# FOLIATIONS ON $\mathbb{P}^2$ ADMITTING A PRIMITIVE MODEL

GILBERTO D. CUZZUOL & ROGÉRIO S. MOL

ABSTRACT. Given a foliation  $\mathcal{F}$  on  $\mathbb{P}^2_{\mathbb{C}}$ , by fixing a line  $L \subset \mathbb{P}^2_{\mathbb{C}}$ , the polar pencil of  $\mathcal{F}$  with axis L is the set of all polar curves of  $\mathcal{F}$  with respect to points  $l \in L$ . In this work we study foliations  $\mathcal{F}$  which admit a polar pencil whose generic element is reducible. To such an  $\mathcal{F}$  is associated a primitive model, which is a foliation  $\widetilde{\mathcal{F}}$  whose polar pencil, besides having irreducible generic element, is such that its fibers are contained in those of the polar pencil of  $\mathcal{F}$ . This work focuses on relating geometric properties of a foliation  $\mathcal{F}$  with those of its primitive model  $\widetilde{\mathcal{F}}$ .

### 1. INTRODUCTION

This work deals with reducibility properties of the pencil of algebraic curves

 $\mathcal{P}: \{ \alpha P(x,y) + \beta Q(x,y) = 0; \ (\alpha:\beta) \in \mathbb{P}^1 \},\$ 

where  $(x, y) \in \mathbb{C}^2$  and P(x, y) and Q(x, y) are polynomials in  $\mathbb{C}[x, y]$ . More specifically, we want to give conditions that identify when the generic element of this pencil is reducible. One situation is obvious: if the generators P and Q have a common irreducible factor, then this will be a factor for all elements in this pencil. Thus we can suppose P and Q relatively prime. In this case, Stein's factorization Theorem (see [3]) asserts that the generic element of  $\mathcal{P}$  is reducible if and only if there are polynomials  $\tilde{P}(x, y)$  and  $\tilde{Q}(x, y)$  and a rational function  $r : \mathbb{P}^1 \to \mathbb{P}^1$  of degree greater than one such that

$$\frac{P(x,y)}{Q(x,y)} = r\left(\frac{\widetilde{P}(x,y)}{\widetilde{Q}(x,y)}\right).$$

To this situation we associate two foliations on the projective plane  $\mathbb{P}^2$ : a foliation  $\mathcal{F}$  induced in affine coordinates  $(x, y) \in \mathbb{C}^2$  by the polynomial vector field

$$\mathbf{v} = P(x,y)\frac{\partial}{\partial x} + Q(x,y)\frac{\partial}{\partial y}$$

and a second foliation  $\widetilde{\mathcal{F}}$  induced in the same affine coordinates by the vector field

$$\widetilde{\mathbf{v}} = \widetilde{P}(x,y)\frac{\partial}{\partial x} + \widetilde{Q}(x,y)\frac{\partial}{\partial y}.$$

We call  $\mathcal{F}$  a *non-primitive* foliation and, if the generic element of the pencil

$$\widetilde{\mathcal{P}}:\ \{\alpha\widetilde{P}(x,y)+\beta\widetilde{Q}(x,y)=0;\ (\alpha:\beta)\in\mathbb{P}^1\}$$

is irreducible, we say that  $\widetilde{\mathcal{F}}$  is a *primitive* foliation, which is a *primitive model* for  $\mathcal{F}$ . Our idea is to study this configuration by relating geometric properties of  $\mathcal{F}$  and  $\widetilde{\mathcal{F}}$ . As a byproduct, we

<sup>&</sup>lt;sup>1</sup>2000 Mathematics Subject Classification. Primary 32S65; Secondary 14C21.

<sup>&</sup>lt;sup>2</sup>Keywords. Holomorphic foliation, polar varieties, linear systems.

<sup>&</sup>lt;sup>3</sup>First author supported by FAPEMIG; second author supported by FAPEMIG and Pronex/FAPERJ.

will obtain information about problem of the reducibility of the generic element of the pencil  $\mathcal{P}$  itself.

After presenting basic facts about foliations on  $\mathbb{P}^2$  in section 2, we develop in section 3 the concept of primitive and non-primitive foliations. We prove that a non-primitive foliation and its primitive model have the same singularities in the affine plane  $\mathbb{C}^2$  and, in Proposition 2, we establish a relation between their Milnor numbers. A consequence of this fact is that a foliation having only non-degenerate singularities is primitive. This, in its turn, implies that the generic foliation in the space of foliations of degree d on  $\mathbb{P}^2$  is non-primitive.

