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CANONICAL STRATIFICATION OF DEFINABLE LIE GROUPOIDS

MASATO TANABE

Abstract. Our aim is to precisely present a tame topology counterpart to canonical stratifi-

cation of a Lie groupoid. We consider a definable Lie groupoid in semialgebraic, subanalytic,
o-minimal over R, or more generally, Shiota’s X-category. We show that there exists a canon-

ical Whitney stratification of the Lie groupoid into definable strata which are invariant under

the groupoid action. This is a generalization and refinement of results on real algebraic group
action which J. N. Mather and V. A. Vassiliev independently stated with sketchy proofs. A

crucial change to their proofs is to use Shiota’s isotopy lemma and approximation theorem in
the context of tame topology.

1. Introduction

It is a basic problem to find some nice decomposition of a given space, e.g., triangulation,
cellular decomposition, and Whitney stratification. As a particular example, while less known,
J. N. Mather [11, Theorem 1] and V. A. Vassiliev [17, Theorem 8.6.6] independently have shown
that for a real algebraic manifold with real algebraic group action, there exists a Cω Whitney
stratification into invariant semialgebraic strata. In their works, a major example is the jet
space Jr(n, p) with the action of algebraic groups Ar, Kr, Rr of r-jets of diffeomorphism-germs,
which takes an important role in singularity theory. Also in a different context, the existence
of invariant Whitney stratification of a proper Lie groupoid in C∞ category is very recently
discussed in Crainic–Mestre [4]. That is also related to a new trend in homotopy theory on
conically smooth stratifications (cf. Lurie [9] and Ayala–Francis–Tanaka [2]).

The result of Mather or Vassiliev has potential to be generalized in two directions. The one is
the extension from group actions to groupoids as in [4], and the other is from the semialgebraic
category to an o-minimal category over R (van den Dries [18]) or X-category (Shiota [14]). A
Lie groupoid is an axiomatic generalization of a group, a group action, a group bundle, and
an equivalence relation with differentiable structure, e.g., the jet bundle Jr(N,P ) for manifolds
N and P with the action of r-jets of diffeomorphism-germs at all points and also multi-jet
bundles as well. An orbifold groupoid, a central example of Lie groupoids, takes an important
role to describe the precise structure of moduli spaces appearing in various geometries, e.g., the
moduli space of stable pointed Riemann surfaces. On the other hand, an o-minimal category
or X-category is an axiomatic generalization of semialgebraic category or subanalytic category,
respectively. These categories are known as typical examples of Grothendieck’s ‘tame topology’
[1, 6], because they cause no topologically wild phenomena and every definable set over them
admits an appropriate decomposition, e.g., Whitney stratification (resp. triangulation, cellular
decomposition) whose all strata (resp. simplices, cells) are also definable. Note that the notion
of definable Lie groupoid in o-minimal category can be found in, e.g., Hrushovski [7].

Now we state a semialgebraic version of the main theorem.

2020 Mathematics Subject Classification. Primary 14P10, Secondary 32B20.
Key words and phrases. Semialgebraic sets, subanalytic sets, o-minimal category, X-category, Lie groupoids,

orbit spaces, Whitney stratification, and isotopy lemma.

http://dx.doi.org/10.5427/jsing.2023.26d


64 MASATO TANABE

Theorem 1.1. Let G ⇒ M be a semialgebraic Cω (that is Nash) Lie groupoid. Then, there
exists a filtration

M = M0 ⊃ M1 ⊃ M2 ⊃ · · · ⊃ Md+1 = ∅

of M such that for each i = 0, 1, . . . , d (= dimM),

(1) the set Mi is a G-invariant semialgebraic closed subset of M ;
(2) the set Mi −Mi+1 is a semialgebraic Cω manifold of codimension i in M (unless it is

empty) and {Mi −Mi+1}di=0 is a Whitney stratification of M ;
(3) the quotient space (Mi−Mi+1)/G admits a Cω manifold structure and the quotient map

q : Mi −Mi+1 → (Mi −Mi+1)/G is a Cω locally trivial fibration. Moreover, the quotient
manifold and the quotient map are piecewise algebraic.

Here are some remarks. In (2), we can see that G|Mi−Mi+1 ⇒ Mi − Mi+1 is a regular Lie
groupoid on each connected component of Mi − Mi+1. In (3), piecewise algebraic spaces and
maps are the notions introduced by Kontsevich–Soibelman [8, Appendix] (roughly, such a space is
made by gluing semialgebraic subsets via semialgebraic isomorphisms). Note that (Mi−Mi+1)/G
may have several connected components of different dimension. Applying this theorem to real
algebraic manifold with real algebraic group action G = G ×M ⇒ M , we recover the result of
Mather and Vassiliev (precisely saying, our claim is a bit stronger, because we also show the
piecewise algebraicity in (3)).

