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QUASI-PERIODIC MOTIONS ON SYMPLECTIC TORI

MAURICIO GARAY, AREZKI KESSI, DUCO VAN STRATEN, AND NESRINE YOUSFI

Abstract. The results of Kolmogorov, Arnold, and Moser on the stability of quasi-periodic
motions spanning lagrangian tori in Hamiltonian systems are of fundamental importance and
led to the development of KAM theory. Over the years, many variations of these results on
quasi-periodic motions have been considered. In this paper, we present a more conceptual way
of attacking such problems by considering the particular case of quasi-periodic motions on
symplectic tori.

Introduction

The theorems of Kolmogorov, Arnold, and Moser guarantee, under appropriate conditions, the
stability of quasi-periodic motions on Lagrangian invariant tori [1, 6, 17, 19, 20, 23, 24]. The phase
space is then a symplectic manifold of dimension 2d and these KAM-tori have dimension d. One
may ask about the stability of other types of quasi-periodic motions that fill out tori of dimension
k ̸= d. The case of such movements on a lower dimensional torus (k < d) was already considered
by Moser in 1967 [18]. But it was only in 1991 that Herman exhibited examples of Hamiltonian
systems with stable quasi-periodic motion on a k = 2d− 2 dimensional co-isotropic torus [14, 28].
More recently, quasi-periodic motions on tori that are neither isotropic nor co-isotropic were
discovered (see [25] and references therein).

Quasi-periodic motions are also observed for more general families of vector fields. For the
isochore case and in the reversible context we refer to [2, 3, 4]. It appears that there are many
theorems one can derive along the lines of proof indicated by the founders of KAM theory,
although sometimes new unexpected difficulties appear. The first author formulated in [7] a
result that could be seen as a first step to gathering all these results in a single theorem. This led
us to develop a general framework, based on certain systems of Banach spaces [9]. We present
here an application of that theory in one particular situation: motions on symplectic tori. These
correspond to the case k = 2d, which were not considered in the works quoted above. As will
be made clear in this paper, our proof is based on general arguments, which may be used in
many other situations involving quasi-periodic motions, and beyond. We will try nevertheless
to remain as explicit and self-contained as possible; a presentation of the development of the
abstract theory will appear elsewhere.

The structure of the paper is as follows.
In the first section, we formulate our main theorem on the stability of real analytic symplectic
vector fields on a symplectic torus under an arithmetic condition on the frequencies, which is
much weaker than the usual Diophantine condition.

As usual in a real analytic context, we will use holomorphic tools on a complex analytic
neighborhood of the torus. This is explained in the second section and serves to fix some of the
notations we use. We introduce parameters that describe the detuning of the frequencies and
perturbation of the symplectic form.

In the third section, we give an algebraic description of an almost quadratic iteration a certain
ring R, that brings our vector field formally into normal form. In section six, this iteration scheme
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is lifted to an iteration scheme in a functional analytic context, so that the issue of convergence
can be addressed. In order to do so, we have to make some careful preparations.

In section four we sketch out an abstract framework for handling families of Banach spaces
parametrized by partially ordered sets (i.e. Banach scales) that we call Kolmogorov spaces. These
naturally arise in situations where one has to deal with functions and vector fields defined over
domains that shrink during an iteration process, for example to avoid to the appearance of small
denominators. Most relevant is the general theorem formulated in 4.5.2, which is crucial in the
later part of the paper to control the norm estimates, in particular for the exponentials of vector
fields that we use.

In section five, we describe the neighborhoods of the resonance hyperplanes that need to be
removed in order to control the small denominators and we introduce the precise Kolmogorov
spaces of holomorphic functions that we will use in our proof.

In section six, we lift the iteration scheme on the level of Kolmogorov spaces. The required
estimates are all automatic now and the proof is completed with relative ease, by comparison
with a simple one dimensional model iteration.

1. Quasi-periodic movement on a symplectic torus

1.1. We will describe our basic setup and formulate the main result of this paper. By quasi-
periodic motion on a torus

Tn := (R/Z)n

with coordinates x1, . . . , xn we mean the flow of a constant vector field

X :=

n∑
i=1

νi
∂

∂xi
.

If the components of the frequency vector

ν := (ν1, ν2, . . . , νn) ∈ Rn

are independent over Q, the orbits of X are dense in Tn and we say ν is non-resonant. We will
refer to these constant vector fields as quasi-periodic vector fields.

It is clear that with an arbitrarily small perturbation S of the vector field X, we can create a
vector field X + S that is not conjugate to X, i.e. can not be transformed back to X by an
appropriate change of coordinates. So in this sense, the dynamics generated by the vector field
X is not stable. KAM type theorems state that in a family of quasi-periodic motions, a large
part of them are preserved under perturbation.

1.2. Consider the case where n = 2d and equip the torus T := T2d with a constant symplectic
form

ω =
∑

1≤i<j≤2d

ωijdxi ∧ dxj , ωij ∈ R.

A C∞ vector field X on T is called a symplectic vector field if the time t flow Φt of X preserves
the symplectic form:

Φ∗
t (ω) = ω.

This is equivalent to the infinitesimal condition

LX(ω) = 0,

where
LX = dιX + ιXd
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denotes the Lie-derivative. As dω = 0, this is equivalent to the statement that the one-form
ιXω, symplectically dual to X, is closed. In the particular case where the form is exact, the
corresponding vector field X satisfies

ιXω = dh

for some function h on T and we say that the field is Hamiltonian, or more precisely that the
vector field is associated to the Hamiltonian function h. Obviously, constant vector fields are
symplectic, but not Hamiltonian.

Now we will seek a statement expressing the stability of quasi-periodic motions under perturbation
with symplectic vector fields. For this to work properly, we will also do allow for perturbations of
the chosen symplectic form.

1.3. The space S of constant symplectic forms on the torus T can be identified with those on
R2d and thus forms an open subset of non-degenerate skew-symmetric 2-forms

S ⊂ Λ2(R2d)∗ ≃ Rd(2d−1).

The fibre of the fibration
π : T× S −→ S

over the point

ω =
∑
i<j

ωijdxi ∧ dxj ∈ S

describes the torus T with symplectic form ω. Such forms can be seen as relative differential two
forms, i.e., elements of Ω2

π := Ω2
T×S/π

∗Ω1
S ∧ Ω1

T×S.

In this situation, the module of relative 1-forms Ω1
π defined as Ω1

T×S/π
∗Ω1

S can be thought as the
module of 1-forms which can be written as

2d∑
i=1

ai(x, ω)dxi ∈ Ω1
π,

Dually, elements of the module Θπ of relative vector fields are of the form
2d∑
i=1

bi(x, ω)∂xi
∈ Θπ.

The interior product with the symplectic form ω induces an isomorphism

Θπ −→ Ω1
π, X 7→ ιXω := ω(X,−).

1.4. Now let V ⊂ S be a smooth real analytic submanifold and consider a map

ν := (ν1, . . . , ν2d) : V −→ R2d

Definition. The vector field defined on T× V by

Xν =

2d∑
i=1

νi(ω)∂xi

is called the quasi-periodic vector field with frequency map ν.

Such a vector field generates indeed quasi-periodic movements on the fibres T × {ω}, for all
ω ∈ V , with frequencies that may depend on ω.
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1.5. So in our context, the space of symplectic forms plays the role of the parameter space. A
typical example which is close to Herman’s original construction would be the following. Assume
d = 2 and consider the symplectic form associated to the bivector

α∂x1
∧ ∂x2

+ β∂x1
∧ ∂x3

+ γ∂x1
∧ ∂x4

+ ∂x3
∧ ∂x4

, (α, β, γ ̸= 0)

The symplectic vector field dual to the relative one-form dx1 + δdx2 (δ ̸= 0)) is

X = −αδ∂x1 + α∂x2 + β∂x3 + γ∂x4

In particular, any four dimensional quasi-periodic motion can be obtained in this way.

1.6. Consider now a symplectic form ω0 ∈ V . Our aim is to prove the following Stability
Theorem for symplectic quasi-periodic motions:

Theorem. Consider a quasi-periodic motion defined by a real analytic vector field

Xν =

2d∑
i=1

νi(ω)∂xi

defined on a neighbourhood T× V of a symplectic torus T× {ω0}. Assume that

(A) the vector ν(ω0) satisfies a subquadratic arithmetic condition.
(B) the map

ν : V −→ R2d, ω 7→ (ν1(ω), . . . , ν2d(ω))

is a submersion.

Then: For any real analytic symplectic vector field X sufficiently close to Xν , there exists a set
M ⊂ V of positive measure parametrising tori that carry a motion conjugate by a symplectomor-
phism to a quasi-periodic one.

The topology on the space of analytic vector fields will be reviewed in later sections of the paper.

Remark 1. Condition (B) can be weakened and replaced by the Kleinbock-Margulis condition [16,
22]:

(B′) the partial derivatives of the map

ν : V −→ R2d, ω 7→ (ν1(ω), . . . , ν2d(ω))

generate R2d.

An even weaker condition can be formulated: we will construct a formal normal form and a
formal frequency map ν̂ analogous to the Birkhoff normalform. We denote by EV the minimal
vector space for which ω0 +EV contains the image of V under this formal map . Then Condition
(B’) can be weakened and replaced by the condition:

(B′′) the partial derivatives of the formal frequency map ν̂ evaluated at the origin generate
EV .

For instance if V = {0}, the vector field turns out to be integrable and we get a variant of a
classical result due to Rüssmann [21]. For details we refer to [8, 12, 11]. For details we refer
to [8, 12].

Remark 2. A direct generalisation of the theorem obtained by omitting condition (B) or (B′)
would fail.

To see this, consider for instance the case of ordinary vector fields (no symplectic structure)
vector field

X = ∂x +
√
2∂y,
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defining a quasi-periodic motion with constant frequency. Now, let (pn/qn) be a sequence of
rational numbers converging to

√
2. The vector fields

Xn = ∂x +
pn
qn
∂y +

1

n
sin(pnx− qny)∂x

approach X, as n goes to infinity. The curve pnx− qny = 0 is a periodic orbit of Xn, indeed:

Xn(pnx− qny) =
pn
n

sin(pnx− qny).

The equations of motions are: {
ẋ = 1 + 1

n sin(pnx− qny),
ẏ = pn

qn
.

Linearisation of the equations (x 7→ x+ ξ, y 7→ y + η) along this periodic orbit shows that it is
isolated: {

ξ̇ = 1
n (pnξ − qnη)
η̇ = 0

Therefore the motion defined by Xn is not quasi-periodic, although the sequence Xn approaches
X.

We may adapt this example in the symplectic situation. Let us consider the 4-torus with
coordinates x1, x2, y1, y2 and symplectic form dx1 ∧ dy1 + dx2 ∧ dy2. We consider the vector field

X = ∂x1
+
√
2∂x2

+
√
3∂y1

+
√
5∂y2

.

As before, let (pn/qn) be a sequence of rational numbers converging to
√
2. The symplectic vector

fields

Xn = ∂x1
+
pn
qn
∂x2

+
1

n
sin(pnx1 − qnx2)∂y1

− 1

n
sin(pnx1 − qnx2)∂y2

+
√
3∂y3

+
√
5∂y4

approach X as n −→ +∞. Moreover

Xn(pnx1 − qnx2) = 0.