We finally dedicate section 4 to the study of the singularities of  $\mathcal{F}$  and  $\widetilde{\mathcal{F}}$  that lie over the line at infinity  $L_{\infty}$ . Proposition 3 asserts that a non-primitive foliation always has singularities in  $L_{\infty}$ . We also consider the case where  $L_{\infty}$  is invariant by  $\mathcal{F}$  and the sum of its Milnor numbers over  $L_{\infty}$  is minimal, equal to the degree of the foliation plus one. By Proposition 5, this occurs if and only if all singularities of  $\mathcal{F}$  in  $L_{\infty}$  are either non-degenerate or saddle nodes having  $L_{\infty}$ as a weak separatrix. Proposition 7 says that, when both a non-primitive foliation  $\mathcal{F}$  and its primitive model  $\widetilde{\mathcal{F}}$  leave  $L_{\infty}$  invariant, then the sum of the Milnor numbers at  $L_{\infty}$  is minimal for  $\mathcal{F}$  if and only if it is minimal for  $\widetilde{\mathcal{F}}$ . This apparently contrasts to what happens to Milnor numbers of singularities on the affine plane  $\mathbb{C}^2$ : the passage from the primitive model  $\widetilde{\mathcal{F}}$  to the non-primitive  $\mathcal{F}$  "degenerates" these singularities, in the sense that their Milnor numbers increase, as shown in Proposition 2.

#### 2. Preliminaries

A foliation  $\mathcal{F}$  of degree  $d \geq 0$  in  $\mathbb{P}^2 = \mathbb{P}^2_{\mathbb{C}}$  is induced in homogeneous coordinates  $(X : Y : Z) \in \mathbb{P}^2$  by a 1-form

$$\omega = A(X,Y,Z)dX + B(X,Y,Z)dY + C(X,Y,Z)dZ,$$
(1)

where A, B and C are homogeneous polynomials of degree d + 1 satisfying the Euler condition

$$XA(X, Y, Z) + YB(X, Y, Z) + ZC(X, Y, Z) = 0.$$
(2)

This means that we have a foliation of dimension two on  $\mathbb{C}^3$  which contains in its leaves the lines through the origin, so that the foliation goes down to a foliation of dimension one on  $\mathbb{P}^2$ . The singular set of  $\mathcal{F}$ , denoted by  $\operatorname{Sing}(\mathcal{F})$ , is the set of common zeroes of A, B and C. We suppose, throughout this text, that  $\operatorname{Sing}(\mathcal{F})$  has codimension two, which amounts to requiring that A, Band C have no common factor. In the affine plane Z = 1 with affine coordinates x = X/Z and y = Y/Z the foliation  $\mathcal{F}$  is induced by the 1-form

$$\omega = A(x, y, 1)dx + B(x, y, 1)dy.$$

The foliation  $\mathcal{F}$  is also given by the integral curves of the dual vector field of  $\omega$ :

$$\mathbf{v} = P(x,y)\frac{\partial}{\partial x} + Q(x,y)\frac{\partial}{\partial y}$$

Here P(x, y) = -B(x, y, 1) and Q(x, y) = A(x, y, 1). We have two situations: if the line at infinity  $L_{\infty} : \{Z = 0\}$  is invariant by  $\mathcal{F}$  then Z divides A and B. Furthermore, for k > 1,  $Z^k$  is not a common factor for A and B, since otherwise Z would be a common factor of A, B and C by the Euler condition. This implies that max $\{\deg P, \deg Q\} = d$ . On the other hand, if the line at infinity is not invariant by  $\mathcal{F}$ , then Z is not a factor of both A and B, thus P(x, y) = -B(x, y, 1) as well as Q(x, y) = A(x, y, 1) have degree d+1. The Euler condition written in affine coordinates reads

$$xA(x, y, 1) + yB(x, y, 1) + C(x, y, 1) = xQ(x, y) - yP(x, y) + C(x, y, 1) = 0.$$

The terms of degree d + 2 in the above relation give the equation

$$xQ_{d+1}(x,y) - yP_{d+1}(x,y) = 0,$$

where  $P_{d+1}$  and  $Q_{d+1}$  stand for the homogeneous part of degree d+1 of P and Q, respectively. Thus, there is a homogenous polynomial G(x, y) of degree d such that  $P_{d+1}(x, y) = xG(x, y)$  and  $Q_{d+1}(x, y) = yG(x, y)$ . We conclude that, when  $L_{\infty}$  is not invariant,  $\mathcal{F}$  is induced by a vector field of the type

$$\mathbf{v} = (xG(x,y) + \hat{P}(x,y))\frac{\partial}{\partial x} + (yG(x,y) + \hat{Q}(x,y))\frac{\partial}{\partial y},$$
(3)

where  $\hat{P}$  and  $\hat{Q}$  comprise the terms of degree d and lower of P and Q.

Reciprocally, let  $\mathcal{F}$  be a foliation induced in affine coordinates (x, y) by a polynomial vector field of the form

$$\mathbf{v} = (xG(x,y) + \hat{P}(x,y))\frac{\partial}{\partial x} + (yG(x,y) + \hat{Q}(x,y))\frac{\partial}{\partial y},$$

where G, when non-zero, is a homogeneous polynomial of degree d, while  $\hat{P}$  and  $\hat{Q}$  are either polynomials of degree d, when G = 0, or of degree d or lower, when  $G \neq 0$ . Then  $\mathcal{F}$  is a foliation of degree d and  $L_{\infty}$  is  $\mathcal{F}$ -invariant if and only if G = 0.

