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COMPLEMENTS OF CAUSTICS OF REAL FUNCTION SINGULARITIES

V.A. VASSILIEV

Abstract. We study the topology of complements of caustics of simple and parabolic func-
tion singularities, namely

– complete the enumeration of connected components of the complements of caustics of simple

(in the sense of V. Arnold) singularities, in particular find the numbers of these components
for the last two classes, E7 and E8, remaining unknown after the works of R. Thom, V. Arnold

and V. Sedykh;
– represent all these components for simple singularities by explicitly constructed functions,

and also realize their one-dimensional homology and cohomology groups by cycles and cocy-

cles;
– prove that for some parabolic singularities the two-dimensional homology groups of the

complements of their caustics are nontrivial.

1. Introduction

The caustics of ray systems appear, for example, as sunbeams, i.e., sets of concentration
of rays, and hence as singular sets of luminosity. In terms of generating families of functions
describing an optical state, they are the sets of parameter values corresponding to the functions
with non-Morse critical points. In the case of non-degenerate families, they form hypersurfaces
in the parameter spaces. The singularity types of caustics that characterize the concentration
of rays coincide with the classes of the natural classification of function germs at their critical
points, see [2], [4]. The local geometry of a caustic close to its various points is determined
by the types of these points with respect to this classification. In particular, a caustic can
divide the neighborhood of such a point into many connected components, the number of which
depends on the singularity class. The luminosity function is regular outside the caustic, but its
behavior usually varies significantly in different components of its complement. Therefore, the
enumeration of these local components of complements of caustics is an early step in the study
of luminosity functions at their singular points.

By a function singularity we mean the germ of a C∞-smooth function Rn → R at its critical
point.

A natural initial segment of the classification of function (and caustic) singularities consists
of so-called simple singularities distinguished in [2]. Namely, it are the classes Ak (k ≥ 1), Dk

(k ≥ 4), E6, E7 and E8. (In addition, some of these classes have several different real forms,
see Table 1 below.) For pictures of standard singularities of caustics of families depending
on ≤ 3 parameters (that is, of classes A2, A3, A4 and D4), see, for example, [4], §21.3 and
[5], Chapter 2; apparently they were first sketched in [14] and appeared in a comprehensible
form in [3]. V.D. Sedykh [12], [13] studied in detail the stratification of caustics at all other
simple singularities, except for E7 and E8, namely at singularities of types Ak, Dk and E6. His
study implies (by a kind of Alexander duality considerations) the homology groups of their local
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Table 1. Normal forms of real simple singularities in R2

Notation Normal form # of components b1
Aµ, µ ≥ 1 ±xµ+1 ± y2

[
µ+2
2

]
0

D−
2k; k ≥ 2 x2y − y2k−1 k2+k

2
k2−k

2

D+
2k; k ≥ 2 x2y + y2k−1 k2+3k−2

2
k2−3k+2

2

±D2k+1; k ≥ 2 ±(x2y + y2k) k2+3k
2

k2−k
2

±E6 x3 ± y4 7 1
E7 x3 + xy3 10 ≥ 5
E8 x3 + y5 15 ≥ 7

complements, in particular the numbers of local connected components of these complements,
and the fact that their homology groups are trivial in all dimension greater than 1.

In the first part of the present work (sections 2 and 3) we find the numbers of such local
components for the two remaining classes, E7 and E8, and explicitly implement these numbers
for all simple singularities by functions representing all components. We also describe a simple
invariant separating all these components.

In §4 we describe a one-dimensional cohomology class of complements of caustics that gen-
erates one-dimensional cohomology groups of all such components for singularities Ak, Dk and
E6 (and conjecturally also for E7 and E8) for which this group is non-trivial. We also demon-
strate the 1-cycles in function spaces that generate the homology groups of all these components
(except maybe for E7 and E8).

In §5 we prove that the complements of the caustics of singularities of the classes P 2
8 and

J3
10 (which are some of the simplest non-simple singularities) have non-trivial two-dimensional

homology groups.

1.1. Main definition. For an introduction to the theory of caustics see, for example, [4], [5].
In short, let f : (Rn, 0) → (R, 0), df(0) = 0, be a smooth function defined in a neighborhood

of its critical point 0, and F : (Rn × Rl, 0) → (R, 0) be its arbitrary smooth deformation, i.e. a
family of functions fλ ≡ F (·, λ) defined in such a neighborhood and depending on the parameter
λ running a neighborhood of the origin in Rl, such that f0 ≡ f . The caustic of this deformation is
the set of values of the parameter λ ∈ Rl such that the corresponding function fλ has at least one
non-Morse critical point close to the origin in Rn. This is a subvariety in Rl (of codimension 1 in
all interesting cases) that usually splits a neighborhood of the origin of Rl into several connected
components. These components, their enumeration and topology are the main concern of this
work.

For the parallel study of complements of some other bifurcation sets of deformations of sim-
ple functions, the so-called discriminants (that is, sets of parameter values λ such that the
corresponding varieties f−1

λ (0) are singular), see, in particular, [10], [11], [17].

1.2. Simple singularities and their deformations. According to [2], any germ of a simple
function singularity in n ≥ 2 variables can be reduced by a choice of local coordinates to the
form φ(x, y) + Q(z1, . . . , zn−2), where φ is one of the polynomial normal forms listed in Table
1, and Q is a non-degenerate quadratic form. The notations Aµ, D

−
2k, etc., listed in the first

column of Table 1, are the names of stable equivalence classes, i.e. sets of singular function germs
that can be obtained from each other by changing the local coordinates and the quadratic form
Q (including changes of the number n − 2 of variables of Q, and hence also of the number n
of variables of considered functions). The local geometry of the caustics of all sufficiently large
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(so-called versal, see [4]) deformations of stably equivalent singularities is the same, so we can
and will assume that all our functions depend on two variables only.

We will consider miniversal deformations of these singularities, i.e. versal deformations de-
pending on the minimal possible number of parameters, which is equal to the Milnor number
µ(f) of the deformed function f (these numbers are indicated by subscripts in the notation Aµ,
D−

2k, etc. of singularity classes).
The canonical miniversal deformations of simple singularities are as follows:

Aµ f + λ1 + λ2x+ λ3x
2 + · · ·+ λµx

µ−1(1)

Dµ f + λ1 + λ2x+ λ3y + λ4y
2 + λ5y

3 + · · ·+ λµy
µ−2(2)

E6 f + λ1 + λ2x+ λ3y + λ4xy + λ5y
2 + λ6xy

2(3)

E7 f + λ1 + λ2x+ λ3y + λ4xy + λ5y
2 + λ6y

3 + λ7y
4(4)

E8 f + λ1 + λ2x+ λ3y + λ4xy + λ5y
2 + λ6xy

2 + λ7y
3 + λ8xy

3 ,(5)

where f is the initial singularity given by the corresponding normal form of the Table 1, and λi

are parameters of the deformation.
Moreover, the caustic of any of these deformations is invariant under additions of constant

functions, therefore we will also consider shortened miniversal deformations depending on µ(f)−1
parameters and obtained from formulas (1)–(5) by omitting the parameter λ1. In what follows,
we consider only the caustics in parameter spaces of canonical deformations (1)–(5) of simple
singularities or in the corresponding shortened deformations.

1.3. Numbers of components of complements of caustics of simple singularities.

Theorem 1 (V.D. Sedykh, [13]). The number of local components of the complement of the
caustic of any versal deformation of a real function singularity of type Aµ, Dµ or E6 is given in
the third column of Table 1. All these components are either contractible or homotopy equivalent
to circles; the numbers of components homotopy equivalent to circles for these singularities are
given in the fourth column of Table 1.

