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UNIPOTENT NEARBY CYCLES AND NEARBY CYCLES OVER

GENERAL BASES

ANDREW SALMON

Abstract. We show that under some conditions, two constructions of nearby cycles over gen-

eral bases coincide. More specifically, we show that under the assumption of Ψ-factorizability,
the constructions of unipotent nearby cycles over an affine space in [2] can be described using

the theory of nearby cycles over general bases via the vanishing topos. In particular, this ap-
plies to nearby cycles of Satake sheaves on Beilinson-Drinfeld Grassmannians with parahoric

ramification.

1. Introduction

Let S and X be schemes of finite type over an algebraically closed base field F equipped with a
map f : X Ñ S. Over X, we may define Db

cpX,kq, the bounded derived category of constructible
sheaves with k coefficients. We will mostly restrict to the case that k is a finite extension of Qℓ

or Fℓ, with ℓ invertible in F, or an algebraic closure thereof, where the corresponding derived
categories of sheaves can be defined via the adic formalism. If S is one-dimensional with generic
point η and special point s, the classical theory of nearby cycles gives a functor between derived
categories of constructible sheaves from a generic fiber to a special fiber ofX over S. In particular,
if η is a generic point of S and s is a special point, let Xη, resp. Xs be the fibers of X over these
points. There is a nearby cycles functor Ψ: Db

cpXη,kq Ñ Db
cpXs,kq, which is t-exact with respect

to the perverse t-structure and admits an action of the local inertia group. In [3], Beilinson gave
a construction of unipotent nearby cycles, where the action of local inertia factors through tame
inertia and the tame inertia acts unipotently.

For some applications, it is desirable to have a version of nearby cycles over a base S that
is not one-dimensional. Two such approaches exist that supply such a theory. The first is a
generalization of Beilinson’s construction to an arbitrary base, introduced in [8] and subsequently
generalized in [19, Section 4], [6, Section 4.6], and [2]. When defined, for a perverse sheaf K on
a scheme X over An, this produces a perverse sheaf ΥpKq on the special fiber of X over 0 P An.
More generally, Achar and Riche show that for any map α : P˚ Ñ Q˚ of pointed finite sets, there
is a (conditionally defined) perverse sheaf on XˆAP ˆ0̄AQˆ 0̄ that is written ΥαpKq. The second
approach is the theory of nearby cycles over general bases using the vanishing topos, as in [13].
This approach works over a general base S, not just affine space, and the study of monodromy
of these nearby cycles is more complicated. For any étale sheaf K on X and any specialization
s Ñ t of geometric points on the etale topos of the base S, there is an object RpΨqtsK in the
derived category of étale sheaves.

In Corollary 16 and Corollary 17, we give conditions under which ΥαpKq can be understood
as coming from RpΨqtsK. In particular, setting S “ AP , surjective maps α : P˚ Ñ Q˚ as above
allows us to choose a specialization F pαq in the étale topos. Assuming that pf,Kq satisfy a
condition called Ψ-factorizability, then pΨf qF pαqKr|Q|´|P |s is perverse, and there is a canonical
subobject

pΨu
f qF pαqKr|Q| ´ |P |s Ď pΨf qF pαqKr|Q| ´ |P |s.
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Under an additional assumption that pf,Kq is universally locally acyclic when restricted to
GP

m Ă AP , Corollary 17 gives an isomorphism

Υα
f pKq – pΨu

f qF pαqKr|Q| ´ |P |s.

To motivate the notion of Ψ-factorizability, in geometric representation theory, one might
consider a one-parameter family, the Beilinson-Drinfeld Grassmannian ramified at a closed point
x on a smooth curve C. Satake sheaves naturally exist away from the closed point which
categorify elements of a spherical Hecke algebra, and their nearby cycles at the closed point
give a categorification of central elements in the affine Hecke algebra, realizing the Bernstein
isomorphism [7]. One hopes, then, to show that the nearby cycles functor is a central functor
from a tensor category to the monoidal affine Hecke category. Checking that this functor satisfies
braiding relations, expected of a central functor, requires the use of a two-parameter degeneration
of a Beilinson-Drinfeld Grassmannian over a two-dimensional base, and one must show that
nearby cycles commute with one another [8]. Since there is no natural map from Ψ1Ψ2 to
Ψ2Ψ1, one must really construct an object that naturally maps to both, which is a nearby
cycle over a two-dimensional base, in which case these maps are naturally isomorphisms. Ψ-
factorizability generalizes this situation where we require that maps to iterated nearby cycles
are an isomorphism, and its definition requires the existence of an isomorphism 2.4 for any
composition of specializations of geometric points along the base.

There is an interesting analogy to be made to the factorization structure that Satake sheaves
exhibit, whereby specialization to the diagonal on the Beilinson-Drinfeld Grassmannian, that is,
the fusion product, is the same as the convolution product. The centrality of the construction of
nearby cycles sheaves in the affine Hecke category [8] is a ramified version of this property and
can be viewed as a generalization of this property in light of the result of Richarz that the Sa-
take sheaves over the Beilinson-Drinfeld Grassmannian are universally locally acyclic [15]. That
is, under the assumption of local acyclicity, taking nearby cycles is the same as restriction to
the fiber, and so commuting nearby cycles would then encode commutativity of the convolution
product in the Satake category. We note that Satake sheaves on an iterated Beilinson-Drinfeld
Grassmannian over An with parahoric ramification at 0 P A1 satisfy the assumptions of Corol-
lary 17. In fact, Corollary 19 shows that certain “fusion” maps constructed in this setting also
agree. Such fusion isomorphisms have found use in the Langlands program, where they play a
role in showing cases where the shriek pushforward of IC sheaves on the moduli space of shtukas,
which is not proper over the base, nevertheless commutes with nearby cycles [18, Theorem 4.12].
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to thank Pramod Achar and Simon Riche for their interest in this work. I would especially like
to thank Simon Riche for careful readings of drafts of this paper and for many comments that
improved the paper’s correctness, clarity, and quality. I would also like to thank an anonymous
referee identifying several points where the paper had gaps or needed to be improved.

2. Nearby cycles over general bases

2.1. Review of nearby cycles over general bases. Consider morphism f : X Ñ S between
schemes of finite type over an algebraically closed field F, two geometric points with a special-
ization t Ñ s on the base S that gives a morphism t Ñ Spsq to the étale localization, and a

bounded-below complex of sheaves K P D`pXt,kq. In this context, we will define nearby cycles
functors.

Definition 1. The shredded nearby cycle RpΨf qst : D
`pXt,kq Ñ D`pXs,kq is the functor i˚Rj˚,

where j : Xt Ñ Xpsq and i : Xs Ñ Xpsq.