Let now  $\mathcal{F}$  be a germ of foliation at  $p = (0,0) \in \mathbb{C}^2$ , which is induced in local coordinates (x, y) by a vector field

$$\mathbf{v} = P(x,y)\frac{\partial}{\partial x} + Q(x,y)\frac{\partial}{\partial y},$$

where  $P, Q \in \mathcal{O}_p$  are relatively prime germs of analytic functions. The *Milnor number* of  $\mathcal{F}$  at p is defined as

$$\mu_p(\mathcal{F}) = \dim_{\mathbb{C}} \frac{\mathcal{O}_p}{(P,Q)},$$

where  $(P,Q) \subset \mathcal{O}_p$  refers to the ideal generated by P and Q. Evidently,  $\mu_p(\mathcal{F})$  is a non-negative integer, which is non-zero if and only p is a singularity for  $\mathcal{F}$  (see [1] for more details).

Suppose now that the germ of foliation  $\mathcal{F}$  has a smooth separatrix S, that is, a germ of holomorphic invariant curve passing through p = (0,0). If we take local coordinates such that  $S = \{y = 0\}$  then  $\mathcal{F}$  will be induced by a vector field of the form

$$\mathbf{v} = P(x,y)\frac{\partial}{\partial x} + y\overline{Q}(x,y)\frac{\partial}{\partial y},$$

which, restricted to S, is the vector field  $\mathbf{v}_{|S} = P(x,0)\partial/\partial x$ . We define the *relative Milnor* number of  $\mathcal{F}$  with respect to S as the order of  $\mathbf{v}_{|S}$  at x = 0, that is

$$\mu_p(\mathcal{F}, S) = \dim_{\mathbb{C}} \frac{\mathcal{O}_p}{(P, y)} = \operatorname{order}_{x=0} \mathbf{v}_{|S|} = \operatorname{order}_{x=0} P(x, 0).$$

It comes straight from the definition that  $\mu_p(\mathcal{F}, S) \leq \mu_p(\mathcal{F})$ . We also remark that, when p is a regular point for  $\mathcal{F}$ , both numbers are zero.

Now, if S is a germ of a smooth analytic curve at p, non-invariant by  $\mathcal{F}$ , we take local coordinates (x, y) such that p = (0, 0) and  $S : \{y = 0\}$ , so that  $Q(x, 0) \neq 0$ . The order of tangency between  $\mathcal{F}$  and S at p is the following number:

$$\tau_p(\mathcal{F}, S) = \operatorname{order}_{x=0} Q(x, 0).$$

The invariants  $\mu_p(\mathcal{F})$ ,  $\mu_p(\mathcal{F}, S)$  and  $\tau_p(\mathcal{F}, S)$  are independent of the local coordinates and of the local expression of a vector field representing  $\mathcal{F}$ .

Next we state some global results about these invariants which will be used in the sequel. Let  $\mathcal{F}$  be a foliation of degree d on  $\mathbb{P}^2$ . First of all, given a line  $L \subset \mathbb{P}^2$  non-invariant by  $\mathcal{F}$ , then

$$\sum_{p \in \mathbb{P}^2} \tau_p(\mathcal{F}, L) = d.$$

In fact, we can take a system of affine coordinates  $(x, y) \in \mathbb{C}^2$  for which that L has equation y = 0 and such that  $\mathcal{F}$  and L are not tangent at  $q = L \cap L_{\infty}$ , that is  $\tau_q(\mathcal{F}, L) = 0$ . Here  $L_{\infty}$  denotes the line at infinity. We can also suppose that  $L_{\infty}$  is not  $\mathcal{F}$ -invariant, so that  $\mathcal{F}$  is induced by a polynomial vector field as in (3). Simple calculations show that the fact that  $\tau_q(\mathcal{F}, L) = 0$  is equivalent to the degree of  $\hat{Q}$  in (3) being d. Furthermore, since L is not invariant by  $\mathcal{F}$ , the variable y does not divide  $\hat{Q}$ , so that  $\hat{Q}(x, 0)$  actually has degree d. The result follows by noticing that at each point  $p = (x_0, 0) \in L$ , the order of tangency  $\tau_p(\mathcal{F}, L)$  is the multiplicity of  $x_0$  as a root of  $\hat{Q}(x, 0)$ .