In §2 below we give some Morse perturbations representing all these components and do the
same also for singularities E7 and E8.

Theorem 2. The number of local components of the complement of the caustic of a versal defor-
mation of any real function singularity of type E7 (respectively, E8) is equal to 10 (respectively,
15). The number of components of the complement of the caustic of any versal deformation of
a singularity of type E7 (respectively, E8), whose one-dimensional homology group contains the
summand Z, is at least 5 (respectively, 7).

Conjecture 1. For singularities of classes E7 and E8

1. The i-dimensional homology groups of the complements of caustics of their versal defor-
mations are trivial for any i > 1,

2. The one-dimensional homology groups of these complements are isomorphic respectively to
Z5 and Z7.

Here is a partial result towards this conjecture.

Proposition 1. The complement of the caustic of the singularity E7 (respectively, E8) contains
exactly four (respectively, five) connected components consisting of morsifications, all whose
critical points are real. All these components are homeomorphic to convex domains in R7

(respectively, R8).
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1.4. Basic invariant of components.

Definition 1. The passport of a Morse function in two variables is the triple (m−,m0, m+) of
the numbers of its local minima, saddlepoints and maxima.

It follows immediately from the definition that the passport is an invariant of the components
of the complement of a caustic. The number m− +m+ −m0 is the same for all morsifications
of a given isolated singularity: it is equal to the local index of its gradient vector field.

Theorem 3. The passport is a complete invariant distinguishing the components of the comple-
ment of the caustic of a simple singularity.

Remark. The analogous statement is not true for the simplest non-simple function singularities
of two variables, ±X0

9 , X
1
9 and X2

9 ; see [18].

Theorem 3 follows immediately from the Theorems 1 and 2 and the realizations of these
components in §2 below. Namely, for any simple singularity class, all the passports of its mor-
sifications shown in §2 are different, and the numbers of these morsifications are equal to the
numbers of components given in these two theorems.

1.5. Basic 1-cohomology class. For any component of the complement of a caustic, con-
sisting of Morse functions with m saddlepoints, consider the map from this component to the
(unordered) configuration space B(R2,m) taking any point λ to the collection of saddlepoints
of the function fλ. If m ≥ 2, then the group H1(B(R2,m),Z) is equal to Z and is generated
by the winding number. Namely, identifying R2 with the complex line, we can associate with
any configuration (z1, . . . , zm) ∈ B(R2,m) ≃ B(C1,m) its discriminant, i.e. the product of all
m(m − 1) complex numbers zi − zj , i ̸= j. The winding number is induced by this map from
the canonical generator of the group H1(C∗,Z).

Theorem 4. The winding numbers of configurations of saddlepoints generate the 1-dimensional
cohomology groups of all components of complements of the caustics of all singularities of types
Dµ and E6. The number of components of the complement of the caustic of any versal defor-
mation of any singularity of type E7 (respectively, E8), on which the cohomology class of the
winding number is non-trivial, is at least 5 (respectively, 7).

This theorem will be proved in §4. The last statement of Theorem 2 follows immediately from
it.

1.6. Higher homology groups for non-simple singularities. By Theorem 1, the comple-
ments of the caustics of singularities Aµ, Dµ and E6 do not have non-trivial homology groups in
dimensions greater than 1. Conjecturally this is true also for the remaining two simple singu-
larity classes, E7 and E8. On contrary, for some more complicated singularities this is not the
case.

Namely, the next in difficulty class of function singularities are the parabolic ones, see e.g.
[4]. There are eight stable equivalence classes of real parabolic singularities, P 1

8 , P
2
8 , ±X0

9 , X
1
9 ,

X2
9 , J

1
10 and J3

10. We will show in §5 that for at least two of these classes, P 2
8 and J3

10, the
two-dimensional homology group of the complement of the caustic is non-trivial.

2. Realization of components of complements of caustics

2.1. Aµ. The case Aµ is trivial: the caustic of any singularity of this class in the parameter space
Rµ of miniversal deformation (1) is diffeomorphic to the product of R1 and the discriminant (see
§1.1) of the miniversal deformation of singularity Aµ−1. This diffeomorphism is provided by the
differentiation with respect to x and dilation of coordinates λi. In particular, the number of real
critical points of a Morse perturbation fλ is a complete invariant of the component containing
the parameter value λ; this invariant can take values µ, µ− 2, µ− 4... All these components can
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Figure 1. A morsification for D−
2k (k = 7)
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Figure 2. Morsifications for D+
2k (k = 5) and +D2k+1 (k = 4)

be represented by integrals of arbitrary polynomials in x of degree µ with leading term xµ

µ+1 and

exactly µ, µ− 2, µ− 4, . . . simple roots.

2.2. D−
2k. Any singularity of type D−

2k has a morsification, whose zero set is as shown in Fig. 1,
where two non-vertical components of this set have k − 1 intersection points and the vertical
line separates these points into subsets of arbitrary cardinalities r on the left and k − 1 − r
on the right, r = 0, 1, . . . , k − 1 (see e.g. [17]). For any such r, the passport of corresponding
morsifications is equal to (r, k + 1, k − 1− r), so we get k different passports.

Further, for any natural q = 2, . . . , k− 1 the intermediate perturbation x2y− y2k−1 − εy2q−1,
ε > 0, has a singularity of type D−

2q at the origin and 2(k− q) non-real critical points. Applying
to its real singularity all perturbations described in the previous paragraph, we obtain q new
morsifications with passports (r, q+1, q− 1− r), r = 0, 1, . . . , q− 1. Finally, the initial function
has the morsification x2y − y2k−1 − εy, ε > 0 with exactly two critical points and passport

(0, 2, 0). In total we have constructed k + (k − 1) + · · · + 2 + 1 = k(k+1)
2 morsifications with

different passports. By [13], this is the number of all components of the complement of the
caustic, so we have realized all these components (and proved that all of them have different
passports).

2.3. D+
2k. Any singularity of type D+

2k, k ≥ 2, has morsifications with zero set as shown in
Fig. 2 (left), where the non-vertical component has k−2 self-intersection points, and the vertical
component intersects it transversally and leaves arbitrarily many of these k−2 points to the left
of it. If the intersection set of these components is non-empty, then the passport of the obtained
morsification can be equal to either of numbers (1, k, k−1), (2, k, k−2), . . . , (k−1, k, 1): in total
k − 1 possibilities. In addition, the vertical line can pass the other component of zero set from
either side, which gives us two cases more with passports (0, k − 1, k − 1) and (k − 1, k − 1, 0).

Further, for any q = 2, . . . , k − 1 our singularity has the intermediate perturbation

x2y + y2k−1 + εy2q−1

with a real singularity of class D+
2q and 2(k − q) non-real critical points. Applying to it the

previous perturbations, we get another q+1 different passports. Finally, our singularity has the
perturbation x2y + y2k−1 + εy, ε > 0, without real critical points (i.e. with passport (0, 0, 0)).

In total we have realized (k + 1) + k + (k − 1) + · · · + 3 + 1 = k2+3k−2
2 different passports; by

Theorem 1 this is the number of components.