In particular the 3-torus pnx1 = qnx2 is invariant under the flow of Xn. The equations of motions
are: 

ẋ1 = 1
ẋ2 = pn

qn

ẏ1 = 1
n sin(pnx1 − qnx2),

ẏ2 = − 1
n sin(pnx1 − qnx2),

Linearisation of the Hamilton equations (xi 7→ xi + ξi, y 7→ yi + ηi) along this 3-torus shows that
it is isolated: {

ξ̇i = 0
η̇i = ± 1

n (pnξ1 − qnξ2) = constant

Remark 3. There are nevertheless ways to formulate a statement without condition (B) in the
spirit of the Herman invariant tori conjecture [12]. For instance, if instead of considering a
neighbourhood of X we consider a deformation Xt, then one can suppress assumption (B) and
the theorem remains valid as, in this case, the type of normal form we will consider automatically
satisfies such a condition.
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1.7. The structure of the proof runs along the following lines:

1) We consider a versal deformation of the quasi-periodic vector field, depending on additional
parameters ϕi:

V := Xν +
∑
i

ϕiθi.

Similarly, to a perturbation Xν + S, we associate the perturbation V+ S of the versal family V.

2) We prove theorem of stability of the versal deformation V. That is, we show that for good
frequencies there exists a Poisson morphism ψ, which maps the vector fields V+ S to V. Here
good means that the frequencies satisfy a certain arithmetic condition.

3) As Xν is the restriction of V+S to ϕ1 = · · · = ϕ2d = 0, the Poisson morphism ψ maps Xν +S
to the restriction of V to ψ(ϕ1) = · · · = ψ(ϕ2d) = 0.

4) By the Ehresmann lemma, assumption (B) shows that that the map which sends symplectic
forms to the corresponding frequencies of motion is a local fibration. It is then easy to show
that the set of “good frequencies” form a positive measure set and therefore so does the set of
corresponding one-forms. In case we consider assumptions (B′) or (B′′) instead of the Ehresmann
lemma, we would have to invoke the arithmetic density theorem of [8].

1.8. Now we spell out the arithmetic condition of the theorem. By definition, a frequency vector
ν = (ν1, ν2, . . . , ν2d) is called non-resonant if the scalar product

(ν, J) :=

2d∑
k=1

νkJk, J = (J1, J2, . . . , J2d),

is non-zero for all J ∈ Z2d \ {0}. But although non-zero, this quantity can become arbitrarily
small, if we allow |J | to become large:

inf
J ̸=0

|(ν, J)| = 0.

As during the iteration one has to divide by such quantities, these small denominators have a
dangerous effect on the convergence and must be controlled.
A convenient way to quantify such small denominators is by the so-called arithmetic sequence

σ(ν) = (σ(ν)k)

attached to a vector ν ∈ C2d. This falling sequence is defined by setting

σ(ν)k := min{|(ν, J)| : J ∈ Z2d \ {0}, ∥J∥ ≤ 2k}.

If we collect all frequency vectors ν for which this arithmetic sequence is bounded from below by
a given falling sequence a = (ak), we obtain what we call the arithmetic class of a, defined as

C(a) := ∩∞
m=0Cm(a), Cm(a) := {ν ∈ Cd | σ(ν)k ≥ ak, k = 1, 2, . . . ,m}.

The Cantor-like set C(a) could be called a Swiss cheese set, as it is obtained by removing smaller
and smaller neighbourhoods around the dense collection of hyperplanes (ω, J) = 0, 0 ̸= J ∈ Z2d.
Obviously, one has

a′ ≤ a, =⇒ C(a) ⊂ C(a′).
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It is an elementary fact that, for any ν ∈ C(a), we can find a′ ≤ a such that C(a′) has density
= 1 at the point ν, see e.g. [8].

One says that ν is Diophantine if it satisfies a Diophantine condition, meaning that there exist
constants C and N such that

|(ν, J)| ≥ C

|J |N
.

This means that ν ∈ C(a), where a is a falling geometrical sequence. Diophantine conditions
appear often in dynamical systems, but after the work of Bruno, it became apparent that in many
cases this condition can be relaxed [5]. In our theorem, we will need a much weaker condition
than the Diophantine one: the subquadratic arithmetic condition that we explain now. The
sequence an = qα

n

has the property that it solves the iteration

an+1 = (an)
α

and this motives that the following definition.

Definition. A strictly increasing sequence of positive numbers a = (an) is called positively
subquadratic with exponent α, if α ∈]1, 2[ and there exist A,B ∈ R>0 such that for all n ∈ N
one has

an ≤ AeBαn

.

We denote the set of such sequences by S+(α). Similarly, a strictly decreasing sequence of positive
numbers a = (an) is called negatively subquadratic with exponent α if α ∈]1, 2[ and there exist
A,B ∈ R>0, such that for all n ∈ N one has

an ≥ Ae−Bαn

.

We denote the set of such sequences by S−(α).

Clearly, one has S+(α) ⊂ S+(β) if α ≤ β, so that the set

S+ :=
⋃

α∈]1,2[

S+(α)

is filtered by the sets S+(α). Note also that the product of such subquadratic sequences is again
subquadratic and one has

S+(α) · S+(β) ⊂ S+(max(α, β))

Given a ∈ S+, we call the order of a, denoted ord (a), the infimum of the exponents α appearing
in the definition. Taking the multiplicative inverse (an) 7→ (1/an) interchanges S+(α) and S−(α),
so that one has corresponding properties.

S−(α) · S−(β) ⊂ S−(max(α, β))

Definition. A frequency vector ν ∈ Cn is said satisfy a subquadratic condition, or is subquadratic,
if σ(ν) ∈ S−.

For a subquadratic sequence the infinite product

aΠ := a0a
1/2
1 a

1/22

2 . . . =

∞∏
k=0

a
1/2k

k

converges to a strictly positive number, or equivalently, one has:∑
k≥0

∣∣∣∣ log ak2k

∣∣∣∣ < +∞.
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The sequences satisfying this last condition are called Bruno sequences. So subquadratic sequences
form a subset of Bruno sequences. Clearly, if ν is Diophantine, then σ(ν) is bounded by a geometric
sequence, so these are in particular subquadratic sequences with order equal to 1.

2. The analytic torus

As usual in KAM theory, our theorem is proved using normal form techniques and more precisely
we will use ideas from parametrised KAM theory [3, 4, 2] (see also [13]). Our normal form
is achieved using a specific iteration scheme. As usual in a real analytic context, we use
complexification and construct the iteration in an appropriate open subset in the complex domain.
As all constructions can be done compatibly with the underlying real structure, nothing is lost
and much is gained by doing so. Before we discuss the iteration itself, we set up the basic analytic
notions on the torus.

2.1. Analytic functions on the torus.

2.1.1. The exponential map

Rn −→ (C∗)n, (x1, x2, . . . , xn) 7→ (z1, z2, . . . , zn)

with
zj = e2πixj , j = 1, 2, . . . , n,

defines an embedding of the real torus Tn = (R/Z)n in the algebraic torus (C∗)n as the product
of unit circles |zi| = 1. We will identify Tn with this subset of (C∗)n and describe functions,
vector fields, differential forms on the torus using the complex coordinates zj .

2.1.2. The simplest functions on the torus Tn are the Laurent-polynomials, which are of the
form

f =
∑
I∈Zn

aIz
I ,

where only finitely many aI ≠ 0. Here and in the sequel, we use the multi-index notation and
write

zI = zi11 z
i2
2 . . . zinn , I = (i1, i2, . . . , in), |I| = |i1|+ |i2|+ · · ·+ |in|, etc.

The set of all Laurent-polynomials forms a ring denoted by C[z, z−1] and correspond precisely to
trigonometric polynomials when written in the variable x.

2.1.3. The analytic functions on Tn are identified with the algebra

A := C{z, z−1}

of analytic Fourier series and consist of functions which are holomorphic on an open neighborhood
of the real torus Tn. A fundamental system of such neighborhoods is provided by the sets

Tr := {z ∈ Cn | e−r < |zi| < er}, r ∈]0,∞].

So C{z, z−1} is the union of Banach spaces Ob(Tr), the space of bounded holomorphic functions
on Tr. As a result, the algebra A carries a natural LB-space structure (direct limit of Banach
spaces).

Elements of C{z, z−1} are represented by power series of the form∑
I∈Zn

aIz
I such that

∑
I∈Zn

|aI |er|I| < +∞
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for some r > 0. Alternatively, C{z, z−1} can be seen as the union of Banach spaces Ok(Tr) of
holomorphic functions on Tr with Ck- extension to Tr, or of the Hilbert spaces Oh(Tr) of square
integrable holomorphic functions on Tr.

2.1.4. One has inclusions

C[z, z−1] ⊂ C{z, z−1} ⊂ C[[z, z−1]],

where on the right-hand side we have the vector space of formal Laurent series

F :=
∑
I∈Zn

aIz
I ,

where the coefficients aI are completely arbitrary. The Cauchy product of two such formal
Laurent series is usually not defined, so the ring structure of C{z, z−1} does not extend to
C[[z, z−1]]. However, the Hadamard-product ⋆ obtained by coefficient-wise multiplication∑

I∈Zn

aIz
I ⋆

∑
I∈Zn

bIz
I =

∑
I∈Zn

aIbIz
I

defines an operation on formal Laurent series:

⋆ : C[[z, z−1]]× C[[z, z−1]] −→ C[[z, z−1]].

For a formal Laurent series
h =

∑
I∈Zn

hIz
I ∈ C[[z, z−1]],

the operation h⋆ : C[[z, z−1]] −→ C[[z, z−1]] maps C[z, z−1] to itself, but in general does not
preserve C{z, z−1} if the coefficient hI grows too fast for |I| −→ ∞. However, if the coefficients
satisfy an estimate of the form

|hI | ≤ C|I|N ,
for some C,N , then h⋆ maps C{z, z−1} to itself.

2.2. Analytic vector fields on the torus.

2.2.1. By an analytic vector field on Tn we mean a vector field

X =

n∑
j=1

aj(x)∂xj
,

where the coefficients aj(x) ∈ A are analytic functions on the torus. Expanding these coefficients
in Fourier series and using

1

2πi
∂xj

= zj∂zj =: θj ,

we can write the vector field in the form

X =

n∑
j=1

bj(z)θj , bj(z) ∈ A = C{z, z−1}.

In particular, the constant vector field
n∑

j=1

νj∂xj

becomes, up to a factor 2πi, the linear vector field
n∑

j=1

νjzj∂zj =

n∑
j=1

νjθj

in the z-variables.



32 M. GARAY, A. KESSI, D. VAN STRATEN, AND N. YOUSFI

2.2.2. We denote the set of all analytic vector fields by Θ(A) and have an isomorphism of
A-modules

An ≃−→ Θ(A), (a1(z), . . . , an(z)) 7→
n∑

j=1

aj(z)θj

and algebraically one may identify Θ(A) with the module of derivations of the ring A:

Θ(A)
≈−→ Der C(A), X 7→ (f 7→ X(f)).

The commutation of derivations gives Θ(A) a natural structure of a Lie-algebra.

2.2.3. As the torus Tn is compact, a real analytic vector field X has a globally defined flow

Φt : Tn −→ Tn, t ∈ R,

consisting of real analytic automorphisms of the torus. These automorphisms act on the ring
A = C{z, z−1} by composition. This action can be described formally as the exponentiation of
the vector field:

f 7→ f ◦ Φt = etX(f) = f + tX(f) +
t2

2!
X(X(f)) + . . .