Now, if  $L \subset \mathbb{P}^2$  is an  $\mathcal{F}$ -invariant line it holds

$$\sum_{p \in L} \mu_p(\mathcal{F}, L) = d + 1.$$
(4)

To see this, it suffices to take an affine coordinate system  $(x, y) \in \mathbb{C}^2$  such that  $L_{\infty}$  is not invariant by  $\mathcal{F}$ , L has equation y = 0 and  $q = L \cap L_{\infty}$  is a regular point for  $\mathcal{F}$ , so that  $\mu_q(\mathcal{F}, L) = 0$ . Thus, supposing that  $\mathcal{F}$  is induced by a vector field as in (3), for a point  $p = (x_0, 0) \in L$ , we have that  $\mu_p(\mathcal{F}, L)$  is the order of  $x_0$  as a root of  $P(x, 0) = xG(x, 0) + \hat{P}(x, 0)$ . The result follows from the fact that, since  $q \notin \operatorname{Sing}(\mathcal{F})$ , this polynomial has degree d + 1.

Finally, the sum of Milnor numbers of  $\mathcal{F}$  on  $\mathbb{P}^2$  gives a Bézout type theorem for  $\mathcal{F}$ , which reads

$$\sum_{p \in \mathbb{P}^2} \mu_p(\mathcal{F}) = d^2 + d + 1, \tag{5}$$

where d is the degree of  $\mathcal{F}$ . To see this we suppose that  $\mathcal{F}$  is induced in affine coordinates  $(x, y) \in \mathbb{C}^2$  by the polynomial vector field  $\mathbf{v} = P(x, y)\partial/\partial x + Q(x, y)\partial/\partial y$ . By an appropriate choice of the line at infinity  $L_{\infty}$  we may suppose that it does not contain any of the singularities of  $\mathcal{F}$ . This also implies that  $L_{\infty}$  is not invariant by  $\mathcal{F}$ , so that P and Q have degree d+1. Bézout's Theorem for the projective curves defined by P and Q give that the sum of their intersection numbers is  $(d+1)^2 = d^2 + 2d + 1$ . The sum corresponding to points contained in the affine plane  $\mathbb{C}^2$  equals the sum of the Milnor numbers of singularities of  $\mathcal{F}$ . The result is achieved by noticing that the two curves have d points of intersection over  $L_{\infty}$ , with multiplicities counted.

### 3. Primitive models of foliations

Let  $\mathcal{F}$  be a foliation on  $\mathbb{P}^2$ . Given a point  $l \in \mathbb{P}^2$ , the *polar curve* of  $\mathcal{F}$  with *center* at  $l \in \mathbb{P}^2$ is the closure of the set of points  $p \in \mathbb{P}^2 \setminus \operatorname{Sing}(\mathcal{F})$  such that  $T_p^{\mathbb{P}}\mathcal{F}$  passes through l:

$$P_l^{\mathcal{F}} = \overline{\{p \in \mathbb{P}^2 \setminus \operatorname{Sing}(\mathcal{F}); \ l \in T_p^{\mathbb{P}}\mathcal{F}\}}.$$

Here  $T_p^{\mathbb{P}}\mathcal{F}$  is the line through p with direction  $T_p\mathcal{F}$ . When  $\mathcal{F}$  is induced in affine coordinates  $(X:Y:Z) \in \mathbb{P}^2$  by a polynomial 1-form

$$\omega = A(X, Y, Z)dX + B(X, Y, Z)dY + C(X, Y, Z)dZ$$

as in (1), the polar curve with center  $l = (\alpha : \beta : \gamma)$  has equation

$$\alpha A(X, Y, Z) + \beta B(X, Y, Z) + \gamma C(X, Y, Z) = 0.$$

It follows that if  $\mathcal{F}$  has degree  $d \geq 1$  then  $P_l^{\mathcal{F}}$  is a curve of degree d + 1. Furthermore  $P_l^{\mathcal{F}}$  contains all singularities of  $\mathcal{F}$  as well as the point l. This object was studied in [2] and [4].

As the point  $l \in \mathbb{P}^2$  moves, the curves  $P_l^{\mathcal{F}}$  form a linear system of dimension two, the *polar* net of  $\mathcal{F}$ . If we fix a line  $L \subset \mathbb{P}^2$  and take all polar curves of  $\mathcal{F}$  whose centers lie in L we have the *polar pencil* of  $\mathcal{F}$  with axis L. It is the set of curves

$$\alpha A(X, Y, Z) + \beta B(X, Y, Z) + \gamma C(X, Y, Z) = 0 \quad , \ (\alpha : \beta : \gamma) \in L,$$

and will be denoted by  $\mathcal{P}(\mathcal{F}, L)$ .

**Proposition 1.** Let  $L \subset \mathbb{P}^2$  be an  $\mathcal{F}$ -invariant line. Then L is a fixed component of  $\mathcal{P}(\mathcal{F}, L)$  with multiplicity one. Reciprocally, the only fixed component admitted in  $\mathcal{P}(\mathcal{F}, L)$  is the line L, in which case it is  $\mathcal{F}$ -invariant and of multiplicity one. In particular, if L is not invariant by  $\mathcal{F}$  then  $\mathcal{P}(\mathcal{F}, L)$  has no fixed components.

