and

F |Mi = fi.

The τ -cobordism class of f : Mn → Pn+k is denoted by [f ] and the set of all τ -cobordism classes
of τ -maps to the manifold P is denoted by Cobτ (P ).

The set Cobτ (P ) admits a natural commutative semigroup operation by the disjoint union:
if f : Mn → Pn+k and g : Nn → Pn+k are τ -maps, then so is

f ⊔ g : M ⊔N → P

and the τ -cobordism class [f ] + [g] := [f ⊔ g] is well-defined. This operation has a null element
represented by the empty map, moreover, it is actually a group operation (the inverse of any
element in Cobτ (P ) is explicitly constructed in [Sz2]). This way Cobτ (P ) becomes an Abelian
group for any manifold P .

Next we shall endow τ -maps with various stable normal structures. These will be defined in the
following four points; loosely speaking they are decorations on the stable normal bundle, that is,
for a map f : M → P the stable isomorphism type of the virtual vector bundle νf := f∗TP⊖TM .
If σ is such a decoration, then τ -maps equipped with σ-structures will be denoted τσ-maps. In
this paper we shall work with the following types of τσ-maps:

(1) σ = G: Let G be a stable group using the definition of Wall [Wa2, section 8.2] which we
recall now:

Definition 2.9. A stable group G is defined as the direct limit of a sequence of group
homomorphisms ιn : G(n)→ G(n+ 1) where
(i) there are homomorphisms αn : G(n)→ O(n) such that the diagram

. . .
ιn−1 // G(n)

αn

��

ιn // G(n+ 1)

αn+1

��

ιn+1 // . . .

. . .
� � // O(n) �

� // O(n+ 1) �
� // . . .

is commutative where the inclusions in the lower row are natural,
(ii) there is a weakly increasing function c : N→ N tending to ∞ such that the map ιn

is c(n)-connected,
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(iii) there are homomorphisms βn,m : G(n)×G(m)→ G(n+m) such that the diagrams

G(n)×G(m)

ιn×id
��

βn,m // G(n+m)

ιn+m

��

G(n)×G(m)
βn,moo

id ×ιm
��

G(n+ 1)×G(m)
βn+1,m // G(n+m+ 1) G(n)×G(m+ 1)

βn,m+1oo

G(n)×G(m)

αn×αm

��

βn,m // G(n+m)

αn+m

��
O(n)×O(m) �

� // O(n+m)
and

G(n)×G(m)×G(l)

βn,m×id
��

id ×βm,l // G(n)×G(m+ l)

βn,m+l

��
G(n+m)×G(l)

βn+m,l // G(n+m+ l)
commute up to conjugation by an element in the component of the identity,

(iv) there is a commutative diagram

G(n)×G(m)

ιn+m◦βn,m

��

γn,m // G(m)×G(n)

ιn+m◦βm,n

��
O(n+m)

δn,m // O(n+m)

where γn,m denotes the interchange of factors and δn,m is the conjugation by an
element whose determinant has sign (−1)nm.

We define τG-maps to be τ -maps f : Mn → Pn+k for which the virtual normal bundle
νf has structure group G in the following sense:

Definition 2.10. For a stable group G and a virtual vector bundle ν we say that ν has
structure group G if there is a fixed equivalence class of vector bundles stably isomorphic
to ν such that the structure group of each vector bundle ξ is reduced to G(rk ξ) and their
equivalence is defined as follows. Note that the reduction of the structure group of ξ to
G(rk ξ) also gives the reduction of the structure group of ξ⊕ εr to G(rk ξ+ r) for any r.
Here and later on εr means the trivial rank-r vector bundle over any base space. Now
two such bundles ξ, ζ represetning ν are said to be equivalent if for some r the bundles
ξ ⊕ εr−rk ξ and ζ ⊕ εr−rk ζ are isomorphic as G(r)-bundles.

For example if G = SO, then τSO-maps are τ -maps with oriented normal bundles; if
G = O, then τO-maps are just τ -maps without further conditions. If τ consists of all
possible singularities of k-codimensional germs,then any manifold Mn has a τ -map to
Rn+k uniquely up to τ -cobordism and its stable normal bundle is just the inverse of the
tangent bundle TM in any K-group of M ; the same is true for any abstract cobordism
of manifolds, hence in this case we have

CobSO
τ (Rn+k) = Ωn and CobO

τ (Rn+k) = Nn.

As another example, if τ = {Σ0} (i.e. τ -maps are the immersions), then CobGτ (Rn+k)
is the cobordism group of immersions of n-manifolds into Rn+k with normal structure
group G which was first described by Wells [We]. For various other singularity sets τ
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with G being mostly SO or O the groups CobGτ (P ) were considered e.g. by Szűcs [Sz1],
[Sz2]1, Rimányi [RSz], Ando [An], Terpai [Te], Kalmár [Ka] and Sadykov [Sa] (although
in some of the papers cited the codimension k of the maps is non-positive, unlike in the
present paper).

(2) σ = int: We define τ int-maps to be τ -maps with the first Stiefel–Whitney class being an
integer class, that is, a τ int-map is a pair (f, w) where f : Mn → Pn+k is a τ -map and
w ∈ H1(M ;Z) is a cohomology class such that its mod 2 reduction is w1(νf ). Following
e.g. Stong [St] we call this type of normal structure a Wall structure and also call τ int-
maps Wall τ -maps. Again, if τ consists of all possible singularities of k-codimensional
germs, then any manifold Mn has a τ -map to Rn+k uniquely up to τ -cobordism and its
first normal Stiefel–Whitney class is the same as w1(M), hence for this τ we have

Cobint
τ (Rn+k) = Wn.

(3) σ = ⊕m for a natural number m: τ⊕m-maps are also called m-framed τ -maps and they
are defined so that their germs are of the form η × idRm (for [η] ∈ τ) and the change
of coordinate neighbourhoods always induces the identity on Rm here. This extends the
notion of m-framed immersions, i.e. immersions equipped with m pointwise independent
normal vector fields; if τ = {Σ0}, then τ⊕m-maps are just immersions with normal m-
framing. We can endow τ⊕m-maps with other stable normal structures σ as well, and
this defines τσ⊕m-maps. These maps were constructed in [Sz2, definition 9 and remark
10] and a very important property of them is the following: if the target manifold P is
of the form Q× Rm for a manifold Q, then we have

Cobσ⊕m
τ (Q× Rm) ∼= Cobστ (Q) (2.1)

and the isomorphism is given by a natural correspondence between framed and non-
framed maps; see [Sz2, proposition 13].

(4) σ = G ⊕ ξ: Let G be a stable group and ξ a vector bundle over the classifying space
BG. Then τG⊕ξ-maps are generalisations of τG⊕m-maps and we postpone their precise
definition to section 6. Intuitively a τG⊕ξ-map is a τG-map such that a bundle induced
from ξ splits off from its “normal bundle” (the sense in which we mean this will be
clarified in section 6); if ξ is trivial of rank m, this just gives an m-framed τG-map.

Now if σ is any of the above four stable normal structures, then the cobordism of two τσ-maps
to a manifold P can be defined by adding the σ-structure to the map F in definition 2.8 and the
cobordism group of τσ-maps to P is denoted by Cobστ (P ).

To form the statements of our main theorems it remains to define a vector bundle which will
play the role of ξ in a special type of τG⊕ξ-maps. We put G := O and denote by det γ the line
bundle over BO induced by the first Stiefel–Whitney class w1 : BO→ RP∞ from the tautological
line bundle. The notation of this line bundle is due to the fact that if γO

n denotes the tautological
rank-n vector bundle over BO(n), then the restriction of det γ over BO(n) is the determinant
bundle det γO

n . In our second theorem we shall use the rank-2 bundle 2 det γ = det γ ⊕ det γ.
Now we are in a position to state our main results which are as follows:

Theorem I. For any set τ of stable singularities and any manifold Qq there is a long exact
sequence (where the index m runs through the integers)

. . .
ψm+1−−−−−→CobSO

τ (Q× Rm) φm−−−→CobSO
τ (Q× Rm) χm−−−→Cobint

τ (Q× Rm) ψm−−−→
ψm−−−→CobSO

τ (Q× Rm−1)→ . . .

1We shall refer many times to [Sz2] which only considers τSO-maps but contains theorems which work with
the same proofs for more general stable normal structures as well, hence in this paper we will refer to them in
their general form.
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and here φm is of the form id +ι where ι is the involution represented by the reflection to a
hyperplane, χm is the forgetful homomorphism and ψm assigns to a cobordism class [(f, w)] the
class [f |PD(w)].
Theorem II. For any set τ of stable singularities and any manifold Qq there is a long exact
sequence (where the index m runs through the integers)

. . .
ψ′

m+1−−−−−→Cobint
τ (Q× Rm) φ′

m−−−→CobO
τ (Q× Rm) χ′

m−−−→CobO⊕2 det γ
τ (Q× Rm) ψ′

m−−−→
ψ′

m−−−→Cobint
τ (Q× Rm−1)→ . . .

and here φ′
m is the forgetful homomorphism and χ′

m assigns to a cobordism class [f ] the class
[f |PD(w1(νf )2)].

Remark 2.11. We shall give a geometric description of ψ′
m later in remark 8.3. Here we just

note that its classical analogue is always zero while in our general case this does not always hold;
proposition 9.3 will show that even the composition ψm−1 ◦ ψ′

m is not necessarily zero.

Remark 2.12. Although we made assumptions on the set τ of allowed singularities which
generally exclude the set of all singularities, i.e. bordism groups in general cannot be considered
as τ -cobordism groups, the above theorems still hold for bordism groups as well; see theorem
11.1.

Remark 2.13. Recall that the (say oriented) abstract cobordism and bordism groups give rise
to an extraordinary cohomology theory Q 7→ MSO∗(Q); see [At]. Similarly cobordism groups
of singular maps also yield cohomology theories: for the singularity sets τ and stable normal
structures σ used in the present paper we can define extraordinary cohomology functors h∗

τσ (see
[Sz2, section 19]) and if Q is a manifold, then we have

h−m
τσ (Q) = Cobστ (Q× Rm) and hmτσ (Q) = Cobσ⊕m

τ (Q)
for any natural number m (cf. the isomorphism (2.1)). We will not use this fact in our proofs,
however we note that the exact sequences claimed above are sequences of these cohomology
groups, hence they naturally extend infinitely to the right if we put Cobσ⊕−m

τ (Q) in the place
of Cobστ (Q× Rm) for negative m’s.

Theorems I and II will be proved in part I and part II respectively and in both cases we begin
by constructing classifying spaces necessary for the proofs, then we define the above long exact
sequence of cobordism groups, and finish by showing that the homomophisms in the sequence are
the ones we claimed. We shall also see that these exact sequences generalise the classical exact
sequences (I) and (II); see remarks 5.6 and 8.4. After this, in part III we will see applications
of theorems I and II to cobordism groups of immersions and Morin maps, and finally, bordism
groups.

Note that in the sequence (I) the arrow Ωn → Ωn is multiplication by 2, hence for theorem
I to be completely analogous to it we should have φm = 2 id, i.e. ι = id, which is indeed so
in some special cases but not generally as we shall see. Moreover, ψm is [(f, w)] 7→ [f |PD(w)]
and not [(f, w)] 7→ [f |PD(w1(νf ))] although its classical version Wn → Ωn−1 in (I) is just
[M ] 7→ [PD(w1(M))]. This is because Wn embeds into Nn, hence taking the Poincaré dual
of the integer first Stiefel–Whitney class of a Wall manifold M up to cobordism is independent
of which integer representative of w1(M) we take, however, remark 2.11 implies that φ′

m is not
always mono and so this simplification which works for abstract cobordism groups may not work
in the general case.

Theorem II is not a perfect analogue of the sequence (II) either: it is actually analogous to
[At, theorem 4.3] (if we do not take into account the normal O ⊕ 2 det γ-structure which is
meaningless in the case of abstract cobordism groups). Atiyah in his paper then proves that the
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long exact sequence splits to short exact sequences yielding (II) but, as noted in remark 2.11
above, this is not true generally.

Part I. The oriented case

3. Cobordism of τ int-maps

One of the most important ingredients of any type of cobordism theory is an analogue of
the Pontryagin–Thom construction which assigns a classifying space to that theory and gives a
bijection between the cobordism classes and the homotopy classes of maps to this space. The
classifying space of the cobordism groups Cobστ (P ) (where τ is a set of stable singularities, σ is
a stable normal structure and P is an arbitrary manifold) will be denoted by Xσ

τ , that is, Xσ
τ is

the (homotopically unique) space which has the property

Cobστ (P ) ∼= [ •
P ,Xσ

τ ]

where •
P denotes the one-point compactification of P and [·, ·] means the (based) homotopy

classes of maps from the first space to the second.
If σ = G is a stable group, then many explicit constructions of the space XG

τ exist (see e.g.
[RSz], [An], [Sz2] or [Sa]); we will now briefly recall one of them: the so-called strengthened
Kazarian conjecture proved by Szűcs in [Sz2]. After this we shall construct the classifying space
X int
τ of τ int-cobordisms.
A stable group G is defined as the direct limit of a sequence of groups G(n) where G(n) has

a fixed linear action on Rn (see definition 2.9). We denote by γGn the universal rank-n vector
bundle with structure group G, i.e.

γGn := EG(n) ×
G(n)

Rn

where EG(n) G(n)−−−−→BG(n) is the universal principal G(n)-bundle.

Definition 3.1. As before, let τ be a set of stable singularities andG a stable group. Consider the
jet bundle J∞

0 (εn, γGn+k) over BG(n+ k) which has as fibre the infinite jet space J∞
0 (Rn,Rn+k)

(i.e. the space of all polynomial maps Rn → Rn+k with 0 constant term). Denote by

Vτ (n) ⊂ J∞
0 (Rn,Rn+k)

the subspace of those maps whose singularity at 0 is in τ and let KG
τ (n) be the union of the

Vτ (n)’s in each fibre of J∞
0 (εn, γGn+k), that is,

KG
τ (n) := EG(n+ k) ×

G(n+k)
Vτ (n)

where the action of G(n + k) on Vτ (n) is one-sided, we do not act on the source space Rn
of the polynomial maps. Now the natural map G(n + k) → G(n + k + 1) gives us a map
KG
τ (n)→ KG

τ (n+ 1). The Kazarian space for τG-maps is the direct limit

KG
τ := lim

n→∞
KG
τ (n).

Note that we have a fibration KG
τ (n) Vτ (n)−−−−−→BG(n+ k).

Definition 3.2. The pullback of the vector bundle γGn+k → BG(n + k) by the above fibration
will be denoted by νGτ (n) ⊕ εn → KG

τ (n) where νGτ (n) is a rank-k virtual vector bundle. Since
the natural map BG(n+ k)→ BG(n+ k + 1) induces γGn+k ⊕ ε1 from γGn+k+1, we get that the
map KG

τ (n) → KG
τ (n + 1) induces νGτ (n) from νGτ (n + 1). The universal virtual normal bundle

of τG-maps is
νGτ := lim

n→∞
νGτ (n)→ KG

τ .
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The key tool to proving our main theorems will be the construction of the classifying space of
cobordisms of singular maps using the Thom space of the universal virtual normal bundle (for
τG-cobordisms this is the strengthened Kazarian conjecture [Sz2, corollary 74] and for τ int- and
τG⊕ξ-cobordisms it will follow from our constructions). Now the Thom space of a virtual vector
bundle does not exist, but we can still get a well-defined space (up to homotopy) if we apply the
infinite loop space of infinite suspension functor Γ := Ω∞S∞ to it (we follow here the notation
of Barratt and Eccles [BE]). This is a consequence of [Sz2, remark 60 and definition 72] but it
is worthwhile to recall its direct construction here.