2.4. D2k+1. Any singularity of type +D2k+1, k ≥ 2, has morsifications with zero set as shown
in Fig. 2 (right), where the number of self-intersections of the non-vertical component is equal
to k−1. Two components of this zero set can intersect each other in k+1 topologically different
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Figure 3. Perturbations for +E6
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Figure 4. Perturbation E7 7→ D−
6

ways, providing k + 1 different passports (k, k + 1, 0), (k − 1, k + 1, 1), . . . , (1, k + 1, k − 1), and
finally (0, k, k − 1) for the case of empty intersection. Further, for any q = 2, . . . , k − 1 our
singularity has the intermediate perturbation x2y + y2k + εy2q, ε > 0, with a single singularity
of type +D2q+1 and 2(k − q) non-real critical points. Continuing all of these perturbations by
above-described small morsifications of these their singularities, we get

(k + 1) + k + · · ·+ 3 =
(k + 1)(k + 2)

2
− 3

different passports. In addition, there are Morse perturbations x2y + y2k + εy2 ± εy having

passports (1, 2, 0) or (0, 1, 0) depending on the sign ±. So, we have realized k2+3k
2 different

passports.

2.5. E6. Singularity +E6 has a perturbation with one singular point of type D−
4 and two local

minima, see the leftmost picture of Fig. 3. (A construction of the opposite perturbation of
−E6 singularity is described in p. 16 of [1]). Slightly deforming this singular point we obtain
perturbations with passports (3, 3, 0) and (2, 3, 1) shown in the middle part of same figure. Also,
the perturbation x3 + y4 + εy3 breaks the singularity +E6 into two critical points of types D+

4

and A2. These singularities can be further perturbed independently, in particular the singularity
A2 can be eliminated (i.e. split into two non-real Morse points), and singularity D+

4 , according
to §2.3, can be moved to Morse functions with passports (1, 2, 1), (1, 1, 0), (0, 1, 1) and (0, 0, 0).

Further, the perturbation x3 + y4 − 2εy2 + ε2 splits singularity +E6 into three points of
type A2, two of them with critical value 0 and the third with value ε2. Let us perturb them
independently in such a way that the point with value ε2 vanishes, and each of two others splits
into a saddlepoint with value 0 and a local minimum with a negative value. Zero level set of
the obtained function looks as in the right-hand picture of Fig. 3, the passport of this function
is (2, 2, 0). So we have realized seven different passports, which is the maximal number allowed
by Theorem 1.

The case of singularity −E6 can be reduced to that of +E6 by the transformation

fλ(x, y) 7→ −fλ(−x, y).

2.6. E7. Zero level set of original singularity x3 + xy3 of type E7 consists of two components: a
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semicubical parabola and its tangent line

+

−+
− r

. The perturbation x3 + xy3 + εx2y,
ε > 0, splits this singularity into a singular point of type D−

6 and one Morse maximum,
see Fig. 4 (where the line {x = 0} is horizontal). Applying further to this singularity D−

6

all perturbations described in §2.3, we obtain morsifications with passports (0, 4, 3), (1, 4, 2),
(2, 4, 1), (0, 3, 2), (1, 3, 1), and (0, 2, 1). The space of deformation (4) admits the involution
fλ(x, y) ↔ −fλ(−x, y) which permutes functions with passports (p, q, r) and (r, q, p). Applying
it to six morsifications obtained above, we get three new passports (3, 4, 0), (2, 3, 0), and (1, 2, 0).
Finally, the perturbation x3+xy3+εxy, ε > 0, has unique saddlepoint at the origin, i.e. realizes
the tenth passport (0, 1, 0).

2.7. E8. For any ε ̸= 0, the perturbation x3 + y5 + εxy3 splits the singularity E8 into a critical
point of type E7 and one point of local minimum or maximum depending on the sign of ε.
Applying further to this singularity E7 all perturbations described in §2.6 we obtain functions
with passports (4, 4, 0), (3, 4, 1), (2, 4, 2), (1, 4, 3), (0, 4, 4), (3, 3, 0), (2, 3, 1), (1, 3, 2), (0, 3, 3),
(2, 2, 0), (1, 2, 1), (0, 2, 2), (1, 1, 0), and (0, 1, 1). Finally, the perturbation x3+y5+εx, ε > 0, has
no real critical points, i.e. its passport is equal to (0, 0, 0). In total we have realized 15 different
passports.

3. List of components is complete

Proposition 2. Singularities E7 and E8 have no extra components of complements of caustics
of versal deformations in addition to 10 and 15 components realized in §§2.6 and 2.7.

This proposition completes the proof of the first statement of Theorem 2. Our proof of this
proposition follows the method of §6 of [17], where a similar statement on the complements of
discriminants (i.e., sets of functions with zero critical value) was proved. In particular, it uses
a computer algorithm enumerating all virtual morsifications of an analytic function singularity,
i.e. collections of certain topological characteristics of its strict morsifications.

Namely, such a set of characteristics of a non-discriminant real strict morsification fλ in n
real variables consists of

(1) the µ × µ matrix of intersection indices of canonically ordered and oriented vanishing
cycles in the manifold f̄−1

λ (0) ⊂ Cn (where f̄λ is the analytic continuation of fλ to the
complex domain), that are defined by a standard system of paths connecting 0 with all
critical values of f̄λ,

(2) the string of µ intersection indices of these vanishing cycles with the cycle f̄−1
λ (0) ∩Rn,

(3) Morse indices of all real critical points of fλ ordered by increase of their critical values,
and

(4) the number of these critical points having negative critical values.

An open subset of the parameter space Rµ of any miniversal deformation of a real function
singularity consists of non-discriminant strict morsifications. This subset splits into many open
domains (non necessarily connected) consisting of such morsifications characterized by different
virtual morsifications. These domains are separated by walls consisting of points of different
bifurcation sets: caustic, discriminant, and also real and complex Maxwell sets (that is, closures
of sets of parameter values corresponding to functions with coinciding critical values at different
critical points). In the case of simple singularities, the data of a virtual morsification imply a
complete information on the set of the walls bounding the corresponding domain of Rµ, and on
the neighboring open domains, to which one can pass from it by crossing a single wall. These
passages are described by virtual surgeries, i.e. certain flips of virtual morsifications. Applying
all possible sequences of these flips to a single virtual morsification, one can list all virtual
morsifications related with real morsifications of our singularity.
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Table 2. Statistics of virtual morsifications for E7

Passport data (M,m−) (1,0) (3,0) (5,0) (5,1) (7,0) (7,1)
(3,1) (5,2) (7,3) (7,2)

Number of virtual morsifications 260 312 636 348 2384 688

Table 3. Statistics of virtual morsifications for E8

(M,m−) (0,0) (2,0) (4,0) (4,1) (6,0) (6,1) (8,0) (8,1) (8,2)
(2,1) (4,2) (6,3) (6,2) (8,4) (8,3)

Number 1200 819 1195 790 3227 1246 13599 3690 1926

The set of all virtual morsifications splits into virtual components of complements of caustics,
i.e. sets of virtual morsifications which can be obtained from one another by chains of formal
moves modeling the surgeries of real morsifications which do not cross the caustic. In particular,
if two morsifications of a singularity belong to the same component of the complement of the
caustic, then related virtual morsifications belong to the the same virtual component.

The passport of a real morsification can be read from the corresponding virtual morsification.
Virtual morsifications from the same virtual component obviously have equal passports.

Investigating a singularity, we proceed as follows. We find a virtual morsification of our
singularity describing a real morsification and substitute it as initial data to the program, which
enumerates all virtual morsifications and gives us the numbers of virtual morsifications with each
admissible passport. This program (with data of E7 singularity) can be found at
https://drive.google.com/drive/folders/1lsSxpValbfeXk51MD4D9rXpA3dk9zeAr?usp=sharing ,
file mE7gen. Further, we run a restricted version of this program (see file mE7part) which counts
all virtual morsifications within some virtual component. Then choose an arbitrary morsification
from the first list but not from the second, substitute it to the restricted program, and get some
other virtual component, etc. until the sum of numbers of virtual morsifications in the explored
virtual components becomes equal to the total number provided by the non-restricted program.