To simplify notation, we will freely drop the structure map and write RpΨqst when f is clear.
Let x be a geometric point of X such that fpxq “ s. Recall that the Milnor tube is the scheme
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Xpxq ˆSpsq
Sptq. In this setting, there is a natural identification between the stalks of nearby

cycles and the cohomology of the Milnor tube. That is,

(2.1) pRpΨf qstKqx – RΓpXpxq ˆSpsq
Sptq,K|XpxqˆSpsq

Sptq
q.

We must make a comment about the meaning of derived categories such as DbpX,kq here. If
k is torsion, we may use DbpX,kq to denote the bounded derived category of étale sheaves. In
the case when k is a finite extension of Qℓ or an algebraic closure thereof, instead of the étale
topology, we really want a topos containing the constructible ℓ-adic sheaves, thereby allowing for
limiting constructions. Such a topos has been constructed by Bhatt and Scholze and is known as
the pro-étale topology [5]. Thus, we let DpX,kq be the derived category of all pro-étale sheaves.
Inside this category there is a bounded below subcategory of pro-étale sheaves D`pX,kq, a
bounded derived category DbpX,kq, and a bounded derived category of constructible sheaves,
which we denote Db

cpX,kq. We may also consider the category of abelian sheaves on a topos,
which we denote AbpXq and its derived category DpXq. When X is a point (the topos Set) and
R is a ring, we denote the derived category of sheaves of R-modules DpX,Rq as just DpRq.

When we need to make the distinction between étale and pro-étale categories, we write Xét for
the étale topos and Xproét for the pro-étale topos. One preliminary result is that the shredded
nearby cycles functor has finite cohomological dimension.

Proposition 2. For a map f : X Ñ S be locally of finite type whose fibers have dimension at
most N . Let K be an étale, resp. pro-étale sheaf of k-modules. Then RipΨqstK “ 0 for i ą 2N .

Proof. The finite cohomological dimension of Ψ is due to Gabber in the case of torsion coefficients
in the étale topology [13, Proposition 3.1] by reduction to the Milnor tube. The proof follows
word for word in the pro-étale setting. □

Gabber’s proof in [13, Proposition 3.1] suggests a technique to transfer results from the étale
topology to the pro-étale topology, and we follow the strategy in [5, Section 6.5] for direct image
functors. Let R be the ring of integers in k, temporarily assumed to be a finite extension of Qℓ,
and let m be the maximal ideal so that R “ limR{mn. For M P DpRq, write M as its pullback
to a sheaf on DpX,Rq. For a sheaf K P Db

cpXproét, Rq, we may write

K bR M “ R limpKn bR{mn Mnq.

We form a map
RpΨqst pK bR Mq Ñ RpΨqst pKq bR M

the adjoint of the composite map

j˚R limpKn bR{mn Mnq » R lim j˚pKn bR{mn Mnq

Ñ R lim i˚i
˚j˚pKn bR{mn Mnq

» i˚R lim i˚j˚pKn bR{mn Mnq.

The following is an analogue of [5, Lemma 6.5.11.(ii)].

Proposition 3. Let K P Db
cpXproét, Rq and M P D´pRq. The map

(2.2) RpΨqst pK bR Mq Ñ RpΨqst pKq bR M

is an isomorphism.

Proof. It suffices to check this property on stalks, i.e. on the cohomology of the Milnor tube,
where it becomes the map

(2.3) RΓpXpxq ˆSpsq
Sptq,K bR Mq Ñ R limRΓpXpxq ˆSpsq

Sptq,Kn bR{mn Mnq.

Write τ : Xpxq ˆSpsq
Sptq Ñ Xpsq ˆSpsq

Sptq. Then for a sheaf L, we have

RΓpXpxq ˆSpsq
Sptq, Lq » RΓpXpsq ˆSpsq

Sptq, Rτ˚Lq » RΓpXt, pRτ˚Lq|Xt
q
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where the last isomorphism follows by proper base change [5, Lemma 6.7.5]. Now, τ has coho-
mological dimension 0 and global sections of Xt has cohomological dimension at most 2N , so [5,
Lemma 6.5.11.(ii)] implies that the map

RΓpXt, pRτ˚R limpKn bR{mn Mnqq|Xt
q Ñ R limRΓpXt, pRτ˚Kn bR{mn Mnq|Xt

q

is an isomorphism. □

The most basic pathology of the definition of shredded nearby cycles is the failure of con-
structibility. For example, let S “ P2 over an algebraically closed base field, and let X be the
blow-up of S at a point 0 P P2. Let K be the constant sheaf Z{n on X, and take our specializa-
tion t Ñ s to be a specialization from a geometric point over the (two-dimensional) generic point
of S to the point 0. Then RpΨf qstK is not constructible, as shown by Orgogozo [13, Section 11].
To correct this situation, the theory of nearby cycles over general bases considers the topoi X

and S and uses the vanishing topos X
Ð

ˆS S, which is a 2-categorical construction for topoi [10,

Exposé 11]. The vanishing topos is equipped with a geometric morphism Ψ: X Ñ X
Ð

ˆS S, and
we may consider nearby cycles as pushforward along this geometric morphism RΨf “ pΨf q˚.

The shredded nearby cycle above is then recovered by pulling back along Xs ˆs t Ñ X
Ð

ˆS S.
For the vanishing topos, there is a natural base change property with respect to maps

S1 Ñ S which leads to the concept of a pair pf,Kq being Ψ-good. For h : S1 Ñ S, let
X 1 “ X ˆS S1, h1 : X 1 Ñ X, and f 1 : X 1 Ñ S1 be defined by pullback. We may form the
diagram [9, Equation 1.4.2]

X 1 X

X 1
Ð

ˆS1 S1 X
Ð

ˆS S

h1

Ψf 1 Ψf

h1
Ð
ˆhh

together with a base change morphism ph1
Ð

ˆh hq˚RΨf Ñ RΨf 1 ph1q˚.

Definition 4. We say that the pair pf,Kq is Ψ-good if for any map h, the base change morphism
is an isomorphism.

We remark that Ψ-goodness is automatic for a 1-dimensional base, either a smooth curve or a
henselian discrete valuation ring. We will use various properties of Ψ-goodness which have been
proven for étale sheaves.

Proposition 5. Let pf,Kq be Ψ-good and let K P Db
cpX,kq be constructible. Let α : t Ñ s be a

specialization in S. Then RpΨf qstK P Db
cpXs,kq.

Proof. The constructibility is essentially due to Orgogozo and appears as [13, Theorem 8.1] in
the torsion coefficients case.