Definition 3.3. Let ν be a virtual vector bundle of rank k over a space K such that K is
the direct limit of a sequence of inclusions K(n) ⊂ K(n + 1) where for each n the restriction
ν(n) := ν|K(n) can be represented by ξ(n)⊖ εn for a (non-virtual) vector bundle ξ(n), moreover,
the inclusion K(n) ↪→ K(n+ 1) is a c(n)-homotopy equivalence for a weakly increasing sequence
c : N→ N tending to ∞ (this holds for νGτ but also more generally for any virtual bundle over a
CW complex). Then we can define SnTν(n) as the Thom space Tξ(n), hence

ΓTν(n) = ΩnΓSnTν(n)
also exists. We define the space

ΓTν := lim
n→∞

ΓTν(n) = lim
n→∞

lim
m→∞

Ωn+mSn+mTν(n).

Note that here the inclusion
Sn+mTν(n) ↪→ Sn+mTν(n+ 1)

induces isomorphism in cohomologies up to the index c(n) + k + n+m for each m > 0 (by the
Thom isomorphism), hence the (c(n)+k)-homotopy type of Ωn+mSn+mν(n) coincides with that
of Ωn+mSn+mTν(n+ 1) (by the Whitehead theorem). This means that the (c(n) +k)-homotopy
type of Ωn+mSn+mTν can be defined as that of Ωn+mSn+mTν(n). Moreover, we also get that
the direct limits ΓTν(n) and ΓTν(n+1) are (c(n)+k)-homotopy equivalent and since c(n) tends
to ∞ this implies that for any r the r-homotopy type of ΓTν is that of Ωn+mSn+mTν(n) for
some numbers n and m.

Remark 3.4. The space ΓTν is an infinite loop space, hence it naturally defines a spectrum
E∗ := Ω∞−∗S∞Tν = ΓS∗Tν. What is more, the “virtual space” Tν defines an equivalence class
of spectra and this E∗ is a representative of it; see [Sz2, remark 62].

The strengthened Kazarian conjecture [Sz2, corollary 74] states:

Theorem 3.5. If τ is a set of stable singularities and G is a stable group, then the classifying
space XG

τ of cobordisms of τG-maps is homotopy equivalent to ΓTνGτ .

Remark 3.6. The cohomology theory mentioned in remark 2.13 is defined for σ = G by the
spectrum Eτ

G

∗ := ΓS∗TνGτ .

Remark 3.7. Later it will be important for us to have a deeper understanding of the connection
between the cobordism group CobGτ (P ) (for a manifold Pn+k) and the classifying homotopy
classes [ •

P ,ΓTνGτ ], so we now give a short description of it based on [Sz2].
If f : Mn → Pn+k is a τG-map and i : Mn ↪→ Rr is an embedding, then f × i : M ↪→ P × Rr

is a so-called τG-embedding. A τG-embedding of Mn into a manifold Qn+k+r is defined as a
triple (e,V ,F ) where e : M ↪→ Q is an embedding with normal G-structure, V is a sequence
(v1, . . . , vr) where the vi’s are pointwise independent vector fields along e(M) (i.e. sections of the
bundle TQ|e(M)), F is a foliation of dimension r on a neighbourhood of e(M) which is tangent
to V along e(M) and any point p ∈M has a neighbourhood on which the composition of e with
the projection along the leaves of F to a small (n + k)-dimensional transverse slice has at p a
singularity which belongs to τ .
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Cobordisms of τG-embeddings of n-manifolds to Q can be defined in the usual way and
their cobordism group is denoted by EmbGτ (n,Q). Now if the number r is sufficiently large,
then assigning to the τG-map f : Mn → Pn+k the τG-embedding f × i : M ↪→ P × Rr (with
vector fields arising from a basis of Rr and foliation composed of the leaves {p} × Rr) yields an
isomorphism

CobGτ (P ) ∼= EmbGτ (n, P × Rr).
This is stated in [Sz2] as theorem 2 and its proof relies on lemma 43 and theorem 1. This
is important to note since the proofs of these all only depend on (ambient) isotopies of the
embeddings into P ×Rr which leave the stable normal bundles of the maps involved unchanged.

Now forgetting the singularity structure (given by V and F ) of f × i yields a well-defined
cobordism class of an embedding of M into P × Rr with normal G-structure. Since these are
classified by the Thom space TγGk+r we have the homotopy class of a map Sr

•
P → TγGk+r

corresponding to it such that f × i(M) is the preimage of BG(k + r) and its normal bundle is
induced from γGr+k (note that Sr •

P is the one-point compactification of P ×Rr). Then using the
singularity structure we can lift this classifying map through the map T (νGτ (r) ⊕ εr) → TγGk+r
induced by the fibration KG

τ (r)→ BG(k + r) (see definition 3.2) to get a map
κf : Sr •

P → T (νGτ (r)⊕ εr) ∼= SrTνGτ (r)
where f × i(M) is now the preimage of KG

τ (r) and its normal bundle is induced from νGτ (r)⊕εr.
The adjoint correspondence identifies [Sr •

P , SrTνGτ (r)] with [ •
P ,ΩrSrTνGτ (r)] and if r is suffi-

ciently large, the latter is identified with [ •
P ,Ω∞S∞TνGτ (r)] since by increasing r we only attach

large dimensional cells to the target space. Now the homotopy class [κf ] can be thought of as
an element in [ •

P ,ΓTνGτ ] and assigning [κf ] to [f ] gives an isomorphism

EmbGτ (n, P × Rr) ∼= [ •
P ,ΓTνGτ ].

The composition of the two isomorphisms described above show a bijective correspondence
between the cobordism classes of the f ’s and the homotopy classes of the κf ’s which forms the
isomorphism CobGτ (P ) ∼= [ •

P ,ΓTνGτ ] of theorem 3.5.
Next we shall define the Kazarian space of Wall τ -maps and describe the classifying space

X int
τ similarly to the theorem above. Consider the first Stiefel–Whitney class w1 : BO → RP∞

(which is a fibration with fibre BSO) and let i : S1 ↪→ RP∞ be the inclusion of the 1-cell.

Definition 3.8. Let Bint be the homotopy pullback of the diagram BO w1−−−→RP∞ i←− S1, i.e.
the space we obtain by pulling back the fibration w1 : BO BSO−−−−→RP∞ by i, and let w : Bint→ S1

be the map indicated on the pullback diagram

Bint w //� _

��

S1
� _

i

��
BO w1 // RP∞

In other words we define Bint as the subspace S1 ×
Z2
BSO in BO = S∞ ×

Z2
BSO.

This Bint is the direct limit of the spaces Bint(n) that we get in a similar way from BO(n)
instead of BO. We can pull back the tautological bundle γO

n → BO(n) to a vector bundle
γint
n → Bint(n) and this makes Bint(n) the classifying space of rank-n vector bundles equipped

with Wall structures, that is, those vector bundles ξ for which w1(ξ) is the mod 2 reduction
of a specific integer cohomology class (this is true since S1 ∼= K(Z, 1), RP∞ ∼= K(Z2, 1) and i
corresponds to the mod 2 reduction). Now we can again consider the jet bundle J∞

0 (εn, γint
n+k) over

Bint(n+k) and take in each fibre the space Vτ (n) to obtain a fibrationK int
τ (n) Vτ (n)−−−−−→Bint(n+k)

as in definition 3.1.
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Definition 3.9. If τ is a set of stable singularities, the Kazarian space for τ int-maps is
K int
τ := lim

n→∞K int
τ (n).

We have now a diagram

K int
τ (n) //

Vτ (n)

��

� u

((

KO
τ (n)

Vτ (n)

��

� u

''
J∞

0 (εn, γint
n+k) //

J∞
0 (Rn,Rn+k)

��

J∞
0 (εn, γO

n+k)

J∞
0 (Rn,Rn+k)

��
Bint(n+ k) // BO(n+ k)

where all squares are pullback squares. Using this we can define the rank-k virtual vector bundle
νint
τ (n)→ K int

τ (n) as the pullback of νO
τ (n)→ KO

τ (n).

Definition 3.10. The universal virtual normal bundle of τ int-maps is νint
τ := lim

n→∞ νint
τ (n) over

K int
τ .

Theorem 3.11. If τ is a set of stable singularities, then we have X int
τ
∼= ΓTνint

τ .

Proof. We need an isomorphism Cobint
τ (P ) ∼= [ •

P ,ΓTνint
τ ] for any target P . Recall from remark

3.7 that the analogous isomorphism for τO-cobordisms is obtained by assigning τ -embeddings to
the τ -maps, then lifting their classifying maps through the map SrTνO

τ (r)→ TγO
r+k (where r is

a large number). As we noted in remark 3.7 the isomorphism of the cobordism groups of τ -maps
and τ -embeddings (see [Sz2, theorem 2]) does not depend on the choice of normal structures,
hence it also yields the isomorphism

Cobint
τ (P ) ∼= Embint

τ (n, P × Rr)

for r sufficiently large, where Embint
τ (n, P × Rr) is defined analogously.

Now if we have an embedding with normal Wall structure, then its classifying map can be
lifted to Tγint

r+k so if it is also a τ -embedding, then using the pullback square

SrTνint
τ (r) //

��

SrTνO
τ (r)

��
Tγint

r+k
// TγO

r+k

this inducing map lifts to SrTνint
τ (r). So τ int-embeddings can be induced from SrTνint

τ (r) and
since all of the above extnds to maps between manifolds with boundary (in particular to cobor-
disms), we get a homomorphism from Cobint

τ (P ) to [ •
P ,ΓTνint

τ ] as in remark 3.7.
To see that this is an isomorphism, note that if we have a map Sr

•
P → SrTνint

τ (r), then its
composition with the map to SrTνO

τ (r) pulls back a τ -embedding into P ×Rr (by theorem 3.5)
which also has a normal Wall structure. Similarly homotopies between maps to SrTνint

τ (r) pull
back cobordisms of τ -embeddings with normal Wall structures. Thus we obtained the inverse
of the above homomorphism Cobint

τ (P )→ [ •
P ,ΓTνint

τ ], meaning that it is iso and this concludes
our proof. □

4. A long exact sequence

We shall now connect the classifying spaces of τ int-cobordisms and τSO-cobordisms. Consider
the embedding BSO ↪→ BO as a fibre over a point in S1 ⊂ RP∞ which then factors through
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v : BSO ↪→ Bint (again as the embedding of a fibre):

Bint

��

S1 ×
Z2
BSO w // S1

� _

i

��
BSO �

� //

v

==

BO S∞ ×
Z2
BSO w1 // RP∞

If we now take the approximations BSO(n), Bint(n) and BO(n) of the spaces above and the
approximation v(n) : BSO(n) → Bint(n) of v, then both squares in the diagram below will be
pullback squares:

γSO
n

//

��

γint
n

//

��

γO
n

��
BSO(n)

v(n) // Bint(n) // BO(n)

But then the same is true for the jet bundles over the spaces BSO(n + k), Bint(n + k) and
BO(n+ k), hence also for the Kazarian spaces and so the suspensions of the approximations of
the universal virtual normal bundles also fit into a diagram

νSO
τ (n)⊕ εn //

��

((

νint
τ (n)⊕ εn //

��

((

νO
τ (n)⊕ εn

��

''
γSO
n+k

//

��

γint
n+k

//

��

γO
n+k

��

KSO
τ (n) //

((

K int
τ (n) //

((

KO
τ (n)

((
BSO(n+ k)

v(n+k) // Bint(n+ k) // BO(n+ k)

with all squares being pullback squares. After these preliminary observations we are ready to
state the following (which is the main statement of theorem I):

Theorem 4.1. For any set τ of stable singularities and any manifold Qq there is a long exact
sequence

. . .
ψm+1−−−−−→CobSO

τ (Q× Rm) φm−−−→CobSO
τ (Q× Rm) χm−−−→Cobint

τ (Q× Rm) ψm−−−→
ψm−−−→CobSO

τ (Q× Rm−1)→ . . .

Proof. Let A ⊂ S1 be any contractible subspace and let B := w−1(A) be its preimage in Bint.
If v : BSO ↪→ Bint was the embedding of the fibre over a point in A, then v(BSO) ⊂ B and the
map v is a homotopy equivalence BSO ∼= B. Moreover, if K is the restriction of the Kazarian
space K int

τ over B ⊂ Bint, then we have a pullback square

KSO
τ

��

// K int
τ |B = K

��
BSO

∼= // B
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with the vertical arrows being fibrations, hence we have K ∼= KSO
τ . Similarly if ν is the restriction

of νint
τ over K ⊂ K int

τ , then we have a pullback square

νSO
τ

��

// νint
τ |K = ν

��
KSO
τ

∼= // K

which implies that ν is stably isomorphic to νSO
τ .

Now let A1 be any point p ∈ S1 and put A2 := S1\{p} (which are contractible subspaces). Let
the preimages of A1 and A2 under w respectively be B1 and B2 (thus we have B1 ∼= BSO ∼= B2),
their preimages in K int

τ be K1 and K2 (thus we have K1 ∼= KSO
τ
∼= K2) and put ν1 := νint

τ |K1

and ν2 := νint
τ |K2 (which are now stably isomorphic to νSO

τ ). Then for all n we have a cofibraion
SnTν2(n) ↪→ SnTνint

τ (n)→ SnTνint
τ (n)/SnTν2(n)

(where ν1(n) and ν2(n) are the appropriate restrictions of νint
τ (n)). Since the normal bun-

dle of K1 ⊂ K int
τ is induced from the normal bundle of p ∈ S1 it is trivial and so we have

SnTνint
τ (n)/SnTν2(n) = Sn+1Tν1(n), hence the cofibration above has the form

SnTνSO
τ (n) ↪→ SnTνint

τ (n)→ Sn+1TνSO
τ (n).

Now applying the functor Ωn+mΓ to the Puppe sequence of this cofibration we get a sequence
of maps

. . .→ ΩmΓTνSO
τ (n)→ ΩmΓTνint

τ (n)→ ΩmΓSTνSO
τ (n)→ Ωm−1ΓTνSO

τ (n)→ . . .

And note that here ΩmΓSTνSO
τ (n) equals Ωm−1ΓTνSO

τ (n). This sequence is infinite to the right
by construction, but it is also infinite to the left since the number n could be arbitrary and we
get the same maps by applying Ωn+mΓ to the n’th suspensions as by applying Ωn+m+1Γ to the
(n + 1)’st suspensions. We also note that the maps in this sequence commute with the natural
maps ΩmΓTνστ (n)→ ΩmΓTνστ (n+1) (for σ = SO, int). Then converging with n to infinity yields
a sequence

. . .→ ΩmΓTνSO
τ → ΩmΓTνint

τ → Ωm−1ΓTνSO
τ → Ωm−1ΓTνSO

τ → . . .

of the direct limits.
If we then fix a manifold Q and apply the functor [

•
Q, ·] to this sequence, then we obtain the

long exact sequence of cobordism groups as claimed. □

Remark 4.2. In the proof above we used the cofibrations
SnTνSO

τ (n) ↪→ SnTνint
τ (n)→ Sn+1TνSO

τ (n)
for all n. Later we will refer to this (and to similar occurences) as a cofibration

TνSO
τ ↪→ Tνint

τ → STνSO
τ .

Although these are not actual spaces, applying the functor Γ to them yields a well-defined
fibration (cf. the proof of [Sz2, theorem 8]) which is a fibration between the corresponding
spectra described in remark 3.4.

Remark 4.3. If we had in theorem 4.1 Q = Rq, then the same long exact sequence could be
obtained from the cofibration

TνSO
τ ↪→ Tνint

τ → STνSO
τ

by just applying the functor Γ which yields a fibration

ΓTνint
τ

ΓTνSO
τ−−−−−→ΓSTνSO

τ

and then taking the homotopy long exact sequence of this.
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Now to prove theorem I we only have to describe the homomorphisms in the above exact
sequence.