More detailed description of our algorithms can be read in [16], Chapter V, and [17] with
one modification: in these works the virtual components of complements of discriminants were
considered, therefore in the reduced program described in these works we switch out another set
of flips: the ones modeling the surgeries crossing the discriminant.

The results of the work of this algorithm for singularities E7 and E8 are summarized in the
next two propositions.

Proposition 3. The singularity E7 has exactly 8648 different virtual morsifications split into
10 virtual components of the complement of the caustic. If two virtual morsifications of this list
have equal passports, then they belong to the same virtual component. The numbers of virtual
morsifications in these components are described by Table 2, in which passports are characterized
by only two numbers: the total number M = m−+m0+m+ of real critical points and the number
m− of minima (two other numbers can be deduced from them by equalities m0 = (M +1)/2 and
m+ = m0 − 1−m−). □

Proposition 4. The singularity E8 has exactly 51468 different virtual morsifications split into 15
virtual components of complements of caustics. If two virtual morsifications of this list have equal
passports, then they belong to the same virtual component. The numbers of virtual morsifications
in these virtual components are described by Table 3. □

Remark. In the case of arbitrary simple singularities any two virtual morsifications with equal
passports belong to the same virtual component. This property fails already for the simplest
non-simple singularities of classes X9, see [18].
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It remains to prove that each virtual component of the complement of the caustic of singularity
E7 or E8 mentioned in Propositions 3 and 4 is related with unique component of the complement
of the real caustic in the corresponding parameter space R7 or R8.

The main idea behind our algorithm is inspired by the Looijenga map (see [9]) that acts from
the parameter space Cµ of the complexified miniversal deformation of a function singularity f to
the space (also equal to Cµ) of polynomials of degree µ with top coefficient 1. This map associates
any parameter value λ ∈ Cµ with the set of coefficients of the polynomial, whose roots are the
critical values of the corresponding complex perturbation f̄λ. In the case of simple complex
singularities and their canonical deformations (1)–(5) this map is proper, and its restriction to
the set of strictly Morse functions is a covering over the set of polynomials with only simple
roots. Therefore any movement of µ critical values of a strictly Morse complex function f̄λ can
be lifted to a movement of functions, starting with f̄λ and having the prescribed critical values.
The restriction of the Looijenga map to the parameter space Rµ of the real versal deformation
obviously maps it into the space of real polynomials.

Lemma 1. If two different components of the complement of the caustic in the parameter space
Rµ of the canonical real versal deformation (1)–(5) of a simple singularity contain strict morsifi-
cations characterized by the same virtual morsification, then there exists a linear automorphism
of Rµ commuting with the Looijenga map and taking these components to one another.

Proof. The sets of all complex critical values of such two morsifications can be continuously
deformed to each other avoiding collisions and respecting the complex conjugation. Therefore,
using the Looijenga covering, we can assume that these two morsifications fλ, fλ′ have the same
sets of critical values of their complexifications and the same system of paths defining the corre-
sponding vanishing cycles. The situation when two different (generally, complex) morsifications
of a simple singularity have the same critical values and the same intersection matrix of cor-
responding vanishing cycles defined by the same system of paths was studied in [8]. It follows
easily from Picard–Lefschetz formula that in this situation there exists an automorphism of the
Looijenga covering on the space of strictly Morse complex functions of the corresponding canon-
ical deformation (1)–(5), that sends λ to λ′. The group of all automorphisms of this covering
for each simple singularity was calculated in [8]: it turns out that all these automorphisms can
be extended to linear automorphisms of entire parameter space Cµ, and moreover they are in-
duced by certain linear automorphisms of the argument space Cn of our functions that define
symmetries of the initial singularity f .

If functions fλ and fλ′ are real, then the automorphisms of Cµ and Cn defined in this way
preserve respectively the subspaces Rµ ⊂ Cµ of real morsifications and Rn ⊂ Cn of real argu-
ments of our functions. □

To prove Proposition 2, it remains to show that singularities E7 and E8 do not admit such
non-trivial automorphisms of parameter spaces of corresponding real versal deformations (4),
(5); we can assume that n = 2.

Singularities E7 and E8 have perturbations whose zero sets look topologically as shown re-
spectively in the left and right parts of Fig. 5, see [1], pages 16 and 17. (Moreover, the left-hand

picture can be realized by formula (x2 + y3 − ε2y2)(x + 2εy + ε3

27 ).) Adding a small positive
constant to either of these functions we obtain a morsification fλ of singularity E7 (respectively,
E8) having only real critical points, namely 3 (respectively, 4) local Morse minima with negative
critical values and 4 saddlepoints with positive values. It is easy to see that the entire component
of the complement of the discriminant of our deformation containing this morsification consists
of functions with this property. Indeed, to change the number of critical points or their Morse
indices, two critical points with different Morse indices should meet, but their critical values have
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Figure 5. Nice perturbations for E7 and E8

different signs and cannot meet avoiding the value 0 which is prohibited for non-discriminant
functions.

By Theorem (1.7) of [10] this component is contractible, in particular for any its point λ any
ordering of critical points of fλ can be uniquely extended by continuity to orderings of critical
points of functions fλ′ for all λ′ from this component. The ordered analog of the Looijenga map,
sending any point λ to the (ordered) collection of critical values at these ordered critical points,
is a diffeomorphism of our component to an open octant in Rµ.

It is easy to check that the complex conjugation acts trivially on the homology group of the
Milnor fiber (i.e. zero level set) of the stabilization f̄λ′(x, y)+z2 : C3 → C of any function fλ′ from
this component. By Theorem (1.6) of [10] the complement of the discriminant of singularity E7

(respectively, E8) admits only one connected component, whose points λ′ satisfy this property.
In particular, any automorphism of Rµ (and hence Cµ) commuting with Looijenga map as in the
proof of Lemma 1 sends this component to itself. Let us prove that this automorphism can be
only the identical map. For any function fλ from this component, the bilinear intersection form
of vanishing cycles in 2-dimensional homology group of the Milnor fiber of function fλ(x, y)+ z2

can be computed by the Gusein-Zade–A’Campo algorithm [1], [7]. This computation in the basis
defined by a standard system of paths (see [7]) shows that this form is defined by the standard
(tree) Dynkin diagram of E7 or E8.

If λ is a point of this component corresponding to a strictly Morse function fλ, and λ′ is
its image under an automorphism of Rµ commuting with Looijenga map, then we get two one-
to-one correspondences between critical points of fλ and these of fλ′ : one of them preserves
critical values, and the other is defined by the continuation over the paths in Rµ connecting λ
and λ′ and not intersecting the discriminant. Composing these two correspondences, we obtain
a permutation of critical points of fλ. By the construction, this permutation preserves the
intersection indices of corresponding vanishing cycles, and hence defines an automorphism of
the canonical Dynkin diagram of singularity E7 or E8. But these diagrams have no non-trivial
automorphisms, therefore any automorphism of Rµ commuting with Looijenga map acts trivially
on our component of the complement of the discriminant, and hence also on the entire Rµ. □

Proof of Proposition 1. Let fλ be a strict morsification of a function singularity in two
variables, all whose µ(f) critical points are real and critical values are not equal to 0. Consider
a system of non-intersecting paths connecting the noncritical value 0 of this function with these
critical values and the basis of vanishing cycles in the 2-dimensional homology group of the Milnor
fiber of the function fλ(x, y) + z2 defined by these paths. We can assume that an orientation of
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the argument space R3 is chosen, then also some canonical orientations of these vanishing cycles
are uniquely determined, see, for example, [16], §V.1.6(iii).