In section 4 we give a functional analytic treatment of the exponential of a vector field with
explicit norm-estimates. This leads to direct proof of the convergence of the series and the
existence of the flow.

2.2.4. The above exponential series etX defines an automorphism of A = C{z, z−1}. There is a
corresponding induced adjoint action on the module Θ(A) of derivations

Y 7→ Φt ◦ Y ◦ Φ−1
t ,

that we denote by

(Φt)∗ = e[tX,−] = 1 + t[X,−] +
t2

2!
[X, [X,−]] + . . . ∈ Aut(Θ(A)),

so that

(Φt)∗ (Y ) = e[tX,−](Y ) = Y + t[X,Y ] +
t2

2!
[X, [X,Y ]] + . . .

2.3. Symplectic vector fields on the torus.

2.3.1. Via the embedding T := T2d ⊂ (C∗)2d the symplectic form

ω =
∑

1≤i<j≤2d

ωijdxi ∧ dxj

on T can be seen as the restriction of the (complex) holomorphic symplectic form
1

(2πi)2

∑
1≤i<j≤2d

ωij
dzi
zi

∧ dzj
zj

on (C∗)2d. Dual to the symplectic form, we have a Poisson bivector
1

(2πi)2

∑
1≤i<j≤2d

ωijzi∂zi ∧ zj∂zj =
1

(2πi)2

∑
1≤i<j≤2d

ωijθi ∧ θj

which gives the ring A = C{z, z−1} the structure of a Poisson-algebra, with Poisson-bracket

{f, g} :=

2d∑
i,j=1

ωijθi(f)θj(g).
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It coincides, up to a factor (2πi)2, with the usual Poisson-bracket

2d∑
i,j=1

ωij(∂xif)(∂xjg),

when written in the original variables x1, x2, . . . , x2d.

2.3.2. The (complex) symplectic vector fields on T are denoted by

S(A) ⊂ Θ(A)

and are in one-to-one correspondence with closed one-forms. In particular the interior products
of the symplectic form ω with the fields θi = zi∂zi give constant and therefore non-exact closed
one-forms

αi := ιθi(ω), i = 1, 2, . . . , 2d.

As

∂x1
∧ ∂x2

∧ . . . ∧ ∂x2d
̸= 0,

these one-forms generate the De Rham cohomology group H1
dR(T,C) of the torus. Consequently,

any closed 1-form α can be written as

α =

2d∑
i=1

ciαi + dh.

From the dual perspective, this means that any symplectic vector field S can be written as the
sum of a quasi-periodic field and a Hamiltonian part:

S =

2d∑
i=1

ciθi + {−, h}.

Note that this representation is essentially unique; the function h is determined up to a constant.
We will always choose h to have vanishing constant term when written as an analytic Fourier
series.

2.3.3. One can summarise the above discussion by saying that the cokernel of the map

A −→ S(A), f 7→ {−, f}

is identified with the De Rham cohomology group H1
dR(T,C), whereas the kernel consists of the

constants. Hence there is a natural exact sequence

0 −→ C −→ A −→ S(A) −→ H1
dR(T,C) −→ 0

and the image of the map in the middle consists precisely of the Hamiltonian vector fields.

2.4. The torus with parameters. We will pick a reference symplectic form ω0 and add
parameters that describe the variation of the symplectic form on the torus. Furthermore we
add parameters that detune the frequencies. The reason for this is, that it makes it easier to
formulate the normal form iteration. By the implicit function theorem we will later express
the perturbed frequencies in terms of the perturbed symplectic form. However, initially we will
consider these as formal, independent parameters.
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2.4.1. The ring R. We add variables
ϕ1, . . . , ϕ2d

to parametrise the frequencies and
δ1, δ2, . . . , δl,

to parametrise the manifold V of symplectic forms in the neighbourhood of U of ω0:

U −→ S, δ 7→ ωδ

The elements of the ring
R := C{δ, ϕ, z, z−1}

are analytic series:
f =

∑
J,K,L

fJ,K,Lz
JδKϕL, fJ,K,L ∈ C

which are convergent in a neighbourhood of {0} × T.

2.4.2. The ring R has a natural Poisson structure that can be written as

{f, g} :=

2d∑
i,j=1

ωij
δ θi(f)θj(g).

The sub-ring R0 := C{δ, ϕ} is the centre of this Poisson algebra. From the point of view of
algebraic geometry we are dealing with a relative symplectic structure, which means that we get
a family of symplectic structures parametrised by R0. Like in the absolute case (i.e. when they
are no parameters), interior product with the form ωδ induces an isomorphism:

ΘR/R0

∼−→ Ω1
R/R0

between the modules of relative vector fields and relative one-forms. Both are free R-modules
and more precisely

ΘR/R0
=

2d⊕
i=1

Rθi, Ω1
R/R0

=

2d⊕
i=1

R
dzi
zi
.

So there is a natural relative notion of symplectic vector fields: these are the fields which
correspond to relative closed one-forms. This defines the module S(R) of relative symplectic
vector fields. In the context of differential geometry, these are called tangential Poisson fields (see
for instance [26]).

Note that by Cartan’s formula, relative symplectic vector fields coincide with vector fields which
preserve the symplectic form. Indeed for X ∈ ΘR/R0

:

LXωδ = diXωδ + iXdωδ = 0

in Ω2
R/R0

. The form ωδ being relatively closed, this shows that the form iXωδ is closed and
therefore X is symplectic.

Lemma. Relative symplectic vector fields can be written in the form:
2d∑
i=1

ciθi + {−, h}, ci ∈ R0, h ∈ R.

Proof. Using symplectic duality, the cokernel of the map

R 7→ S(R), h 7→ {−, h}
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is isomorphic to the R0-module H1(Ω•
R/R0

), the relative first de Rham cohomology. We need to
prove that this is a free R0-module generated by the classes of the θi’s:

H1(Ω•
R/R0

) =

2d⊕
i=1

R0[θi].

This is a relative variant of the fact that the classes θi’s generate the De Rham cohomology of
the torus.
Take a closed relative one-form α ∈ Ω1

R/R0
, decompose it into homogeneous parts (with respect

to the degree in the zi variables) and isolate the degree 0 part:

α =
∑

i∈Z\{0}

αi +

2d∑
i=1

ciθi, deg(αi) = i, ci ∈ R0.

Let X =
∑2d

i=1 θi be the Euler field and define

β =
∑

i∈Z\{0}

αi

i
.

By Cartan’s formula we have:
LXβ = diXβ =

∑
i∈Z\{0}

αi,

which shows that the non-degree 0 part is exact. Therefore:

[α] =

2d∑
i=1

ci[θi] ∈ H1(Ω•
R/R0

).

This proves the lemma. □

Relative symplectic vector fields preserve the Poisson structure, but general Poisson vector fields
can have an additional component:

Lemma. The Poisson vector fields of R are of the form:
2d∑
i=1

bi∂ϕi
+

2d∑
i=1

ciθi + {−, h}, bi, ci ∈ R0, h ∈ R.

Proof. We have a direct sum decomposition

DerC(R) = DerR0(R)⊕DerC(R0), ΘR/R0
= DerR0(R)

which simply means that a vector field X can be decomposed in the form

X = Y + Z, Y =

l∑
i=1

ai∂δi +

2d∑
i=1

bi∂ϕi
, Z =

2d∑
i=1

αiθi.

Denote by
π =

∑
i<j

ωij
δ θi ∧ θj

the Poisson bivector. We have

LXπ =
∑
i<j

LY (ω
ij
δ )θi ∧ θj +

∑
i<j

ωij
δ LX(θi ∧ θj)

We decompose each component of the equation

LXπ = 0
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in the z-degrees, that is, we look for each coefficients zaθi ∧ θj where |a| is the degree. The terms
LY (ω

ij
δ )θi ∧ θj have coefficients in R0 and have therefore degree 0 while the coefficients of

LX(θi ∧ θj) = LXθi ∧ θj + θi ∧ LXθj

all have positive degree. This shows that LXπ = 0 occurs if and only if

LY π = LZπ = 0

In particular the vector field Z is symplectic.

Now write

Y =

l∑
i=1

ai∂δi +

2d∑
i=1

bi∂ϕi
.

By assumption, the δi parametrise the symplectic forms ωδ which means that the map

∂δi 7→ ∂δiωδ

is injective and, as ωδ does not depend on ϕ this implies that the ai’s are all zero. This proves
that Y ∈

⊕2d
i=1R0∂ϕi

. □

We denote by P(R) the R0-module of Poisson vector fields. Note that for any h ∈ R and v ∈ P(R),
we have

[v, {−, h}] = {−, v(h)}
In particular, both modules S(R),P(R) are closed under Lie bracket and we have inclusions of
Lie algebras:

S(R) ⊂ P(R) ⊂ Der C(R).

2.5. The versality theorem.

2.5.1. For a given set X ⊂ C2d × Ck, we use the notation

X(a) = (C(a)× Ck) ∩X
for the subset with “good frequencies”.
Let us first formulate the following versality theorem and then discuss the various notions involved:

Theorem ( Versality Theorem). Let a = (an) be a subquadratic sequence and let

U ⊂ C2d × Cl × (C∗)2d

be a neighbourhood of {0} × T with coordinates ϕ, δ, z. Assume ν(0) ∈ C2d(a). then

V =

2d∑
i=1

(νi + ϕi)θi

is stable in the following sense: for any k, ε > 0, there exists δ > 0, such that for any S ∈ Sb(U),
δ-close to zero, there exists an open neighborhood U ′ of {0} × T and a Poisson morphism

ψ : Ob(U) −→ Ok(U ′(a)),

ε-close to the identity, such that
ψ∗(V+ S) = V.

2.6. For an open subset U ∈ Ck, the vector space O(U) of holomorphic functions on U has
only a Fréchet space structure. However if we consider functions which are bounded, we get a
Banach space Ob(U) for the supremum norm. The Banach space of symplectic vector fields with
coefficients in Ob(U) are denoted by Sb(U).
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2.6.1. The set C(a) of good frequencies has in general an empty interior, so in the statement
of the theorem we used the notion of holomorphy in the Whitney differentiable context. Recall
that a function f : X −→ R defined on a closed subset X ⊂ Rd of Euclidean space is called
Ck Whitney differentiable at x ∈ X, if there exists continuous functions x 7→ DIf(x) called the
Whitney derivatives of f at x such that:

f(y) =
∑
|I|≤k

DIf(x)

|I|!
(y − x)I + o(∥y − x∥k).

So the sole difference with the standard definition of differentiability is the requirement of
uniformity of the limit in the x, y variables. The Whitney extension theorem says that any
Ck-Whitney function is the restriction of a Ck-function [27].
If we consider complex valued functions with Whitney Ck real and imaginary part which satisfy
the Cauchy-Riemann equations, then we get the definition of a Ck holomorphic function on a
closed set. (These were already considered by Herman back in 1985 [15].)
These Ck-Whitney holomorphic functions define a presheaf of Banach space Ok

U(a) and we simply
write Ok(U(a)) for Ok

U(a)(U(a)) for the functions with continuous and bounded extension to the
closure of U(a).