5. Description of the homomorphisms φm, χm and ψm

First fix a manifold K, a vector bundle ζ → K of rank r, a closed submanifold A ⊂ K of
codimension m and with normal bundle ξ and put B := K\A. If we denote by Embζ(n, Pn+r) the
cobordism set (or group in the interesting cases) of n-manifolds embedded into a fixed manifold
Pn+r with normal bundle induced from ζ (i.e. ζ-embeddings), then we have

Embζ(n, P ) ∼= [ •
P , Tζ].

Hence the Puppe sequence of the cofibration Tζ|B ↪→ Tζ → Tζ/Tζ|B = T (ζ|A ⊕ ξ) gives us a
sequence of homomorphisms

Embζ|B (n, P )→ Embζ(n, P )→ Embζ|A⊕ξ(n−m,P ) ∂−−→Embζ|B⊕ε1
(n− 1, P )→ . . .

of cobordism sets/groups (which is exact in the stable dimensions).

Lemma 5.1. Let f : Mn−m ↪→ Pn+r be a (ζ|A ⊕ ξ)-embedding which yields a decomposition
νf = (ζ|A)M⊕ξM (with (ζ|A)M and ξM induced from ζ|A and ξ respectively) and the exponential
map can be used to extend f to an embedding f̃ of the total space of ξM into a small neighbourhood
of f(M). Then the boundary homomorphism ∂ assigns to the cobordism class [f ] the class of
f̃ |SξM

which has codimension r+1, is endowed with the natural normal vector field of the sphere
bundle and the orthogonal complement of this trivial subbundle in its normal bundle is induced
from ζ|B.

Proof. We obtain T (ζ|A⊕ξ) in the Puppe sequence by restricting ζ to a tubular neighbourhood
U ⊂ K of A and then factoring Tζ by the complement of this restriction, that is, attaching the
cone CT (ζ|K\U ). The next item in the sequence is ST (ζ|B) which we get by gluing the cone CTζ
to the previously obtained space. In the following we shall always mean the above representations
of the spaces T (ζ|A ⊕ ξ) and ST (ζ|B).

Figure 1. We show the local form of T (ζ|A ⊕ ξ) (on the left) and ST (ζ|B) (on the
right) in the case r = 0, m = 1.

If the homotopy class of κf : •
P → T (ζ|A⊕ξ) induces the cobordism class of f : M ↪→ P (such

that f(M) = κ−1
f (A)), then its image under

∂ : [ •
P , T (ζ|A ⊕ ξ)]→ [ •

P , ST (ζ|B)]
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is represented by λf : •
P → ST (ζ|B) which we get by taking the portion of the image of κf in

the total space of ζ|U and pushing it toward the special point of the cone CT (ζ|U ) ⊂ CTζ, in
this way detaching it from A, and otherwise leaving the rest of κf unchanged.

Figure 2. We show the local form of the image of κf (on the left) and λf (on the
right) in ST (ζ|B) again in the case r = 0, m = 1.

The inducing map κf is such that the exponential image of the normal bundle
νf = (ζ|A)M ⊕ ξM

(restricted to a small neighbourhood) is the preimage of a tubular neighbourhood of
A ⊂ T (ζ|A ⊕ ξ)

and it is mapped fibrewise bijectively to its image in this neighbourhood. Thus we may assume
that the image of f̃ coincides with κ−1

f (U) such that f̃(SξM ) = κ−1
f (∂U) and κf is again a

fibrewise bijection from SξM to ∂U |κf (κ−1
f

(A)).
Then we can assume that the image of λf intersects the base space K only in ∂U (this

intersection is in B = K \ A) and λf restricted to the preimage of this intersection coincides
with κf . Hence for any point p ∈ (κf ◦ f)−1(A) we have that λf maps the sphere f̃(SpξM ) to
B and the union of these (that is, f̃(SξM )) is the whole λ−1

f (B). Since SξM is a sphere bundle,
its embedding has a natural normal vector field. This trivialises the subbundle of its normal
bundle induced from the direction of the suspension in ST (ζ|B). The orthogonal complement of
this in the normal bundle of f̃(SξM ) is then induced from the ζ|B part of the normal bundle of
B ⊂ ST (ζ|B). This is what we wanted to prove. □

If the manifold above has the form K = S1 ×
Z2
V and the submanifold A is a fibre V , then we

have ξ = ε1, B ∼= V and ζ|B ∼= ζ|A = ζ|V , hence the sequence above has the form

Embζ|V (n, P )→ Embζ(n, P )→ Embζ|V ⊕ε1
(n− 1, P ) ∂−−→Embζ|V ⊕ε1

(n− 1, P )→ . . .

Corollary 5.2. The boundary homomorphism ∂ in this case is id +ι where ι is the involution
which acts on a cobordism class represented by a 1-framed ζ|V -embedding f : Mn−1 ↪→ Pn+r such
that it inverts its framing vector field v and in the orthogonal complement of v in νf (induced
from ζ|V ) it applies the Z2-action of V .

Proof. We want to understand the embedding f̃ |SξM
in the lemma above in this special case.

Now ξ is a trivial line bundle, so SζM = M− ⊔M+ where the M± are both diffeomorphic to
M , the maps f± := f̃ |M± can be identified with f and the normal vector fields v± giving the
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1-framing of these two maps are opposite since these are the natural (say outward pointing)
vectors of a sphere bundle. Thus we may assume that the 1-framing v+ of f+ is the same as the
1-framing v of f and v− is opposite to it.

What is left is to understand how the orthogonal complement of v± in the normal bundle
is induced from ζ|V on the two manifolds M±. If our fixed fibre was A = {p} × V for a point
p ∈ S1, then (with the notation of the previous proof) the tubular neighbourhood U ⊂ K is
(p− ε, p+ ε)× V for a small number ε. Now f(M) = κ−1

f ({p} × V ) and the part of νf induced
from ζ|V is pulled back by the restriction of κf from the bundle over {p} × V . Identifying the
fibres in [p− ε, p+ ε]×V in the trivial way then yields that the ζ|V parts of the normal bundles
of f±(M±) = κ−1

f ({p± ε}× V ) are induced by the same map from the bundle over {p± ε}× V .
But then identifying the fibres over S1 \ {p} (i.e. in B) instead of [p − ε, p + ε] changes the
identification of {p+ ε} × V with {p− ε} × V by applying the Z2-action in one of them, say in
{p− ε} × V .

Thus we got that both the 1-framing of f+ and the inducing map of the rest of its normal
bundle coincide with those of f , on the other hand, the 1-framing of f− is opposite to that of f
and the inducing map of the rest of its normal bundle is composed with the Z2-action in V . Hence
we have ∂[(f, v)] = [(f+, v+)] + [(f−, v−)] where [(f+, v+)] = [(f, v)] and [(f−, v−)] = ι[(f, v)] for
the involution ι described in our statement above. □

Proposition 5.3. φm : CobSO
τ (Q × Rm) → CobSO

τ (Q × Rm) is of the form id +ι where ι is
the involution which, when representing cobordism classes by τSO-embeddings (see remark 3.7),
composes a map with the reflection to a hypersurface Q × Rm+r−1 ⊂ Q × Rm+r but does not
change its orientation.

Proof. Let q be the dimension of Q and put n := q + m − k. Then remark 3.7 and theorem
3.11 show that for σ = int,SO the group Cobστ (Qq × Rm) is naturally isomorphic to

Embστ (n,Q× Rm+r) ∼= Embν
σ
τ (r)⊕εr

(n,Q× Rm+r)
where r is a sufficiently large number. Observe also that we have K int

τ = S1 ×
Z2
KSO
τ and, using

the notation of the proof of theorem 4.1, we let K1 be the fibre of K int
τ over a point in S1 and

K2 is its complement in K int
τ and for i = 1, 2 we let the virtual bundle νi be the restriction

of νint
τ over Ki (hence Ki

∼= KSO
τ and νi ∼= νSO

τ ). We now think of these Kazarian spaces
as finite dimensional approximations of the actual spaces (hence closed manifolds) over which
the (r − 1)’st suspensions of the universal virtual normal bundles exist as (non-virtual) vector
bundles, but for simplicity of notation we are not indicating this.

Then the source and target of φm are
[Sm+r •

Q,SrTν1] and [Sm+r •
Q,SrTν2]

respectively, thus we are in the setting of corollary 5.2 with K = K int
τ , V = KSO

τ , A = K1,
B = K2 and ζ = νint

τ ⊕ εr with ζ|V = νSO
τ ⊕ εr, and so the boundary homomorphism ∂ = φm is

indeed id +ι. The involution ι here inverts one (say, the last) of the framing vectors of any τSO-
embedding into Q×Rm+r (see remark 3.7) and applies the Z2-action of KSO

τ in the orthogonal
complement of this vector in the normal bundle.

But if r is large enough, then we may assume for any τSO-embedding to map into a hypesur-
face Q × Rr+m−1 ⊂ Q × Rr+m with the last framing vector being the normal vector of this
hypersurface, hence inverting it corresponds to the reflection. This would change the orientation
of the normal bundle but the Z2-action of KSO

τ reverses the orientation in the orthogonal com-
plement too, which means that the orientation of the normal bundle remains unchanged. This
finishes the proof. □

Proposition 5.4. χm : CobSO
τ (Q×Rm)→ Cobint

τ (Q×Rm) is the forgetful homomorphism that
assigns to an oriented cobordism class [f ] the class of (f, 0) as a Wall map.
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Proof. This follows immediately since the map between the classifying spaces is just the in-
clusion of ΓTν2 into ΓTνint

τ (see the proof of theorem 4.1). □

Proposition 5.5. ψm : Cobint
τ (Q × Rm) → CobSO

τ (Q × Rm−1) assigns to a cobordism class
[(f, w)] the oriented cobordism class of f restricted to the Poincaré dual of w which can be
represented by a 1-codimensional submanifold uniquely up to cobordism, the restriction f |PD(w)
can be assumed to be a mapping to Q× Rm−1, it has oriented normal bundle and its cobordism
class only depends on the class of (f, w), hence this assignment is well-defined.

Proof. The cobordism class [(f, w)] is represented by a τ -map f : M → Q×Rm together with
a fixed cohomology class w ∈ H1(M ;Z) such that its mod 2 reduction is w1(νf ). Then we have
a commutative diagram

S1
� _

��
M

w

88

w1(νf ) // RP∞

The Poincaré dual of w is represented by the codimension-1 submanifold N := w−1(p) ⊂M
for a point p ∈ S1. Note that the normal bundle of N in M is trivial and so f |N has a normal
vector field which is uniquely defined by a fixed normal vector of p in S1; we also have

w1(νf |N
) = w1(νf )|N = 0,

hence f |N is orientable and can be canonically oriented (since the classifying map of the stabili-
sation of νf maps to Bint, hence that of νf |N

maps to the fibre B1 ∼= BSO of Bint over p ∈ S1);
finally we may assume that N intersects each singularity stratum in M transversally, thus f |N
is a τSO⊕1-map.

By (2.1) we have CobSO⊕1
τ (Q×Rm) ∼= CobSO

τ (Q×Rm−1) which means that assigning to the
cobordism class of (f, w) the class of f |N gives a map

Cobint
τ (Q× Rm)→ CobSO

τ (Q× Rm−1)

taking [f ] 7→ [f |PD(w)]. We now only need to prove that this map is well-defined and is the same
as ψm for which it is sufficient to prove that ψm assigns to the classifying map of f the classifying
map of f |N .

We again refer to remark 3.7: [f ] bijectively corresponds to a homotopy class

[κf ] ∈ [Sm
•
Q,ΓTνint

τ ]

represented by κf : Sr+m •
Q→ SrTνint

τ where r is a large number and we again consider such a
finite dimensional approximation of the Kazarian space over which SrTνint

τ exists. In the proof
of theorem 4.1 we obtained the map in the Puppe sequence inducing ψm by factoring T (νint

τ ⊕εr)
by its restriction over the complement of a tubular neighbourhood of K1 ⊂ K int

τ . Recall that
K1 ∼= KSO

τ is the preimage of B1 ∼= BSO ⊂ Bint (the fibre of Bint over p ∈ S1). Thus we have
a diagram

T (νint
τ ⊕ εr) //

q

((

Tγint
r+k

((
ST (ν1 ⊕ εr) // STγSO

r+k

K int
τ

//
?�

OO

Bint(r + k) //
?�

OO

S1

K1
6 V

ii

//?�

OO

B1(r + k)
5 U

hh

//
?�

OO

p

∈



144 ANDRÁS CSÉPAI

where the top two rows are connected by quotient maps which factor by the restrictions of the
Thom spaces over complements of tubular neighbourhoods.

The homomorphism ψm assigns to the homotopy class of the inducing map κf the homotopy
class of its composition with the quotient map q. Now κf pulls back the τ int-embedding f×i (for
an embedding i : M ↪→ Rr) from the embedding of K int

τ into T (νint
τ ⊕ εr) and the composition

q ◦ κf pulls back a representative of ψm[f × i] from the embedding of K1 into ST (ν1 ⊕ εr). But
note that we have N = (q ◦ κf )−1(K1) and its τSO-embedding into Q×Rr+m is f |N × i. Hence
we proved that ψm[f ] = [f |N ] and this is what we needed. □

This finishes the proof of theorem I.

Remark 5.6. If the codimension k is sufficiently large (compared to n), then we have
CobSO

τ (Rn+k) = Ωn and Cobint
τ (Rn+k) = Wn

for any (non-empty) singularity set τ . Hence in the case Q×Rm = Rn+k the portion of the long
exact sequence in theorem I where n is sufficiently small (compared to k) looks like

. . .→ Ωn → Ωn →Wn → Ωn−1 → . . .

If we fix here n, then k can be increased arbitrarily and the homomorphisms in this sequence
do not change, hence this sequence is infinite both to the right and to the left. Moreover, by
the above propositions these homomorphisms can be identified with those in the classical exact
sequence (I), hence theorem I generalises the sequence (I).

Remark 5.7. It is easy to see that propositions 5.3 and 5.5 also extend [Li, lemma 2].

Part II. The unoriented case

6. Cobordism of τG⊕ξ-maps

Fix a stable group G which is the direct limit of the groups G(n). Recall that G(n) has a fixed
linear action on Rn and γGn → BG(n) denotes the universal rank-n vector bundle with structure
group G. Fix also a rank-m vector bundle ξ over the space BG = lim

n→∞BG(n).

Definition 6.1. Let τ be a set of stable singularities. We define a τG⊕ξ-map from a compact
manifold Mn to a manifold Pn+k+m to be the germ along the zero-section of a τG-map

f̃ : ξM → P

where ξM is a rank-m vector bundle over M and f̃ has the following properties:
(i) the differential df̃ restricted to any fibre of ξM is injective,
(ii) noting that (i) implies ν(f̃ |M ) = (νf̃ )|M⊕ξM we require that the map M → BG inducing

the (virtual) G-bundle (νf̃ )|M also pulls back ξM from ξ, thus it pulls back ν(f̃ |M ) ⊕ εr

from γGk+r ⊕ ξ for sufficiently large numbers r.
The cobordism of two τG⊕ξ-maps is defined in the usual way (i.e. as a τG⊕ξ-map to
P×[0, 1] where both the germ and the map to BG inducing the vector bundle extend those of the
boundary) and the cobordism group of τG⊕ξ-maps to the manifold P is denoted by CobG⊕ξ

τ (P ).

Example 6.2. In the case G = SO and ξ = εm, the above definition is exactly the definition of
m-framed τ -maps in [Sz2].