These results may be transferred to the pro-étale setting. Constructibility for a complex
K of R-modules on Xproét as in [5, Definition 6.5.1] involves an m-adic completeness and the
property that KbR{m is obtained by pulling back along the geometric morphism Xproét Ñ Xét.
Completeness follows by identifying the inverse systems

tRpΨqst pKq bR R{mnu » tRpΨqst pK bR R{mnqu.

By applying Proposition 3 with M “ R{m, RpΨqst pK bR R{mq “ RpΨqst pKq bR R{m is con-
structible by Orgogozo’s theorem. We conclude that RpΨqst preserves constructible pro-étale
complexes analogous to [5, Lemma 6.7.2]. □

We remark that K is universally locally acyclic relative to f if and only if the pair pf,Kq is
Ψ-good and K is locally acyclic relative to f [9, Example 1.7(b)] [16, Proposition 2.7(2)].
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For a composition of specializations s Ñ t Ñ u, there is a natural map

(2.4) RpΨf qusK Ñ RpΨf qut RpΨf qtsK.

Following [18, Definition 2.7], we say that a pair pf,Kq is Ψ-factorizable if pf,Kq is Ψ-good and
the above map is an isomorphism for any such composition of specializations. The motivation for
the terminology of Ψ-factorizability was to unify two sorts of “factorization structures” appearing
in the study of Satake and affine Hecke categories: the commutativity of the convolution product
on Satake sheaves with the centrality of the central sheaf functor into various parahoric affine
Hecke categories under a single construction. Let G be a parahoric group scheme over a curve
C over F, and let GrG,I be the Beilinson-Drinfeld Grassmannian with I “ t1, . . . , nu legs [19,
Definition 2.2] over the base

qI : GrG,I Ñ CI .

We note that if |I| “ 1 and G has parahoric ramification at a point x, then the corresponding
fiber of the Beilinson-Drinfeld Grassmannian over x is a partial affine flag variety. Let

tx1, . . . , xmu “ N Ă C

be the locus of parahoric ramification and CzN the unramified locus. There are Satake sheaves
SV1

rb . . . rbSVn over GrG,I ˆCI pCzNqI , and we can !-extend them to sheaves over GrG,I via

j : GrG,I ˆCI pCzNqI Ñ GrG,I .

The following proposition is then a special case of [18, Proposition 3.14], announced there in the
case of Ql coefficients but whose proof extends to general choices of k, including characteristic ℓ
coefficients.

Proposition 6. The pairs pqI , j!pSV1
rb . . . rbSVnqq are Ψ-factorizable.

On the other hand, Gabber and Abe have announced that Ψ-factorizability is already implied
by Ψ-goodness. The following result was announced as [1, Theorem 4.5] in the case of étale
sheaves.

Conjecture 7. If pf,Kq is Ψ-good, then pf,RpΨf qtuKq is Ψ-good and pf,Kq is Ψ-factorizable.

For the remainder of the paper, if we will assume that the above holds for pro-étale sheaves,
then all instances of Ψ-factorizability can be reduced to those of Ψ-goodness. For the pro-étale
case, we do not expect new ideas will be needed beyond the étale case.

2.2. Nearby cycles over an affine space. We now specialize to the case that S is an affine
space. For a finite set P , let AP be the affine space of maps P Ñ A1, as a contravariant functor
in finite sets P . For a finite set P , let P˚ denote the pointed finite set P Y t˚u with ˚ R P ,
and let FinS be the category of finite sets and FinS˚ be the category of pointed finite sets. Let
f : X Ñ AP “ S be a separated scheme of finite type. We may sometimes consider f as defining
a map over the base AP˚ under the identification AP – AP ˆ 0 Ñ AP˚ where 0 is the obvious
geometric point over the closed F-point 0 P At˚u (recalling that our base field is algebraically
closed).

For a map of pointed finite sets, there is a generalized diagonal ∆α : AQ˚ Ñ AP˚ . By choosing
a geometric point ηQ over the generic point ηQ of AQ, we produce a geometric point of AP˚ . A
map of pointed finite sets factors as the composition of a surjective and injective map, and we
will mostly consider the case when α is surjective, remarking that in the case that α is injective,
this geometric point would map to a geometric generic point over AP as well. More generally,
if t Ñ Spsq is a specialization coming from a map of geometric points t Ñ s, the corresponding
nearby cycles functor RpΨqst is simply pullback along the fiber Xt Ñ Xs.

In the case that α is surjective, we now specialize the theory of nearby cycles over general
bases in relation to our setting where S “ AP . Let FinSsur˚ be the category of pointed finite sets
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and surjective maps. Let ηP be a geometric point over the Zariski-dense point ηP P AP , and
let 0 be a F-valued geometric point over 0 P A1 “ At˚u. Let ηP ˆ 0 be the geometric point in
AP˚ . For every surjective map of pointed finite sets P˚ Ñ Q˚, this defines a geometric point
∆αpηQ ˆ0q in AP˚ and we can compatibly choose specializations ηP ˆ0 Ñ ∆αpηQ ˆ0q in AP˚ so
they are compatible with composition in FinSsur˚ and therefore define a functor from the under
category P˚{FinSsur˚ to the category of geometric points and specializations in the étale topos of
AP˚ . Denote this functor by F , so F pαq is the specialization in the étale topos.

A specialization map s Ñ t in the étale topos of S determines a map on the fibers of X over
étale neighborhoods of S. Letting Xpsq be the fiber over the étale localization Spsq of s, then the
specialization defines a map Xpsq Ñ Xptq. In the case of a geometric point η over a generic point,
Xη “ Xpηq. Let jα be the map XηP ˆ0 Ñ Xp∆αpηQˆ0qq, and define nearby cycles with respect to

the specialization F pαq with the notation

(2.5) RpΨf qF pαqK :“ RpΨf q
∆αpηQˆ0q

ηP ˆ0
“ i˚

αjα,˚K.

We may choose geometric points to be compatible with composition with respect to maps out
of P˚. In particular, there is an adjunction map

(2.6) RpΨf qF pβαqK Ñ RpΨf q
∆βαpηRˆ0q

∆αpηQˆ0q
RpΨf q

∆αpηQˆ0q

ηP ˆ0
K

coming from [18, Construction 2.6].
We say that a specialization F pαq is one-dimensional if the corresponding surjective morphism

of finite sets α : P˚ Ñ Q˚ satisfies |P | ´ |Q| “ 1. For a one-dimensional specialization, we must
have |α´1pqq| “ 2 for a unique q P Q or |α´1p˚q| “ 2. If F pαq is one-dimensional, then ∆αpηQˆ0q

is a geometric generic point over the generic point of a divisor D of AP . As a result, the étale
localization Sp∆αpηQˆ0qq is a henselian trait and the corresponding nearby cycles are classical

one-dimensional nearby cycles (without shift). It is a classical fact, due to Gabber, that for one-
dimensional F pαq, the functor K ÞÑ RpΨqF pαqpKqr´1s is t-exact for the perverse t-structure.