The above theorem will be presented in a slightly different form for a general o-minimal
category over R, and also for subanalytic or general X-category with the assumption that both
G and M are bounded (Theorem 3.1). That is, the word ‘semialgebraic’ in the statement above is
replaced by ‘definable’ within a more general context. However, we have to restrict the regularity
of manifolds and maps to be of class Cr with 1 ⩽ r < ∞, instead of Cω. The reason is due to a
key tool used in our proof.

The proofs of Theorem 1.1 and 3.1 are close to Mather’s idea in [11]. Actually, Mather’s
proof rather fits the case of groupoid than the case of group action (while Vassiliev’s proof fits
the latter case), thus our formulation is natural in this sense. A crucial difference from Mather’s
is the following point. To show (3), Mather used the original version of Thom’s isotopy lemma
[12], which is achieved by integrating a stratified vector field (C∞ on strata) and approximating
the obtained C∞ trivialization map by a Cω one, so the finally obtained trivialization map is
not semialgebraic in general (also Vassiliev referred to Artin’s theory on algebraic spaces for
finding Cω charts in (3)). That does not fit with the context of tame topology, namely, we
have to avoid to use integration or algebraic spaces. Instead of that, we employ, as specially
refined techniques, Shiota’s isotopy lemma and approximation theorem within an o-minimal or
X-category [14, (II.5.2), (II.6.1)]. This approximation theorem is only shown for the class of
Cr with 0 ⩽ r < ∞ in general, i.e., it is unsolved yet for r = ∞, ω. Thus Theorem 3.1 is
stated only with the regularity of finite order. On the other hand, the approximation theorem in
semialgebraic and subanalytic category holds under any regularity, i.e., r can be ∞, ω [15, 20].
Thus above Theorem 1.1 is stated with the regularity of class Cω in (2) and (3). Note again
that our proof uses an essentially different tool from that of Mather and Vassiliev.

The present paper consists of the following sections. In §2, we recall some notions of o-minimal
category over R and X-category, and Whitney stratifications and Lie groupoids in the category.
We also recall two key tools, isotopy lemma and approximation theorem in the category. In §3,
we state and prove our main theorem.
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2. Preliminaries

In this section, we recall some notions of geometry of definable sets and maps, and a definable
version of stratification theory and Lie groupoid theory. We also recall two key tools, isotopy
lemma and approximation theorem for definable maps. Our main geometric objects in the
present paper are definable Lie groupoids.

Hereafter, r denotes a fixed integer such that 1 ⩽ r < ∞.

2.1. Definable sets and maps. We firstly recall definitions of Shiota’s X and X0-category or
an o-minimal category over the real field R. These are legitimate generalizations of semialgebraic
and subanalytic category. For a detail, see [14, 18].

Definition 2.1 (X and X0-category [14, Chap.II, p.95, p.146]).
(1) Let X be a family of subsets of Euclidean spaces which satisfies the following axioms:

Axiom (i): Every algebraic set in any Euclidean space is an element of X;
Axiom (ii): If X1, X2 are elements of X, then X1∩X2, X1−X2, and X1×X2 are elements

of X;
Axiom (iii): If X ⊂ Rn is an element of X and p : Rn → Rn−1 is a linear map such that

the restriction to the closure of X in Rn is proper, then p(X) ∈ X;
Axiom (iv): If X ⊂ R is an element of X, then each point of R has a neighborhood U in

R such that X ∩ U is a finite union of finitely many points and intervals.

(2) Let X0 be a family X which satisfies the following stronger axioms than the above (iii) and
(iv):

Axiom (iii)0: If X ⊂ Rn is an element of X0, and p : Rn → Rn−1 is a linear map, then
p(X) ∈ X0;

Axiom (iv)0: IfX ⊂ R is an element of X0, thenX is a finite union of points and intervals.

An X-set is an element of X, and an X-map is a continuous map between X-sets whose graph
is an X-set. Similary we define an X0-set and an X0-map. An X0-category is the same as an
o-minimal category over R.

Remark 2.2 (boundedness condition for X-maps). Let X ′ ⊂ X ⊂ Rm and Y ′ ⊂ Y ⊂ Rn be
X0-sets and f : X → Y an X0-map. Thanks to the axiom (iii)0, the preimage f−1(Y ′) and the
image f(X ′) are X0-sets. However, for an X-map f : X → Y between X-sets, the same claim
does not hold in general. Then we often require the following boundedness condition for f :

(I) For any bounded subset B ⊂ Rm, f(X ∩B) ⊂ Rp is bounded.
(II) For any bounded subset C ⊂ Rn, f−1(C) ⊂ Rn is bounded.

According to [14, (II.1.1), (II.1.6)], the boundedness condition ensures that f−1(Y ′) and f(X ′)
are X-sets, and that for another X-map g : Y → Rp, g ◦ f is an X-map.

Throughout the present paper, we work over such a category (semialgebraic, subanalytic, X-
category, and o-minimal category over R), and use the words, definable sets/maps, for simplicity.