As we saw previously in part I, the main tools for understanding how cobordisms of τ -maps
are induced from the classifying spaces are τ -embeddings. In order to construct the classifying
space of τG⊕ξ-maps we now introduce the following:

Definition 6.3. Let τ be a set of stable singularities. By a τG⊕ξ-embedding of a manifold Mn

into a manifold Qq we mean a quadruple (e,V , ξM ,F ) where
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(i) e : M ↪→ Q is an embedding,
(ii) V = (v1, . . . , vr) where r = q− n− k−m and the vi’s are pointwise independent vector

fields along e(M), i.e. sections of the bundle TQ|e(M); we identify V with the trivialised
subbundle generated by the vi’s,

(iii) ξM is a rank-m subbundle of TQ|e(M) which is pointwise independent of both V and
Te(M) and the normal bundle νe = ν′⊕ξM is induced from the bundle γGk+r⊕ξ|BG(k+r)
over BG(k + r) by a map M → BG(k + r) which pulls back ξM from ξ|BG(k+r) and ν′

from γGk+r,
(iv) F is a foliation of dimension r + m on a neighbourhood of e(M) and it is tangent to

V ⊕ ξM along e(M),
(v) any point p ∈M has a neighbourhood on which the composition of e with the projection

along the leaves of F to a small (n+k)-dimensional transverse slice has at p a singularity
which belongs to τ .

The cobordism of two τG⊕ξ-embeddings is defined in the usual way and the cobordism group of
τG⊕ξ-embeddings of n-manifolds to Q is denoted by EmbG⊕ξ

τ (n,Q).

Remark 6.4. Such a τG⊕ξ-embedding induces a stratification of M by the submanifolds

η(e) := η(e,V , ξM ,F ) := {p ∈M | p ∈ η(π ◦ e)}

where the [η] are the elements of τ and π denotes the local projection around e(p) along the
leaves of F .

Example 6.5. If ξM is a vector bundle over Mn, f̃ : ξM → Pn+k+m is a τG⊕ξ-map and
i : M ↪→ Rr is an embedding, then we can define a τG⊕ξ-embedding (e,V , ξM ,F ) of M into
P×Rr: We choose an arbitrarily small representative f of f̃ and put e := f |M×i; the vector fields
vi arise from a basis in Rr; the bundle ξM can now be viewed as a subbundle of T (P ×Rr)|e(M)
(since for any p ∈M we can identify ξM |p with the translate of dfp(ξM |p) to Te(p)(P ×Rr)); and
F is composed of the leaves f(ξM |p)×Rr intersected by a small neighbourhood of e(M) (for all
p ∈M).

Definition 6.6.
(1) The vector fields V = (v1, . . . , vr) and the foliation F in the above example are called

vertical in P × Rr.
(2) The subsets P × {x} ⊂ P × Rr (for any x ∈ Rr) are called horizontal sections.

The rest of this section consists of constructing the classifying space of the cobordism group
of τG⊕ξ-maps in a similar way as sketched in remark 3.7. First we state a lemma and a theorem
which connect τG⊕ξ-maps with τG⊕ξ-embeddings and give a stabilisation property for these.
Their proofs are the direct analogues of the proofs of [Sz2, lemma 43] and [Sz2, theorem 2], we
just repeat them here for completeness.

Lemma 6.7. Let τ be a set of stable singularities and (e,V , ξM ,F ) be a τG⊕ξ-embedding of
Mn into Pn+k+m × Rr where M is a compact manifold and P is any manifold. Then there is
a diffeotopy Φt (t ∈ [0, 1]) of P × Rr such that Φ0 is the identity and (the differential of) Φ1
takes V to the vertical vector fields V ′ and F to the vertical foliation F ′ around the image of
M . The relative version of this claim is also true, that is, if the vector fields V and the foliation
F are already vertical on a neighbourhood of a compact subset C ⊂ e(M), then the diffeotopy
Φt (t ∈ [0, 1]) is fixed on a neighbourhood of C.

Proof. The manifold M is finitely stratified by the submanifolds

Si :=
⋃

[η]∈τ
dim η(e)=i

η(e), i = 0, . . . , n.
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By the stratified compression theorem ([Sz2, theorem 1], the analogue of the multi-compression
theorem of [RS] for stratified manifolds) there is a diffeotopy of P × Rr which turns the vector
fields V into vertical vector fields. Therefore we may assume that V is already vertical and so
we can also assume that the fibres of ξM are horizontal (i.e. they are in the tangent spaces of
horizontal sections). Hence we only need to find a diffeotopy that takes the foliation F into the
vertical foliation F ′ and its differential keeps the vector fields V = V ′ vertical.

We will recursively deform F into F ′ around the images of the strata Si (i = 0, . . . , n). First
we list some general observations:

(1) If R ⊂ Rr and L,L′ ⊂ P × R are such that each of L and L′ intersects each horizontal
section P × {x} (x ∈ R) exactly once, then a bijective correspondence L→ L′ arises by
associating the points on the same horizontal section to each other.

(2) If A ⊂ P × Rr is such that for each a ∈ A subsets Ra, La, L′
a are given as in (1), then a

family of bijective maps {La → L′
a | a ∈ A} arises. If we have

La1 ∩ La2 = ∅ = L′
a1
∩ L′

a2

for any two different points a1, a2 ∈ A, then the union of these bijections gives a contin-
uous bijective map

φ : U :=
⋃
a∈A

La →
⋃
a∈A

L′
a =: U ′

(3) If the subsets A,La, L′
a in (2) are submanifolds of P × Rr such that U and U ′ are also

submanifolds, then the map φ is smooth. In this case for all points (p, x) ∈ U we can
join (p, x) and φ(p, x) by a minimal geodesic in the horizontal section P ×{x}, and using
these we can extend φ to an isotopy φt (t ∈ [0, 1]) of U (for which φ0 = idU and φ1 = φ).

Denote by V ⊥ the orthogonal complement of the bundle V |e(S0)⊕ Te(S0) in T (P ×Rr)|e(S0)
(with respect to some Riemannian metric). Choose a small neighbourhood A of e(S0) in exp(V ⊥)
(where exp denotes the exponential map of P × Rr) and for all a ∈ A let La and L′

a be the
intersections of a small neighbourhood of a and the leaves of F and F ′ respectively.

If the neighbourhoods were chosen sufficiently small, then we are in the setting of (3), hence
a diffeomorphism φ : U → U ′ arises (with the same notations as above). Note that U and
U ′ are both neighbourhoods of e(S0), the map φ fixes e(S0) and for all a ∈ e(S0) we have
dφa = idTa(P×Rm). Observe that where the foliations F and F ′ initially coincide, this method
just gives the identity for all t ∈ [0, 1]. The isotopy we get this way can be extended to a diffeotopy
of P × Rr (by the isotopy extension theorem) and it takes the leaves of F to the leaves of F ′

around the image of S0.
Next we repeat the same procedure around e(S1), the image of the next stratum, to get a new

diffeotopy (that leaves a neighbourhood of e(S0) unchanged), and so on. In the end we obtain a
diffeotopy of P × Rr which turns F into the vertical foliation F ′ around the image of M and
does not change the vertical vector fields V = V ′. □

Theorem 6.8. For any set τ of stable singularities and any manifold Pn+k+m, if the number r
is sufficiently large (compared to n), then we have

CobG⊕ξ
τ (P ) ∼= EmbG⊕ξ

τ (n, P × Rr).

Proof. Take any number r ≥ 2n + 4, so any manifold of dimension at most n + 1 can be
embedded into Rr uniquely up to isotopy. We will define two homomorphisms

α : CobG⊕ξ
τ (P )→ EmbG⊕ξ

τ (n, P × Rr) and β : EmbG⊕ξ
τ (n, P × Rr)→ CobG⊕ξ

τ (P )

which will turn out to be each other’s inverses.

I. Construction of α : CobG⊕ξ
τ (P )→ EmbG⊕ξ

τ (n, P × Rr).
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For a τG⊕ξ-map f̃ : ξM → Pn+k we can choose any embedding i : Mn ↪→ Rr and define a
τG⊕ξ-embedding (e,V , ξM ,F ) as in example 6.5. Define the map α to assign to the cobordism
class of f the cobordism class of e = (e,V , ξM ,F ). In order to prove that α is well-defined, we
have to show that the cobordism class of e does not depend on the choice of the embedding i
and the representative of the class [f ].
Claim. If i0 : M ↪→ Rr and i1 : M ↪→ Rr are two embeddings and the above method assigns
to them the τG⊕ξ-embeddings e0 = (e0,V0, ξM ,F0) and e1 = (e1,V1, ξM ,F1) respectively, then
e0 ∼ e1.
Proof. Because of the dimension condition, i0 and i1 can be connected by an isotopy
it (t ∈ [0, 1]). We define a τG⊕ξ-embedding

E : M × [0, 1] ↪→ P × Rr × [0, 1]; (p, t) 7→ (f(p), it(p), t)
(again with the horizontal ξM and the vertical vector fields and foliation), which is precisely a
cobordism between e0 and e1. ⋄
Claim. If f̃0 : ξM0 → P and f̃1 : ξM1 → P are cobordant τG⊕ξ-maps and the above method as-
signs to them the τG⊕ξ-embeddings e0 = (e0,V0, ξM0 ,F0) and e1 = (e1,V1, ξM1 ,F1) respectively,
then e0 ∼ e1.
Proof. Let F̃ : ξW → P × [0, 1] be a cobordism between f̃0 and f̃1 (where ξW is a vector bundle
over a manifold Wn+1). Again by the dimension condition, the embedding

i0 ⊔ i1 : M0 ⊔M1 = ∂W ↪→ Rr

extends to an embedding I : W ↪→ Rr. Hence the map E := F × I is a τG⊕ξ-embedding of W
into P × Rr × [0, 1] (the vector fields and foliation are again vertical and ξW is horizontal) and
it is easy to see that this is a cobordism between e0 and e1. ⋄
II. Construction of β : EmbG⊕ξ

τ (n, P × Rr)→ CobG⊕ξ
τ (P ).

If e = (e,V , ξM ,F ) is a τG⊕ξ-embedding of a manifold Mn into Pn+k+m × Rr, then by the
above lemma we obtain a diffeotopy of P × Rr that turns V and F vertical. A diffeotopy of
P × Rr also yields a cobordism of τG⊕ξ-embeddings, hence we can assume that V and F were
initially vertical. Now we can define β to assign to the cobordism class of e the cobordism class
of the τG⊕ξ-map f̃ : ξM → P for which f̃ |M = prP ◦e and f̃ |ξM |p

= prP ◦ expp for all p ∈ e(M)
(where prP denotes the projection to P and expp now denotes the exponential of the leaf of F

at p). In order to prove that β is well-defined, we have to show that the cobordism class of f̃
does not depend on the choice of the representative of the cobordism class [e].
Claim. If e0 = (e0,V0, ξM0 ,F0) and e1 = (e1,V1, ξM1 ,F1) are cobordant τG⊕ξ-embeddings of
the manifolds M0 and M1 respectively into P × Rr and the above method assigns to them the
τG⊕ξ-maps f̃0 : ξM0 → P and f̃1 : ξM1 → P respectively, then f0 ∼ f1.
Proof. We applied a diffeotopy φit (t ∈ [0, 1]) of P × Rr × {i} to turn the vector fields Vi and
foliation Fi vertical (for i = 0, 1), this way we obtained the τG⊕ξ-map f̃i : ξMi → P × {i}. If
e0 and e1 are connected by a cobordism E = (E,U , ξW ,G ), which is a τG⊕ξ-embedding of a
manifold Wn+1 into P ×Rr× [0, 1], then we can apply (the relative version of) the above lemma
to obtain a diffeotopy Φt (t ∈ [0, 1]) of P ×Rr × [0, 1] that extends the given diffeotopies φ0

t and
φ1
t on the boundary and turns the vector fields U and the foliation G vertical. Now composing

E with the final diffeomorphism Φ1 and the projection to P × [0, 1] as above, we obtain a
τG⊕ξ-cobordism F̃ : ξW → P × [0, 1] between f0 and f1 for which F̃ |W = prP×[0,1] ◦Φ1 ◦ E and
F̃ |ξW |p

= prP×[0,1] ◦Φ1 ◦ expp for all p ∈ E(W ). ⋄
The constructions of α and β imply also that they are homomorphisms and by design β is the

inverse of α, hence they are both isomophisms between CobG⊕ξ
τ (P ) and EmbG⊕ξ

τ (n, P ×Rr). □
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Now we can describe the classifying space XG⊕ξ
τ for which we shall need the pullback of

ξ → BG by the fibration π : KG
τ → BG (see definition 3.1).

Theorem 6.9. If τ is a set of stable singularities, then we have XG⊕ξ
τ

∼= ΓT (νGτ ⊕ π∗ξ).

Proof. We need to prove that cobordisms of τG⊕ξ-maps to an arbitrary fixed manifold Pn+k+m

bijectively correspond to homotopy classes of maps •
P → ΓT (νGτ ⊕ π∗ξ). Since we have

CobG⊕ξ
τ (P ) ∼= EmbG⊕ξ

τ (n, P × Rr) and [ •
P ,ΓT (νGτ ⊕ π∗ξ)] ∼= [Sr •

P , SrT (νGτ ⊕ π∗ξ)]

for sufficiently large numbers r, it is enough to prove

EmbG⊕ξ
τ (n, P × Rr) ∼= [Sr •

P , SrT (νGτ ⊕ π∗ξ)]

if r is large enough. As in the proof of the previous theorem we will define two homomorphisms

α : EmbG⊕ξ
τ (n, P × Rr)→ [Sr •

P , SrT (νGτ ⊕ π∗ξ)]

and

β : [Sr •
P , S

rT (νGτ ⊕ π∗ξ)]→ EmbG⊕ξ
τ (n, P × Rr)

which are each other’s inverses as we shall see.

I. Construction of α : EmbG⊕ξ
τ (n, P × Rr)→ [Sr •

P , SrT (νGτ ⊕ π∗ξ)].

Let e = (e,V , ξM ,F ) be a τG⊕ξ-embedding of a manifold Mn into P × Rr. The normal
bundle of e is of the form νe = ν′ ⊕ ξM and by definition it is induced from γGk+r ⊕ ξ|BG(k+r) by
a map µe : M → BG(k + r). The embedding e can be written as the composition

M
i−−→DξM

j−−→Dνe ↪→ P × Rr

where the disk bundles DξM and Dνe are viewed as closed embedded tubular neighbourhoods
with j−1(Sνe) = SξM and the fibres of DξM are identified with the intersections of the leaves
of F with the tubular neighbourhood DξM .

Now the vector fields V can be extended to DξM by translation along the fibres and if L
is the leaf of F at a point p ∈ e(M), then we can use its exponential to define a foliation of
dimension r on L which is tangent to the extended V along the disk DpξM . Applying this for all
points p ∈ e(M) we obtain the structure of a τG-embedding on j. Hence there are inducing maps
κj : DξM → KG

τ and κ̃j : Dνe → SrTνGτ that pull back j from the embedding KG
τ ↪→ SrTνGτ

(again we are considering such a large number r and such a finite dimensional approximation of
the Kazarian space that the space SrTνGτ exists).

The normal bundle of e(M) in the disk bundle DξM is induced by the µe above and this all
fits into a diagram

Dνe
κ̃j //

� _

��

SrTνGτ // TγGk+r

Tξ|BG(k+r) DξMoo
, �
j
::

κj // KG
τ

, �

;;

π // BG(k + r)
+ �

88

P × Rr

BG(k + r)
?�

OO

M
µeoo ?�

i

OO

+ �
e
99
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Since µe induces the normal bundle of e, we have in the above diagram µe = π ◦ κj ◦ i, that is,
the inducing map µe factors through the Kazarian space KG

τ . But then we have a diagram

µ∗
eξ = ξM

��

// π∗ξ

��

// ξ|BG(k+r)

��

µ∗
eγ
G
k+r = ν′

((

// π∗γGk+r = νGτ ⊕ εr

((

// γGk+r

&&
M

κe //

µe

22KG
τ

π // BG(k + r)

where all squares are pullback squares.
Considering now the sum γk+r ⊕ ξ|BG(k+r), we get

νe = κ∗
eπ

∗(γk+r ⊕ ξ|BG(k+r)) = κ∗
e(νGτ ⊕ εr ⊕ π∗ξ),

hence the embedding of M into P × Rr is induced by a diagram

Sr
•
P

κ̃e // SrT (νGτ ⊕ π∗ξ)

M
?�

e

OO

κe // KG
τ

?�

OO

This way we can assign to the τG⊕ξ-embedding e the map κ̃e and since we can apply this
construction to cobordisms as well, the assignment α[e] := [κ̃e] is well-defined.