Proposition 8. Let f : X Ñ AP “ S be the structure map, separated of finite type, and assume
that the pair pf,Kq is Ψ-factorizable with K a perverse sheaf. For any surjection α : P˚ Ñ Q˚,
the object RpΨqF pαqKr|Q| ´ |P |s is a perverse sheaf.

Proof. For a surjective map α : P˚ Ñ Q˚, we may write F pαq as a composition F pα1q˝¨ ¨ ¨˝F pαnq

of one-dimensional specializations, where n “ |P | ´ |Q|. By inducting on n, the Ψ-factorizability
of pf,Kq implies that the map

RpΨqF pαqK Ñ RpΨqF pα1q ¨ ¨ ¨RpΨqF pαnqK

is an isomorphism. On the other hand, the right side is a composition of classical one-dimensional
nearby cycles, so the result follows by the t-exactness of the one-dimensional nearby cycle functor.

□

Every map α : P˚ Ñ Q˚ admits a unique factorization α∆ ˝α˚. Here, α˚ : P˚ Ñ pP zα´1p˚qq˚

is defined by

α˚piq “

#

i i R α´1p˚q

˚ otherwise,

and α∆ : pP zα´1p˚qq˚ Ñ Q˚ is defined by

α∆piq “

#

αpiq i ‰ ˚

˚ i “ ˚

In the case α “ α˚, we wish to perform a deeper study of the Galois action. The Galois group
π1pηP , ηP q acts on RpΨqF pαqK by automorphisms of the geometric generic point. There is a
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surjective map

π1pηP , ηP q Ñ π1pη, ηqP

which is not in general an isomorphism. That is, for p P P , the projection to π1pη, ηq arises from
mapping the automorphism of ηP to the automorphism of η induced by the projection along
AP Ñ A1.

Proposition 9. Let f : X Ñ AP “ S be the structure map, separated of finite type, and assume
that the pair pf,Kq is Ψ-factorizable with K a perverse sheaf. For any surjection α : P˚ Ñ Q˚

that is a bijection outside α´1p˚q X P “ tp1, . . . , pnu, there is an isomorphism

RpΨqF pαqK Ñ RpΨqp1
¨ ¨ ¨RpΨqpn

K,

where RpΨqpi is a one-dimensional nearby cycle with respect to the projection AP Ñ A1 pro-
jecting to the pi copy of A1.

Moreover, this map on nearby cycles is equivariant with respect to the Galois action of
π1pηP , ηP q on the left mapping to the action of π1pη, ηqtp1,...,pnu on the right.

Proof. Write α “ αp1
˝ ¨ ¨ ¨ ˝ αpn

where αpi
: P˚ztpi`1, . . . , pnu Ñ P˚ztpi, . . . , pnu defined by

αpi
ppq “

#

˚ p “ pi

p otherwise.

By inducting on Ψ-factorizability, we may conclude that the map

RpΨqF pαqK Ñ RpΨqF pαp1 q ¨ ¨ ¨RpΨqF pαpn qK

is an isomorphism. We next argue that each nearby cycle RpΨqF pαpi
q is a one-dimensional nearby

cycle RpΨqpi
. Let Qi “ P ztpi, . . . , pnu and let βi “ αi ˝ ¨ ¨ ¨ ˝αn : P˚ Ñ pQiq˚ with βn “ αn and

β1 equal to the map α. The specialization F pαpi
q can be viewed as a specialization

∆βi`1
pηQi`1

ˆ 0q Ñ ∆βi
pηQi

ˆ 0q

in the étale topos of S. We note that the specialization map

ηQi`1 ˆ 0 Ñ AP
p∆βi

pηQi
ˆ0qq

factors as the composition of

ηQi
ˆ 0 Ñ AQi`1

p∆αi
pηQi

ˆ0qq
Ñ AP

p∆βi
pηQi

ˆ0qq

where the second map is a closed embedding. Therefore, the sheaf RpΨqF pαiq can be viewed as
nearby cycles for the first specialization in the composition above, viewed as a specialization in

the étale topos of AQi`1 . On the other hand, AQi`1

p∆αi
pηQi

ˆ0qq
is a henselian discrete valuation ring,

and projection to the pi coordinate gives a map

AQi`1

p∆αi
pηQi

ˆ0qq
Ñ A1

p0q

so this specialization can be viewed as the specialization for nearby cycles on the localization of
0 in A1. The identification in the first part now follows by noting that classical nearby cycles are
independent of the choice of geometric points over the generic and special points of a henselian
trait. The action of local inertia on classical nearby cycles comes from the action of the Galois
group of the geometric generic point via projection. □

As a consequence of the Galois equivariance in the previous proposition, the action of
π1pη, ηqtp1,...,pnu on RpΨqF pαqK is independent of the choice of decomposition α “ αp1 ˝¨ ¨ ¨˝αpn .
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3. Relation between unipotent nearby cycles and nearby cycles via the
vanishing topos

Since we primarily work with the perverse t-structure on the derived category of constructible
sheaves, we will often drop the derived functor notation and write instead

j˚ “ Rj˚, pΨf qF pαq “ RpΨf qF pαq,

etc. As a rule, all functors will be derived in the derived category of constructible sheaves and
perverse cohomologies will be noted explicitly when taken.

3.1. The definition of Achar and Riche. For a map α : P˚ Ñ Q˚ in FinS˚, and K a perverse
sheaf onX, Achar-Riche have conditionally defined an object Υα

f pKq [2, Definition 2.3]. We recall

their definition of Υα
f pKq. This diagonal ∆α induces a pullback map

iX,α : X ˆAP ˆ0 A
Q ˆ 0 Ñ X.

We often suppress the X where the structure map f : X Ñ AP is understood. Let j be the open
embedding of X ˆAP pGmqP Ñ X. More generally, we write jX to specify the dependence of j
on the scheme X over AP .

On these affine spaces we can define extensions of certain unipotent local systems, and we
recall the setup of [2, Section 2.5]. First, on Gm “ A1zt0u, there are unipotent local systems
La, indecomposable of rank a. These are unique up to isomorphism, L1 is the constant local
system, and for a ď b, there is an exact sequence

0 Ñ La Ñ Lb Ñ Lb´a Ñ 0.

These local systems La come from representations of the tame inertia group pZ1 “
ś

ℓ‰p Zℓ

that send a topological generator to an indecomposable a ˆ a Jordan block. We call these
representations La.