2.2. Definable Whitney stratifications. We recall some notions and facts of stratification
theory. In this paper, a definable set X ⊂ Rm is said to be a (k-dimensional) definable Cr

manifold if X is a (k-dimensional) Cr regular submanifold of Rm (that is, every point x ∈ X
has a neighborhood U in Rm and a definable Cr diffeomorphism φ : U → φ(U) ⊂ Rm such that
φ(X ∩ U) = φ(U) ∩ (Rk × {0})). Let V ⊂ Rm denote a definable set.

Definition 2.3 (definable Cr stratification). A definable Cr stratification of V is a partition S
of V into definable Cr manifolds which is locally finite at each point of Rm, i.e., for each x ∈ Rm,
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there exists a neighborhood U of x in Rm such that #{S ∈ S | S ∩U ̸= ∅} < ∞. Each member
belonging to S is called a stratum of S.
Proposition 2.4 ([14, (II.1.8)]). Every definable set admits a definable Cr stratification.

We define the dimension of V as the highest dimension of strata belonging to a stratification,
and write it dimV .

Definition 2.5 (regular/singular point). Let x ∈ V be a point. A point x ∈ V is said to be Cr

regular of dimension k if there exists an open neighborhood U of x in Rm such that V ∩ U is a
k-dimensional Cr regular submanifold of Rm. A point x ∈ V is said to be Cr singular if x is not
regular of highest dimension (i.e., dimV ).

Let ΣrV denote the set of all Cr singular points of V , which is called the Cr singular set
of V .

Lemma 2.6 ([14, (II.1.10)]). The set ΣrV is a definable closed subset of V of dimension less
than dimV .

Let Xα, Xβ ⊂ Rm be definable Cr manifolds. We here omit the definition of the Whitney
(b)-regularity condition of Xα over Xβ at a point y ∈ Xβ . See [5, 12, 14] for a detail.

Definition 2.7 (bad set). The bad set B(Xα, Xβ) of the pair (Xα, Xβ) is the subset of Xβ

consisting of points at which Xα fails to be Whitney (b)-regular over Xβ .

Lemma 2.8 ([14, (II.1.13)], [13, Lemma 2.4]). The set B(X,Y ) is a definable subset of Y of
dimension less than dimY .

Definition 2.9 (the frontier condition). The pair (Xα, Xβ) satisfies the frontier condition if
ClRmXα ∩Xβ ̸= ∅ implies that ClRmXα ⊃ Xβ , where ClAB means the closure of B in A.

Definition 2.10 (definable Whitney stratification). Let V ⊂ Rm be a definable set. A definable
Cr stratification S of V is said to be a definable Cr Whitney stratification if every pair of strata
of S satisfies the Whitney (b)-regularity condition and the frontier condition.

We know the existence theorem of definable Cr Whitney stratification of definable subsets
[5, (2.7)], [14, (I.2.2), (II.1.14)]. For later use in our proof of the main result, we state it in a
slightly modified form.

Proposition 2.11. Let V ⊂ Rn be a definable closed subset and V ′ ⊂ V a definable Cr manifold
such that dimV = dimV ′ > dim(V − V ′). Then, V admits a finite definable Cr Whitney
stratification such that V ′ is the top stratum.

Proof. We put d = dimV = dimV ′ and define a filtration of V by closed subsets inductively:

V = V0 ⊃ V1 ⊃ · · · ⊃ Vd ⊃ Vd+1 = ∅,

where V0 := V , V1 := V − V ′, and for each i ⩾ 1,

Vi+1 :=

{
Vi (codim Vi > i)

ClV

(
ΣrVi ∪B(V ′, Vi − ΣrVi) ∪

⋃i−1
j=1 B(Vj − ΣrVj , Vi − ΣrVi)

)
(codim Vi = i).

By Lemma 2.6 and Lemma 2.8, we can obtain that codim Vi ⩾ i and each Vi is definable, thus
the induction works. From this construction, the partition {Vi −Vi−1}di=0 of V is a definable Cr

Whitney stratification. ■

Remark 2.12 (regularity (r = ω) in semialgebraic/subanalytic case). Lemma 2.6 holds even
if we replace “definable Cr” as “semialgebraic Cω (that is Nash)” and “subanalytic Cω” [3,
Proposition 9.7.4], [16, Theorem 1.2.2 (v)]. Thus, Proposition 2.11 also holds.
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2.3. Isotopy lemma and Approximation theorem. We state a definable version of isotopy
lemma and approximation theorem proved by Shiota in [14].

2.3.1. Isotopy lemma. The definable version of isotopy lemma will critically be used in the proof
of our main result, especially, in finding a fibration structure of the quotient map and finding
a manifold structure of the quotient space. See [12] for the original version — Thom’s isotopy
lemma.

Definition 2.13 (definable Cr locally trivial fibration). Let X ⊂ Rn be a definable set and
Y ⊂ Rp a definable Cr manifold.

(1) A definable map f : X → Y is said to be of class Cr if f is extended to a Cr map from
a neighborhood of X in Rn to Rp.