II. Construction of β : [Sr •
P , SrT (νGτ ⊕ π∗ξ)]→ EmbG⊕ξ

τ (n, P × Rr).

Suppose we have a map κ̃ : Sr •
P → SrT (νGτ ⊕ π∗ξ) and put Mn := κ̃−1(KG

τ ) and κ := κ̃|M .
Now the normal bundle of M in P × Rr is of the form ν′ ⊕ ξM where ν′ and ξM are induced
from γGk+r and ξ|BG(k+r) respectively by the map π ◦ κ : M → BG(k + r).

If we take the preimage of the disk bundle Dξ|BG(k+r) ⊂ D(γGk+r ⊕ ξ|BG(k+r)) in P × Rr (of
a sufficiently small radius), then we get an embedding j : DξM ↪→ DνM where νM is the normal
bundle of M and the disk bundles are again considered as closed tubular neighbourhoods. Now
we can project DνM to the orthogonal complement of DξM in it along the fibres of DξM and if
we denote this projection by ρ, then the composition κ̃ ◦ ρ is a map of DνM to SrTνGτ such that
the preimage of KG

τ is DξM , hence it gives the structure of a τG-embedding to j.
We obtain vector fields V = (v1, . . . , vr) along M by restricting the vector fields along DξM .

We also have a foliation G of dimension r on a neighbourhood of M that is tangent to V along
M and the projection ρ maps each leaf of G again into a leaf of G because of the definition of
the inducing map of the τG-embedding j. So we can define a foliation F of dimension r+m by
defining the leaf of F at a point p to be the preimage of the leaf of G at p under ρ.

This yields the structure of a τG⊕ξ-embedding e = (e,V , ξM ,F ) on the embedding of M into
P × Rr. The same method assigns to a homotopy of κ̃ : Sr •

P → SrT (νGτ ⊕ π∗ξ) a cobordism of
e, hence we can define β[κ̃] := [e].

The above constructions imply that α and β are homomorphisms and also that they are
inverses of each other, hence we have proved EmbG⊕ξ

τ (n, P × Rr) ∼= [Sr •
P , SrT (νGτ ⊕ π∗ξ)] and

this is what we wanted. □

7. Another long exact sequence

We shall apply the results of the section above in the caseG = O and ξ = 2 det γ = det γ⊕det γ
(recall that det γ was the line bundle over BO which induces det γO

n over BO(n) for all n). The



150 ANDRÁS CSÉPAI

pullback of det γ over the Kazarian space KO
τ is then det νO

τ and so the classifying space of
τO⊕2 det γ-cobordisms is ΓT (νO

τ ⊕ 2 det νO
τ ).

Remark 7.1. Note that informally a τO⊕2 det γ-map can be thought of as a “τ -map”
f : Mn → Pn+k+2 with normal bundle of the form νf = ν′ ⊕ 2 det ν′. Now this det ν′ coincides
with det νf hence f is a map with such a virtual normal bundle from which two (non-virtual)
line bundles isomorphic to its determinant bundle split off.

The rest of part II is mainly devoted to the proof of theorem II. This will be quite similar to
the proof of theorem I in part I.

Theorem 7.2. For any set τ of stable singularities and any manifold Qq there is a long exact
sequence

. . .
ψ′

m+1−−−−−→Cobint
τ (Q× Rm) φ′

m−−−→CobO
τ (Q× Rm) χ′

m−−−→CobO⊕2 det γ
τ (Q× Rm) ψ′

m−−−→
ψ′

m−−−→Cobint
τ (Q× Rm−1)→ . . .

Proof. Recall the pullback diagram

Bint //� _

��

S1
� _

i

��
BO w1 // RP∞

from definition 3.8. The complement of S1 in RP∞ deformation retracts to RP∞−2 which
is also a deformation retract of RP∞, hence by pulling back its embedding by the fibration
w1 : BO → RP∞ to the embedding of a space B we get a homotopy equivalence as shown on
the diagram

BO w1 // RP∞

B //
� ?

∼=

OO

RP∞−2
� ?

∼=

OO

Next we pull back the bundle KO
τ → BO by the homotopy equivalence B → BO to a bundle

K → B, thus we have K ∼= KO
τ . Then the pullback of the universal virtual normal bundle νO

τ

over K, which will be denoted ν, is stably isomorphic to νO
τ .

Take the virtual bundle νint
τ overK int

τ ⊂ KO
τ (which is the restriction of νO

τ ) and the cofibration

SnTνint
τ (n) ↪→ SnTνO

τ (n)→ SnTνO
τ (n)/SnTνint

τ (n)

for any n. The normal bundle of K ⊂ KO
τ is induced from the normal bundle of RP∞−2 ⊂ RP∞

by the composition of w1 : B → RP∞−2 with the fibration K → B. The normal bundle of
RP∞−2 is 2γO

1 , this induces 2 det γ over B and this finally induces 2 det ν over the Kazarian
space K, hence the cofibration above has the form

SnTνint
τ (n) ↪→ SnTνO

τ (n)→ SnT (νO
τ (n)⊕ 2 det νO

τ (n)).

Now applying the functor Ωn+mΓ to the Puppe sequence of this cofibration we get a sequence
of maps

. . .→ ΩmΓTνint
τ (n)→ ΩmΓTνO

τ (n)→ ΩmΓT (νO
τ (n)⊕ 2 det νO

τ (n))→ Ωm−1ΓTνint
τ (n)→ . . .

This sequence is infinite to the right by construction, but it is also infinite to the left since
the number n could be arbitrary and we get the same maps by applying Ωn+mΓ to the n’th
suspensions as by applying Ωn+m+1Γ to the (n + 1)’st suspensions. We can now converge with
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n to infinity since the maps in this sequence commute with the natural maps induced by the
inclusions Kσ

τ (n) ⊂ Kσ
τ (n+ 1) (for σ = int,O) and so we get a sequence of maps

. . .→ ΩmΓTνint
τ → ΩmΓTνO

τ → ΩmΓT (νO
τ ⊕ 2 det νO

τ )→ Ωm−1ΓTνint
τ → . . .

If we then fix a manifold Q and apply the functor [
•
Q, ·] to this sequence, then we obtain the

long exact sequence of cobordism groups as claimed. □

Remark 7.3. Similarly to the oriented case, if we had Q = Rq, then the same long exact
sequence could be obtained by turning the cofibration

Tνint
τ ↪→ TνO

τ → T (νO
τ ⊕ 2 det νO

τ )
(cf. remark 4.2) into the fibration

ΓTνO
τ

ΓTνint
τ−−−−−→ΓT (νO

τ ⊕ 2 det νO
τ )

by the functor Γ and taking its homotopy long exact sequence.

Observe that the restriction of 2γO
1 over the 1-cell S1 ⊂ RP∞ is trivial, hence the pullback

of 2 det γ → BO over Bint will also be trivial which then induces the trivial bundle over the
Kazarian space K int

τ as well. Thus analogously to the proof of theorem 7.2 we get a cofibration
S2Tνint

τ ↪→ T (νO
τ ⊕ 2 det νO

τ )→ T (νO
τ ⊕ 4 det νO

τ )
and iterating this process yields:

Corollary 7.4. For any set τ of stable singularities and any manifold Qq and integer r ≥ 0
there is a long exact sequence

. . .→ Cobint
τ (Q× Rm−2r)→ CobO⊕2r det γ

τ (Q× Rm)→ CobO⊕2(r+1) det γ
τ (Q× Rm)→

→ Cobint
τ (Q× Rm−2r−1)→ . . .

Remark 7.5. It would be tempting to try finding homomorphisms which complete the commu-
tative diagram

. . . // Cobint
τ (Q× Rm)

id
��

// CobO⊕2r det γ
τ (Q× Rm+2r)

��

// CobO⊕2(r+1) det γ
τ (Q× Rm+2r)

��

// . . .

. . . // Cobint
τ (Q× Rm) // CobO⊕2s det γ

τ (Q× Rm+2s) // CobO⊕2(s+1) det γ
τ (Q× Rm+2s) // . . .

with the dashed arrows for different numbers r and s, however, it seems that such homomor-
phisms do not exist in general.

Now it remains from the proof of theorem II to describe the homomorphisms φ′
m and χ′

m in
the exact sequence in theorem 7.2.

8. Description of the homomorphisms φ′
m, χ′

m and ψ′
m

Proposition 8.1. φ′
m : Cobint

τ (Q× Rm)→ CobO
τ (Q× Rm) is the forgetful homomorphism that

assigns to the cobordism class of a Wall map (f, w) the unoriented cobordism class of f .

Proof. This follows immediately since the map between the classifying spaces is just the in-
clusion of ΓTνint

τ into ΓTνO
τ (see the proof of theorem 7.2). □

Proposition 8.2. χ′
m : CobO

τ (Q × Rm) → CobO⊕2 det γ
τ (Q × Rm) assigns to a cobordism class

[f ] the cobordism class of f restricted to the Poincaré dual of w1(νf )2 which can be represented
by a 2-codimensional submanifold uniquely up to cobordism, the restriction f |PD(w1(νf )2) has a
normal O ⊕ 2 det γ-structure and its cobordism class only depends on the class of f , hence this
assignment is well-defined.
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Proof. This is completely analogous to proposition 5.5. For an unoriented cobordism class
[f ] ∈ CobO

τ (Q× Rm) represented by a τ -map f : M → Q× Rm the Poincaré dual of

w1(νf ) : M → RP∞

is represented by the preimage w1(νf )−1(RP∞−1). Then choosing two distinct hyperplanes
RP∞−1

1 and RP∞−1
2 in RP∞ the Poincaré dual of w1(νf )2 is represented by

w1(νf )−1(RP∞−1
1 ) ∩ w1(νf )−1(RP∞−1

2 ) = w1(νf )−1(RP∞−1
1 ∩ RP∞−1

2 )
= w1(νf )−1(RP∞−2).

Now the same argument as in the proof of proposition 5.5 yields that χ′
m assigns to the cobordism

class of f the class of f |w1(νf )−1(RP∞−2) = f |PD(w1(νf )2). □

This finishes the proof of theorem II.

Remark 8.3. Although there are no apparent interesting algebraic properties of the homomor-
phism ψ′

m : CobO⊕2 det γ
τ (Q×Rm)→ Cobint

τ (Q×Rm−1), it has a nice geometric description. Let
q be the dimension of Q and put n := q +m− k. Observe that we have

CobO⊕2 det γ
τ (Qq × Rm) ∼= EmbO⊕2 det γ

τ (n− 2, Q× Rm+r)
∼= Embν

O
τ ⊕εr⊕2 det νO

τ (n− 2, Q× Rm+r)

and

Cobint
τ (Qq × Rm−1) ∼= Embint⊕1

τ (n− 1, Q× Rm+r)
∼= Embν

int
τ ⊕εr+1

(n− 1, Q× Rm+r)

where r is sufficiently large, moreover, ψ′
m is obtained as the boundary homomorphism in the

Puppe sequence of classifying spaces. Hence we can apply lemma 5.1 by setting the K, A, ξ, B
and ζ in the lemma to be KO

τ , K, 2 det ν, K int
τ and νO

τ ⊕ εr respectively. This yields that for any
cobordism class [f̃ ] ∈ CobO⊕2 det γ

τ (Qq × Rm) its image ψ′
m[f̃ ] is represented by the mapping of

SξM (that is, the circle bundle of the 2 det γ-part of the normal bundle of f̃ |M ) by the restriction
of a representative of f̃ , together with its natural outward normal vector field.

Remark 8.4. As in remark 5.6 consider again the case Q×Rm = Rn+k where the codimension k
is large (compared to n). Then for any (non-empty) singularity set τ we have Cobint

τ (Rn+k) = Wn

and CobO
τ (Rn+k) = Nn, moreover, we also have CobO⊕2 det γ

τ (Rn+k) = Nn−2 since for any
embedding i : Mn−2 ↪→ Rn+k with normal bundle νi = ν′ ⊕ 2 det ν′ this det ν′ coincides with
det νi which is isomorphic to detTM , so this normal structure only depends on M and if k is
large enough, 2 detTM can be embedded into Rn+k uniquely up to isotopy.

Thus theorem II gives an exact sequence for which the portion where n is sufficiently small
(compared to k) looks like

. . .→Wn → Nn → Nn−2 →Wn−1 → . . .

and if we increase k with a fixed n, then the homomorphisms do not change which means that
this sequence is infinite both to the right and to the left. Then the propositions above show
that this sequence can be identified with that in [At, theorem 4.3]. Since the codimension k was
assumed to be large enough, the manifold constructed in [At, theorem 4.4] can also be mapped to
Rn+k uniquely up to isotopy which now gives a splitting Nn−2 → Nn of this long exact sequence
yielding the classical exact sequence (II), hence theorem II really generalises the sequence (II).
Later, in proposition 9.3 we shall show that such a splitting cannot exist in general.
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Part III. Consequences and applications

In the following two sections we shall apply our two exact sequences for the simplest types of
singularity sets, i.e. for τ = {Σ0} (the case of immersions) and

τ = {Σ0,Σ1,0}, τ = {Σ0,Σ1,0,Σ1,1,0}

and so on (the case of Morin maps). Our first goal will always be to describe how the endomor-
phism φm in theorem I acts rationally. By [Sz2, proposition 90] we have

CobSO
τ (Pn+k)⊗Q ∼=

n+k⊕
i=1

Hi(P ;Q)⊗Hi−k(KSO
τ ;Q),

in particular CobSO
τ (Rn+k)⊗Q ∼= Hn(KSO

τ ;Q), hence in order to understand φm rationally we
only have to know how the involution which induces ι acts on the Kazarian space KSO

τ .
After this rational description we shall compute in both cases some cobordism groups of Wall

τ -maps for the above singularity sets τ which is interesting because Wall cobordism groups are
what connect oriented and unoriented cobordism groups. When viewing manifolds abstractly,
the classical sequences (I) and (II) yield an obstruction for an unoriented cobordism class can be
representable by an orientable manifold, namely that it should be a Wall cobordism class. Now
the forgetful homomorphism φ′

m in theorem II is not always injective but otherwise we have the
same property, namely for an unoriented τ -cobordism class to be representable by an orientable
τ -map it should be the φ′

m-image of a Wall τ -cobordism class.

9. Immersions

In this section we investigate the case τ = {Σ0}, i.e. τ -maps are the k-codimensional immer-
sions. We shall use the notation

Immσ(n, k) := Cobσ{Σ0}(Rn+k) and Immσ(n, Pn+k) := Cobσ{Σ0}(Pn+k)

for any stable normal normal structure σ and any manifold P (except that for σ = G ⊕ ξ we
decrease n and increase k by the rank of ξ). Now the oriented Kazarian space is KSO

{Σ0} = BSO(k)
and the universal normal bundle over it is γSO

k and we immediately obtain:

Proposition 9.1. The endomorphism φn+k ⊗Q of ImmSO(n, k)⊗Q is the following:
(1) if k = 2m is even and q is the number of non-negative integers a0, a1, . . . , am such that

a0 is odd and n = a0k +
m∑
i=1

ai4i, then φn+k ⊗ Q is trivial on q generators and the

multiplication by 2 on the rest of the generators (in an appropriate basis),
(2) if k is odd, then φn+k ⊗Q is the multiplication by 2.