Note that the Poisson morphism ψ maps holomorphic functions to Whitney holomorphic functions.
This express the fact that only the quasi-periodic motions with “good frequencies” are preserved.
We also extended our definitions of S(R) and P(R) from germs to open sets U containing {0}×T.

2.7. We will use finite differentiability but it is easy to see that the Poisson morphism we will
construct is in fact Whitney C∞. This is due to the fact that like for the one dimensional Cauchy
inequalities:

sup
|z|≤r

|f (k)(z)| ≤ k!

εk
sup

|z|≤r+ε

|f(z)|,

C0-estimates imply Ck-estimates after shrinking.

2.7.1. Having clarified the statement of the theorem, let us now show that, as announced, the
Versality Theorem implies our result on the stability of quasi-periodic motions.
The frequency ν(0) is assumed to belong to C(a). We choose a′ < a such that the set C(a′) has
positive measure in any neighbourhood of ν(0) (see [8]). Assume that ν is a submersion. Then
the map ν + g is a submersion for any g in a sufficiently small C1 ε-neighbourhood. We apply
the theorem above with the sequence a′ and k = 1. We get a Poisson mapping ψ such that

ψ∗(V+ S) = V

for any S in a δ-neighbourhood. So if we perturb the quasi-periodic motion

X = Xν + S =

2d∑
i=1

νi(δ)θi + S,

then the image of Xν + S under ψ is the restriction of V to

R1 = · · · = R2d = 0.

where
Ri(δ, ϕ) := ψ(ϕi), i = 1, . . . , 2d.

Note that these are only defined on the set U ′(a′). We choose C1 Whitney extensions r1, . . . , r2d
on U ′. By the implicit function theorem, we may find a smaller neighborhood U ′′ of the origin
and a C1-map g = (g1, . . . , g2d), defined on U ′′ such that

r(δ, ϕ) = 0 ⇐⇒ ϕ = g(δ).
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This means that

(∗) ψ∗(Xν + S0) =

2d∑
i=1

(νi(δ) + gi(δ))θi

provided that
(∗∗) (δ, ν(δ) + g(δ)) ∈ U ′(a′).

By Ehresmann’s lemma, the map
δ 7→ ν(δ) + g(δ)

defines a local fibration above its image. The preimage of C(a′) has therefore positive measure.

3. KAM iterative procedures

In this section, we prove a formal version of the Versality Theorem and outline the iteration
process that brings a perturbed vector field back to normal on the level of power series. In later
sections, we lift this iteration to the level of Banach spaces and give the estimates that lead to a
proof of convergence. We start with a discussion of the associated homological equations, i.e. the
linear operators that we will need to invert.

3.1. Formal variant of the versality theorem.

3.1.1. In the analytic case, we consider a neighbourhood of a given vector field for the LB-
topology, while in the formal case we add a formal parameter t to our Poisson algebra R and
get a new Poisson algebra R[[t]] where t is a central element. There is now a t-adic topology on
R[[t]], defined 0-neighbourhood tkR[[t]] with k ∈ N as basis. A sequence (fn) is convergent, if its
projection to R[[t]]/tkR[[t]] becomes a constant for all n bigger than some index Nk.

We have a formal version of the versality theorem:

Theorem. The deformation V ∈ P(R[[t]]), R = C{ϕ, δ, z, z−1} is stable in the sense that for
any deformation Ṽ = V+ tS ∈ P(R[[t]]) of V there exists a Poisson automorphism ψ such that

ψ∗Ṽ = V

The theorem is proved by a variant of the standard iteration already used by Kolmogorov in his
1954 paper [17].

3.1.2. Put S = S0 and assume we can find Y0 ∈ P(R) that solves the homological equation:

[Y0,V] = S0

The vector field Y0 integrates to an automorphism e−tY0 of R[[t]]. By the adjoint action, the
vector field X0 is transformed into

X1 := e−t[Y0,−]X0 = X0 − t[Y0, X0] + . . .

and define the next perturbation S1 by setting

X1 = V+ t2S1.

We repeat this operation and get an iteration scheme of the form

Xn = V+ tnSn,

[Yn,V] = Sn,

Xn+1 = e−tn+1[Yn,−]Xn.
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This iteration converges in the t-adic topology (the orders become higher in t). So to prove the
formal variant of our theorem, we only need to explain how to solve the homological equation,
that we will do now.

3.2. The homological equation for functions.

3.2.1. The Lie-derivative

D : R −→ R, f 7→ LVf = V(f)

is diagonal in the monomial basis:

D : zI 7→ (ν(δ) + ϕ, I)zI ,

where (−,−) denotes the Euclidean scalar product.
Hence the operator D is equal to taking Hadamard product with

g(z) :=
∑

I∈Z2d

(ν(δ) + ϕ, I)zI .

so that

D(f) = g ⋆ f.

The kernel of the map D is the centre R0 = C[[δ, ϕ]] of the Poisson algebra R.

3.2.2. As we assumed ν(0) to be non-resonant, the functions

(ν(δ) + ϕ, I), I ̸= 0,

are invertible elements of R0 = C[[ϕ, δ]], and thus we can consider the formal power series:

H(z) :=
∑

I∈Z2d\{0}

(ν(δ) + ϕ, I)−1zI ∈ R0[[z, z
−1]],

which we call the resolvente of V. Note that if we try to interpret this formal series as a function, it
would have, in general, poles of order 1 along a dense set of hyperplanes defined by the resonance
conditions (ν(δ) + ϕ, I) = 0, I ∈ Z2d.

If P is a Laurent polynomial in z with vanishing constant coefficient, then

D(H ⋆ P ) = g ⋆ H ⋆ P = P,

so we get an inverse to the operator D, because the Hadamard product contains only a finite
number of elements. However if we want to write a similar formula for more general elements of
R, it is readily shown that the Diophantine condition on ν(0) implies that the operator H⋆ maps
R to itself, and provides an inverse to the Lie-derivative operator.

D(H ⋆ f) = f, f ∈ R.

We note that the Lie-derivative LV and therefore the map D extends to arbitrary tensors. The
Lie-derivative commutes with the exterior derivative and therefore

Dd (H ⋆ P ) = dD (H ⋆ P ) = dP.
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3.3. The homological equation for vector fields.

3.3.1. The action of the Lie-derivative on vector fields is given by the Lie bracket or commutator
of vector fields:

LVY = [V, Y ] = −LY V.

For a given symplectic vector field S, we want to solve the homological equation

LVY = S

for the vector field Y . Somewhat surprisingly, this can be done quite explicitly.

3.3.2. If we assume a Diophantine condition on ν(0), we have the following:

Proposition. Decompose S into Hamiltonian and non-Hamiltonian parts:

S = {−, f}+
2d∑
i=1

ciθi, ci ∈ R0.

Then the equation
LVY = S

is solved by

Y := {−, H ⋆ f}+
2d∑
i=1

ci∂ϕi
,

where H = H(z) is the resolvente introduced above.

Proof. Write D = LV for the operation of Lie-derivative with respect to V. As the symplectic
form ωδ is invariant under the flow of V, one has Dωδ = 0 and consequently

D({f, g}) = {Df, g}+ {f,Dg}.
The commutator of the vector fields V and {−, g} acting on f is

[V, {−, g}](f) = V({f, g})− {V(f), g} = D({f, g})− {Df, g} = {f,Dg},
which means that

D({−, g}) = {−, Dg}.
So we get

DY = {−, D(H ⋆ f)}+ [V,

2d∑
i=1

ci∂ϕi ]

= {−, f}+
2d∑
i=1

ciθi

= S

□

3.3.3. The decomposition of S into Hamiltonian and non-Hamiltonian parts are unique. There-
fore, still under a Diophantine condition on the frequency ν(0), the explicit solution to homological
equation determines a map

j : S(R) −→ P(R))

S 7→ Y = {−, H ⋆ f}+
∑2d

i=1 ci∂ϕi
.

This concludes the proof of Theorem 3.1.1. In the following section, we will discuss the analytic
case.
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3.4. The non-formal iterative procedure.

3.4.1. In the purely analytic case, we have no deformation parameter t to our disposal, in other
words, we have t = 1 and one can not argue by powers of t. Instead, we have to consider the
z-degrees. Let us also forget the Diophantine condition on ν(0). Then the operation of taking
the Hadamard product with the resolvente H no longer maps R to itself. As a result, the map j
defined above does not make sense.

However, it turns out that it is sufficient to consider an approximate inverse and therefore we
introduce a weight filtration in the ring R = C{ϕ, δ, z, z−1}..

3.4.2. For each subset A ⊂ Zn there is a canonical truncation operator

[−]A : C[[z, z−1]] −→ C[[z, z−1]], f 7→ [f ]A,

where we only keep the the monomials of f whose exponent appears in A:

[f ]A :=
∑

I∈Zn∩A

aIz
I .

So we are dealing with a special case of the Hadamard product and so these truncation operators
map C{z, z−1} to itself. If A is a finite set, [f ]A belongs to C[z, z−1]. For j, k ∈ N we put

[f ]kj := [f ]Aj,k
, Aj,k := {I ∈ Zn | j ≤ |I| < k}.

We also write [f ]j in case k is infinite and [f ]k in case j = 0. This corresponds to the filtration
by the degrees of the Fourier harmonics.

Now we assign the weight one to the variables δi and weight zero to ϕi. We can naturally extend
the truncation from the ring A to the ring R, so that

[f ]k :=
∑
L

∑
|K|≤k

[fK,L]
k−|K|δKϕL

with fK,L ∈ C{z, z−1}.

3.5. We may now define our approximated inverse. If S = {−, f}+
∑2d

i=1 ciθi and A ⊂ Zn a
finite subset, we set

[S]A := {−, [f ]A}+
2d∑
i=1

[ci]Aθi

and can define maps
jA : S(R) −→ P(R))

by setting

jA(S) := j([S]A) = {−, H ⋆ [f ]A}+
2d∑
i=1

[ci]A∂ϕi
.

We also use the notations

[S]m := {−, [f ]m}+
2d∑
i=1

[ci]
mθi, [S]m := {−, [f ]m}+

2d∑
i=1

[ci]mθi

for the truncations of a vector field in lower and higher Fourier modes.
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3.5.1. Now, the iteration runs as follows. We decompose the perturbation into two parts:

S0 = [S0]
2 + [S0]2.

Using proposition 3.3.2 we can find Y0 ∈ P(R)) that solves the equation:

[Y0,V] = [S0]
2

The vector field Y0 integrates to an automorphism e−Y0 of R. By the adjoint action, the vector
field X0 is transformed into

X1 := e−[Y0,−]X0 = X0 − [Y0, X0] + . . .

and define the next perturbation S1 by setting

X1 = V+ S1.

3.5.2. We repeat this operation by taking terms up to order 2, 22, 23 and so on. We obtain an
iteration scheme of the form

Xn = V+ Sn,

Sn = [Sn]
2n+1

+ [Sn]2n+1 ,

[Yn,V] = [Sn]
2n+1

,

Xn+1 = e−[Yn,−]Xn.

3.5.3. As before, starting from a perturbed X = Xν + S0 quasi-periodic motion, we consider
the corresponding perturbation of the versal unfolding

X0 = V+ S0.