*Proof.* Suppose first that L is  $\mathcal{F}$ -invariant and fix  $l \in L$ . Then, the  $\mathcal{F}$ -invariance of L gives that  $l \in T_p^{\mathbb{P}}\mathcal{F}$  for every  $p \in L \setminus \operatorname{Sing}(\mathcal{F})$ . Thus,  $L \subset P_l^{\mathcal{F}}$ . Since  $l \in L$  is arbitrary, we have  $L \subset \mathcal{P}(\mathcal{F}, L)$ . In what concerns its multiplicity, putting  $L : \{Z = 0\}$  in the above system of homogeneous coordinates, we have

$$\mathcal{P}(\mathcal{F},L) = \{ \alpha A(X,Y,Z) + \beta B(X,Y,Z) = 0; \ (\alpha:\beta) \in \mathbb{P}^1 \}.$$

Thus, if L were a fixed element of the pencil with multiplicity k > 1, then  $Z^k$  would be a divisor of both A and B, and the Euler condition (2) would imply that  $Z^{k-1}$  would be a divisor of C and we would find a component of codimension one in  $\operatorname{Sing}(\mathcal{F})$ , which is not allowed. For the converse, we first remark that if  $\mathcal{P}(\mathcal{F}, L)$  has a line L' in its base, then L' = L. Actually, if  $p \in L' \setminus \operatorname{Sing}(\mathcal{F})$  then  $l \in T_p^{\mathbb{P}}\mathcal{F}$  for every  $l \in L$ . But, if  $L' \neq L$  and if  $p \notin L$ , then  $T_p^{\mathbb{P}}\mathcal{F}$ intersects L in only one point. Thus, the only possibility left is that L' = L. Then for a fixed  $l \in L$  and for every  $p \in L \setminus \operatorname{Sing}(\mathcal{F})$  we have  $l \in T_p^{\mathbb{P}}\mathcal{F}$ . This means that  $T_p^{\mathbb{P}}\mathcal{F} = L$  for every  $p \in L \setminus \operatorname{Sing}(\mathcal{F})$ , which gives the  $\mathcal{F}$ -invariance of L. By the first part of the proof, L has multiplicity one. Finally, an irreducible fixed component of  $\mathcal{P}(\mathcal{F}, L)$  of degree greater than one with equation F(X, Y, Z) = 0 would mean that F is a factor of both A and B and thus, by the Euler condition, it would be a factor of C, giving rise to a codimension one component in  $\operatorname{Sing}(\mathcal{F})$ , which is impossible.  $\Box$ 

Let  $\mathcal{F}$  be a foliation in  $\mathbb{P}^2$  as before. Its *modified polar pencil* with axis at the line  $L \subset \mathbb{P}^2$ , denoted by  $\mathcal{P}^*(\mathcal{F}, L)$ , is the pencil obtained from  $\mathcal{P}(\mathcal{F}, L)$  in the following way:

$$\mathcal{P}^{*}(\mathcal{F},L) = \begin{cases} \mathcal{P}(\mathcal{F},L) - L & \text{if } L \text{ is } \mathcal{F}\text{-invariant} \\ \mathcal{P}(\mathcal{F},L) & \text{if } L \text{ is not } \mathcal{F}\text{-invariant} \end{cases}$$

Evidently  $\mathcal{P}^*(\mathcal{F}, L)$  is free of fixed components.

We now choose an affine system of coordinates  $(x, y) \in \mathbb{C}^2$  such that L is the line at infinity by making  $L : \{Z = 0\}, x = X/Z$  and y = Y/Z, where  $\mathcal{F}$  is induced by the vector field

$$\mathbf{v} = P(x,y)\frac{\partial}{\partial x} + Q(x,y)\frac{\partial}{\partial y}.$$

In the coordinates (x, y), both  $\mathcal{P}(\mathcal{F}, L)$  and  $\mathcal{P}^*(\mathcal{F}, L)$  are given by

$$\{\alpha P(x,y) + \beta Q(x,y) = 0; \ (\alpha : \beta) \in \mathbb{P}^1\}.$$

By means of Bertini's Theorem concerning linear systems whose generic element is reducible, it is proved in [4] that the generic element of the polar net of a foliation on  $\mathbb{P}^2$  is irreducible. However, it comes out that the polar net of a foliation might contain a pencil whose generic element is reducible. Evidently, if L is a line invariant by  $\mathcal{F}$ , then L belongs to all elements of the polar pencil having L as an axis, that is L is a fixed element of the polar pencil. By removing L from the pencil, we can again ask if its generic element is reducible. Taking affine coordinates  $(x, y) \in \mathbb{C}^2$  such that  $L = L_{\infty}$  is the line at infinity then the polar pencil becomes