Proof. We have
ImmSO(∗, k)⊗Q ∼= H∗(BSO(k);Q) =

=
{
Q[p1, . . . , pm, e]/(e2 − pm), if k = 2m is even
Q[p1, . . . , pm], if k = 2m+ 1 is odd

where the pi ∈ H4i(BSO(k);Q) are the Pontryagin classes and e ∈ Hk(BSO;Q) is the Eu-
ler class of γSO

k . The identification of ImmSO(n, k) ⊗ Q ∼= πsn+k+1(STγSO
k ) with the degree-n

part of this graded ring follows from the stable Hurewicz homomorphism (which is rationally
iso), the universal coefficient theorem and the Thom isomorphism corresponding to the bundle
γSO
k ⊕ ε1 → BSO(k).

By proposition 5.3 (see also corollary 5.2) the involution inducing ι acts on this vector bundle
so that it inverts the summand ε1 and reverses orientation on the summand γSO

k , thus the
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Pontryagin classes pi are unchanged by its action and the Euler class e is mapped to −e. Our
claim easily follows from this. □

We can say more about these cobordism groups in those cases where the codimension k is
either small or relatively large.

Small codimensional immersions. First, if the codimension is 1, then the normal bundle of
any immersion f : Mn ↬ Pn+1 is induced by w1(νf ) : Mn → RP∞ from γO

1 . The classifying
spaces of ImmSO, Immint, ImmO and ImmO⊕2 det γ are ΓTε1, ΓTγO

1 |RP 1 , ΓTγO
1 and ΓT (3γO

1 )
respectively and since we have T (kγO

1 |RPm) = RPm+k/RP k−1 (for all k and m) these classifying
spaces are ΓS1, ΓRP 2, ΓRP∞ and Γ(RP∞/RP 2) respectively.

Remark 9.2. The group ImmO⊕2 det γ(n−2, Pn+1) is the cobordism group of those immersions
f : Mn−2 ↬ Pn+1 whose normal bundle splits to the sum of three identical line bundles, i.e. the
group Immsfr(n− 2, P ) of 3-codimensional skew-framed immersions which arise naturally in the
study of framed immersions; see [AE].

Now if we view immersions to Eucledian spaces, then theorems I and II yield the long exact
sequences

. . .→ πs(n)→ πs(n)→ πsn+1(RP 2)→ πs(n− 1)→ . . .

and
. . .→ πsn+1(RP 2)→ πsn+1(RP∞)→ πsn+1(RP∞/RP 2)→ πsn(RP 2)→ . . .

of stable homotopy groups (which, of course, could be both obtained in much easier ways too).
This means that in this case our main theorems are not new, however it also shows the following
important property of our two exact sequences:

Proposition 9.3. The composition ψm ◦ψ′
m+1 of the homomorphisms ψ′

m+1 in theorem II and
ψm in theorem I is not always zero.

This is interesting since the classical analogue of ψ′
m+1 is always zero yielding that the long

exact sequence splits to short exact sequences of the form (II). However, this proposition shows
that the general sequence in theorem II does not split to short exact sequences.
Proof. Consider the case of 1-codimensional immersions of 4-manifolds. Then the combination
of the above two exact sequences gives a diagram

πs6(RP∞/RP 2)

ψ′
6
��

πs(4) // πs5(RP 2) ψ5 //

��

πs(3)

πs5(RP∞)

with exact row and column. Since πs(4) and πs5(RP∞) are trivial (see [Liu]) we get that ψ′
6 is

epi and ψ5 is mono and since πs5(RP 2) is Z2 (see [Wu]) this means that ψ5 ◦ ψ′
6 is non-zero. □

Now let us consider immersions of codimension 2. In this case the classifying space of ImmSO

is ΓTγSO
2 and since γSO

2 coincides with the tautological complex line bundle over CP∞ this space
is ΓCP∞. The first few stable homotopy groups of CP∞ were computed by Liulevicius [Liu] and
Mosher [Mo] and are as follows:

m 1 2 3 4 5 6 7 8 9 10 11 12
πsm(CP∞) 0 Z 0 Z Z2 Z Z2 Z⊕ Z2 Z8 ⊕ Z3 Z Z4 Z⊕ Z3
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The action of the involution ι in theorem I for ImmSO(n, 2) ∼= πsn+2(CP∞) now immediately
follows for n ≤ 6 from proposition 9.1, hence we have:

Proposition 9.4. The endomorphism φn+2 of ImmSO(n, 2) is
(1) 0 on the free part for all n ≡ 2 (4) and 2 id on the free part for all n ≡ 0 (4),
(2) 0 on the torsion part for 0 ≤ n ≤ 6.

Corollary 9.5. The cobordism groups Immint(n, 2) for n ≤ 6 are

n 0 1 2 3 4 5 6
Immint(n, 2) Z2 0 Z Z⊕ Z2 Z2 ? Z2 Z2 Z⊕ (Z2 ? Z2)

where G ? H denotes the existence of a short exact sequence 0→ G→ G ? H → H → 0.

Proof. Use theorem I to obtain the exact sequence

0→ cokerφn+2 → Immint(n, 2)→ kerφn+1 → 0

and apply the proposition above. □

Large codimensional immersions. Let us now turn to cobordisms of k-codimensional im-
mersions such that the dimension of the source manifolds is not much greater than k. The reason
for this is that for n close to k the group Immσ(n, k) is close to the abstract cobordism group
of n-manifolds with normal σ-structures; see the works of Koschorke [Ko], Olk [Ol], Pastor [Pa]
and Li [Li] where these groups were computed for k ≤ n ≤ k + 2 and σ = O,SO.

Remark 9.6. For n < k we have ImmSO(n, k) = Ωn and ImmO(n, k) = Nn since a cobor-
dism between two n-manifolds is at most a k-manifold which, when generically mapped with
codimension k, is immersed.

We shall use the natural forgetful homomorphisms

αSO
imm : ImmSO(n, k)→ Ωn, αint

imm : Immint(n, k)→Wn,

αO
imm : ImmO(n, k)→ Nn and αO⊕2 det γ

imm : ImmO⊕2 det γ(n− 2, k + 2)→ Nn−2

that assign to the cobordism class of an immersion f : Mn ↬ Rn+k (or a germ f̃ : ξM → Rn+k)
with the appropriate normal structure the abstract cobordism class of M . These homomorphisms
commute with the exact sequences in theorems I and II and the classical exact sequences (I) and
(II), that is, we have commutative diagrams

. . . // ImmSO(n, k)

αSO
imm

��

// ImmSO(n, k)

αSO
imm

��

// Immint(n, k)

αint
imm

��

// ImmSO(n− 1, k)

αSO
imm

��

// . . .

. . . // Ωn
2 id // Ωn //Wn

// Ωn−1
2 id // . . .

and

. . . // Immint(n, k)

αint
imm

��

// ImmO(n, k)

αO
imm
��

// ImmO⊕2 det γ(n− 2, k + 2)

αO⊕2 det γ
imm
��

// Immint(n− 1, k)

αint
imm

��

// . . .

. . .
0 //Wn

// Nn
// Nn−2

0 //Wn−1 // . . .

where the rows are exact.

Lemma 9.7. The map αO⊕2 det γ
imm is an isomorphism ImmO⊕2 det γ(n− 2, k + 2) ∼= Nn−2 for all

n ≤ k + 1.
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Proof. We define the inverse of αO⊕2 det γ
imm in the following way: for a cobordism class [M ] ∈

Nn−2 represented by Mn−2 take the bundle ξM := 2 detTM and map it generically to Rn+k;
let the germ of this map along M be f̃ and assign the cobordism class [f̃ ] to [M ]. Such a
correspondence would be the inverse of αO⊕2 det γ

imm if it was well-defined since detTM is also the
determinant bundle of the stabilisation of ν(f̃ |M ). So we only have to prove that f̃ is an immersion
germ and its cobordism class only depends on that of M .

Let Nn−2 be another representative of [M ] and let Wn−1 be a compact manifold with bound-
ary such that ∂W = M ⊔ N . Then the restriction of ξW = 2 detTW to the boundary gives
ξM = 2 detTM and ξN = 2 detTN and if f̃ and g̃ are their generic map germs to Rn+k as defined
above, then we can extend their representatives f : ξM → Rn+k × {0} and g : ξN → Rn+k × {1}
by a generic map

F : ξW → Rn+k × [0, 1].
By the dimension condition such a map is stable. Its singular locus

Σ(F ) := {p ∈W | rk dFp < n− 1}
is a submanifold of ξW and a straightforward computation with jet bundles shows that we
have codim Σ(F ) = k + 1. Now since the dimension of W is at most k we generically have
W ∩Σ(F ) = ∅, that is, the map F in a small neighbourhood of the zero-section is an immersion.
This means that the germ F̃ of F along W satisfies both conditions in definition 6.1, hence both
f̃ and g̃ are O⊕ 2 det γ-immersions and F̃ is an immersed O⊕ 2 det γ-cobordism between them.
This finishes the proof. □

Proposition 9.8. For all k ≥ 1 we have
(1) Immint(k, k) ∼= Wk ⊕ Z if k is even,
(2) Immint(k, k) ∼= Wk ⊕ Z2 if k is odd.

Proof. By Koschorke [Ko, theorem 10.8] and Pastor [Pa, theorem 3.1] we have
ImmO(k, k) = Nk ⊕G and ImmSO(k, k) = Ωk ⊕G

where G denotes Z if k is even and Z2 if k is odd. Now by proposition 9.1 and lemma 9.7 the
two diagrams above lemma 9.7 take the form

0 // Ωk

2Ωk
⊕G

id ⊕0
��

// Immint(k, k)

αint
imm

��

// T2(Ωk−1)

id
��

// 0

0 // Ωk

2Ωk

//Wk
// T2(Ωk−1) // 0

and
Immint(n, k)

αint
imm

��

// Nk ⊕G

id ⊕0
��

// Nk−2

id
��

// 0

0 //Wk
// Nk

// Nk−2 // 0
where T2(Ωk−1) is the 2-torsion subgroup of Ωk−1. The 5-lemma (or the snake lemma) applied
to the first of these diagrams implies that αint

imm is epi and its kernel is G and the second diagram
implies that this kernel is also a direct summand. □

Remark 9.9. Actually the proposition above could also be proved without using theorems I
and II just by noting that the kernels of αSO

imm and αO
imm are generated by the same object: the

double point set (up to cobordism) of an immersion of Sk with one double point.

Proposition 9.10. For all k ≥ 1 we have
(1) Immint(k + 1, k) ∼= Wk+1 ⊕ Z4 if k ≡ 1 (4),
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(2) Immint(k + 1, k) ∼= Wk+1 ⊕ Z⊕ Z2 if k ≡ 2 (4),
(3) Immint(k + 1, k) ∼= Wk+1 ⊕ Z2 if k ≡ 3 (4),
(4) Immint(k + 1, k) ∼= Wk+1 ⊕ Z⊕ Z2 ⊕ Z2 if k ≡ 0 (4).

Proof. The first thing to note (similarly to the proof above) is that by lemma 9.7 and the snake
lemma applied to the second diagram above it we have an epimorphism kerαint

imm ↠ kerαO
imm.

Moreover, if k + 1 is not a power of 2 and k ̸= 1, then by [Ko, theorem 10.8] kerαO
imm is a

direct summand in ImmO(k+ 1, k) and so if the image of [f ] ∈ kerαint
imm is non-zero in kerαO

imm,
then [f ] is independent in Immint(k + 1, k) of the subgroup generated by the αint

imm-preimage of
Wk+1 \ {0}.

In the following we shall always use the first diagram above lemma 9.7 which yields (again
by the 5-lemma) that αint

imm is epi in all cases. We will also use that by proposition 9.1 the
endomorphism φ2k is 0 on the direct complement of Ωk in ImmSO(k, k) and we obtain the forms
of ImmSO(k+1, k) and ImmO(k+1, k) from [Li, theorem 6] and [Ko, theorem 10.8] respectively.

Proof of (1). If k ≡ 1 (4), we have

0 // Ωk+1 ⊕ Z2

id ⊕0
��

// Immint(k + 1, k)

αint
imm

��

// Ωk ⊕ Z2

id ⊕0
��

// 0

0 // Ωk+1 //Wk+1 // Ωk // 0

hence kerαint
imm is either Z4 or Z2 ⊕ Z2. But kerαint

imm maps onto kerαO
imm
∼= Z4, so it can only

be Z4 which can only be a direct summand.

Proof of (2). If k ≡ 2 (4) and k+2 is not a power of 2, then we have ImmSO(k+1, k) ∼= Ωk+1⊕Z4
and by [Li, p. 472] the involution ι in theorem I is the identity, hence the cokernel of φ2k+1 is
Ωk+1 ⊕ Z2. If k + 2 is a power of 2, then we have ImmSO(k + 1, k) ∼= Ωk+1 ⊕ Z2 and so in both
cases we get the diagram

0 // Ωk+1 ⊕ Z2

id ⊕0
��

// Immint(k + 1, k)

αint
imm

��

// Ωk ⊕ Z

id ⊕0
��

// 0

0 // Ωk+1 //Wk+1 // Ωk // 0

which implies that we have kerαint
imm
∼= Z⊕Z2. The Z part cannot be anything else than a direct

summand in Immint(k + 1, k) but the Z2 part is also a direct summand since by the proof of
[Pa, theorem 3.2] it is generated by a cobordism class [f ] which maps to the generator of the Z2
part of ImmSO(k + 1, k + 1) ∼= Ωk+1 ⊕ Z2 under the homomorphism induced by the inclusion
R2k+1 ⊂ R2k+2 and this is non-zero in ImmO(k + 1, k + 1) as well, hence the class of f in
ImmO(k + 1, k) cannot vanish either.

Proof of (3). If k ≡ 3 (4), we have

0 // Ωk+1
2Ωk+1

id
��

// Immint(k + 1, k)

αint
imm

��

// Ωk ⊕ Z2

id ⊕0

��

// 0

0 // Ωk+1
2Ωk+1

//Wk+1 // Ωk // 0

hence kerαint
imm is Z2 which can only be a direct summand (even if k + 1 is a power of 2).
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Proof of (4). If k ≡ 0 (4), we have

Ωk+1 ⊕ Z2 ⊕ Z2
id +ι // Ωk+1 ⊕ Z2 ⊕ Z2

id ⊕0⊕0
��

// Immint(k + 1, k)

αint
imm

��

// T2(Ωk)⊕ Z

id ⊕0
��

// 0

0 // Ωk+1 //Wk+1 // T2(Ωk) // 0

and so kerαint
imm is either Z⊕Z2 or Z⊕Z2⊕Z2 depending on whether the ι in theorem I swaps the

two Z2 summands in Ωk+1⊕Z2⊕Z2 or not. Now again the proof of [Pa, theorem 3.2] shows that
one of these summands Z2 is generated by a cobordism class [f ] which maps to the generator
of the Z2 part of ImmSO(k + 1, k + 1) ∼= Ωk+1 ⊕ Z2 under the homomorphism induced by the
inclusion R2k+1 ⊂ R2k+2. Since the reflection to a hyperplane commutes with this inclusion we
get ι[f ] = [f ] which means that ι does not swap the summands.

Hence we have kerαint
imm
∼= Z ⊕ Z2 ⊕ Z2 and we can also see that Z is a direct summand in

Immint(k + 1, k). Now if one of the Z2’s was not a direct summand in Immint(k + 1, k), that
would mean that its generator coincided with 2[f ] where [f ] is in the preimage under αint

imm of
a non-zero element in Wk+1, i.e. f is an immersion Mk+1 ↬ R2k+1 where [M ] ∈ Wk+1 is not
zero. This would imply that all elements in the preimage of [M ] were of order 4 or ∞, hence to
see that both Z2’s are direct summands it is sufficient to prove that the preimage under αint

imm
of any element in Wk+1 contains an element of order 2.