For a map a : P “ tp1, . . . , pnu Ñ Zě1, we form a local system La on GP
m as an external

product

La “ Lapp1q b ¨ ¨ ¨ b Lappnq.

Under the map f , we may pull this back to a local system on X. Similarly, we form representa-
tions

La “ Lapp1q b ¨ ¨ ¨ b Lappnq.

The set of such maps a form a poset, and La and La are functors from this poset into local
systems on GP

m and representations of ZP , respectively.

Definition 10. Let K be a perverse sheaf on X ˆAP GP
m,k. Let Υα

f pKq P DbpXs,kq be the
pro-étale complex of sheaves

(3.1) lim
ÝÑ

a : α´1p˚qXPÑZě1

i˚αj!˚pK b f˚Laqr|Q| ´ |P |s

where the limit is taken over the poset of maps α´1p˚q X P Ñ Zě1. For K P Db
cpX,kq, we may

also write Υα
f pKq where we implicitly restrict to X ˆAP GP

m.

Later, we will relate the functorial description above to Achar and Riche’s original definition.
If K is perverse, Achar and Riche define Υα

f pKq as

(3.2) lim
ÝÑ

a : α´1p˚qXPÑZě1

pH |Q|´|P |i˚αj˚pK b f˚Laq,

conditional on two conditions, the first of which stating that the limit stabilizes for a sufficiently
large and the second stating that the maps outside perverse degree |Q| ´ |P | vanish for a suffi-
ciently large. We will see later in Corollary 17 that if K is perverse and pf,Kq is Ψ-good and
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universally locally acyclic over GP
m, then these definition agree in the sense that Υα

f pKq is a

constructible sheaf and its shift by |Q| ´ |P | is perverse.

3.2. Tame and unipotent nearby cycles via the vanishing topos. We keep the notation
of the previous section. In particular, α will always be a surjective map of pointed finite sets
that factors as α∆ ˝ α˚ where α˚ is a bijection outside the preimage of ˚. We will often handle
maps α that induce such bijections separately and denote this condition as α “ α˚.

For the localization of A1 at 0, the corresponding Galois group π1pη, ηq is the local inertia,
and it has a distinguished quotient Z1, where Z1 “

ś

ℓ‰p Zℓ is the Galois group of the inverse

limit of Kummer coverings ĄGm Ñ Gm. We will choose a topological generator of Z1 along each
coordinate p P P , which we denote Tp. Let W denote the wild inertia, the kernel of the map
π1pη, ηq Ñ Z1. The previous proposition shows that if α “ α˚ and if pf,Kq is Ψ-factorizable with
K a perverse sheaf, we may consider RpΨqF pαqK as a perverse sheaf equipped with an action

of π1pη, ηqα
´1

p˚qXP . Since Wα´1
p˚qXP is a pro-p group, it is meaningful to take Wα´1

p˚qXP -
invariants as a perverse sheaf.

Definition 11. Let α “ α˚ be a surjective map P˚ Ñ Q˚. If pf,Kq is Ψ-factorizable and K is
perverse on X, we define tame nearby cycles as the perverse sheaf

(3.3) pΨt
f qF pαqK “ ppΨf qF pαqKqW

α´1p˚qXP

.

The action of π1pη, ηqα
´1

p˚qXP further factors through the quotient pZ1qα
´1

p˚qXP on this sub-
object. We define unipotent nearby cycles as the subobject of pΨt

f qF pαqK for which Tp act

unipotently for all p P α´1p˚q X P . To be more explicit, the space of endomorphisms of
a perverse sheaf is finite-dimensional. Therefore, we may consider pΨt

f qF pαqK as a module

over krTp1 , . . . , Tpns. Analogous to [14, Lemma 1.1], [12, Proposition 1.1] which deals with
the case of a one-dimensional base, this submodule decomposes into a part supported over
p1, . . . , 1q P SpecpkrT1, . . . , Tnsq, which we denote pΨu

f qF pαqK, and a part supported away from

this point, which we denote pΨ‰1
f qF pαqK, yielding a canonical direct sum decomposition into

generalized eigenspaces

(3.4) pΨt
f qF pαqK “ pΨu

f qF pαqK ‘ pΨ‰1
f qF pαqK.

As a consequence of Proposition 9, for α´1p˚q X P “ tp1, . . . , pnu, if pf,Kq is Ψ-factorizable,
there are canonical isomorphisms

pΨt
f qF pαqK Ñ pΨtqp1 ¨ ¨ ¨ pΨtqpnK,

where tame nearby cycles over a curve pΨtqpi
L are understood as the wild inertia invariants

ppΨqpiLqW . Similarly, under the same assumptions there are canonical isomorphisms

pΨu
f qF pαqK Ñ pΨuqp1

¨ ¨ ¨ pΨuqpn
K.

In particular, for such pairs pf,Kq, iterated tame and unipotent nearby cycles are independent
of the choice of permutation, so that, for example,

pΨuqp1
¨ ¨ ¨ pΨuqpn

K – pΨuqpσp1q
¨ ¨ ¨ pΨuqpσpnq

for any permutation σ of t1, . . . , nu.
In the study of unipotent nearby cycles over a one-dimensional base, there is a fundamental

exact triangle

i˚j˚ RΨu RΨup1´T q `1

where i and j are the inclusion of the fiber over 0 Ñ A1 and the complement, respectively. We
will want a version of this exact triangle over the base AP . One important difference is that the
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complementary open embedding to iα is not affine. As a result, we may not apply the results of
[4, Section 4.1] directly. The following lemmas substitute for the necessary results.

Lemma 12. Let f : X Ñ AP separated of finite type over an algebraically closed base field with
K a perverse sheaf on X such that the pair pf,Kq is Ψ-factorizable. Let α “ α˚ : P˚ Ñ Q˚ be
a surjective map. Then

pH |Q|´|P |i˚αj˚K Ñ pΨqF pαqK

factors through pΨtqF pαqK and defines an isomorphism onto the pZ1qα
´1

p˚qXP -invariant part.

Proof. By [2, Lemma 2.6], i˚αj˚K lives in perverse degrees ě |Q| ´ |P |.
On the other hand, we may relate this complex to derived global sections in a way parallel

to [17, Section 1.2]. Let ξ be the generic point of the localization of AP at ∆αpηQ ˆ 0q. Let I

be the Galois group Galpξ{ξq, noting that we may choose ξ to be identified with the geometric
point ηQ. We have the following commutative diagram:

(3.5)

ηQ ξ AP
p∆αpηQˆ0qq

∆αpηQ ˆ 0q

GP
m AP ∆αpAQq

π jξ

h h

iα

h

j

iα

where π has Galois group I and all other maps are natural ones, with the notation h used for the
vertical maps, by abuse of notation. When we pull back the above diagram along f : X Ñ AP ,
nearby cycles can be considered as a functor pΨqF pαqπ

˚K “ i˚
αpjξq˚π˚π

˚K, so taking the derived
I-invariants give the identification

RΓpI, pΨqF pαqπ
˚Kq – i˚

αpjξq˚K.