$$\{\alpha P(x,y) + \beta Q(x,y) = 0; \ (\alpha : \beta) \in \mathbb{P}^1\}.$$

We remark that now there are no elements of codimension one in the pencil, since the fact that  $\operatorname{Sing}(\mathcal{F})$  has codimension 2 implies that P and Q have no common factor. We can then apply Stein's factorization Theorem (see [3]): the generic element of the pencil  $\{\alpha P(x,y) + \beta Q(x,y) = 0, (\alpha : \beta) \in \mathbb{P}^1\}$  is reducible if and only if there are polynomials  $\widetilde{P}(x,y)$  and  $\widetilde{Q}(x,y)$  and a rational function  $r : \mathbb{P}^1 \to \mathbb{P}^1$  of degree greater than one such that

$$\frac{P(x,y)}{Q(x,y)} = r\left(\frac{\widetilde{P}(x,y)}{\widetilde{Q}(x,y)}\right)$$

This means that the pencil induced by P and Q "factors" through the one induced by  $\tilde{P}$  and  $\tilde{Q}$ . We can ask once again if the generic element of the pencil  $\{\alpha \tilde{P}(x,y) + \beta \tilde{Q}(x,y) = 0; (\alpha : \beta) \in \mathbb{P}^1\}$  is reducible. If true, we can repeat the process above, until we reach a situation where  $\tilde{d}$  is minimal and the generic element of  $\{\alpha \tilde{P}(x,y) + \beta \tilde{Q}(x,y) = 0; (\alpha : \beta) \in \mathbb{P}^1\}$  is irreducible.

We say that a foliation  $\mathcal{F}$  on  $\mathbb{P}^2$  is *primitive* if for every line  $L \subset \mathbb{P}^2$  the modified polar pencil of  $\mathcal{F}$  with axis L has irreducible generic element. If for some line  $L \subset \mathbb{P}^2$  the modified polar pencil of  $\mathcal{F}$  with respect to L has reducible generic element, we say that  $\mathcal{F}$  is *non-primitive* (with respect to L). In this case, taking affine coordinates  $(x, y) \in \mathbb{C}^2$  with respect to which L is the line at infinity, and a polynomial vector field

$$\mathbf{v} = P(x,y)\frac{\partial}{\partial x} + Q(x,y)\frac{\partial}{\partial y}$$
(6)

that induces  $\mathcal{F}$ , we find polynomials  $\widetilde{P}(x, y)$  and  $\widetilde{Q}(x, y)$  and a rational function  $r : \mathbb{P}^1 \to \mathbb{P}^1$  of degree  $m = \deg(r) \geq 2$  such that  $P/Q = r(\widetilde{P}/\widetilde{Q})$  and so that the pencil  $\mathcal{P}(\widetilde{P}, \widetilde{Q})$  has irreducible generic element. Notice that, putting t = z/w, we write r(t) = r(z/w) = S(z, w)/T(z, w), where S and T are homogeneous polynomials of degree m, so that

$$\begin{cases} P(x,y) = S(\widetilde{P}(x,y), \widetilde{Q}(x,y))\\ Q(x,y) = T(\widetilde{P}(x,y), \widetilde{Q}(x,y)). \end{cases}$$
(7)

We now define a foliation  $\widetilde{\mathcal{F}}$  on  $\mathbb{P}^2$  induced, in the same system of affine coordinates (x, y), by the vector field

$$\widetilde{\mathbf{v}} \;\;=\;\; \widetilde{P}(x,y)\frac{\partial}{\partial x} + \widetilde{Q}(x,y)\frac{\partial}{\partial y}.$$

Since  $\mathcal{P}(\tilde{P}, \tilde{Q})$  has irreducible generic element,  $\tilde{P}$  and  $\tilde{Q}$  are relatively prime, so  $\operatorname{Sing}(\tilde{\mathcal{F}})$  has codimension two.  $\tilde{\mathcal{F}}$  is said to be a *primitive model* for  $\mathcal{F}$ . The number  $m = \deg(r)$  will be called *degree of ramification* of  $\mathcal{F}$ . We remark that the property of being a non-primitive foliation and that of being the primitive model of a foliation involves fixing an affine plane with coordinates  $(x, y) \in \mathbb{C}^2$  and a line at infinity  $L_{\infty} \subset \mathbb{P}^2$ . The degree of the vector field (6) inducing  $\mathcal{F}$  is called *the affine degree* of  $\mathcal{F}$ , and is denoted by  $\deg_a(\mathcal{F})$ . If  $\mathcal{F}$  is a non-primitive foliation admitting a primitive model  $\tilde{\mathcal{F}}$ , we evidently have

$$\deg_a(\mathcal{F}) = m \deg_a(\widetilde{\mathcal{F}}),$$

where m is the degree of ramification.