By [Wa1, section 4] we have that the Z2-algebra W∗ is generated by cobordism classes
[P (2r− 1, 2rs)], [Q(2r− 1, 2rs)] and [CP 2r ] (for r, s ≥ 1) of dimensions 2r(2s+ 1)− 1, 2r(2s+ 1)
and 2r+1 respectively, moreover, P (2r − 1, 2rs) and CP 2r are orientable while Q(2r − 1, 2rs) is
not cobordant to orientable manifolds. The monomials of rank k+ 1 formed by these generators
are a basis of the Z2-vector space Wk+1. We also have Wk+1 ∼= Ωk+1⊕T2(Ωk) and in the above
basis the summands Ωk+1 and T2(Ωk) are generated respectively by the monomials containing
an even and an odd number of [Q(2r − 1, 2rs)]’s since Ωk+1 contains all classes representable by
orientable manifolds.

Now Ωk+1 ⊂Wk+1 is independent of the Z2’s in Immint(k + 1, k) which means that all basis
elements of Wk+1 which are representable by orientable manifolds have elements of order 2 in
their αint

imm-preimage. Thus it is enough to prove that this also holds for the unorientable basis
elements, that is, any monomial of rank k+1 formed by the manifolds P (2r−1, 2rs), Q(2r−1, 2rs)
and CP 2r such that it contains an odd number of Q(2r − 1, 2rs)’s can be immersed into R2k+1

representing a cobordism class of order 2.
Observe that Q(2r − 1, 2rs) is even dimensional for all r, s ≥ 1 and k + 1 is odd, hence such

a monomial can be written in the form Mm × Nn with m,n ≥ 1 and m + n = k + 1. We can
assume that m is even and then (1) and (3) yield that there is an immersion f : Mm ↬ R2m−1

such that 2[f ] is 0 in Immint(m,m− 1). But then choosing any immersion g : Nn ↬ R2n we get
an immersion

f × g : M ×N ↬ R2k+1

which represents an element of order 2 in Immint(k + 1, k) since we have
2[f × g] = 2[f ]× [g] = 0

and Immint(∗, ∗) is a bi-graded ring. This finishes our proof. □

10. Morin maps

Recall that a stable map f : Mn → Pn+k induces a stratification of M according to its Thom–
Boardman types (see [Bo]): Σi(f) ⊂ M denotes the submanifold consisting of the points where
the rank of derivative of f drops by i, then we have Σi,j(f) := Σj(f |Σi(f)) and so on; this defines
Σi1,...,im(f) for any decreasing sequence i1, . . . , im. In the present section we shall consider maps
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which only have singularities of type Σ1, i.e. Morin singularities (besides regular germs) and we
call such maps Morin maps.

Although generally the Thom–Boardman stratification is coarser than the singularity strat-
ification, this is not the case for Morin maps, since a Morin singularity can only be of type
Σ1r := Σ1,...,1,0 (where the number of 1’s is r) for some r and each type Σ1r contains precisely
one singularity class; see [Mor]. We shall denote the singularity class in Σ1r also by the sym-
bol Σ1r and note that for r < s we have Σ1r < Σ1s , that is, Morin singularities form a single
increasing sequence. We call Morin maps with at most Σ1r singularity Σ1r -maps and put

Morσr (n, k) := Cobσ{Σ0,Σ11 ,...,Σ1r }(Rn+k)

for any stable normal structure σ (except that for σ = G ⊕ ξ we decrease n and increase k by
the rank of ξ). Here r = ∞ is also allowed and it means that we put no further restriction on
Morin maps.

The rational cohomology of the Kazarian space KSO
r of oriented Σ1r -maps (for 1 ≤ r ≤ ∞)

was computed by Szűcs [Sz2] and we can use this to obtain the form of φn+k rationally:

Proposition 10.1. The endomorphism φn+k ⊗Q of MorSO
r (n, k)⊗Q is the following:

(1) if k = 2m is even, r < ∞ is also even and q is the number of non-negative integers
a0, a1, . . . , am such that a0 is odd and n = a0k(r + 1) +

m∑
i=1

ai4i, then φn+k ⊗ Q is

trivial on q generators and the multiplication by 2 on the rest of the generators (in an
appropriate basis),

(2) otherwise φn+k ⊗Q is the multiplication by 2.

Proof. Put A := Q[p1, . . . , pm] with deg pi = 4i. By [Sz2, theorems 6 and 7] we have

MorSO
r (∗, k)⊗Q ∼= H∗(KSO

r ;Q) =

=



A, if k = 2m is even and r is odd or ∞
A[er+1]/

(
(er+1)2 − pr+1

m

)
, if k = 2m and r are both even

and deg er+1 = k(r + 1)
A, if k = 2m− 1 is odd and r =∞
A/

(
p

⌈ r+1
2 ⌉

m

)
, if k = 2m− 1 is odd and r <∞

with pi ∈ H4i(KSO
r ;Q) and er+1 ∈ Hk(r+1)(KSO

r ;Q). Now following the action of the involution
inducing the ι of proposition 5.3 through the spectral sequences computed in [Sz2] yields that ι
changes the pi and er+1 here analogously to how it did in the proof of proposition 9.1, that is,
we get pi 7→ pi and er+1 7→ −er+1. This implies our claim. □

As in the case of immersions, we only have an understanding of the torsion parts of these
cobordism groups if the codimension k is either small or relatively large. In particular we will
investigate the cases when either we have k = 1 and 1 ≤ r <∞ or k is large compared to n and
r is 1.

1-codimensional Morin maps. Morin maps of codimension 1 were considered by Szűcs [Sz3]
who computed MorSO

r (n, 1) for 1 ≤ r < ∞ modulo small torsion groups. We also note that
MorO

r (n, 1) is finite 2-primary for all n and 1 ≤ r ≤ ∞ by [SzSzT, theorem 1]. In the following
we denote by C2 the Serre class of finite 2-primary Abelian groups.

Proposition 10.2. The endomorphism φn+1 of MorSO
r (n, 1) is the multiplication by 2 modulo

C2 (that is, on the odd torsion and free parts) for 1 ≤ r <∞.
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Proof. We proceed by induction on r. Observe that setting r = 0 we get the case of 1-
codimensional immersions where we saw this claim to be true in the previous section. Now
assume it to be true for r − 1 and prove for r.

We use the key fibration [Sz2, section 16] to obtain an exact sequence

MorSO
r−1(n, 1)→ MorSO

r (n, 1)→ Immξ̃SO
r (n− 2r, 2r + 1)

where the first arrow is the natural forgetful homomorphism and the second one assigns to a
cobordism class [f ] the cobordism class of its restriction f |Σ1r (f) to the most complicated stratum
which is an immersion with normal bundle induced from ξ̃SO

r (the universal normal bundle of
the Σ1r -stratum of oriented maps). These both commute with the reflection to a hyperplane
(without changing orientation), i.e. the involution ι in theorem I.

By the considerations in [Sz3, section 2.2] for r odd we have Immξ̃SO
r (n− 2r, 2r+ 1) ∈ C2 and

for r even the forgetful homomorphism

πs(n− 2r) ∼= Immfr(n− 2r, 2r + 1)→ Immξ̃SO
r (n− 2r, 2r + 1)

(which assigns to the cobordism class of a framed immersion its class as an immersion with
normal bundle induced from ξ̃SO

r ) is a C2-isomorphism. Observe that this homomorphism also
commutes with the action of ι.

In the previous section we saw that theorem I for 1-codimensional immersions is just the
long exact sequence induced by the cofibration S1 2−−→S1 → RP 2 (where 2 denotes the degree-2
map), hence in that case the endomorphism φn−2r+1 of

ImmSO(n− 2r, 1) ∼= πs(n− 2r) ∼= Immfr(n− 2r, 2r + 1)

is 2 id which means that ι acts identically on Immfr(n−2r, 2r+1). By the induction hypothesis ι is
the identity modulo C2 on MorSO

r−1(n, 1) too, thus it acts identically also on Immξ̃SO
r (n−2r, 2r+1)

modulo C2. But then the exact sequence above shows that ι has to be the identity modulo C2
on MorSO

r (n, 1) as well which means that φn+1 is 2 id modulo C2. □

Remark 10.3. Using [Sz3, theorem A], a similar argument as in the proof above also shows
that for r = 1 we have φn+1 = 2 id not only modulo C2 but even on the 2-primary part.

Corollary 10.4. For all n and 1 ≤ r <∞ the group Morint
r (n, 1) is finite 2-primary.

Proof. This is immediate from the proposition above since φn+1 is an isomorphism on the odd
torsion part and the kernel and cokernel of φn+1 on the free part are 0 and Z2 respectively. □

This describes Morint
r (n, 1) generally. Let us now consider the case r = 1, i.e. the so-called

fold maps and put Foldint(n, 1) := Morint
1 (n, 1). Restricting the exact sequence of theorem I for

fold cobordisms to the 2-primary parts [Sz3, theorem A] yields

ker(λ∗)n−1
2 id−−−→ ker(λ∗)n−1 → Foldint(n, 1)→ ker(λ∗)n−2

2 id−−−→ ker(λ∗)n−2

where (λ∗)m denotes the Kahn–Priddy homomorphism πsm(RP∞) → πs(m) which maps onto
the 2-primary torsion part of πs(m) (see [KP]).

Recalling the first few stable homotopy groups of RP∞ computed by Liulevicius [Liu] we
obtain

m 0 1 2 3 4 5 6 7 8 9
πsm(RP∞) 0 Z2 Z2 Z8 Z2 0 Z2 Z16 ⊕ Z2 (Z2)3 (Z2)4

πs(m) Z Z2 Z2 Z8 ⊕ Z3 0 0 Z2 Z16 ⊕ Z3 ⊕ Z5 (Z2)2 (Z2)3

ker(λ∗)m 0 0 0 0 Z2 0 0 Z2 Z2 Z2

using the notation (Z2)r := Z2 ⊕ . . .⊕ Z2 with r summands. This implies the following:
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Proposition 10.5. The cobordism groups Foldint(n, 1) for n ≤ 10 are

n 0 1 2 3 4 5 6 7 8 9 10
Foldint(n, 1) Z2 0 0 0 0 Z2 Z2 0 Z2 Z2 ? Z2 Z2 ? Z2

where G ? H again denotes the existence of a short exact sequence 0→ G→ G ? H → H → 0.

Large codimensional fold maps. In the following we shall consider fold maps of codimension
k such that the dimension of the source manifolds is 2k+ 1 or 2k+ 2 and, as we also did above,
use the notation

Foldσ(n, k) := Morσ1 (n, k)
for any stable normal structure σ (except that for σ = G ⊕ ξ we decrease n and increase k by
the rank of ξ). The cobordism groups FoldSO(n, k) and FoldO(n, k) were determined in these
dimensions by Ekholm, Szűcs, Terpai [ESzT] and Terpai [Te]2.

Remark 10.6. The analogue of remark 9.6 for fold maps is true for n < 2k + 1: if n < 2k + 1,
then generic maps of n-manifolds and (n + 1)-manifolds with codimension k are stable and a
computation with jet bundles implies that for any such map the codimension of the Σi-stratum
and the Σ1i-stratum in the source manifold are i(k + i) and i(k + 1) respectively, hence for
n < 2k + 1 a generic k-codimensional map of a cobordism of n-manifolds is fold. Moreover,
n = 2k + 1 and n = 2k + 2 are precisely the dimensions where fold cobordisms are not generic
(that is, Foldσ(n, k) is a priori not the same as the abstract cobordism group) but they are not
very far from being generic as the only other type of singularity that can generically occur is the
cusp, i.e. Σ1,1,0.

As for the case of immersions, we will use the natural forgetful homomorphisms

αSO
fold : FoldSO(n, k)→ Ωn, αint

fold : Foldint(n, k)→Wn,

αO
fold : FoldO(n, k)→ Nn and αO⊕2 det γ

fold : FoldO⊕2 det γ(n− 2, k + 2)→ Nn−2

that assign to the cobordism class of a fold map f : Mn → Rn+k (or a germ f̃ : ξM → Rn+k)
with the appropriate normal structure the abstract cobordism class of M . These again commute
with the exact sequences in theorems I and II and the classical exact sequences (I) and (II), that
is, we have commutative diagrams

. . . // FoldSO(n, k)

αSO
fold

��

// FoldSO(n, k)

αSO
fold

��

// Foldint(n, k)

αint
fold

��

// FoldSO(n− 1, k)

αSO
fold

��

// . . .

. . . // Ωn
2 id // Ωn //Wn

// Ωn−1
2 id // . . .

and

. . . // Foldint(n, k)

αint
fold

��

// FoldO(n, k)

αO
fold
��

// FoldO⊕2 det γ(n− 2, k + 2)

αO⊕2 det γ
fold
��

// Foldint(n− 1, k)

αint
fold

��

// . . .

. . .
0 //Wn

// Nn
// Nn−2

0 //Wn−1 // . . .

where the rows are exact.

Lemma 10.7. The map αO⊕2 det γ
fold is an isomorphism FoldO⊕2 det γ(n− 2, k+ 2) ∼= Nn−2 for all

n ≤ 2k + 2.

2As Terpai recently noted [Te, theorem 4.a)] is false. We shall elaborate more on this in remark 10.11.
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Proof. This is almost completely analogous to lemma 9.7 by changing immersions to fold maps
and k + 1 to 2k + 2. The only thing we have to add to its proof now is that the generic map

F : ξW → Rn+k × [0, 1]

(where W is a cobordism of (n−2)-manifolds and ξW := 2 detTW ) only has fold singularities in
a neighbourhood of the zero-section W and its germ along W satisfies the condition in definition
6.1 that the differential dF̃ restricted to any fibre of ξW is injective.

We may assume that the singularity strata intersect W ⊂ ξW transversally which firstly means
that W is disjoint from the cusp stratum (since the cusp stratum is at most 1-dimensional and
W is 2-codimensional in ξW ), hence it is indeed a fold map on a small neighbourhood of W .
Secondly it means that the local trivialisations of ξW in a sufficiently small neighbourhood of the
zero-section can be chosen such that for all p ∈ Σ1,0(F ) the whole fibre (in this neighbourhood)
of ξW containing p belongs to Σ1,0(F ), that is, both the fibres of ξW and the fold stratum are
orthogonal to W .

Now for any point p ∈ Σ1,0(F ) ∩ W a coordinate neighbourhood of p has the form
Rk+1 × Rn−k−2 × R2 where Rk+1 × Rn−k−2 and Rn−k−2 × R2 are coordinate neighbourhoods
in W and in Σ1,0(F ) respectively. By [RSz, theorem 6] the normal bundle of Σ1,0(F ) is induced
from γO

1 ⊕ γO
1 ⊗ γO

k over BGSO
1 with GSO

1 = {(ε,A) ∈ O(1)×O(k) | εdetA = 1}. The fibres of
this in the coordinate neighbourhood of p can be assumed to be tangent to Rk+1 × {x} for all
x ∈ Rn−k−2 × R2 and can also be identified over all points x. Thus in this neighbourhood the
map F has the desired form described in definition 6.1. If p was instead in W \ Σ1,0(F ) then F
is an immersion near p, hence then we also get the desired form of F and so the first condition
in definition 6.1 is always satisfied. □

Proposition 10.8. For all k ≥ 1 we have

(1) Foldint(2k + 1, k) ∼= W2k+1 if k ̸= 2,
(2) Foldint(5, 2) ∼= W5 ⊕ Z2 ∼= Z2 ⊕ Z2.

Proof. We shall use the first diagram above lemma 10.7 and obtain FoldSO(2k + 1, k) from
[ESzT, theorem 1].