If pf,Kq is Ψ-factorizable, then the action of I factors through the power of inertia on each copy
of one-dimensional nearby cycles and gives

RΓpI,ΨF pαqπ
˚h˚Kq – i˚

αpjξq˚h
˚K – h˚iαj˚K,

where the last isomorphism follows by writing the localization as the inverse limit of étale maps
and applying the smooth base change theorem [20, Lemma 59.89.3].

Since pΨqF pαqKr|Q|´|P |s is perverse, in perverse degree |Q|´|P |, the I-action factors through

the π´1p˚q-power of the local inertia of A1
p0q

. Therefore, the I-invariants of pΨqF pαqK are the

same as pZ1qπ
´1

p˚q-invariants of pΨtqF pαqK. □

For the next lemma, we introduce some notation for the relevant maps. For a map
α : P˚ Ñ Q˚, we define the α-generic part of AP , AP

α as the subset of AP such that xp ‰ 0
for all αppq ‰ ˚. Define jα : AP

α Ñ AP as the open embedding and jX,α to be the pullback of
this map to any X over AP . For any X over AP , we also define Xα “ X ˆAP AP

α , equipped with
structure maps Xα Ñ AP

α Ñ AP . For surjective maps α “ α˚ : P˚ Ñ Q˚ and β “ β˚ : Q˚ Ñ R˚,
a composition β ˝ α, the map iAP

βα,β˝α factors as

(3.6) GR
m AQ

β AP
βα,

i
AQ
β

,β
iAP

βα
,α
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so there is a diagram

(3.7)

GR
m

GQ
m AQ

β

GP
m AP

α AP
βα

i
AQ
β

,β

j
AQ
β

iAPα ,α iAP
βα

,α

jAPα
jAP

βα
,α

Lemma 13. Under the same assumptions as Lemma 12,

i˚αj!˚K – ppΨu
f qF pαqKqpZ1

q
α´1p˚qXP

.

Proof. We induct on |α´1p˚q| and handle the case of a composition βα with both β “ β˚ and
α “ α˚. We note that the one-dimensional case |α´1p˚q| “ 2 was proved by Beilinson [3].
Diagram 3.7 produces a diagram

(3.8)

i˚
AQ

β ,β
i˚AP

βα,α
pjAP

βα,αq!pjAP
α

q!˚K i˚
AQ

β ,β
pjAQ

β
q!i

˚
AP

α ,α
pjAP

α
q!˚K

i˚
AQ

β ,β
i˚AP

βα,α
pjAP

βα,αq˚pjAP
α

q!˚K i˚
AQ

β ,β
pjAQ

β
q˚i

˚
AP

α ,α
pjAP

α
q!˚K

where the top horizontal arrow is an isomorphism. The inductive hypothesis implies that

i˚AP
α ,αpjAP

α
q!˚Kr|Q| ´ |P |s

is perverse, so we may make sense of

i˚AQ
β ,β

pjAQ
β

q!˚i
˚
AP

α ,αpjAP
α

q!˚Kr|Q| ´ |P |s

as the i˚
AQ

β ,β
pullback of the image of perverse sheaves defining the intermediate extension in the

right arrow. Since the diagram commutes, we conclude that i˚αj!˚K – i˚
AQ

β ,β
pjAQ

β
q!˚i

˚
AP

α ,α
pjAP

α
q!˚K.

On the other hand, this object is

ppΨu
f qF pβqpΨu

f qF pαqKqpZ1
q
α´1p˚qXP

ˆpZ1
q
β´1p˚qXQ

– ppΨu
f qF pβαqKqpZ1

q
pβαq´1p˚qXP

.

□

3.3. Relation of the two definitions.

Lemma 14. The pair p1,Laq is Ψ-factorizable, where 1 is the identity map. If appq “ 1 for all
p R α´1p˚q X P , there are isomorphisms,

(3.9) pΨ1qF pαqpLaq “ pΨu
1 qF pαqpLaq “ La

as representations of ppZ1qα
´1

p˚qXP generated by Tp for p P α´1p˚q X P .

Proof. Since La is an external product, this reduces to the one-dimensional case by the Künneth
formula [9, Theorem 2.3] [18, Proposition 2.10]. □

We now arrive at the connection between pΨu
f qF pαqK and Υα

f pKq. This will generalize [12,

Proposition 3.1].
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Proposition 15. Let pf,Kq be Ψ-factorizable with K a perverse sheaf. Let α “ α˚ : P˚ Ñ Q˚

be surjective with α´1p˚q X P “ tp1, . . . , pnu. Let a : α´1p˚q X P Ñ Zě1. Then

(3.10)
č

ℓPα´1p˚qXP

kerpp1 ´ Tℓq
apℓq, pΨu

f qF pαqKq

is isomorphic to

(3.11)
č

ℓPα´1p˚qXP

kerp1 ´ Tℓ, pΨu
f qF pαqpK b f˚Laqq.

Proof. To make sense of the right hand side as a perverse sheaf, we note that the fact that the
pair pf,K b f˚Laq is Ψ-factorizable follows by the projection formula [11, Example 4.26 (5)] [9,
Proposition A.6].

For a given p P P , we define

appqpjq “

#

apjq j ‰ p,

1 j “ p.

Identifying the space of maps a : P Ñ Z with ZP with addition and letting ep be the unit vector
in the p coordinate, there is an exact sequence

0 Ñ La Ñ La`ep Ñ Lappq Ñ 0.

Using this exact sequence, we first establish an isomorphism

pΨu
f qF pαqpK b f˚Laq – pΨu

f qF pαqpKq b La.

In the base case appq “ 1 for all p this is a tautology, while the inductive step is built from the
commutative diagram

(3.12)

pΨu
f qF pαqpKq b La pΨu

f qF pαqpK b f˚Laq

pΨu
f qF pαqpKq b La`ep pΨu

f qF pαqpK b f˚La`epq

pΨu
f qF pαqpKq b Lappq pΨu

f qF pαqpK b f˚Lappq q,

noting that the horizontal arrows are compositions of canonical maps coming from pullback and
tensor product, as well as Lemma 14. Since the vertical columns are distinguished triangles and
the top and bottom rows are isomorphisms, we conclude the middle row is an isomorphism as
well.