Consider the Coxeter-Dynkin graph describing the intersection indices of these vanishing
cycles, and orient each of its edges from the vertex corresponding to the critical point with the
higher critical value to that with the lower one. The isomorphism class of this oriented graph
is the same for all functions fλ from the same connected component of the complement of the
caustic. Indeed, a generic path inside the complement of the caustic can only reorder in R1 the
neighboring critical values of fλ such that corresponding vertices are not connected by any edges
of the graph, or move the critical values through 0.

Lemma 2. For any connected component of the complement of the caustic of singularity E7 or
E8 consisting of morsifications with only real critical points, the Coxeter-Dynkin diagram just
defined has no non-trivial automorphisms.

This follows immediately from the above listing of these components. □

For this reason, the critical points of any such morsification can be ordered in a way that
depends continuously of the morsification, and the ordered Looijenga map from this component
to Rµ (µ = 7 or 8) is well defined. By the properness of the Looijenga map, it is a proper
submersion (and, therefore, a covering) from this connected component to an open domain in
Rµ distinguished by only the following restrictions (and their consequences): if our oriented
Coxeter-Dynkin graph contains a segment directed from the ith vertex to the jth vertex, then
the coordinate wi of the allowed point in Rµ must be greater than wj . This is a system of linear
inequalities that defines a convex subset of Rµ. □

4. One-dimensional homology of complements of caustics of simple singularities

In this section we for any simple singularity class realize b1 one-dimensional cycles in the
complement of its caustic, where b1 is the corresponding number written in the last column of
Table 1. All these cycles belong to different components of this complement, and the cocycle of
§1.5 takes value 1 on each of them.

4.1. Basic example. Any function singularity of class D−
4 in two variables has the form

3x2y − y3 in appropriate local coordinates. Choose arbitrarily a number ε ̸= 0 and consider
the following one-parametric family of perturbations of this singularity:

(6) fτ (x, y) ≡ 3x2y − y3 − 3ε2(x sin τ + y cos τ), τ ∈ [0, 2π].

It is easy to see that for any τ this function fτ has exactly two real critical points, namely the
saddlepoints whose coordinates (x, y) are equal to

(7) ±ε
(
cos

τ

2
, sin

τ

2

)
,

and two imaginary points with coordinates

(8) ±iε
(
− sin

τ

2
, cos

τ

2

)
.

In particular, the family of functions (6) permutes two saddlepoints (7), and the winding number
of the corresponding loop in the configuration space B(R2, 2) is equal to 1.

In a neighborhood of the origin of the parameter space R3 of the shortened (i.e. with omitted
parameter λ1) versal deformation (2) of singularity D−

4 , the caustic looks as shown in Fig. 6, see
e.g. [4], §21. The loop (6) hugs it at the waist. The interiors of two pyramids in this picture
consist of morsifications with passports (1, 3, 0) and (0, 3, 1), and the exterior part consists of
morsifications with passport (0, 2, 0).

Now let f be a function singularity, and λ be a point of the parameter space Rµ(f) of its
versal deformation such that the corresponding function fλ has one critical point of type D−

4 ,
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Figure 6. Pyramid: caustic for singularity D−
4

and all other its real critical points are Morse. In a neighborhood of such a point λ, the pair
(Rµ(f), the caustic) is ambient diffeomorphic to the direct product of Rµ(f)−3 and the pair con-
sisting of the space R3 and the standard caustic of D−

4 shown in Fig. 6. The product of the
origin of Rµ−3 and our loop (6) with sufficiently small ε in R3 embracing the caustic defines then
a 1-cycle in the complement of the caustic of f . If fλ has p Morse minima, q saddlepoints and r
maxima, then this loop will lie in the component of this complement with passport (p, q + 2, r).
Our basic 1-cohomology class defined by winding numbers (see §1.5) takes value 1 on this loop,
since all other critical points of functions from this loop remain in small non-intersecting domains.

4.2. 1-cycles for simple singularities. By Theorem 1.7 of [10] all components of the com-
plements of discriminants of all singularities Aµ are contractible, therefore the same is true for
complements of caustics of Aµ+1, cf. §2.1.

Any singularity of class D−
2k has perturbations, whose zero level sets look similar to Fig. 1,

with two non-vertical components having an arbitrary number r = 1, 2, . . . , k− 1 of intersection
points, but (unlike Fig. 1) the vertical line intersecting them at either of these r intersection
points. All these perturbations satisfy the conditions described in the previous subsection, i.e.
have one point of type D−

4 and only Morse remaining critical points. Therefore our construction
gives us loops in the components with all passports (p, q, r) such that q ∈ [2, k], p ∈ [0, q − 2]

and p+ r = q − 2. There are exactly k(k−1)
2 such passports.

In the case of singularity D+
2k, we proceed in a similar way with Fig. 2 (left) and obtain loops

in all components with passports (p, q, r), where p ≥ 1, r ≥ 1, q = p + r and q ≤ k − 1. There

are exactly (k−1)(k−2)
2 such passports.

In the case +D2k+1, we get analogously the loops in all components with passports (p, q, r)

where p+ r = q − 1, q ≤ k, p ≥ 1. There are exactly k(k−1)
2 such passports.

In the case +E6 the needed perturbation is shown in the leftmost picture of Fig. 3, it gives
us a 1-cycle in the component with passport (2, 2, 0).

In the case E7 we have three perturbations

(x2 + y3 − ε2y2)(x− 2εy), (x2 + y3 − ε2y2)x, (x2 + y3 − ε2y2)(x+ 2εy),

whose zero sets are shown in Fig. 7. Our construction applied to their D−
4 -singularities realizes

non-trivial 1-cycles in three components with passports (2, 3, 0), (1, 3, 1) and (0, 3, 2).
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Figure 7. Degenerate perturbations for E7
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Figure 8. Two perturbations more for E7

Consider the stratum of the caustic of E7 singularity containing the function

fλ0
≡ (x2 + y3 − ε2y2)(x− 2εy),

whose zero set is shown in the leftmost picture of Fig. 7. It consists of functions with one
singularity of type D−

4 and three real Morse points: two local maxima and one saddlepoint. By
the properness of the Looijenga map of simple singularities (see [9], [16]), there exists a path
{λt}, t ∈ [0, 1), in this stratum, starting at this point λ0 and such that all its points fλ(t) are

functions having a point of type D−
4 with zero critical value, the critical value at the right-hand

maximum points remaining constant, and the critical values at two other Morse points tending
to one another and finally meeting at some intermediate value. The limit point of this path
defines a function with a real critical point of type A2 (in addition to a point of type D−

4 and
one more real Morse critical point). By a small perturbation we can split this point of type A2

into two non-real critical points, preserving the singularity of type D−
4 . The zero level set of the

obtained function looks topologically as shown in Fig. 8 (left).
Applying the construction of §4.1 to its point of type D−

4 , we obtain a loop in the component
with passport (0, 2, 1). The symmetric construction applied to the rightmost picture of Fig. 7
gives us a cycle in the component with passport (1, 2, 0), see Fig. 8 (right).

The singularity E8 has two perturbations, whose zero sets look topologically as in Fig. 9. The
first of them is explicitly constructed (up to the sign) in page 17 of [1], and the other one is
realized by the same algorithm if before the last contraction we shift a triple intersection point
to the different side.