Fix an affine plane in  $\mathbb{P}^2$  with coordinates  $(x, y) \in \mathbb{C}^2$ . Let  $\mathcal{F}_1$  and  $\mathcal{F}_2$  be foliations on  $\mathbb{P}^2$  induced, respectively, by polynomial vector fields

$$\mathbf{v}_1 = P_1(x,y)\frac{\partial}{\partial x} + Q_1(x,y)\frac{\partial}{\partial y}$$
 and  $\mathbf{v}_2 = P_2(x,y)\frac{\partial}{\partial x} + Q_2(x,y)\frac{\partial}{\partial y}$ .

**Definition 1.** The foliations  $\mathcal{F}_1$  and  $\mathcal{F}_2$  are said to be *linearly equivalent* if there exist  $a, b, c, d \in \mathbb{C}$  such that  $ad - bc \neq 0$  and

$$\begin{cases} P_1(x,y) = aP_2(x,y) + bQ_2(x,y) \\ Q_1(x,y) = cP_2(x,y) + dQ_2(x,y). \end{cases}$$

The notion of linear equivalence defines equivalence classes in the space of foliations on  $\mathbb{P}^2$ . From the expression (3) it is easy to see that, in such an equivalence class, all foliations have the same degree d and leave  $L_{\infty}$  invariant, with the possible exception of one, which has degree d-1 and for which  $L_{\infty}$  is not invariant. Nevertheless, the affine degree is the same for all foliation in a class of linear equivalence. Therefore, a foliation of degree d for which  $L_{\infty}$  is not invariant is always linear equivalent to a foliation of degree d+1 which leaves  $L_{\infty}$  invariant. Evidently, two primitive models for the same foliation are linearly equivalent. On the other hand, two non-primitive foliations which are linearly equivalent have the same class of primitive models.

In the next two examples we introduce two classes of foliation which will appear in Theorem 1 below.

**Example 1.** We say that a foliation  $\mathcal{F}$  on  $\mathbb{P}^2$  is *homogeneous* with center at  $l \in \mathbb{P}^2$  if  $\mathcal{F}$  is induced in affine coordinates  $(x, y) \in \mathbb{C}^2$  for which l = (0, 0) by a polynomial vector field

$$\mathbf{v} = P(x,y)\frac{\partial}{\partial x} + Q(x,y)\frac{\partial}{\partial y}$$

such that P(x, y) and Q(x, y) are homogeneous polynomials of the same degree. One outstanding property of a foliation  $\mathcal{F}$  which is homogeneous with center at  $l \in \mathbb{P}^2$  is that its polar curve with center at l is  $\mathcal{F}$ -invariant and consists of d+1 lines passing through l, with multiplicities counted. If  $\mathcal{F}$  is a homogeneous foliation centered at l = (0, 0) as above, then the line at infinity is invariant by  $\mathcal{F}$  and  $d = \deg(\mathcal{F}) = \deg_a(\mathcal{F})$ . The only singularity in  $\mathbb{C}^2$  is l = (0, 0), which has Milnor number  $\mu_l(\mathcal{F}) = d^2$ . Observe that this, along with expression (5), implies that

$$\sum_{p \in L_{\infty}} \mu_p(\mathcal{F}) = d + 1.$$

All the singularities of  $\mathcal{F}$  on the line at infinity  $L_{\infty}$  are at the intersection of  $L_{\infty}$  and one of the invariant lines L which form the polar curve with center l. If L has multiplicity one as a component of  $P_l^{\mathcal{F}}$ , then  $p = L \cap L_{\infty}$  is a non-degenerate singularity, meaning that the linear part of any vector field which induces  $\mathcal{F}$  near p has two non-zero eigenvalues. On the other hand, if this multiplicity is k > 1, then  $p = L \cap L_{\infty}$  is a saddle-node whose weak separatrix is contained in  $L_{\infty}$ . We finally observe that any curve in the polar pencil of  $\mathcal{F}$  with axis at  $L_{\infty}$  consists of d+1 lines passing through  $(0,0) \in \mathbb{C}^2$ .

**Example 2.** Let  $\mathcal{F}$  be a foliation on  $\mathbb{P}^2$ . We say that  $\mathcal{F}$  is a foliation *in one variable* if in some affine coordinate system  $(x, y) \in \mathbb{C}^2$  it is induced by a polynomial vector field of the kind

$$P(x)\frac{\partial}{\partial x} + Q(x)\frac{\partial}{\partial y},$$

where P and Q are polynomials depending only on the variable x. Since  $\text{Sing}(\mathcal{F})$  has codimension two, P and Q are without common factors, which results that  $\mathcal{F}$  has no singularities in the affine plane  $\mathbb{C}^2$ . It is easy to see that the line at infinity is  $\mathcal{F}$ -invariant, for its non-invariance would imply, from expression (3), that the higher order terms of P and Q would depend on both xand y. Thus,  $d = \deg(\mathcal{F}) = \deg_a(\mathcal{F})$ . We also remark that, if  $x_0$  is a root of Q(x), then the line  $x = x_0$  is  $\mathcal{F}$ -invariant. These invariant lines all meet  $L_{\infty}$  at a singularity p. If  $\deg(P) < \deg(Q)$ , then this is the only singularity of  $\mathcal{F}$ . If  $\deg(P) \ge \deg(Q)$  there is still another singularity on  $L_{\infty}$ . For a foliation in one variable as above, any element of the polar pencil with axis at  $L_{\infty}$ consists of d + 1 vertical lines, with multiplicities counted.