We are now ready to prove the proposition. There is a vector v of La such that, as a vector
space, La is generated by

ś

p1´Tpk
qjkv :“ vj1,...,jn for 0 ď ji ă appiq. This gives a distinguished

basis vj1,...,jn of La as a vector space.
Define a map γ : pΨu

f qF pαqpKq Ñ pΨu
f qF pαqpKq b La by

(3.13) γpxq “

app1q´1
ÿ

j1“0

¨ ¨ ¨

appnq´1
ÿ

jn“0

˜

n
ź

i“1

p´p1 ´ Tpi
qqappiq´1´jix

¸

vj1,...,jm .

We note that γ is injective because the coefficient of vapp1q´1,...,appnq´1 is x. A straightforward
computation shows that p1 ´ Tℓqγpxq is equal to

(3.14)
ÿ

j1,...,jℓ´1,jℓ`1,...,jn

˜

ź

pi‰ℓ

p´p1 ´ Tpiqqappiq´1´ji ¨ p´p1 ´ Tℓqqapℓqx

¸

vj1,...,jℓ´1,0,jℓ`1,...,jn .
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By considering when this expression is equal to 0, we may show that x is in the kernel of
p1 ´ Tℓq

apℓq if and only if γpxq is in the kernel of p1 ´ Tℓq.
To show the isomorphism, it suffices to show that γ surjects onto the intersection of the kernels

of p1 ´ Tℓq for ℓ P α´1p˚q X P . Writing ℓ “ pi and y P pΨu
f qF pαqpKq b La as

ř

aj1,...,jnvj1,...,jn ,
the condition that y is in the kernel of 1 ´ Tℓ is equivalent to relations

aj1,...,ji´1,ji`1,ji`1,...,jn “ ´p1 ´ Tℓqaj1,...,jn

and aj1,...,ji´1,0,ji`1,...,jn “ 0. If y is in the intersection of all the kernels of 1 ´ Tℓ for

ℓ P α´1p˚q X P , then y is in the image of γpxq as y can be determined uniquely by the sin-
gle coefficient aapp1q´1,...,appnq´1 and y “ γpaapp1q´1,...,appnq´1q.

So γ restricts to an isomorphism between the kernel of p1 ´ Tℓq
apℓq in pΨu

f qF pαqK and the

kernel of p1 ´ Tℓq in pΨu
f qF pαqpK b f˚Laq. □

Corollary 16. Let pf,Kq be Ψ-factorizable and let α “ α˚ : P˚ Ñ Q˚ be surjective. Then
lim
ÝÑ

pH |Q|´|P |i˚αj˚pK b Laq exists as a perverse sheaf, stabilizing for a sufficiently large (one
of the two necessary conditions in [2, Definition 2.3]). Moreover, this quantity coincides with
Υα

f pKq – pΨu
f qF pαqKr|Q| ´ |P |s.

Proof. We first prove the isomorphism. The left hand side in Equation (3.10) must stabilize
for a sufficiently large and equal pΨu

f qF pαqKr|Q| ´ |P |s for a sufficiently large. After taking this

intersection, the right hand side in Equation (3.11) is the same as taking invariants under the

action of pZ1qα
´1

p˚qXP , so becomes pH |Q|´|P |i˚αj˚pK bLaq for such a by Lemma 12, isomorphic
also to i˚αj!˚pK b Laqr|Q| ´ |P |s by Lemma 13. Therefore, for this choice of a,

Υα
f pKq – i˚αj˚pK b Laq – pΨu

f qF pαqK.

We also note that for a : α´1p˚q X P Ñ Zě1 sufficiently large, there is an isomorphism

Υα
f pKq – pH |Q|´|P |i˚αj˚pK b f˚Laq

so the relevant limit stabilizes at a finite level. □

Recall now that for general α : P˚ Ñ Q˚ surjective, i˚α factors as i˚
α∆ ˝ i˚α˚ . A priori, the

functor i˚
α∆r|Q| ´ |P zα´1p˚q|s is not t-exact for the perverse t-structure, but only right exact.

However, under the assumption that pf,Kq is universally locally acyclic over GP
m, we can recover

the perversity of Υα
f pKq.

Corollary 17. Let pf,Kq be Ψ-factorizable and universally locally acyclic with respect to the
restriction of f over GP

m Ñ AP . Let α : P˚ Ñ Q˚ be surjective. Then lim
ÝÑ

pH |Q|´|P |i˚αj˚pKbLaq

coincides with Υα
f pKq – pΨu

f qF pαqKr|Q| ´ |P |s.

Proof. This follows from Corollary 16 if we show that the map

(3.15)
i˚α∆Υ

α
f pKqr|Q| ´ |P zα´1p˚q|s Ñ pΨf qF pα∆qΥ

α
f pKqr|Q| ´ |P zα´1p˚q|s

– pΨf qF pα∆qpΨu
f qF pα˚qKr|Q| ´ |P |s

is an isomorphism. To see this, the right side of this arrow is perverse since it is isomorphic to an
iterated one-dimensional specialization along successive Henselian discrete valuation rings and
using the t-exactness of one-dimensional nearby cycles. By applying Corollary 16, this implies
that

i˚α∆
pH |Q|´|P zα´1

p˚q|i˚α˚j˚pK b f˚Laq

is concentrated in perverse degree |α´1p˚q| ´ 1 for sufficiently large La and is isomorphic to

pH |Q|´|P |i˚αj˚pK b f˚Laq.

We now show the desired property in Equation 3.15. We write Q \ α´1p˚q as a disjoint
union, picking new representatives if there is a nonempty set-theoretic intersection. We may
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write α “ α∆ ˝ α˚ “ α˚ ˝ α∆ where α∆ : P˚ Ñ Q \ α´1p˚q so that α∆piq “ αpiq if αpiq ‰ ˚ and
i otherwise. Then the diagram

(3.16)

AQ AP zα´1
p˚q

AQ\α´1
p˚qzt˚u AP

iα∆

iα˚ iα˚

iα∆

is Cartesian. As a result, using Ψ-goodness, the diagram

(3.17)

i˚
α∆pΨqF pα˚qK pΨqF pα˚qi

˚
α∆K

pΨqF pαqK pΨqF pα˚qpΨqF pα∆qK
„

commutes where the top horizontal arrow is an isomorphism by Ψ-goodness, the bottom hori-
zontal arrow is an isomorphism by Ψ-factorizability, and right vertical arrow is an isomorphism

by the local acyclicity over GP
m. After taking invariants under Wα´1

p˚qzt˚u and applying Corol-
lary 16, we conclude that Equation 3.15 is an isomorphism. □

We now note that the factorization of α into α∆ ˝α˚ is compatible with composition of maps
of finite pointed sets, so that ipβαq∆ “ iα∆ ˝ iβ∆ . The previous corollary gives an isomorphism

i˚
pβαq∆

pΨu
f qF ppβαq˚qK – Υβα

f pKq.