(2) A definable Cr map f : X → Y is said to be a definable Cr locally trivial fibration if for
each point y ∈ Y , there exist a neighborhood V , which is definable, of y in Y and a
definable Cr map Φ: f−1(V ) → f−1(y) such that the map (f,Φ): f−1(V ) → V ×f−1(y)
is Cr diffeomorphic.

The map (f,Φ) is called a trivialization map of f on V .

Theorem 2.14 (Shiota’s (first) isotopy lemma [14, (II.6.1)]). Let X ⊂ Rn be a definable set,
Y ⊂ Rp a definable C1 manifold, and f : X → Y a proper definable C1 map. (Furthermore,
assume that f satisfies the boundedness condition (II) in Remark 2.2 unless the category is X0.)
Suppose that X admits a finite definable C1 Whitney stratification {Xα} and f |Xα

: Xα → Y is
a C1 submersion onto Y for each α. Then, f is a definable C0 locally trivial fibration whose
restriction f |Xα to each Xα is a definable C1 locally trivial fibration.

Note that we do not know whether this theorem holds for any regularity r ⩾ 2.

2.3.2. Approximation theorem. In our later argument, we will focus on one stratum (top dimen-
sional stratum) of X. Using the following Theorem 2.15, we can find a definable trivialization
map whose regularity is high enough as we want near the C1 trivialization map obtained by the
above Theorem 2.14.

As its preparation, let us shortly recall about spaces of definable maps and their topology (the
following notation refers to [19]). Let D1(X,Y ) denote the space of definable C1 maps between
definable C1 manifolds X and Y . For f ∈ D1(X,R), consider the derivative df : X → RdimX

and define

|f |1 := |f |+ |df | : X → R,

where |-| is the Euclidean norm. Also, for a definable function ε : X → (0,∞) (in case of X,
require that ε is bounded), define

U1
ε (f) :=

{
g ∈ D1(X,R)

∣∣ |f − g|1 < ε
}
.

Such U1
ε (f) produce the definable C1 topology on D1(X,R). It is similar for D1(X,Y ).

Theorem 2.15 (approximation theorem for definable maps [14, (II.5.2)]). Let X,Y be definable
Cr manifolds and f : X → Y a definable C1 map. (Furthermore, assume that f satisfies the
boundedness condition (I) in Remark 2.2 unless the category is X0.) Then, f can be approximated
by a definable Cr map arbitrary closely in the definable C1 topology.

We deduce from this theorem the following assertion immediately.
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Corollary 2.16. Let X,Y be definable Cr manifolds and f : X → Y a definable Cr map.
(Furthermore, assume that f satisfies the boundedness condition (I) in Remark 2.2 unless the
category is X0.) If f is a definable C1 locally trivial fibration, then f is also a definable Cr

locally trivial fibration.

For the sake of completeness, we give a short proof of Corollary 2.16.

Proof. Let y ∈ Y be a point, V an open neighborhood of y in Y , and

(f,Φ): f−1(V ) → V × f−1(y)

the definable C1 trivialization map of f over V . Put S = D1(f−1(V ), V × f−1(y)) with the
definable C1 topology. Note that the subset of all diffeomorphisms is open in S (see [14, (II.5.3)]
for the detail). Hence, applying Theorem 2.15 to the map Φ: f−1(V ) → f−1(y), we can find a
definable Cr map φ : f−1(V ) → f−1(y) near Φ such that (f, φ) is a definable Cr diffeomorphism.
■

Remark 2.17 (regularity (r = ω) in semialgebraic/subanalytic case). Theorem 2.15 (and hence,
Proposition 2.16) hold even if we replace “definable Cr” as “semialgebraic Cω (that is Nash)”
and “subanalytic Cω” [15, 20].

2.4. Definable Lie groupoids. We recall some notions of Lie groupoid theory. For a detailed
account of basic Lie groupoid theory, see [10].

Definition 2.18 (definable Cr Lie groupoid). A definable Cr Lie groupoid G ⇒ M consists of
the following data with conditions. First, the data are

space of arrows: a definable Cr manifold G;
space of objects: a definable Cr manifold M ;
source map and target map: two surjective definable Cr submersions s, t : G → M ;
composition map: a definable Cr map c : G(2) → G, g · h := c(g, h), where

G(2) = {(g, h) ∈ G × G | s(g) = t(h)} ;

unit section: a definable Cr embedding u : M → G;
inverse map: a definable Cr diffeomorphism i : G → G, g−1 := i(g).

Second, the required conditions are that for all g, h, k ∈ G and m ∈ M , the following properties
hold whenever they are defined:

composition: (g · h) · k = g · (h · k), s(g · h) = s(h), t(g · h) = t(g);
unit: s(u(m)) = t(u(m)) = m;
inverse: g−1 · g = u(s(g)), g · g−1 = u(t(g)).

Shortly saying, a Lie groupoid is an invertible category with differentiable structure.

Example 2.19. Here we may forget the definability of Lie groupoids.