The construction of §4.1 applied to these two perturbations gives us 1-cycles in components
with passports (3, 3, 0) and (2, 3, 1). The involution fλ(x, y) 7→ −fλ(−x,−y) of the space of
deformation (5) turns these cycles to other two, which lie in components with passports (0, 3, 3)
and (1, 3, 2).

The perturbation x3 + y5 + εy4 splits the singularity E8 into two real critical points of types
+E6 and A2. We can further perturb these two points independently, removing the point of
type A2 from the real domain and moving the point +E6 as shown in Fig. 3 (left); so we get a
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Figure 9. Degenerate perturbations for E8

cycle in the component with passport (2, 2, 0). The symmetric perturbation gives us passport
(0, 2, 2).

The perturbation x3+y5+εx2y has a singularity of type D+
6 and no other real critical points.

We have seen in page 58 that in a neighborhood of such a function there is a non-trivial 1-cycle
in the component with passport (1, 2, 1). So, we have realized 1-cycles in components with seven
different passports; the winding number takes value 1 on all these cycles.

5. Two-dimensional homology of complements of caustics of some non-simple
singularities

5.1. J3
10. The singularities of class J3

10 have the normal form

(9) x(x+ y2)
(
x− αy2

)
, α > 0,

and the Milnor number equal to 10. A miniversal deformation of any function (9) can be chosen
in the form

(10) f0 + λ1 + λ2x+ λ3y + λ4xy + λ5y
2 + λ6xy

2 + λ7y
3 + λ8xy

3 + λ9y
4 + λ10xy

4.

For arbitrary ε > 0, this deformation contains the perturbation

(11) f̃ = x(x+ y2 − ε)(x− α(y2 − ε))

of the function (9). This perturbation has a Morse minimum, a Morse maximum, and two

critical points of type D−
4 ; its zero level set looks as r r (where the line {x = 0} is

horizontal).

In a neighborhood of the point f̃ , the deformation (10) provides a versal deformation of the
corresponding multisingularity. Therefore the pair (R10, the caustic) is locally diffeomorphic in
such a neighborhood to the product of R4 and the pair (R3 × R3, C), where each of the two
copies of R3 is identified with the parameter space of the shortened versal deformation of type
D−

4 (see Fig. 6), and the subset C ⊂ R3 × R3 consists of all points whose projection to at least
one of factors R3 belongs to the caustic of this deformation. The product of 1-cycles embracing
the pyramids in these spaces R3 (see §4.1) is a torus T 2 in the space R3×R3 \C, hence it defines
also a torus in the complement of the caustic of our singularity. This torus lies in a component
of this complement with passport (1, 4, 1).

Theorem 5. The map of the entire homology group H∗(T
2,Z) of the torus described in the

previous paragraph to the homology group of the complement of the caustic of singularity J3
10

induced by identical embedding is a monomorphism.

Proof. The restriction of the derivative ∂fλ
∂x of any perturbation fλ of the form (10) to any line

{y = const} is a polynomial of degree 2 with non-zero leading term, so fλ cannot have more than
two critical points in such a line. Therefore, the map defined in §1.5 takes our component of
the complement to the caustic into the subset B̂(R2, 4) ⊂ B(R2, 4) consisting of configurations,
none three points of which lie on the same vertical line. The cohomology group of this subset
follows from the calculations of [15], as B̂(R2, 4) is a union of several cells of the cell structure of
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the one-point compactification of B(R2, 4) considered in [6], [15]. Namely, B̂(R2, 4) consists of

unique 8-dimensional cell
�
 �	r r r r consisting of 4-configurations, all whose points have different

x-coordinate, three 7-dimensional cells
�
 �	rr r r , �
 �	r rr r and�
 �	r r rr of 4-configurations with only three

different values of x-coordinate, and one 6-dimensional cell
�
 �	rr rr . According to [15], all incidence

coefficients of these cells are trivial, so by Poincaré duality we have H1(B̂(R2, 4),Z) ≃ Z3 and

H2(B̂(R2, 4),Z) ≃ Z. It follows immediately from the construction that the intersection index

of the image of our torus with the cell
�
 �	rr rr is equal to 1 or −1 depending on the choice of

orientations, and intersection indices of images of two 1-dimensional generators of the torus with
7-dimensional cells are equal to (±1, 0, 0) and (0, 0,±1). □

5.2. Class P 2
8 . The singularity classes P 1

8 and P 2
8 consist of functions of corank 3 with non-

degenerate cubic part. Any singularity of this type depending on three variables can be reduced
by a local diffeomorphism of the argument space to a non-degenerate homogeneous polynomial
of degree 3. Its zero set defines in RP 2 a cubic curve with one or two components, in the
correspondence with the upper index of the name of the class. The Milnor numbers of all
singularities of this these classes are equal to 8, and their miniversal deformations can be chosen
in the form

(12) f + λ1 + λ2x+ λ3y + λ4z + λ5xy + λ6xz + λ7yz + λ8xyz ,

where f is the initial homogeneous polynomial.

Theorem 6. For any sufficiently small κ > 0, the 2-dimensional homology group of the com-
plement of the caustic of versal deformation (12) of function

(13) fκ = (x− z)(x+ z)(κx− z)− y2z

of class P 2
8 is non-trivial.

To formulate a more concrete statement, consider the following n + 1 local systems ±Z{i},
i = 0, 1, . . . , n, on any connected component of the complement of the caustic of a function in
n variables. Each of these systems is locally isomorphic to Z, but the loops in our component,
defining odd permutations of critical points with Morse index i, act on the fibers as multiplication
by −1. In our case, n = 3.

Theorem 6′. The complement of the caustic of singularity (13) with sufficiently small κ > 0 has
a connected component with passport (0, 2, 2, 0) such that the 2-dimensional homology group
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of this component with coefficients in Z2 is non-trivial, and the 2-dimensional homology group
with coefficients in the local system ±Z{1} contains a subgroup isomorphic to Z.
The proof of this theorem takes the rest of this section. The non-trivial homology classes proving
Theorem 6′ will be realized by the fundamental classes of the Klein bottleK2 embedded somehow
into the complement of the caustic.

Remark. We will consider also the degenerate function f0 and its deformation given respectively
by formulas (13) and (12) with κ = 0. Although in this case this deformation is not versal, all
our constructions in the real domain will hold for it as well.

The polynomial (13) with arbitrary κ ∈ [0, 1) is hyperbolic with respect to the line {x = y = 0}
(that is, any real line parallel to this one intersects the zero set of this polynomial at three points
counted with multiplicities, see e.g. [16], §IV.2). Its zero set consists of two components, one
of which is homeomorphic to a quadratic cone, and the other to a hyperplane in R3. The
corresponding sets in the affine chart {z = 1} of the projectivization RP 2 of R3 are shown
respectively by the interior oval on the left of Fig. 10 and by the non-closed curve on the right.
(If κ = 0 then this curve becomes a straight line on infinity.) We will assume that the argument
space R3 is Euclidean with the standard metric defined by coordinates x, y, z. Recall that the
norm of a quadratic function ∥L∥ is the maximal value of |L| on the unit ball in R3.

Lemma 3. 1. If κ ≥ 0 is small enough, and L : R3 → R is an arbitrary quadratic function of
rank 1 taking zero value on the line {x = y = 0}, then the function fκ + L has a singularity of
type D−

4 at the origin, and additionally exactly two Morse real critical points. Morse indices of
the last two points are equal to 2 (respectively, 1) if L is non-negative (respectively, non-positive).

2. There are positive constants θ < Θ such that the distances of both these critical points from
the origin in R3 and from the plane kerL separating them belong to the segment [θ∥L∥,Θ∥L∥]
for any such function L.