Proof of (1). If k > 2 is even, then αSO
fold is an isomorphism in this dimension yielding the

diagram

Ω2k+1

id
��

2 id // Ω2k+1

id
��

// Foldint(2k + 1, k)

αint
fold

��

// Ω2k

id
��

2 id // Ω2k

id
��

Ω2k+1
2 id // Ω2k+1 //W2k+1 // Ω2k

2 id // Ω2k

and now the 5-lemma implies the isomorphism claimed.
For k odd we have FoldSO(2k + 1, k) ∼= Ω2k+1 ⊕ Z3t (with an appropriate number t) and this

gives

Ω2k+1 ⊕ Z3t
id +ι // Ω2k+1 ⊕ Z3t

id ⊕0
��

// Foldint(2k + 1, k)

αint
fold

��

// Ω2k

id
��

// 0

0 // Ω2k+1 //W2k+1 // Ω2k // 0
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thus kerαint
fold is Z2u for some 0 ≤ u ≤ t depending on how ι acts on the Z3t part of

FoldSO(2k + 1, k). Now applying lemma 10.7, part of the second diagram above it has the form

N2k
ψ′

3k+2 // Foldint(2k + 1, k)

αint
fold

��

φ′
3k+1// N2k+1

id
��

0 //W2k+1 // N2k+1

hence we have Z3u ∼= kerαint
fold = kerφ′

3k+1 = imψ′
3k+2 which is isomorphic to a factor group of

N2k. But N2k is 2-primary so this can only happen if u = 0, that is, if αint
fold is an isomorphism.

Proof of (2). We have FoldSO(4, 2) ∼= Ω4 ∼= Z and FoldSO(5, 2) ∼= Ω5 ⊕ Z2 ∼= Z2 ⊕ Z2 and their
endomorphisms φ6 and φ7 are both the multiplication by 2, hence we get the diagram

0 // Ω5 ⊕ Z2

id ⊕0
��

// Foldint(5, 2)

αint
fold
��

// 0

0 // Ω5 //W5 // 0

which proves our statement. □

Proposition 10.9. For all k ≥ 1 we have
(1) Foldint(2k + 2, k) is isomorphic to a subgroup of W2k+2 of index 2 if k ̸= 2,
(2) Foldint(6, 2) ∼= W6 ⊕ Z2 ∼= Z2 ⊕ Z2.

Proof. We will again always use the first diagram above lemma 10.7 and we know

FoldSO(2k + 1, k) and FoldSO(2k + 2, k)

from [ESzT, theorem 1] and [Te, theorem 4] respectively.

Proof of (1). If k > 2 is even, then αSO
fold is an isomorphism FoldSO(2k + 1, k) ∼= Ω2k+1 and the

embedding of FoldSO(2k + 2, k) into Ω2k+2 as an index-2 subgroup.
If k is odd, then we have FoldSO(2k + 1, k) ∼= Ω2k+1 ⊕ Z3t but, as we saw in the proof of

proposition 10.8, the Z3t part is mapped isomorphically by the endomorphism φ3k+1, hence it
does not appear in its kernel. Moreover, for k odd αSO

fold embeds FoldSO(2k + 2, k) into Ω2k+2 as
the kernel of the homomorphism p k+1

2
[·] : Ω2k+2 → Z which maps a cobordism class [M ] to the

normal Pontryagin number p k+1
2

[M ]. Now if we take the cokernel of φ3k+2, that is, we factor
ker p k+1

2
[·] by 2 ker p k+1

2
[·] and Ω2k+2 by 2Ω2k+2, then the image of FoldSO(2k+ 2, k) under this

quotient map will again become an index-2 subgroup.
Hence both for k odd and for k even we obtain that there is a group G such that the com-

mutative diagram

0 // G� _

��

// Foldint(2k + 2, k)

αint
fold

��

// Ω2k+1

id
��

// 0

0 // Ω2k+2
2Ω2k+2

//W2k+2 // Ω2k+1 // 0

holds where the monomorphism from G into Ω2k+2/2Ω2k+2 has cokernel Z2. This implies our
statement.
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Proof of (2). We have FoldSO(5, 2) ∼= Ω5⊕Z2 ∼= Z2⊕Z2 and FoldSO(6, 2) ∼= Ω6 ∼= 0 which gives
us the diagram

0 // Foldint(6, 2)

αint
fold
��

// Ω5 ⊕ Z2

id ⊕0
��

// 0

0 //W6 // Ω5 // 0
proving our claim. □

Corollary 10.10. For all k ̸= 2 the homomorphism αO
fold embeds FoldO(2k + 2, k) into N2k+2

as a subgroup of index 2.

Proof. We apply lemma 10.7, the second diagram above it and also that the homomorphism
ψ′

3k+3 : FoldO⊕2 det γ(2k+1, k+2)→ Foldint(2k+2, k) is zero as we saw in the proof of proposition
10.8. Then we have

Foldint(2k + 2, k)

αint
fold

��

// FoldO(2k + 2, k)

αO
fold
��

// N2k

id
��

// 0

0 //W2k+2 // N2k+2 // N2k // 0

thus the proposition above implies that αO
fold is a monomorphism with cokernel Z2. □

Remark 10.11. This corollary contradicts [Te, theorem 4.a)] which essentially claims that both
the kernel and the cokernel of

αO
fold : FoldO(2k + 2, k)→ N2k+2

are Z2. The problem with this, according to Terpai, is the following: the computations in [Te]
show that here kerαO

fold appears as the factor by Z2 of the group Z2 ⊕ Z2 of a complete set
of invariants of cusp null-cobordisms of fold maps (recall that a null-cobordism is a map of a
(2k+ 3)-manifold with codimension k and such a map generically only has Σ1,0 (fold) and Σ1,1,0

(cusp) singularities); one of the summands Z2 (which gets cancelled by the factoring) measures
the number of components of the cusp curve of such a null-cobordism modulo 2 and the other
one measures whether the orientation changes over the cusp curve or not. However, if we apply
[Te, lemma 2] correctly, it yields that this second Z2 does not appear as the orientation cannot
change over this curve. Hence kerαO

fold is actually the factor of only Z2 by Z2, that is, αO
fold is

mono. Moreover, it is also apparent that its image is the kernel of the Thom polynomial of cusp
singularity (w2

k+1 + wkwk+2)[·] : N2k+2 → Z2 which maps a cobordism class [M ] to the normal
Stiefel–Whitney number w2

k+1[M ] + wkwk+2[M ].

11. Bordisms

In this final section we point out that theorems I and II also hold when we change τ -cobordism
groups to general bordism groups (although the set of all possible singularities of k-codimensional
germs generally contains unstable ones which we excluded from τ). This can most easily be seen
by using somewhat more refined forms of the same arguments as in remarks 5.6 and 8.4. This
way we get the following:

Theorem 11.1. For any CW complex Q there is a long exact sequence

. . .→ Ωn(Q) φn−−−→Ωn(Q) χn−−−→Wn(Q) ψn−−−→Ωn−1(Q)→ . . .

and a short exact sequence

0→Wn(Q) φ′
n−−−→Nn(Q) χ′

n−−−→Nn−2(Q)→ 0
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where φn is the multiplication by 2, χn and φ′
n are the forgetful homomorphisms, ψm assigns to

the bordism class of the map of a Wall manifold f : M → Q the bordism class of f |PD(w1(M))
and χ′

n assigns to the bordism class of a map g : N → Q the bordism class of g|PD(w1(N)2).

Proof. The n’th bordism groups of any CW complex are the same as those of its (n + 1)-
skeleton, hence for the purpose of this proof we may only take a finite dimensional skeleton
of Q instead of the actual Q. A finite dimensional CW complex is homotopy equivalent to an
orientable manifold (by embedding it into a Eucledian space and taking a small neighbourhood
of it there), and so we may also assume that Q is an orientable manifold of dimension q.

Fix a number n and let r be such that generic maps of (n + 1)-manifolds to r-manifolds are
embeddings. Then we have

Ωn(Q) ∼= CobSO
τ (Q× Rr), Wn(Q) ∼= Cobint

τ (Q× Rr) and Nn(Q) ∼= CobO
τ (Q× Rr)

for any set τ of stable singularities of codimension q + r − n.
Claim. Nn−2(Q) ∼= CobO⊕2 det γ

τ (Q× Rr).
Proof. Let f : Mn−2 → Q be any map of an (n − 2)-manifold to Q and put ξM := 2 det νf .
Now let f̃ : ξM → Q be any map that extends the map f given on the zero-section of ξM (such
an extension is unique up to homotopies fixed on the zero-section) and let i : ξM ↪→ Rr be any
embedding (which is also unique up to isotopy). Then assigning to the map f : M → Q the germ
of the embedding

f̃ × i : ξM ↪→ Q× Rr

along the zero-section is well-defined on bordism classes up to cobordism of embeddings with
normal O⊕ 2 det γ-structure, hence it yields a homomorphism

α : Nn−2(Q)→ CobO⊕2 det γ
τ (Q× Rr).

The inverse of this α can be constructed as follows: a map germ ξM ↪→ Q× Rr is generically
the germ of an embedding of the form f̃ × i where f̃ is any map to Q and i is an embedding
into Rr, and then we can assign to the cobordism class of the germ of f̃ × i the bordism class of
the restriction f̃ |M . This is again a well-defined homomorphism and it is not hard to see that it
inverts α, thus α is an isomorphism. ⋄

The above considerations and theorems I and II give two exact sequences

. . .→ Ωn(Q) φn−−−→Ωn(Q) χn−−−→Wn(Q) ψn−−−→Ωn−1(Q)→ . . .

and
. . .→Wn(Q) φ′

n−−−→Nn(Q) χ′
n−−−→Nn−2(Q) ψ′

n−−−→Wn−1(Q)→ . . .

infinite to the right, moreover, keeping n fixed and growing r yields that they are also infinite
to the left. By design the homomorphisms χn, ψn, φ′

n and χ′
n are as in theorems I and II.

Claim. The endomorphism φn of Ωn(Q) is the multiplication by 2.

Proof. We want to see that the involution ι of Ωn(Q) ∼= CobSO
τ (Q × Rr) is the identity, that

is, composing an oriented embedding e : Mn ↪→ Q× Rr with the reflection to a hyperplane but
keeping its orientation unchanged will be cobordant to e. Such a reflection does not change the
homotopy class of e, thus there is a map

E : M × [0, 1]→ Q× Rr × [0, 1]
(mapping M × {t} to Q × Rr × {t} for all t ∈ [0, 1]) extending e on M × {0} and its reflection
on M × {1}. Moreover, νE is canonically oriented since the orientations given on the normal
bundles of e and its reflection are identical. Now since E is generically an embedding, it is an
oriented cobordism between e and its reflection meaning that we have ι[e] = [e]. Thus we have
φn = 2 id as we wanted. ⋄
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Claim. The homomorphism ψ′
n : Nn−2(Q)→Wn−1(Q) is zero.

Proof. It is enough to show a splitting σn : Nn−2(Q) → Nn(Q) of the sequence above. This
is exactly the same as in [At, theorem 4.4], namely we define σn to assign to a bordism class
represented by a map f : Mn−2 → Q the bordism class of f ◦ π where π is the projection of the
RP 2-bundle P (detTM⊕ε2) (the projectivisation of detTM⊕ε2) over M . The proof in Atiyah’s
paper also works in this setting and gives that σn is well-defined and χ′

n ◦ σn is the identity. ⋄
Now the fact that φ′

n : Wn(Q) → Nn(Q) is mono implies that in the definition of
ψn : Wn(Q) → Ωn−1(Q) we do not have to differentiate between the integer representatives
of the w1 class. Thus we have proved everything we wanted. □

Remark 11.2.
(1) The first exact sequence in theorem 11.1 was also obtained by Stong [St, proposition 6.1]

and partly by Conner and Floyd [CF, 1.10 theorem].
(2) If the Q in theorem 11.1 is an (unorientable) manifold, then the theorem also holds

when we change Ωn(Q), Wn(Q), ψn and χ′
n to their normal analogues, i.e. changing

everywhere the tangent w1 class to the normal w1 class.
Remark 11.3. Part of the results collected in theorems I, II and 11.1 can also be proved using
methods analogous to those of Wall [Wa1] and Li [Li]; the reader is encouraged to try working
them out for themselves.

Lastly we note that the second exact sequence in theorem 11.1 can be obtained directly from
the classical exact sequence (II) because of the following (we note here that this proposition is
essentially due to Terpai):
Proposition 11.4. For any CW complex Q we have

Wn(Q) =
⊕
i+j=n

Wi ⊗Hj(Q;Z2).

Proof. We imitate the proof of the fact

Nn(Q) =
⊕
i+j=n

Ni ⊗Hj(Q;Z2);

see [CF]. Let Emi,j be the Atiyah–Hirzebruch spectral sequence for Wall bordisms, i.e. whose
E∞-page is associated to a filtration of W∗(Q). Then we have E2

i,j = Hi(Q;Z2)⊗Wj since Wn

is a Z2-vector space.
Now it is sufficient to see that the spectral sequence is trivial. By [CF] this is equivalent to

saying that the homomorphism µn : Wn(Q) → Hn(Q;Z2) which maps a bordism class to the
homology class represented by its elements is epi. In other words we want to show that any
Z2-homology class of Q is representable by the map of a Wall manifold to Q.

Thom [Th] showed that any homology class x ∈ Hn(Q;Z2) can be represented by a map
f : Mn → Q where M is a manifold; our goal is to show that M can also be chosen to have
integer w1 class. Choose a submanifold Nn−2 ⊂ Mn representing PD(w1(M)2) and obtain
bN : B(N) → M by blowing up N , that is, for all points p ∈ N we change the normal disk of
N at p to a Möbius strip; b−1

N (p) = S1 is the central curve of this Möbius strip and otherwise
bN |B(N)\b−1

N
(N) is a diffeomorphism to M \ N . Then f ◦ bN also represents the homology class

x. We claim that B(N) has integer first Stiefel–Whitney class which implies our statement.
A more precise description of B(N) is the following: the normal bundle of N ⊂ M is 2δ

where δ is the determinant line bundle detTN = detTM |N ; now N is also a submanifold of the
RP 2-bundle P (δ⊕ ε2) with normal bundle 2δ, hence the disk bundle D(2δ) appears as a tubular
neighbourhood of N in both M and P (δ ⊕ ε2). We have

B(N) = (M \D(2δ)) ⊔
S(2δ)

(P (δ ⊕ ε2) \D(2δ))
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where this denotes the gluing along the boundaries S(2δ).
To show that w1(B(N)) is integer it is enough to show that the Poincaré dual of its square

can be represented by the empty submanifold. The reason for this is that on one hand the
integer w1 class means that w1(B(N)) : B(N)→ RP∞ maps to the 1-cell and on the other hand
PD(w1(B(N))2) = ∅ means that the image of w1(B(N)) is disjoint from RP∞−2 and these two
conditions are equivalent up to homotopy.

We have
PD(w1(B(N))2) = PD(w1(M \D(2δ))2) ∪ PD(w1(P (δ ⊕ ε2) \D(2δ))2)

when represented by manifolds matching on the boundaries. Now PD(w1(M)2) is represented
by the intersection N of two transverse submanifolds V and V ′ representing PD(w1(M)); then

PD(w1(M \D(2δ))) = PD(w1(M)|M\D(2δ))
is represented by V ∩ (M \D(2δ)) = V \D(2δ) and by V ′ ∩ (M \D(2δ)) = V ′ \D(2δ) which
means that their intersection representing PD(w1(M \ D(2δ))2) is empty. But we know from
the proof of [At, theorem 4.4] that PD(w1(P (δ ⊕ ε2))2) can be represented by N embedded
as the zero section of D(2δ), hence its intersection with the complement of D(2δ) representing
PD(w1(P (δ ⊕ ε2) \D(2δ))2) is also empty. This finishes the proof. □

The method of the above proof implies that the forgetful homomorphism
φ′
n : Wn(Q)→ Nn(Q)

respects the decompositions

Wn(Q) =
⊕
i+j=n

Wi ⊗Hj(Q;Z2) and Nn(Q) =
⊕
i+j=n

Ni ⊗Hj(Q;Z2).

Thus the second exact sequence in theorem 11.1 is the degree-n part of the tensor product of
the sequence (II)

0→W∗ → N∗ → N∗−2 → 0
with H∗(Q;Z2).
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