(a) Suppose that a Lie group G acts on a manifold M . Then G := G × M forms a Lie
groupoid G ⇒ M with source map s : G → M , s(g,m) := m and target map t : G → M ,
t(g,m) := g.m. Especially, any Lie group G forms a Lie groupoid (consider the trivial
action on M = {∗}).

(b) Let f : M → N be a submersion between manifolds. Then G := M ×N M forms a Lie
groupoid G ⇒ M with source map pr1 : G → M and target map pr2 : G → M .

(c) A Lie groupoid G ⇒ M is called an orbifold groupoid if both s, t : G → M are local
diffeomorphisms and (s, t) : G → M ×M is proper.
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Below we simply say “definable” Lie groupoids/manifolds/maps/locally trivial fibrations to
mean “definable Cr”, unless specifically mentioned.

Let G ⇒ M be a definable Lie groupoid.

Definition 2.20 (saturation, orbit, invariance, and orbit space). For a subset S ⊂ M , the
(G-)saturation of S is the subset

G.S := {t(g) ∈ M | g ∈ G and s(g) ∈ S} = t(s−1(S)).

When S = {m}, its saturation G.S = G.m of S is also said to be the (G-)orbit of the point m.
A subset S ⊂ M is said to be G-invariant if G.S = S.

We define the equivalence relation

x ∼ y ⇐⇒ G.x = G.y
on M ; we consider the quotient space M/G := M/∼ and the quotient map q : M → M/G. We
call M/G := M/∼ the orbit space of G.

Note that if S ⊂ M is definable (and in case of X, if s and t satisfy the boundedness condition),
then G.S is also definable; if a definable submanifold X of M is G-invariant, then the restriction
G|X ⇒ X also forms a definable Lie groupoid, where G|X := s−1(X) = t−1(X).

Example 2.21. The following are examples of orbit spaces:

(a) For the Lie groupoid in Example 2.19(a), its orbit space M/G coincides with the orbit
space M/G of the action of G on M as Lie group.

(b) For the Lie groupoid in Example 2.19(b), its orbit space M/G coincides with the image
f(M) by f .

(c) For the Lie groupoid in Example 2.19(c), its orbit space M/G is nothing but an orbifold.

At the end of this section, we construct an invariant stratification of definable Lie groupoids by
using Proposition 2.11. We first note that every definable Lie groupoid has a partial homogeneity
around its each orbit:

Lemma 2.22. Let g ∈ G. Then, there exists a definable local bisection σ(U) ⊂ G through g,
that is, g has a definable neighborhood U of s(g) in M and a definable map σ : U → G such that
s ◦σ = idU and t ◦σ : U → M is a definable diffeomorphism onto the open neighborhood t(σ(U))
of t(g) in M .

Proof. See [10, Proposition 1.4.9] for case of plain Lie groupoid. ■

Proposition 2.23. Let V ⊂ M be a G-invariant definable closed subset and V ′ ⊂ V a G-
invariant definable Cr manifold such that dimV = dimV ′ > dim(V − V ′). Then, V admits a
finite definable Cr Whitney stratification such that V ′ is the top stratum and each stratum is
G-invariant.
Proof. Take a definable Whitney strtatification of V with the filtration by Vi as in the proof
of Proposition 2.11. It suffices to check that each Vi is G-invariant. Clearly, both V0 := V and
V1 := V − V ′ are G-invariant. Suppose that V0, V1, . . . , Vi are all G-invariant. From Lemma 2.22
and the fact that both singularity and Whitney (b)-regularity condition are invariant under local
diffeomorphisms, it holds that

ΣrVi, B(V ′, Vi − ΣrVi), and B(Vi − ΣrVi, Vj − ΣrVj) (j = 0, . . . , i− 1)

are all G-invariant. Hence Vi+1 is G-invariant. ■
Remark 2.24 (regularity (r = ω) in semialgebraic/subanalytic case). Proposition 2.23 holds
even if we replace “definable Cr” as “semialgebraic Cω (that is Nash)” and “subanalytic Cω.”
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3. The main result

In this section, we state and prove the main result.
Let r be a fixed integer such that 1 ⩽ r < ∞. Our main result is the following theorem.

Theorem 3.1. Let G ⇒ M be a definable Cr Lie groupoid. (Furthermore, assume that both G
and M are bounded unless the category is X0.) Then, there exists a filtration

M = M0 ⊃ M1 ⊃ M2 ⊃ · · · ⊃ Md+1 = ∅
of M such that for each i = 0, 1, . . . , d (= dimM),

(1) the set Mi is a G-invariant definable closed subset of M ;
(2) the set Mi−Mi+1 is a definable Cr manifold of codimension i in M (unless it is empty)

and {Mi −Mi+1}di=0 is a definable Cr Whitney stratification of M ;
(3) the quotient space (Mi −Mi+1)/G admits a Cr manifold structure and the quotient map

q : Mi −Mi+1 → (Mi −Mi+1)/G is a Cr locally trivial fibration. Moreover, the quotient
manifold and the quotient map are piecewise definable.