Proof of Lemma 3. It is enough to prove statement 1 of this lemma only for functions fκ + L
such that the quadratic function L is non-negative with norm 1, i.e. has the form (αx + βy)2

where α2 + β2 = 1. Indeed, for any such function L and any non-zero constant t we have

(14) (fκ + tL)(tx, ty, tz) ≡ t3(fκ + L)(x, y, z).

Denote by ⃝ the set of quadratic functions L of this type (i.e. of rank 1, norm 1, and
vanishing on the z axis). This set is obviously diffeomorphic to a circle.

Statement 2 of Lemma 3 follows from statement 1. Indeed, for any L ∈ ⃝ by (14) the
discussed distances of critical points of functions fκ + tL are proportional to t, so it is enough
to prove this statement for L from the compact set ⃝. The distances in question define positive
functions on this set, and hence are separated by constants from 0 and infinity.

The restriction of the function fκ + L to the two-dimensional kernel kerL = {αx+ βy = 0}
of its quadratic part is a homogeneous polynomial of degree 3 vanishing on three real lines.
Therefore in some linear coordinates (ξ, η, ζ) in R3 the polynomial fκ consists of the principal
part ξ2 + η2ζ − ζ3 and several monomials of higher quasihomogeneous degree with respect to
weights (3 : 2 : 2) of these coordinates. The standard algorithm of the reduction to normal forms
(see e.g. [4]) removes all these additional monomials of its Taylor expansion at the origin and
reduces the germ of our function at the origin to the standard normal form of class D−

4 .

At all the other critical points of the function fκ +L, the partial derivative ∂fκ
∂z is equal to 0

(as the gradient of fκ should be opposite to that of L). The set of points in R3 satisfying this
condition is the cone

(15) (x+ κz)2 + y2 − (3 + κ2)z2 = 0.

In the affine chart in RP 2 defined by the plane with equation z = 1 in R3 it is represented
by the circle of radius

√
3 + κ2 with the center at the point (−κ, 0); see the greater oval in
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Fig. 10. In particular, this cone does not intersect the set {fκ = 0} in R3 \ 0 and separates all
its components. For any non-zero point A of the cone (15), there is only one quadratic function
L(A) of rank 1 vanishing on the line {x = y = 0} such that fκ + L has a critical point at A. If
A belongs to the half of this cone where z > 0 (respectively, z < 0), then this function L(A) is
everywhere non-negative (respectively, non-positive). Indeed, in this half a small shift along the
vector gradfκ decreases (respectively, increases) the distance from the line {x = y = 0}, and the
vector gradL(A) should be opposite to it.

The last part of the first assertion of Lemma 3 means that this map {A 7→ L(A)} is a two-
fold covering of the smooth part of cone (15) over the set of all quadratic functions of rank 1
vanishing on the line {x = y = 0}. Formula (14) allows us to reformulate this statement in
terms of compact quotients of these sets by the scalings. Namely, denote by S1

κ the greater oval
of Fig. 10, i.e. the intersection of the cone (15) and the affine plane {z = 1}. Denote by Φκ the
map S1

κ → ⃝, which sends any point A ∈ S1
κ to the unique function L ∈ ⃝ such that one of

the functions fκ + tL, t > 0, has a critical point at A. It remains to prove that for sufficiently
small κ ≥ 0 this map Φκ is a smooth two-fold covering, and all these critical points are Morse
with Morse indices equal to 2.

To do it, notice that the analogous statement (and entire Lemma 3) is true for the degenerate
function (13) with κ = 0. Indeed, both this function f0 and the circle S1

0 are invariant under
rotations around the axis x = y = 1, and the map Φ0 commutes with these rotations. Therefore it
is sufficient to check this statement for the model linear function L ≡ x2, which is an elementary
exercise left to the reader.

For all sufficiently small κ ≥ 0 define the maps ρκ : S1
0 → S1

κ as follows. For any point
A ∈ S1

0 consider the point Φ0(A) ∈ ⃝, i.e. the unique quadratic function vanishing on the line
{x = y = 0} such that A is a critical point of the function f0 +Φ0(A). Then, as we will show in
the next paragraph, the function fκ +Φ0(A) has only one critical point neighboring to A in R3.

We denote this point by Ãκ(A) ∈ R3 and define ρκ(A) ∈ S1
κ as the point of the plane {z = 1}

proportional to Ãκ(A) in the vector space R3.
This map ρκ is well-defined and is a diffeomorphism for sufficiently small κ ≥ 0; for κ = 0 it

is the identical map. Indeed, consider the product of spaces R1 × S1
0 × R3 whose elements are

called κ, A and (x, y, z), and three conditions

(16)
∂

∂x
(fκ +Φ0(A)) =

∂

∂y
(fκ +Φ0(A)) =

∂

∂z
(fκ +Φ0(A)) = 0.

The matrix of partial derivatives of three functions (16) upon x, y, and z is the Hessian of the
function fκ +Φ0(A). It is easy to check that for κ = 0 and arbitrary A ∈ S1

0 its determinant is

equal to 3, therefore by implicit function theorem the map (κ, A) 7→ Ãκ(A) is well-defined and
smooth in a neighborhood of the circle 0 × S1

0 in R1 × S1
0 . The restriction of this map to this

circle is a smooth (identical) embedding, hence its restrictions to all neighboring circles κ × S1
0

also are smooth embeddings. Moreover, the radial projection of the image of this circle from R3

to the plane {z = 1} has no singular points, hence the same is true for the neighboring embedded

circles, and our maps {A 7→ Ãκ(A)} for all small κ are smooth immersions of S1
0 to R2, the

images of which coincide with corresponding circles S1
κ .

We get the commutative diagram

S1
0

ρκ−→ S1
κ

Φ0 ↘ ↙ Φκ

⃝

in which Φ0 is a two-fold covering and ρκ is a diffeomorphism, hence Φκ also is a covering. □
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Remark. The collection of all complex critical points of functions fκ + L with small κ ̸= 0 is
not a small perturbation of that for the model function f0 + L : it additionally contains two
critical points in the complex domain.

Let again L be a quadratic function of class ⃝, and let (ξ, η, ζ) be linear coordinates in R3

such that L ≡ ξ2, η and ζ are constant on lines orthogonal to kerL, and the restriction of fκ to
kerL is equal to 3ηζ − ζ3, cf. §4.1. For an arbitrary small number ε > 0 consider the family of
perturbations of the function fκ depending on the parameter τ ∈ [0, 2π] and defined by formula

(17) fκ + εL− 3ε4(sin τ · η + cos τ · ζ),

cf. (6). Functions of this family form a subset diffeomorphic to S1 in the space of deformation
(12). This subset does not depend on the choice of linear coordinates (ξ, η, ζ) as above, because
all such choices differ from each other by orthogonal transformations moving this family to itself.
Such subsets defined by formula (17) for all choices of L ∈ ⃝ sweep out a surface with the
structure of a fiber bundle over ⃝ with fiber S1. Moving L once along the loop ⃝ we
rotate the corresponding plane kerL by angle π around a fixed axis and hence change the
orientation of this plane and of the fiber of our fiber bundle; so the total space of this bundle is
homeomorphic to the Klein bottle.

Lemma 4. If ε > 0 is sufficiently small, then
1. Any function of the form (17) has exactly four real critical points, all of which are Morse;

in particular the family (17) lies in the complement of the caustic.
2. Two of these points lie on distance of order ε from the origin and from the plane kerL,

and are separated by this plane; their Morse indices are equal to 2.
3. Two other critical points lie on distance of order ε2 from the origin and from one another,

and their distances from the plane kerL are estimated from above by ε8/3; the Morse indices
of last two critical points are equal to 1.