The iteration produces an adjoint automorphism

ψn := e[Yn,−] . . . e[Y0,−] ∈ Aut(Θ(R))

Xn = V+ Sn = ψn(V+ S0).

and maps the element ϕk to certain power series

φn(ϕk) =: Rn,k(ϕ1, . . . , ϕ2d, δ1, . . . , δl) =: Rn,k(ϕ, δ), k = 1, 2, . . . , 2n.

with
Rn,k(ϕ, δ) = ϕk +O(2),

Again using the formal implicit function theorem, we solve the equations Rn,k = 0. The adjoint
automorphism ψn transforms the vector field Xν + S0 into

ψn(Xν + S0) = (V)ϕk=gn.k(δ) + (Sn)ϕk=gn,k(δ).

So in the limit n −→ ∞, we expect to get a relation of the form

ψ∞(Xν + S0) = (V)ϕk=g∞,k(δ) =

2d∑
i=1

(νi(δ) + g∞,i(δ))θi,

hence we produce a coordinate transformation that conjugates the symplectic perturbation Xν+S
of a quasi-periodic vector field Xν to a nearby quasi-periodic vector field, with a frequency that
depends on the perturbation of the symplectic form.
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3.5.4. This new iteration is foolish from a formal point of view: as the vector fields Yn will
contain all terms of degrees up to 2n, its exponential will reintroduce monomials that one tries to
remove. One is reminded of the mythos of Sisyphos, but we will show later by a direct estimate
that the norm of the remainder decreases quadratically in appropriate Banach spaces, so that his
burden is decreasing quickly, although the removal of even the first term will require an infinite
number of iterations and keeps him busy forever.

3.6. Almost quadratic nature of the iteration.

3.6.1. Before going into the details of functional analytic aspects, we discuss the quadratic
nature of the iteration. It is defined by first writing

Xn = V+ Sn

and then recursively {
Yn = jn(Sn)

Xn+1 = e−[Yn,−]Xn

Here we use the notation
jn(−) = jAn

(−)

where An is the set of monomials, whose absolute value of weight is smaller than 2n+1.

3.6.2. The iteration is quadratic with the remainder term in the following sense:

Xn+1 = e−[Yn,−]
(
V+ [Sn]

2n
)
+ e−[Yn,−] ([Sn]2n)

= e−[Yn,−] (V+ [Yn,V]) + e−[Yn,−] ([Xn]2n)

= V+ (e−[Yn,−](Id + [Yn,−])− Id )V+ e−[Yn,−] ([Xn]2n)

For a power series in a single variable x

f(x) =

∞∑
i=1

aix
i

and a vector field X, we put

f∗(X) :=

∞∑
i=1

ai(LX)i

So if we write

f(x) = e−x(1 + x)− 1 = −x
2

2
+ o(x2),

the iteration can be written in the form

Sn+1 = f∗(jn(Sn))V+ e−[jn(Sn),−] ([Sn]2n)

So in a formal sense, the iteration has a quadratic term f∗(jn(Sn)) and a remainder part
e−[jn(Sn),−]([Sn]2n). Although terms of low degree remain at each step of the iteration, it might
be expected that, because of this quadraticity, their coefficients rapidly tend to zero. We will see
that this is, under certain conditions, indeed the case.

3.6.3. The above can be seen as an iteration in the LB-space S(R). Now we will formulate a
version of the iteration in terms of a system of Banach spaces of holomorphic functions attached
to neighborhoods Tr of T in (C∗)2d. We will keep track of the norms of Sn during the iteration.
This will show that the above process converges over a non-trivial Cantor-like set, defined by the
condition that the norm remains sufficiently small.
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4. A short review on functorial analysis

In the proof of the Versality Theorem, we will have to work with many different Banach spaces,
usually called a Banach scale or a Banach chain. The important feature is not only these Banach
spaces as such, but rather the various maps between them that are ’compatible’ in various ways.
These maps result from restriction maps, that appear in the shrinking of domains during the
iteration process, or changes in the type of Banach space considered. Of course, one needs to
have explicit control over all the norms of these maps. To keep track of all these, we found it
convenient to use an abstract framework that was developed in [9], to which we refer for more
details.

4.1. Relative Banach spaces. We give a quick overview of the formalism of Banach spaces
parametrized by ordered sets that one encounters often in dealing with function spaces over
shrinking domains of definition.

4.1.1. Let (B,≥) be a partially ordered set.

Definition: By a Banach space E over B we mean a collection of Banach spaces space Et, t ∈ B,
and for each t ≥ s compatible continuous linear maps

εst : Et −→ Es,

called restriction maps, where compatibility means

(⋆) : ess = Id, est ◦ etu = esu for all u ≥ t ≥ s.

We emphasize that all Banach spaces Et are equipped with a specific norm | − |t.

Examples come readily to mind. The chain of Banach spaces

· · · ⊂ Ck+1([0, 1],R) ⊂ Ck([0, 1],R) ⊂ · · ·
can be seen as a Banach space over (N,≥), where the inclusion maps take the role of restrictions.
Another example is obtained as follows: for an open subset U ⊂ CN , let Ob(U) denote the Banach
space of all bounded holomorphic functions on U . For V ⊂ U there are compatible restriction
maps φV U : Ob(U) −→ Ob(V ). So we obtain a Banach space over the partially ordered set of
open subsets of CN , which is just a presheaf of Banach spaces. By further restriction to open
balls of radius Br, we get a Banach space E over (R>0,≥), with Et := Ob(Bt).

4.1.2. One can describe Banach spaces over B in the geometric language of fibre bundles. One
forms the total space by setting

E :=
⊔
b∈B

Eb,

and there is a natural map p : E −→ B, which maps the elements of Eb to b. We sometimes use
the notation (b, x), x ∈ Eb for the elements of E and we use the generic name | − |b for the norm
on the Banach space Eb. For an element xb ∈ Eb we often write |xb| instead of |xb|b, etc.

Definition: A section of E over A ⊂ B is a map x : A −→ E, such that p ◦ σ = Id|A, i.e. a
choice of vectors x(b) =: xb ∈ Eb for all b ∈ A, like in the theory of vector bundles or sheaves.
The set of all such sections over A form a vector space

Γ(A,E) :=
∏
b∈A

Eb.

A section x is called horizontal, if it is compatible with the restriction mappings: for all s, t ∈ A
with s < t, we have

estxt = xs.
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A section over A is called bounded, if the function b 7→ |xb| is bounded on A. A simple but
fundamental fact is the following

Proposition. The vector space

Γ∞(A,E) = {x ∈ Γ(A,E) | x is horizontal and bounded}

is a Banach space with norm

|x|A := sup
a∈A

|xa|a.

Proof. The only non-trivial fact to check is the completeness of the vector space Γ∞(A,E) with
respect to the norm | − | := | − |A. Let (xn) ⊂ Γ∞(A,E) be a Cauchy sequence of sections. For
any b′ > b, the sequence xn(b′) is a Cauchy sequence in Eb′ and therefore converges to a limit
x(b′). We need to show that the norm of this limit section is finite. The norms |xn| form a
Cauchy sequence of real numbers and therefore converges to a limit M .

|x(b′)| ≤ |x(b′)− xn(b
′)|+ |xn(b′)|

≤ |x(b′)− xn(b
′)|+M.

So, passing to the limit, we see that the norm of x is bounded by M and in fact equal to M
(because the norm is a continuous map). □

4.1.3. One can give a categorical definition of relative Banach spaces that is more general and
useful in many situations. Denote by Ban the category whose objects are Banach spaces, and
whose morphisms are bounded linear operators. For a small category B, we mean by a relative
Banach space over B, a covariant functor

F : B −→ Ban.

Any partially ordered set (B,≥) is naturally such a small category, with spaces of morphism
Mor(t, s) consisting of a single element if t ≥ s. If we apply the functor F to t ∈ B, we obtain a
Banach space Et and applied to any morphism t ≥ s, we obtain a continuous linear mappings
est : Et −→ Es; the functor property is precisely the compatibility conditions (⋆) between these
maps.

4.1.4. Definition: A Banach space E over B is called a Kolmogorov space, if all the restriction
mappings est ∈ Hom(Et, Es) have norm ≤ 1, where we put the operator norm ∥ − ∥ on the space
Hom(Et, Es) of continuous linear maps; one always has:

|estx|s ≤ ∥es,t∥|x|t ≤ |x|t for all s ≤ t.

The relative Banach space E over R>0 with Et := C0([0, t],R) and F with Ft = Ob(Bt) are
Kolmogorov spaces, because the norms on these spaces are defined by the supremum over a set,
which can only become smaller if s ≤ t after restriction to a smaller set.

A global horizontal section of E over R is uniquely determined by the choice of a function
f ∈ C0(R,R): the value of the section above a point t ∈ R>0 is simply the restriction of f to the
interval [0, t]. The section is bounded precisely if the function f is bounded. Similarly the relative
Banach space F with Ft := Ob(Dt), Dt = {z ∈ C | |z| ≤ t} is a Kolmogorov space over R>0.
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4.1.5. If (B,≥) is a partially ordered set, and b ∈ B, then the down-set of b is defined as

]−∞, b] := {b′ ∈ B | b′ ≤ b}.

If xb ∈ Eb, we obtain be restriction xb′ = eb′bxb, and thus a horizontal section x ∈ Γ(]−∞, b], E).
If E is a Kolmogorov space over B, then we also have |x|b′ ≤ |x|b, so that this section is also
bounded. Trivially we have for Kolmogorov spaces a norm preserving isomorphisms of Banach
spaces

Γ∞(]−∞, b], E) = Eb.

This leads to the following idea: to any Banach space E over B we can associate in a natural
way a Kolmogorov space EK over B, by setting

EKb := Γ∞(]−∞, b], E),

where the norm of such a section is given by the supremum norm. Clearly, if b′ ≤ b, then we
have ]−∞, b′] ⊂ ]−∞, b], so that indeed

|x|b′ ≤ |x|b,

as we are taking the supremum over a smaller set and so the natural restriction mappings
EKb −→ EKb′ have norm ≤ 1. We see:

Proposition ([9]). Given a relative Banach space E over B, the associated space EK over B
is a Kolmogorov space.

For this reason we call EK the Kolmogorification of E; if E is already Kolmogorov, then EK = E,
so we get back the original space1.

In practice, Kolmogorification tells us that there is a right norm to be considered, without having
to guess it, or even to write it in explicit terms. There is a simple moto: if any space appears to be
a relative Banach space that is not a Kolmogorov space, then we must take its Kolmogorification.

4.1.6. If B is a partially ordered set, we denote by Bop the partially ordered set with the reversed
order. The underlying set Bop is the same as B, but the order relation on Bop is opposite to that
of B: if t ≥ s in B, then s ≥ t in Bop.

If E is a Banach space over B, it can no longer be considered as a Banach space over Bop, as the
maps go in the wrong direction. Nevertheless, we can form an opposite Kolmogorov space.

Definition. Given a Banach space E over B, the opposite Kolmogorov space

Eop −→ Bop

is defined by defining
Eop

b := Γ∞([b,+∞[, E),

the Banach space of horizontal bounded sections over the up-set of b ∈ B:

[b,+∞[= {b′ ∈ B | b′ ≥ b},

(which is the down-set of b ∈ Bop), with the supremum norm.

Note there are natural restriction mappings of norm ≤ 1

Eop
b −→ Eop

b′ ,

for b′ ≥ b in B, i.e. b′ ≤ b in Bop.