Here, a piecewise definable Cr manifold is a Cr manifold given by an atlas {(Uλ, φλ)} such that
each φ(Uλ) is a definable set and each φλ◦φ−1

µ is a definable Cr map; a piecewise definable Cr map
is a continuous map between piecewise definable Cr manifolds whose each local representation
is a definable Cr map.

Remark 3.2 (assumption in case of X). In case of X, we assume the following conditions which
are equivalent to each other:

• G and M are bounded;
• M is bounded and s and t satisfy the boundedness condition.

Then, we have the following properties which will be used later:

• The image of M and its subsets by embedding Rn into RPn become definable;
• For every definable subset S ⊂ M , the saturation G.S becomes definable.

Remark 3.3 (regularity (r = ω) in semialgebraic/subanalytic case). Theorem 3.1 holds even if
we replace “definable Cr” as “semialgebraic Cω (that is Nash)” and “subanalytic Cω”, because of
Remark 2.12, Remark 2.17, and the following proof. Therefore, especially, we obtain Theorem 1.1
stated in Introduction (cf. Mather [11] and Vassiliev [17]). According to a recent work of Vallete–
Vallete [19], we may have a chance to improve the regularity for some restricted X0-category.

For the proof, we introduce the following notion (cf. [11]).

Definition 3.4 (definably smooth family of submanifolds). Let U,M be definable Cr manifolds
and for each point u ∈ U it is assigned a definable Cr submanifold Vu of M . Then, the family
{Vu}u∈U is said to be definably smooth if the union

V :=
∐
u∈U

u× Vu ⊂ U ×M

is a definable Cr manifold and the projection pr1 : V → U is a definable Cr locally trivial
fibration.

First we replace (3) in Theorem 3.1 by the following (3′).

Lemma 3.5. Consider the same setup as in Theorem 3.1. Then, there is a filtration of M
satisfying (1) and (2) of Theorem 3.1 and

(3′) The family {G.x}x∈Mi−Mi+1
is definably smooth.
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We now divide the proof of Theorem 3.1 into two steps: we will first show that Lemma 3.5
implies Theorem 3.1, and then we prove Lemma 3.5. An essential idea of the proof is based on
a sketchy proof in Mather [11].

3.1. Reduction of Theorem 3.1 to Lemma 3.5. It suffices to prove that Lemma 3.5 implies
the condition (3) in Theorem 3.1.

Let G ⇒ M be a definable Lie groupoid. Suppose that we have a filtration by Mi’s as in
Lemma 3.5 and i a fixed number. Put

M i := Mi −Mi+1, Ri :=
∐

x∈Mi

x× G.x =
{
(x, y) ∈ M i ×M i

∣∣ x ∼ y
}
.

The condition (3′) in Lemma 3.5 means that Ri is a definable manifold and the projection
pr1 : Ri → M i is a definable Cr locally trivial fibration.

We now show the following four claims which imply (3) in Theorem 3.1. The central idea is to
find a definable version of ‘slice theorem’ (without the assumption on properness of the action).

Claim 1. For every point x ∈ M i, the orbit G.x is a closed definable submanifold of M i.

Proof of Claim 1. Take a regular point of the definable set G.x. By mapping a neighborhood
of the point to around other points by definable bisections through arrows in s−1(x), then G.x
has a chart as a regular submanifold of M i around each point.

Suppose that there exists a point y ∈ ClMi(G.x) − G.x. Since G.y ⊂ ClMi(G.x) − G.x and
orbits are definable, we obtain that

dimG.y ⩽ dim(ClMi(G.x)− G.x) < dimG.x.
However, x and y are points of M i and Ri → M i is locally trivial, thus dimG.y = dimG.x. This
makes the contradiction. Thus, G.x is closed in M i. □

Take an arbitrary point a ∈ M i. Since G.a is a regular submanifold of M i, there is a definable
submanifold S of M i passing through a, such that Ri is trivialized over S and S intersects G.a
only at the point a transversely. Hereafter, we call S a slice in M i to G.a at the point a. Notice
that t(σ(S)) ∩ G.a = {t(σ(a))} for any local bisection σ : U → G on an open neighborhood U of
a in M i.

Claim 2. By shrinking S suitably if necessary, G.S becomes to be open in M i and S ∩ G.x
is empty or consists of one point for each x ∈ M i. In particular, the quotient space M i/G is
Hausdorff.

Proof of Claim 2. Consider the restriction of the source map to s−1(S),

s̃ = s|s−1(S) : s
−1(S) → M i.

The intersection of u(S) and s−1(a) at u(a) is transverse in s−1(S), that is,

Tu(a)s
−1(S) = Tu(a)u(S)⊕ Tu(a)s

−1(a).

In addition, ds̃u(a) maps

Tu(a)u(S)⊕ 0 → TaS, 0⊕ Tu(a)s
−1(a) → TaG.a

surjectively. Thus, s̃ is submersive at u(a). From the implicit function theorem, s̃ is an open
map and hence G.S becomes to be open in M i by retaking S small enough. Next, consider the
second factor projection

ρ = pr2|pr−1
1 (S) : pr

−1
1 (S) → G.S.