For a composition, Achar and Riche construct a map

(3.18) Υβα
f pKq Ñ Υβ

fαΥ
α
f pKq.

On the other hand, if pf,Kq is Ψ-factorizable, we get an isomorphism

(3.19) i˚
pβαq∆

pΨf qF ppβαq˚qK – i˚β∆ i
˚
α∆pΨf qF pβ1qpΨf qF pα˚qK,

where β1 : pP zα´1p˚qq˚ Ñ pP zpβαq´1p˚qq˚ is the map sending all i to itself except for i such
that αpiq ‰ ˚ but βαpiq “ ˚. There is a canonical base change map for nearby cycles giving a
map

(3.20) i˚β∆ i
˚
α∆pΨf qF pβ1qpΨu

f qF pα˚qK Ñ i˚β∆pΨfαqF pβ1qi
˚
α∆pΨu

f qF pα˚qK,

where fα is the pullback of f along the map iα∆ . There is an isomorphism

(3.21) i˚β∆pΨfαqF pβ1qi
˚
α∆pΨu

f qF pα˚qK – Υβ
fαΥ

α
f pKq,

coming from two applications of Corollary 16. The following proposition shows that the above
maps are compatible with each other.

Proposition 18. Let pf,Kq and pfα, i˚
α∆pΨu

f qF pα˚qKq be Ψ-factorizable and universally locally

acyclic over GP
m and GQ

m, respectively. Let α : P˚ Ñ Q˚ and β : Q˚ Ñ R˚ be maps in FinS˚.
Then Υα

f pKq is Ψ-good, and the following diagram commutes where the vertical arrows are
isomorphisms coming from Corollary 16:

(3.22)

Υβα
f pKq Υβ

fαΥα
f pKq

i˚
pβαq∆

pΨu
f qF ppβαq˚qK i˚

β∆pΨu
fαqF pβ˚qi

˚
α∆pΨu

f qF pα˚qK.

Moreover, the bottom row is an isomorphism, so the map Υβα
f pKq Ñ Υβ

fαΥα
f pKq is an isomor-

phism.
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Proof. We explain how to make sense of the vertical arrows in Diagram 3.22. Since pf,Kq is
Ψ-factorizable, it follows that Υα

f pKq – i˚
α∆pΨu

f qF pα˚qK. Since the pair pfα, pΨf qF pαqKq is
Ψ-factorizable, the right vertical arrow is an isomorphism. The left vertical arrow is also an
isomorphism by the Ψ-factorizability.

We may choose c : P Ñ Zě1 sufficiently large so that

Υβα
f pKq – i˚βαj˚pK b f˚Lcq

and c is βα-special, i.e. cppq “ 1 for βαppq ‰ ˚. Defining

appq “

#

cppq αppq “ ˚

1 αppq ‰ ˚,
bppq “

#

cppq αppq ‰ ˚

1 αppq “ ˚,

and

b1pqq “ ´|α´1pqq| ` 1 `
ÿ

pPα´1pqq

bppq,

the construction of Achar and Riche produces a map

(3.23)

i˚βαj˚pK b Lcq i˚βj
α
˚ pi˚αj˚pK b Laq b Lb1 q

Υβα
f pKq Υβ

fαΥα
f pKq.

„ „

Here jα is the map X ˆAP pGmqQ Ñ X ˆAP AQ. The construction of the map in Equation 3.19
amounts to an adjunction, which yields a commutative diagram in conjunction with Corollary 16,

(3.24)

i˚βαj˚pK b La b Lbq i˚βαj˚piα˚ q˚i
˚
α˚j˚pK b La b Lbq

i˚
pβαq∆

pΨu
f qK i˚

β∆ i
˚
α∆pΨu

f qF pβ1qpΨu
f qF pα˚qK

with c chosen large enough so that the vertical arrows are isomorphisms. Since jα˚ “ i˚α˚j˚piα˚ q˚,
there is an isomorphism

i˚βαj˚piα˚ q˚i
˚
α˚j˚pK b La b Lbq – i˚

pβαq∆
i˚β1jα˚ i

˚
α˚j˚pK b La b Lbq.

Since Lc – La b Lb, we may form a commutative diagram

i˚βαj˚piα˚ q˚i
˚
α˚j˚pK b Lcq iβj

α
˚ pi˚αj˚pK b Laq b Lbb1 q

i˚
β∆ i

˚
α∆pΨu

f qF pβ1qpΨu
f qF pα˚qK i˚

β∆pΨu
fαqF pβ1qi

˚
α∆pΨu

f qF pα˚qK.

A diagram chase shows that the composition of the arrows in the above diagrams lines up with
the construction of [2, Section 2.10], thus proving the relevant commutativity. □

In the case of the Beilinson-Drinfeld Grassmannian, we assert that the hypotheses in the
previous theorem that use Conjecture 7 are already known in the product situation and can be
transported along proper pushforward and smooth pullback, as in the construction of Satake
sheaves. Thus, we may state the following corollary without relying explicitly on Conjecture 7.

Corollary 19. The isomorphisms in Proposition 6 and [2, Theorem 3.2] agree.
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Proof. The Satake sheaves SV1b¨¨¨bV|I|
on a Beilinson-Drinfeld Grassmannian over AI , with para-

horic ramification along a point 0 P A1, satisfy the assumptions of Proposition 18, so all the
arrows in Proposition 18 are isomorphisms. The universal local acyclicity property is a theo-
rem of Richarz [15]. Gaitsgory’s theorem that the local Galois group acts unipotently on central
sheaves [7, Proposition 7] allows us to write pΨu

f qF pαqK as the full nearby cycle. Gaitsgory’s work

on central sheaves allows us to write the object i˚
α∆pΨf qF pαqK as SW bZV bα´1p˚qXP on the special

fiber of the Beilinson-Drinfeld Grassmannian GrG,I ˆAP pGQ
m ˆ0q, where Wq “

Â

iPα´1pqq Vi and

V bα´1
p˚qXP “ Vp1 b ¨ ¨ ¨ b Vpn where tp1, . . . , pnu “ α´1p˚q X P , considered as a constant sheaf

(with monodromy automorphisms). When we shriek extend to the Beilinson-Drinfeld Grass-
mannian GrG,I ˆAP AQ, the proof of the Ψ-factorizability from [18, Proposition 3.14] generalizes
to handle this case as well. □
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