1The process of Kolmogorification is somewhat analogous to sheafification of a presheaf.
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We remark that such reversions of ordering appear naturally in dealing with spaces of homomor-
phisms. For example, given two relative Banach spaces E and F over an interval B =]0, S] with
the usual ordering ≥, it seems we can form the relative Banach space

Hom(E,F ) −→ B ×B,

whose fibre over (t, s) is
Hom(Et, Es),

the space of continuous linear maps from Et to Fs, with the operator norm ∥ · ∥:

∥ust∥ := sup
x∈Et\{0}

|u(x)|s
|x|t

.

It seems we obtain a relative Banach space: the restriction maps from Hom(Et, Es) to Hom(Et′ , Fs′)
are obtained as composition with the restriction maps of E and F :

us′t′ = fs′sustett′ ,

which forces to have s ≥ s′, but t′ ≥ t. But note that the partial order relation needs to be
reversed in the first factor! So Hom(E,F ) really is a Banach space over Bop ×B and not over
B ×B.

4.2. Local operators. One can abstract and generalise the concept of differential operator in
our context.

4.2.1. For two relative Banach space E and F over B =]0, S] with the usual ordering ≥, we
described above the relative Banach Hom(E,F ) over Bop ×B. By restriction to the triangle

∆ := {(t, s) ∈ B2 : t > s} ⊂ Bop ×B

and a rescaling of the norm we obtain a Kolmogorov space

Homk(E,F ) −→ ∆,

whose fibre is the space Hom(Et, Fs) of continuous linear mappings with rescaled operator norm

|t− s|k ∥ust∥.

4.2.2. We also consider the opposite Kolmogorov space

Homk(E,F )op −→ ∆op, ∆op ⊂ B ×Bop,

which we denote by
Lk(E,F ) := Homk(E,F )op,

and call the space of k-local operators. Let us look what the elements of this space are, and how
its norm is defined. Unravelling the definitions, we have

Lk(E,F )s,t := Γ∞(∆(t, s),Homk(E,F )),

so elements of this Banach space are bounded horizontal sections u = (ua,b):

ua,b ∈ Hom(Eb, Fa), (b, a) ∈ ∆(t, s),

where
∆(t, s) := {(b, a) ∈ B2 : t ≥ b > a ≥ s} ⊂ Bop ×B,

for which
|u|s,t := sup

(b,a)∈∆(t,s)

|b− a|k ∥ua,b∥ <∞.
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Lk(E,F )s,t is a Banach space that arises naturally in our formalism, but which is hard to describe
in simpler terms.

4.2.3. A simple example may help to clarify the above construction. Consider the map sending
a convergent power series to its derivative

C{z} −→ C{z}, f 7→ f ′ = ∂zf,

and let Ob(D) be the Kolmogorov space over ]0, S] defined by

Ob(D)t := Ob(Dt), Dt := {z ∈ C | |z| < t}.
If f ∈ Ob(Dt), its derivative f ′ needs not to be bounded on Dt, and therefore is, in general, not
an element of Ob(Dt). However, the function is certainly holomorphic and bounded inside any
disc Ds of radius s < t. This peculiar property shows that the derivative is a horizontal section
of the opposite Kolmogorov space Hom(Ob(D),Ob(D))op over ∆op. Is this section bounded? It is
not, as to be expected of a derivative operator. But the Cauchy inequality

|f ′|s′ ≤
1

t′ − s′
|f |t′ , s′ ≥ s, t′ ≤ t

shows that it becomes bounded after rescaling by a factor (t− s): the derivative is 1-local with
norm ≤ 1. Similarly, a differential operator of order k will be k-local.

Differential operators and Hadamard products provide examples of local operators, but these
examples are by no means exhaustive. For instance, some changes in scales provide an important
further class of examples of local operators, as we shall see.

4.2.4. Composing partial differential operators of order k and l results in a partial differential
operator of order k + l. This holds more generally for local operators.

Proposition. Let E,F,G be Kolmogorov spaces over ]0, S]. If u ∈ Lk(E,F ) and v ∈ Lm(F,G)
then

v ◦ u ∈ Lk+m(E,G).

Moreover, one has the norm estimate:

|v ◦ u| ≤ (k +m)k+m

kkmm
|v||u|.

Proof. For s < s′ < t we have ∥(v ◦ u)st∥ ≤ ∥vss′∥ ∥us′t∥. From the definition of locality we have:

∥vss′∥ ≤ |v|
(s′ − s)k

, ∥us′t∥ ≤ |u|
(t− s′)m

.

We take the point s′ such that

(s′ − s) =
m

k +m
(t− s), (t− s′) =

k

k +m
(t− s),
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and find the estimate

∥vss′∥ ∥us′t∥ ≤ (k +m)k+m

kkmm

|v||u|
(t− s)k+m

,

thus

|v ◦ u| ≤ (k +m)k+m

kkmm
|v||u|.

□

So composing local operators of order k and l results a local operator of order k + l.

4.2.5. Cauchy-Lipschitz theorem for local operators. We now formulate a Cauchy-Lipschitz theo-
rem for local operators which implies the existence of the exponential of a 1-local operator and,
more generally, one may define a functional calculus in L1(E,E). Most proofs become elementary,
using the language of Banach functors. We refer to [9, 10] for more details. Note that a vector
field is a particular case of local operator and its flow will be simply defined by its exponential
series. More generally we consider a power series

f =
∑
n≥0

anz
n.

We use the notation
|f | =

∑
n≥0

|an|zn.

The Borel transform of a formal power series is defined by

B : C[[z]] −→ C[[z]],
∑
n≥0

anz
n 7→

∑
n≥0

an
n!
zn.

Consider a E over ]0, S] and its associated space L1(E,E) of 1-local operators. We define the set

X(R) := {(t, s, u) ∈ L1(E,E) | ||u|| < R(t− s)}

Theorem. Let f =
∑

n≥0 anz
n ∈ C{z} be a convergent power series with R as radius of

convergence. Then there is a well-defined map of spaces over ∆ ⊂ R2, that we call the Borel map:

Bf : X(R) −→ Hom(E,E), (t, s, v) 7→ (t, s,
∑
n=0

an
n!
vn)

and one has the estimate

∥Bf(u)∥ ≤ |f |
(

||u||
t− s

)
.

We also have a criterion for the convergence of change of variables, which was one of the missing
point of classical KAM theory:

Theorem. Let E over ]0, S] be a Kolmogorov space and let (un) ⊂ L1(E,E) be a sequence of
1-local operators such that their norms |un| define a summable sequence. Then the products

euneun−1 . . . eu0

are well-defined and converge to a limit φ ∈ Γ(U,Hom(E,E)) with

U = {(t, s) ∈ R2
>0 : t− s ≥

∑
i=1

|ui|}.
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4.3. Arnold spaces. In applications to iterations one often encounters Banach-spaces En,t

indexed by a discrete iteration variable n ∈ N := N ∪ {∞} and continuous variables t controlling
the size of some neighborhoods. There are restriction mappings En,t −→ Em,t and En,t −→ En,s

for n ≤ m and t ≥ s, making commutative diagrams

En,t −→ En,s

↓ ↓
Em,t −→ Em,s.

Such a structure can be seen as a Kolmogorov space over a base of the form N × B, where of
course we have to use the opposite ordering on the first variable. We call this structure an
Arnold space. It can also be seen as a (compatible) sequence En, indexed by n ∈ N of ordinary
Kolmogorov spaces. In particular, there is fibre-wise notion of locality: a local map u ∈ Lk(E,F )
is a family of local maps

un ∈ Lk(En, Fn)

and thus defines a norm sequence (|un|) which in applications needs to be controlled. A decreasing
sequence n 7→ sn defines a map

σ : N −→ N×B, n 7→ (n, sn),

that can be used to ’pull back’ an Arnold space E and form a Kolmogorov space E′ := σ∗E over
N with fibre En,sn . The consideration of Arnold spaces is useful in situations where one wants to
postpone the choice of an appropriate sequence (sn) as long as possible.

In this paper, we consider Banach spaces of holomorphic functions Ok on sets Wn,s. These sets
combine into a relative open set W −→ N×B and the Banach spaces combine into an Arnold
space Ok(W ).

Proposition. Let u ∈ Lm(E,F ), v ∈ Ln(F,G) be local maps with norm subquadratic norm
sequences then the norm sequence u ◦ v ∈ Lm+n(E,G) is subquadratic with order at most

ord (|(u ◦ v)n|) ≤ max(ord (|un|), ord (|vn|)).

The proof is obvious.

5. Kolmogorov spaces in the analytic context

In the previous section, we illustrated our concepts with the simple examples of one variable
holomorphic functions. Now we will describe the analytic spaces that we use in our iteration.

5.1. Spaces of holomorphic functions.

5.1.1. Let U be a relative compact open subset of Cn, and O(U) the ring of holomorphic
functions on U . One can attach to U various Banach spaces of holomorphic functions. The space
of bounded holomorphic functions is denoted by

Ob(U) := {f ∈ O(U) | f is bounded}

is a Banach space with
|f | = sup

z∈U
|f(z)|

as norm. The space of square integrable holomorphic functions, denoted by

Oh(U) := {f ∈ O(U) |
∫
U

|f |2dV < +∞},
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is a Hilbert space with the L2-norm as norm. We denote by

Ok(U)

the Banach space of complex valued (Whitney) Ck-functions on the closure of U , which are
holomorphic on the interior of U with

|f | = max
|I|≤k

sup
z∈U

|∂If(z)|

as norm. Note that O0(U) =: Oc(U) is the same as the space of holomorphic functions that
extend continuously to the boundary. As any Ck-function is bounded and any bounded function
on a relative compact set is square-integrable, there are natural inclusions

Ok(U) ⊂ Ob(U) ⊂ Oh(U).

If we generalize this to the context of relative open sets over some base, we obtain the most
important class of Kolmogorov spaces.

5.2. Let S denote the set of subsets of Cn, partially ordered by inclusion.

Definition. Let (B,≥) be a partially ordered set. A set over B in Cn is an order reversing map

B −→ S

So a set over B consists of sets Ut for t ∈ B such that for t ≥ s we have an inclusion Us ↪→ Ut.
(It can be seen as a contravariant functor if we consider B and S as categories.) If all sets Ut

are open/closed, we call it an open/closed set over B. We will write such an open set over B as
U −→ B, with fibres Ut over t ∈ B.

As a simple example, the relative unit polydisc D −→ R>0 with fibres

Dt = {z ∈ Cd : |z1| ≤ t, . . . , |zd| ≤ t}.

Given sets U −→ B, U ′ −→ B we may perform many of the usual operations fibre-wise. For
example, we may form their fibred product

U ×B U ′ −→ B,

with fibres the Cartesian product of the fibres of U and U ′, etc.

5.2.1. Using such relative open sets we can create a plethora of Kolmogorov spaces. For an open
set U −→ B over B we may for each t ∈ B form the Banach space Ob(Ut) of bounded holomorphic
functions on U , with the sup-norm as norm. There are for s ≤ t obvious restriction maps
Ob(Ut) −→ Ob(Us) of norm < 1, and hence we obtain a Kolmogorov-space Ob(U) over B, with
Ob(U)t := Ob(Ut). Similarly, the spaces Oh(Ut) of square integrable and Ok(Ut) of Ck-functions
for Kolmogorov spaces Oh(U) and Ok(U). There is natural Kolmogorov space morphism:

Ok(U) −→ Ob(U), Ob(U) −→ Oh(U).