Proof. By Lemma 3, the function fκ + εL has two Morse critical points on distance of order ε
from the origin and from the plane kerL, separating these two points. By scaling argumentation
(cf. (14)) the norms of inverse Hessians of this function in a neighborhood of the union of these
points over all L ∈ ⃝ are estimated from below by the number cε, where c is a positive constant
not depending on L; therefore the further minor perturbation by subtracting 3ε4(sin τ ·η+cos τ ·ζ)
does not move these points seriously and does not change their Morse indices (which by Lemma
3 are equal to 2).

On the other hand, this perturbation splits the singularity of type D−
4 of the function fκ+εL

at the origin into two real points with Morse index 1 and two non-real points. Indeed, in
coordinates (ξ, η, ζ) the function fκ + εL equals

(18) 3η2ζ − ζ3 + εξ2 + ξω2(η, ζ) + ξ2ω1(η, ζ) + ξ3ω0,

where ωk is a homogeneous polynomial of degree k. Let us break the function

fκ + εL− 3ε4(sin τ · η + cos τ · ζ)

into two parts,

Pκ ≡ 3η2ζ − ζ3 + εξ2 − 3ε4(sin τ · η + cos τ · ζ)
and

Qκ ≡ ξω2(η, ζ) + ξ2ω1(η, ζ) + ξ3ω0.

By §4.1 the function Pκ has exactly four Morse critical points in C3 with coordinates

(19) (ξ, η, ζ) = ± ε2
(
0, cos

τ

2
, sin

τ

2

)
and ± iε2

(
0, − sin

τ

2
, cos

τ

2

)
;

two first of them are real with Morse index 1, ant two others are imaginary.
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Let us define small neighborhoods Uj ⊂ C3, j = 1, 2, 3, 4, of all these four points (0, ηj , ζj) by
respective conditions

(20) |η − ηj |2 + |ζ − ζj |2 ≤ ε14/3

and by the common inequality

(21) |ξ| ≤ ε8/3.

Proposition 5. If ε is small enough, then for each j = 1, . . . , 4

(22)

∣∣∣∣∂Pκ

∂η

∣∣∣∣2 + ∣∣∣∣∂Pκ

∂ζ

∣∣∣∣2 >

∣∣∣∣∂Qκ

∂η

∣∣∣∣2 + ∣∣∣∣∂Qκ

∂ζ

∣∣∣∣2
on the part of the boundary of the domain Uj, where the corresponding inequality (21) becomes
an equality, and

(23)

∣∣∣∣∂Pκ

∂ξ

∣∣∣∣ > ∣∣∣∣∂Qκ

∂ξ

∣∣∣∣
on the part of its boundary where the inequality (20) becomes an equality.

Proof of Proposition 5. If |ξ| = ε8/3 then
∣∣∣∂Pκ

∂ξ

∣∣∣ = 2ε11/3, while the three summands of
∣∣∣∂Qκ

∂ξ

∣∣∣
have asymptotic behavior of orders O(ε4), O(ε14/3) and O(ε16/3) respectively when ε tends to
zero.

The shift of the origin of our coordinate system (ξ, η, ζ) to either of four critical points (19)
of Pκ transforms the function Pκ − εξ2 (i.e. the part of Pκ depending on variables η and ζ) to
a polynomial of degree 3 with zero linear part. The norm of the gradient of the quadratic part
of this polynomial at the piece of the boundary of this critical point, where (20) becomes an
equality, is equal identically to 6ε13/3.

The gradient of the cubic part of this function has asymptotic type O(ε14/3), and the asymp-
totic types of partial derivatives upon variables η and ζ of the summand εξ2 of Pκ and of three
summands of Qκ are respectively 0, O(ε8/3+2) = O(ε14/3), O(ε16/3) and 0. □

End of the proof of Lemma 4. By Proposition 5 each function from the one-parametric family
Pκ+ tQκ , t ∈ [0, 1], connecting the functions Pκ and (17), has exactly one complex critical point
in any of the four neighborhoods Uj . All these critical points are Morse; those of them which
are real for t = 0 remain real and preserve their Morse indices for all values of t. □

So, the component of the complement of the caustic of the function (13) with sufficiently
small κ ≥ 0 that contains all functions (17) consists of morsifications with exactly two real
critical points with Morse index 1 and two critical points with index 2. Denote by Gκ the map
from this component to RP 2 sending its point λ to the direction of the line passing through two
critical points of the corresponding function fλ with Morse index 1. By construction, a loop in
this component goes into the non-trivial element of π1(RP 2) if and only if it permutes these two
critical points or, equivalently, it changes the orientation of the local system ±Z{1}.

Proposition 6. The restriction of the map Gκ to the embedded Klein bottle consisting of func-
tions (17) maps the fundamental class of K2 with coefficients in the orientation sheaf to that of
RP 2.

Proof. Denote by K̃2 the set of all pairs (a 2-dimensional subspace in R3 passing through the axis
{x = y = 0}, a 1-dimensional subspace of it). This set is obviously diffeomorphic to the Klein
bottle. Forgetting the first elements of these pairs maps it to RP 2; this map is a diffeomorphism
over all points of RP 2 but only one, and defines an isomorphism between 2-homology groups of
K̃2 and RP 2 with coefficients in orientation sheaves.

Further, let K2(0) be the set of all functions of the form (17) with κ = 0 in the space of

Morse perturbations of the degenerate function f0. Let ρ : K2(0) → K̃2 be the map associating
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with any function of this form the pair consisting of the corresponding plane kerL and the line
passing through the real critical points of the restriction of this function to this plane kerL. This
map is a diffeomorphism by the construction and § 4.1. The composition K2(0) → K̃2 → RP 2

of this map and the tautological map considered in the previous paragraph is homotopic to the
restriction of the map G0 to K2(0). Indeed, by Lemma 4 and Proposition 5 the images of any
two points under these two maps lie on distance of order ε2/3 from one another in the standard
metric on RP 2 induced from the unit sphere in R3. Therefore the statement of Proposition 6
is true for map G0. Finally, the entire our construction of embedded Klein bottles and maps
Gκ for sufficiently small positive κ is a small perturbation of that for κ = 0. This finishes the
proof of Theorem 6′ for the case of ±Z{1}-coefficients. The statement of this theorem concerning
constant Z2-coefficients is its reduction mod 2. □

5.3. P 1
8 conjecture. The class P 1

8 is defined similarly to P 2
8 , but with only one component

of zero set in R3, homeomorphic to R2. Its easiest representative is the function x3 + y3 + z3.
Consider the perturbation x3−3ε2x+y3−3ε2y+z3 of this function. It has four real critical points
of type A2 with coordinates (±ε,±ε, 0) (where the signs ± are independent). We can perturb
these points independently within the versal deformation. Let us do it so that the points with
coordinates (ε, ε) and (−ε,−ε) split into imaginary critical points, and each of the remaining two
points splits into a pair of real Morse points. The passport of the resulting function is (0, 2, 2, 0).

Conjecture 2. The two-dimensional cohomology group with coefficients in Z2 of the component
of the complement of the caustic of the morsification just constructed is non-trivial. Namely, the
1-cohomology classes watching the permutations of two critical points of the same Morse index
are non-trivial, as well as their cup product.

However, the construction of a 2-cycle on which this cup product takes the non-zero value
seems to be not as easy as in the case P 2

8 (even if such a cycle exists).
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