72 MASATO TANABE

Here, by using (3′) of Lemma 3.5, we may assume that pr−1
1 (S) is diffeomorphic to S×G.a such

that the first factor projection to S commutes with pr1. We also write ρ : S × G.a → G.S for
short. Since

dρ(a,a) : TaS ⊕ TaG.a → TaG.S = TaM
i

is a linear isomorphism from the transversality condition, ρ is a diffeomorphism on a neighbor-
hood U of (a, a) in pr−1

1 (S). Now suppose that for any neighborhood of a in S, there exists two
points x, y ∈ S such that x ̸= y and G.x = G.y. Then we can take two sequences (xn), (yn) on S
such that xn, yn → a (n → ∞) and xn ̸= yn for each n. Since (xn, xn), (yn, xn) → (a, a) (n → ∞),
it follows that (xN , xN ), (yN , xN ) ∈ U for some number N . However, these two points of U are
mapped to xN ∈ ρ(U), that makes the contradiction to that ρ is diffeomorphic to U . Finally, it
is clear that M i/G is Hausdorff. □

Hereafter, we take all slices small enough as in Claim 2. Remark that the above ρ is a definable
diffeomorphism, for it is bijective and locally diffeomorphic. Now we introduce a definable Cr

manifold structure of M i/G by using slices.

Claim 3. The quotient space M i/G admits a piecewise definable manifold structure.

Proof of Claim 3. Take [a] = G.a ∈ M i/G and a slice S at a ∈ M i. The restriction of the
quotient map q : M i → M i/G to S is bijective since S ∩ G.x has at most one point for each
x ∈ M i. In addition, q is continuous and open, and hence q|S is a homeomorphism onto its
image. Then we introduce the following chart around [a] ∈ M i/G using any slice S at a:

φ : q(S) → S → W ⊂ Rs,

where the first arrow is (q|S)−1 and the second arrow is a local chart of S onto an open set
W ⊂ Rs as a definable submanifold (s = dimS). We check that {(q(S), φ)} forms an atlas
of a piecewise definable Cr manifold. Let S and S′ be slices with q(S) ∩ q(S′) ̸= ∅. For
our convenience, we retake them as q(S) = q(S′) (i.e. G.S = G.S′). It suffices to show that
g := (q|S′)−1 ◦q|S : S → S′ is a definable Cr diffeomorphism. In fact, the map g is the restriction
of the definable Cr map

g̃ := pr1 ◦ ρ−1 : G.S′ ∼=−→ S′ × G.a → S′

to S, where Φ is a trivialization map of pr1 : Ri → M i on S′. Therefore, g = g̃|S is definable, of
class Cr, and non-singular. □

Claim 4. The quotient map q : M i → M i/G is a piecewise definable locally trivial fibration.

Proof of Claim 4. For any chart (S, φ) of the above, q|G.S : G.S = q−1(q(S)) → q(S) is locally
expressed as pr1 : S × G.a → S via φ. □

This completes the proof of (3) in Theorem 3.1. ■

3.2. Proof of Lemma 3.5. Let G ⇒ M (⊂ Rn) be a definable Lie groupoid. We prove Lemma
3.5 by the induction on the codimension i. Assume that we have M = M0 ⊃ M1 ⊃ · · · ⊃ Mi

such that for every j = 1, · · · , i, it holds that
(1)j the set Mj is a G-invariant definable closed subset of M and codim Mj ⩾ j;
(2)j the set Mj−1 − Mj is a definable Cr manifold of codimension j − 1 in M and

{Mk −Mk+1}j−1
k=0 is a definable Cr Whitney stratification of M −Mj ;

(3)j the family {G.x}x∈Mj−1−Mj
is definably smooth.
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It suffices to find a subset Mi+1 ⊂ Mi such that (1)i+1, (2)i+1, and (3)i+1 hold.

If codim Mi > i, then it suffices to take Mi+1 := Mi. So we assume that codim Mi = i. We
first put

Ri :=
∐

x∈Mi

x× G.x = {(x, y) ∈ Mi ×Mi | x ∼ y} .

To compactify fibers of Ri, we embed Rn into RPn by (x1, . . . , xn) 7→ [1 : x1 : · · · : xn], where
M ⊂ Rn. Further, embed RPn into some RN , for example, by the following semialgebraic map:

RPn → Rn+1+
n(n+1)

2 , [x0 : x1 : . . . : xn] 7→
(

xixj∑n
k=0 x

2
k

)
0⩽i⩽j⩽n

.

We set

Mi = ClRPnMi ⊂ RPn, Ri = ClMi×Mi
Ri ⊂ Mi ×Mi.