5.2.2. Cauchy-Nagumo estimate. Let Dt ⊂ C be the disc of radius t. For a holomorphic function
f ∈ Oc(Ut) one has the following elementary estimate

|f (m)|s ≤
m!

(t− s)m
|f |t

for s < t, which is a straightforward consequence of the Cauchy integral formula and differentiation
under the integral sign.

This simple idea can be extended to general partial differential operators on appropriate relative
open sets.
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Definition. We say that an open and relatively compact set U of Cn over B =]0, S] is a Huygens
set, if for some a > 0 the following condition holds

∀x ∈ Us, x+Da(t−s) ⊂ Ut,

for any s < t ≤ S.

The proof of the 1-variable case has an immediate generalization to

Proposition. (Cauchy-Nagumo) Let B =]0, S] and U a Huygens set over B, then any partial
differential operator

P =
∑

|I|≤m

aI(z)∂
I , aI ∈ Ok(US)

of order m defines an m-local operator of the Kolmogorov space Ok(U) over B:

P ∈ Lm(Ok(U),Ok(U))

In applications one encounters often slightly more general situations, like the following.

Definition. Let (an) ∈ R>0 be a falling positive sequence. We say that an open and relatively
compact set U of Cn over B =]0, S]× N is an a-Huygens set, if the following condition holds

∀x ∈ Un,s, x+Dan(t−s) ⊂ Un,t

for any s < t ≤ S and all n ∈ N.

The sequence may very well go to 0, making an uniform choice for a impossible.

The above proposition admits a straightforward variant:

Proposition. (Cauchy-Nagumo II) Let a = (an) be a falling subquadratic sequence. Let
B =]0, S]× N and U an (an)-Huygens set over B, then any partial differential operator

P =
∑

|I|≤m

aI(z)∂
I , aI ∈ Ok(US)

of order m defines an m-local operator of the Kolmogorov space whose norm sequence |P |n is
subquadratic with order bounded by that of (an):

ord (|P |n) ≤ ord (an).

5.2.3. A function f ∈ Oh(U)t is by definition holomorphic in Ut. If U is Huygens, then given
any s < t, its restriction to Us is a Ck-function for any k. So we have ’restriction mappings’

Jst : O
h(Ut) −→ Ok(Us)

These maps are compatible with the restrictions on Oh(U) and Ok(U), so combine into an element

J ∈ Hom∆(O
h(U),Ok(U))

Proposition. If U is an a = (an)-Huygens set over B, then

J : Oh(U) −→ Ok(U)

is a local map. Moreover, if a is a falling subquadratic sequence, the norm sequence |Jn| is
bounded by an increasing subquadratic sequence of the same order.
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Proof. Consider a function f ∈ Oh(U)n,t and let s < t. The Taylor expansion of f at a point
w ∈ Un,s reads:

f(z) =
∑
J∈Nd

αJ(z − w)J , αJ ∈ C,

by assumption, U is an (an)-Huygens set, so the polydiscDw centred at w with radius σ = an(t−s)
is contained in Ut. We then have∫

Dw

|f(z)|2dV =
∑
J∈Nd

C(J)|αJ |2σ2|J|+2d, C(J) =

d∏
k=1

π

jk + 1
,

where dV is the Lebesgue measure.

So we obtain

C(0)|α0|2σ2d ≤
∫
Dw

|f(z)|2dV ≤
∫
Un,t

|f(z)|2dV = |f |2t .

This shows that

|f(w)| = |α0| ≤
c

σd

(∫
Dw

|f(z)|2dV
)1/2

≤ c

adn(t− s)d
|f |t

for any w ∈ Un,s and c :=
√

1
C(0) . When we apply the same argument to the derivatives of f

and combine it with the Cauchy-Nagumo estimate, we find an estimate of the form

|Jf |s = max
|I|≤k

sup
w∈Un,s

|∂If(w)| ≤ c′

ad+k
n (t− s)d+k

|f |t.

The proposition follows. □

5.3. Kolmogorov spaces attached to the torus T.

5.3.1. As before, we denote by

Tt := {z ∈ (C∗)n : e−t < |zi| < et}

the neighbourhood of T ⊂ Cn. The space of holomorphic functions O(Tt) can be identified with
the analytic Fourier series

f =
∑

aIz
I ∈ C{z, z−1}

for which

|aI | = O(e−|I|t).

The sets Tt can be seen as fibres of an open set T over R>0. When we restrict it to B =]0, s0], it
is an a-Huygens set, for an appropriate a (which goes to 0 if s0 −→ ∞). We will consider the
corresponding Kolmogorov spaces

Ok(T ), Ob(T ), Oh(T )

over ]0, s0]. Clearly, the elements of each of the underlying Banach spaces Oh(Tt) can be seen a
special elements of C{z, z−1}.
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5.3.2. The Arnold-Moser lemma.

Lemma. Assume that a function f ∈ Oh(T )s depends only on harmonics of degree ≥ m, then
for s ≤ t we have the estimate

|f |s ≤
(
es

et

)m/2

|f |t

Proof. The Cartesian product

St := St(1)× St(2)× · · · × St(2d)

of coordinate strips

St(j) := {xj = ξj + iηj | 0 < ξj ≤ 2π, −t < ηj < t}
parametrises the torus neighborhood Tt via the maps

xj 7→ zj = eixj .

We use the L2-norm on Oh(Tt), obtained by integration of the pull-back of f(z)f(z) over the
strip St. The monomials zI then form an orthogonal basis. As in one variable we have∫

Sr

einxeinxdξdη =

∫
Sr

e−2nηdξdη =

{
2π · 2r if n = 0

2π sinh(2nr)
n if n ̸= 0

we find that for I = (i1, i2, . . . , i2d)

|zI |2t = (2π)2d
2d∏
k=1

sinh(2ikt)

ik

By the Pythagorean theorem, for f ∈ Oh(Tt), we have:

|f |2s =
∑

|I|≥m

|aI |2|zI |2s

=
∑

|I|≥m

(
|aI |

|zI |s
|zI |t

|zI |t
)2

≤ sinh(2ms)

sinh(2mt)
|f |2t .

Here we used the two inequalities

|zI |2s
|zI |2t

≤ sinh(2|I|s)
sinh(2|I|t)

≤ sinh(2ms)

sinh(2mt)
.

The first one is implied by the fact that for fixed positive numbers a, b, . . . , z > 0 the function

x 7→ sinh(ax) sinh(bx) . . . sinh(zx)

sinh((a+ b+ . . .+ z)x)

is monotonous increasing in x. The second inequality follows because all I appearing in the sum
have |I| ≥ m and the function

x 7→ sinh(ax)

sinh(bx)

is monotonous increasing in x for a ≥ b > 0. Finally, as t > s, one has also:

sinh 2ms

sinh 2mt
=
ems(1− e−2ms)

emt(1− e−2mt)
≤ ems

emt

□
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5.3.3. Differential forms. We can define similarly Kolmogorov spaces of relative one-forms by
putting

Ωk,1(T ) := Ok(T )
dz1
z1

⊕ Ok(T )
dz2
z2

⊕ . . .⊕ Ok(T )
dzn
zn

where we define the norm of a form α =
∑
ai

dzi
zi

to be

|α|t := sup
1≤i≤n

{|ai|t}.

By setting
Ωk,l(T ) := ∧lΩk,1(T ),

it can be extended to higher values of l, and there are similar versions for b, h instead of k.

5.3.4. De Rham Complex. By 5.2.2, the exterior derivative

d : Ωk,l(T ) −→ Ωk,l+1(T )

is a 1-local morphism. From this, it follows that the space of closed forms

Zk,l(T ) ⊂ Ωk,l(T )

form a Kolmogorov subspace.

The 1-forms αk = ιθkω are De Rham dual to 1-cycles

γ1, . . . , γ2d ∈ H1(T,C) = H1(T,C).

On Zk,1 we define linear forms

ck : Zk,1(T ) −→ C, α 7→
∫
γk

α.

The subspace Bk,1(T ) ⊂ Zk,1(T ) of exact 1-forms coincides with the forms with vanishing period
integrals, so the 1-form

β = α−
2d∑
k=1

ck(α)αk

belongs to the space Bk,1. Consider the path γz connecting |z| := (|z1|, |z1|, . . . , |zn|) to z ∈ Ts
by changing only the arguments:

γz : [0, 1] −→ Ts, t 7→ (|z1|eitθ1 , . . . , |zn|eitθn)

where θi = arg(zi) ∈]0, 2π]. Integration over γz defines a map of Kolmogorov spaces∫
: Bk,1(T ) −→ Ok(T ), β 7→ [z 7→

∫
γz

β],

as the exactness of the form β guarantees that the function
∫
β is continuous. The obvious

estimate

|
∫
γz

β| ≤ (2πes)
2d |β| ≤ (2πes0)

2d |β|

guarantees the boundedness of the map.

We have shown the
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Proposition. The maps ck,
∫

define a morphism of Kolmogorov spaces:

Zk,1(T ) −→ C2d ⊕ Ok(T ),

α 7→ (c1(α), . . . , c2d(α),

∫
β)

where

β := α−
2d∑
i=1

ci(α)αi

5.3.5. Symplectic vector fields. The Kolmogorov space of relative vector fields is defined to be
dual to Ωk,1:

Θk(T ) := Ok(T )θ1 ⊕ Ok(T )θ2 ⊕ . . .⊕ Ok(T )θn,

with θj := zj∂zj By 5.2.2, there is an embedding of Kolmogorov spaces

Θk(T ) �
� // L1(Ok(T ),Ok(T )) .

As the Lie bracket is a first order differential operator in the coefficients, 5.2.2 also implies a
functorial analytic version of the adjoint representation:

Proposition. The Lie bracket defines a 1-local map

ad : Θk(T ) −→ L1(Θk(T ),Θk(T )), X 7→ [X,−].

By the standard symplectic duality isomorphism,

Θ −→ Ω1, X 7→ ιX(ω)

the closed forms correspond to symplectic vector fields and the exact forms to Hamiltonian fields.

The decomposition into exact and non-exact parts of a closed 1-form translates into the following
statement

Proposition. The decomposition of symplectic derivations into exact and non-exact parts:

Sk(T ) −→ Ok(T )⊕
2d⊕
j=1

Cθj ,

X 7→
∫
ιXω +

2d∑
j=1

cj(ιXω)θj

is a locally bounded morphism of Kolmogorov spaces.

5.4. Functional spaces involved in the iteration.

5.4.1. Frequencies. We use the following local variant of arithmetic classes:

Definition. For a fixed ν and falling sequence a = (an) and s0 ∈ R>0 we define a sets

Zn,s := Zn,s(ν, a, s0) := {ϕ ∈ D2d
s : ∀k ≤ n, σ(ν + ϕ)k ≥ ak(s0 − s)}

It is readily checked that for n ≤ m and s ≤ t ≤ s0 one has:

Zm,s ⊂ Zn,s, Zn,s ⊂ Zn,t,

so that the Zn,s are fibres over a relative set

Z(a) −→ N×]0, s0].



QUASI-PERIODIC MOTIONS ON SYMPLECTIC TORI 57

Lemma. The set Z(a) is an a∗-Huygens set:

Zn,s +Da∗
n(t−s) ⊂ Zn,t,

where
a∗n :=

an
2n

Proof. Let ϕ ∈ Zn,s and take x ∈ C2d satisfying

∥x∥ ≤ an
2n

(t− s).

For any k ≤ n and ∥J∥ ≤ 2k we then have:

|(x, J)| ≤ ∥x∥∥J∥ ≤ an
2n

(t− s) · 2n = an(t− s) ≤ ak(t− s).

So we obtain

|(ν + ϕ+ x, J)| ≥ |(ν + ϕ, J)| − |(x, J)|
≥ ak(s0 − s)− ak(t− s) = ak(s0 − t).

This shows that ϕ+ x ∈ Zn,t and thus proves the lemma. □

Corollary. Assume a = (an) is a falling subquadratic sequence then any partial differential
operator with coefficients in Oc(Z) defines a local map whose norm sequence is bounded by a
rising subquadratic sequence with the same index.

5.4.2. Functional spaces with parameters. We have considered the relative neighborhood of T
T −→ R>0

with fibre
Ts = {z ∈ (C∗)2d : ∀i, e−s < |zi| < es}

For the formulation of the iteration we introduced detuning variables

ϕ1, ϕ2, . . . , ϕ2d

and variables
δ1, δ2, . . . , δl

describing the perturbation of the symplectic form. We have to introduce appropriate neighbour-
hoods in the space with variables ϕ, δ, z.

Definition. For fixed decreasing sequence a and s0 we set

W (a) −→ N× R>0, V (a) −→ N× R>0

by putting
W (a) := Z(a)×R>0

Dl ×R>0
T, V (a) := Z(a)×R>0

Dl

where D −→ R>0 is the relative unit polydisc.

The coordinates on Wn,t are

ϕ1, . . . , ϕ2d, δ1, . . . , δl, z1, . . . , z2d,

and there are projection maps

W (a) −→ V (a), (ϕ, δ, z) 7→ (ϕ, δ).

The functional spaces we consider are the Arnold spaces

Ok(W (a)),Oh(W (a)), Ok(V (a)), Oh(V (a)), Θk(W (a)), Sk(W (a)), etc.

over N× R>0.
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5.4.3. Model iteration. Bruno sequences appear naturally in connection with quadratic iterations
of the type

xn+1 = anx
2
n.

As solution one has
x1 = a0x0, x2 = a1x

2
1 = a1a

2
0x

2
0 = (a0a

1/2
1 x0)

2

and is solved in general by
xn = (a0a

1/2
1 . . . a1/2

n

n x0)
2n ,

so that the sequence (xn) converges quadratically to 0 if x0 < 1/aΠ with aΠ :=
∏∞

k=0 a
1/2k

k

Our aim is to investigate a slightly more general iteration of the form

xn+1 =
1

2

(
anx

2
n + bnxn

)
.

Proposition. Let a = (an), an ≥ 1 and b = (bn) be sequences of positive numbers. Assume that
for some N ∈ N one has

(⋆)N n ≥ N =⇒ b2nan ≤ bn+1.

Then for any 0 < ε there exists δ such that x0 ≤ δ the real sequence

xn+1 =
1

2

(
anx

2
n + bnxn

)
one has the estimate

xn ≤ ε bn.

Proof. Without loss of generality, we may assume that ε ≤ 1. Let us start by remarking if we
have xn ≤ εbn for some n ≥ N , then we find, using (⋆)N , an ≥ 1 and ε2 ≤ ε

xn+1 =
1

2

(
anx

2
n + bnxn

)
≤ 1

2

(
anε

2 b2n + ε b2n
)
≤ ε anb

2
n ≤ ε bn+1

so that if xN ≤ εbN holds, then it holds for all n ≥ N .

The map x0 7→ xN is a polynomial map hence continuous thus for δ small enough one has
xN < εbN . This concludes the proof of the proposition. □

We will use the above Proposition for subquadratic sequences a = (an) and b = (bn) of the form

an = AeBαn

, bn = Ce−Dβn

, β > α and β ∈]1, 2[
and where A,B,C,D ∈ R>0. Condition (⋆)N is obviously fulfilled.

6. Analytic Stability Theorem

6.1. Final preparations. The iteration scheme in the ring R for the normal form of §3 was
based on maps

jn : S(R) −→ P(R)),

which were defined in terms of decomposition and truncation. It is not difficult to lift these maps
to the functional analytic level.

We fix a sequence a and consider the Arnold-space Sk(W (a)). Its components Sk(W (a))n
are Kolmogorov spaces of symplectic vector fields X on sets Wn,t. For these we first make a
decomposition as in 5.3.5:

X = {−, f}+
∑
i=1

ciθi,

with
f ∈ Ok(Wn,t), ci ∈ Ok(Vn,t)
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and define the A-truncation as before:

[X]A := {−, [f ]A}+
2d∑
i=1

[ci]Aθi ∈ Sk(Wn,s).

where s < t. In the iteration, we will use maps

σ(n, t, s) : Sk(Wn,t) −→ Sk(Wn,s)

j(n, t, s) : Sk(Wn,t) −→ L1(Θ(W ),Θ(W ))n,s

by setting :

σ(n, t, s)(X) := [X]2
n

= {−, [f ]2
n

}+
2d∑
i=1

[ci]
2nθi

j(n, t, s)(X) := ad({−, [f ]2
n

⋆ H}+
∑
i=1

[ci]
2n∂ϕi

).

where H is the resolvente and ad is the adjoint action, which embeds the space Q(W ) inside
L1(Θ(W ),Θ(W )) via a local map (see 5.3.5).

It is easy to see that norm sequence of |jn| is subquadratic and satisfies

ord (|jn|) ≤ ord (a).

By the Cauchy-Nagumo lemma (see 5.2.2), the norm sequences |∂ϕi
|, as well as the non-exact

term, have the same property:
ord (|∂ϕi

|) ≤ ord (a).

Due to local equivalence taking the convolution with H has again the same property. The Poisson
bracket being a biderivation, due to the Cauchy-Nagumo lemma, the exact term is a local operator
with bounded norm.

These maps form compatible systems and combine to form local maps (we take the same index
for locality p to simplify further estimates):

σ ∈ Lp(Sk(W (a)), Sk(W (a)))

j ∈ Lp(Sk(W (a)),L1(Θk(W (a)),Θk(W (a))))

If the sequence a that goes in the definition of W (a) is subquadratic, then W (a) is an a∗-Huygens
set, the norm sequence of the map j is subquadratic with the index smaller than that of a, as it
is the composition of such maps.

6.2. Pulling back. We choose ρ = (e−βn

) ∈ S− with order β ∈]1, 2[ higher than that of (an)
and therefore of |jn|. Then we define a sequence (sn) indexed by half-integer by putting

sn+1/2 := ρ1/2
n+1

n sn, s0 = t

As ρ is subquadratic, the sequence (sn) converges to a positive limit s∞(ρ) and

sn − sn+1/2 ∼ 1

2

(
β

2

)n

sn ∼ 1

2

(
β

2

)n

s∞

Pulling-back an Arnold space
E −→ N× R>0

via the map

i :
1

2
N −→ N× R>0, n 7→ (⌊n⌋, sn)
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defines a Kolmogorov space that we denote by ρ∗E over 1
2N. Pulling back the maps j and σ, we

obtain maps whose norms sequence belong respectively to S+ and S−. From the Arnold-Moser
lemma (5.3.2), we deduce the estimate:

|σ(n, t, s)| ≤
(
es

et

)2n−1

C

apn(t− s)p

we deduce that:

|σ(n, sn, sn+1/2)| ≤
(
esn+1/2

esn

)2n−1

C

apn(sn − sn+1/2)p
∼ C2(n+1)pe−βns∞/4

apns
p
∞β

p
n

Therefore the norm sequence |σ(n, sn, sn+1/2)| is a falling subquadratic sequence of order β.

6.3. The Convergence Theorem.

Theorem. Consider a symplectic vector field on the complex torus

V =

n∑
i=1

νizi∂zi

and assume that σ(ν) ∈ S−(α), α ∈]1, 2[. Consider a subquadratic sequences a ∈ S−(α) such that
a ≤ σ(ν) and define ρ = (e−βn

) with β ∈]α, 2[. Then for any k, ε > 0, there exists δ > 0 such
that for |S0| ≤ δ: there is an iteration in ρ∗Sk(W (a)) defined by

Sn+1 = f∗(jn(Sn))V+ e−[jn(Sn),−]σn(Sn)

and it satisfies the estimate |Sn| < εe−βn

.

As an immediate corollary, we get that

Corollary. For any k > 0, there exists δ, such that for any S satisfying |S| < δ there is a
symplectic morphism

ψ : Ok(W )0,s0 −→ Ok(W )∞,s∞

such that
ψ∗(V+ S) = V

6.4. Proof of the theorem. The analytic series

f(z) = e−z(1 + z)− 1 ∈ C{z}
is the Borel transform of

g(z) = − z2

(1 + z)2
∈ z2C{z}.

which has radius of convergence equal to 1 and, choosing r = 1/2 < 1, we get that:∣∣∣∣ z2

(1 + z)2

∣∣∣∣ ≤ |z|2

1− r2
< 2|z|2

for |z| ≤ r. Therefore assuming

|Sn| ≤
sn+1/2 − sn+1

2∥jn∥
by 4.2.5, we may deduce that:

|f∗(jn(Sn))| ≤ |g|
(

|jn(Sn)|
(sn+1/2 − sn+1)

)
≤ 2

|jn(Sn)|2

(sn+1/2 − sn+1)2

≤ 2e2p
∥jn∥2|Sn|2

(sn − sn+1/2)2p(sn+1/2 − sn+1)2
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The sequence a′ with terms

a′n := 2e2p
∥jn∥2

(sn − sn+1/2)2p(sn+1/2 − sn+1)2

is subquadratic with order α. Therefore the right-hand side of our estimate is of the form a′n|Sn|2
with a′ = (a′n) ∈ S+(α).
The power-series:

e−z ∈ C{z}
is the Borel transform of

1

1 + z
∈ C{z},

therefore the remainder term of the iteration satisfies the estimate:

|e−[jn(Sn),−]σn(Sn)| < 2
∥jn∥ ∥σn∥ |Sn|

(sn+1/2 − sn+1)p+1
.

The sequence with terms

bn = 2
∥jn∥ ∥σn∥

(sn+1/2 − sn+1)p+1

is now subquadratic with order β > α. Combining the two estimates we obtain an estimate of
the form:

|Sn+1| < a′n|Sn|2 + bn|Sn|.

where a′ ∈ S+ and b ∈ S− are subquadratic with orders α < β. The sequence of terms

a′′n =
sn+1/2 − sn+1

2∥jn∥
is a falling subquadratic sequence with order α. Thus we may choose ε such that for any n ∈ N:

εbn ≤ a′′n.

The sequence (xk) defined by

x0 = |S0|
xn+1 = a′nx

2
n + bnxn

majorates |Sn| and, according to 5.4.3, there exists δ such that for x0 < δ the sequence is bounded
by εb. In particular, the iteration (Sn) is well defined and smaller than εb. This concludes the
proof of the convergence theorem.
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