Then Mi is compact and both Mi and Ri are definable.
We now consider a definable Lie groupoid G ⇒ M × RN with the action on the first factor;

the sets Ri and Ri are G-invariant. Hence, by using Proposition 2.23, we have a G-invariant
definable Whitney stratification S = {Sα} of Ri such that the top stratum is Ri − ΣrRi. Let
π denote the first factor projection pr1 : Ri → Mi, and X the preimage π−1(Mi −ΣrMi) ⊂ Ri.
Then we set

Mi+1 := ClMi

ΣrMi ∪
i−1⋃
j=0

B(Mj −Mj+1,Mi − ΣrMi) ∪
⋃
α

π(C(π|Sα∩X)) ∪ π(ΣrRi)

 ,

where π|Sα∩X denotes the restrction π|Sα∩X : Sα∩X → Mi−ΣrMi, which is a Cr map between
manifolds, and C(π|Sα∩X) its critical point set.

We show that Mi+1 satisfies (1)i+1, (2)i+1, and (3)i+1.

(1)i+1 : It is obvious that ΣrMi, B(Mj − Mj+1,Mi − ΣrMi), C(π|Sα∩X), and ΣrRi are G-
invariant and definable. Hence, we see that π(C(π|Sα∩X)) and π(ΣrRi) are G-invariant and
definable (remember that π is G-equivariant). Thus, Mi+1 is G-invariant and definable. Next,
ΣrMi and B(Mj − Mj+1,Mi − ΣrMi) are nowhere dense in Mi for dimensional reason, and
π(C(π|Sα∩X)) is nowhere dense in Mi from Sard’s theorem. Moreover, we see that π(ΣrRi) is
nowhere dense as follows. Suppose that there exists a non-empty open subset U of Mi included
in π(ΣrRi). Then, π

−1(U) is also an open set in Ri such that

∅ ̸= π−1(U) ⊂ π−1(π(ΣrRi)) = ΣrRi.

This makes the contradiction to that ΣrRi is nowhere dense in Ri. Consequently, Mi+1 is also
nowhere dense in Mi, and hence, we have that codim Mi+1 > codim Mi.

(2)i+1 : Note that Mi − Mi+1 is open in Mi − ΣrMi, thus Mi − Mi+1 is a definable mani-
fold of codimension i. Moreover, for each j = 0, 1, . . . , i − 1, since Mi+1 contains the bad set
B(Mj−Mj+1,Mi−ΣrMi), the pair (Mj−Mj+1,Mi−Mi+1) satisfies the Whitney (b)-regularity
condition. Thus, {Mj −Mj+1}ij=0 is a definable Whitney stratification of M −Mi+1.

(3)i+1 : Put M i := Mi −Mi+1 again. Let X ′ denote the preimage π−1(M i) ⊂ X ⊂ Ri. Then
X ′ is a closed subset of the manifold M i × RN and has the definable Cr Whitney stratification
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S ′ = {S′
α} induced from the stratification S = {Sα} of Ri with S′

α := Sα ∩X ′. Moreover, let π′

denote the definable Cr map

π|X′ : X ′ → M i.

Then π′ is proper and for each α, the restriction

π′|S′
α
= π|S′

α
: S′

α → M i

is submersive. We show that for each α, the image π′(S′
α) is the union of some finite connected

components of M i. The openness is immediate from the submersivity of π′|S′
α
and the implicit

function theorem. To show the closedness, we take a control data T = {Tα} for S ′ compatible
with π′ (see, e.g., [12, §7], [14, (II.6.10)]). Let |Tα| denote the tubular neighborhood of S′

α in
M i × RN and πα : |Tα| → S′

α the retraction. Now we fix a stratum S′
α, and let S′

β be another

stratum satisfying that S′
β ⊂ ClX′S′

α. Since X
′ is closed in M i×RN , the map πβ : |Tβ |∩S′

α → S′
β

is onto. Hence it follows that

π′(S′
β) = π′ ◦ πβ(|Tβ | ∩ S′

α) = π′(|Tβ | ∩ S′
α) ⊂ π′(S′

α).

Then, from the frontier condition, we have that π′(S′
α) = π′(ClX′S′

α). Note that since X ′ is
closed in M i × RN , the subset ClX′S′

α is also. Moreover, since π′ is proper, it is closed. Hence,
we also have that π′(S′

α) is closed in M i.
Now we apply Theorem 2.14 to π′ : X ′ → M i with S ′ (over each connected component of

M i), and after that, focus on the top dimensional stratum X ′
0 := (Ri − ΣrRi) ∩X ′. Then we

see that

π′|X′
0
= π|X′

0
: X ′

0 → M i

is a definable C1 locally trivial fibration. Applying Corollary 2.16, we also see that π|X′
0
is a

definable Cr locally trivial fibration. Here, we notice that

X ′
0 = (Ri − ΣrRi) ∩X ′ = Ri ∩ π−1(M i),

for ΣrRi ∩ π−1(M i) = ∅ by the definition of Mi+1. Consquently, we obtain that the family
{G.y}y∈Mi is definably smooth. This completes the proof. ■
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