**Theorem 1.** Let  $\mathcal{F}$  be a non-primitive foliation on  $\mathbb{P}^2$  which admits a primitive model of affine degree one. Then either  $\mathcal{F}$  is a homogeneous foliation or it is a foliation in one variable.

*Proof.* Let  $\widetilde{\mathcal{F}}$  be a primitive model for  $\mathcal{F}$ , induced in affine coordinates  $(x, y) \in \mathbb{C}^2$  by the polynomial vector field  $\widetilde{P}(x, y)\partial/\partial x + \widetilde{Q}(x, y)\partial/\partial y$ .

<u>1st case</u>: Either  $\widetilde{P}$  or  $\widetilde{Q}$  is a constant. Then, by means of a linear equivalence, we may suppose that  $\widetilde{\mathcal{F}}$  is induced by a vector field of the form  $(ax + by)\partial/\partial x + \partial/\partial y$ , where  $a \neq 0$  or  $b \neq 0$ . If a = 0, evidently  $\widetilde{\mathcal{F}}$  is a foliation in one variable. If  $a \neq 0$ , by applying the affine change of coordinates (u, v) = (ax + by, y), we arrive to the same conclusion.

<u>2nd case</u>: Both  $\tilde{P}$  and  $\tilde{Q}$  have degree one. Let us put  $\tilde{P} = ax + by + e$  and  $\tilde{Q} = cx + dy + f$ . We first consider the situation where  $\tilde{P}$  and  $\tilde{Q}$  have no common root in the affine plane  $\mathbb{C}^2$ . This means that ax + by is a multiple of cx + dy by a non-zero constant. Thus, by linear equivalence, we can suppose that  $\tilde{P} = ax + by$  and  $\tilde{Q} = 1$  and we come to the first case, where  $\mathcal{F}$  is a foliation in one variable. We then suppose that  $\tilde{P}$  and  $\tilde{Q}$  have a common root in  $\mathbb{C}^2$ . By an affine change of coordinates, we can suppose that this root is (0,0), which makes  $\tilde{P} = ax + by$ and  $\tilde{Q} = cx + dy$ . If r(t) is the rational map such that  $P/Q = r(\tilde{P}/\tilde{Q})$ , writing t = z/w, we have r(z/w) = F(z,w)/G(z,w), where F and G are homogeneous polynomials of degree equal to the degree of r. We finally conclude that

$$P(x,y) = F(ax + by, cx + dy)$$
 and  $Q(x,y) = G(ax + by, cx + dy)$ 

which says that  $\mathcal{F}$  is a homogeneous foliation.

If  $\mathcal{F}$  is a non-primitive foliation with primitive model  $\widetilde{\mathcal{F}}$  then, in the affine plane  $\mathbb{C}^2$ , the singular points for  $\mathcal{F}$  and for  $\widetilde{\mathcal{F}}$  are the same. In fact, with the notation of (7), we know that  $P(x,y) = S(\widetilde{P}(x,y), \widetilde{Q}(x,y))$  and  $Q(x,y) = T(\widetilde{P}(x,y), \widetilde{Q}(x,y))$ . Evidently, the common zeroes of  $\widetilde{P}$  and  $\widetilde{Q}$  are zeroes of both P and Q, which gives  $\operatorname{Sing}(\widetilde{\mathcal{F}})_{|\mathbb{C}^2} \subset \operatorname{Sing}(\mathcal{F})_{|\mathbb{C}^2}$ . Reciprocally, the existence of a point  $(x_0, y_0)$  in  $\mathbb{C}^2$  which is singular for  $\mathcal{F}$  but not for  $\widetilde{\mathcal{F}}$  would imply the existence of a common factor for S(z, w) and T(z, w). Thus we actually have  $\operatorname{Sing}(\widetilde{\mathcal{F}})_{|\mathbb{C}^2} = \operatorname{Sing}(\mathcal{F})_{|\mathbb{C}^2}$ .

**Proposition 2.** Let  $\mathcal{F}$  be a non-primitive foliation having  $\widetilde{\mathcal{F}}$  as primitive model and m as the degree of ramification. If  $p \in \mathbb{C}^2$  then

$$\mu_p(\mathcal{F}) = m^2 \mu_p(\widetilde{\mathcal{F}}).$$

*Proof.* We keep the notation of (7). We consider the following maps from  $\mathbb{C}^2$  to  $\mathbb{C}^2$ :

$$\begin{cases} \Phi(x,y) = (P(x,y),Q(x,y)),\\ \widetilde{\Phi}(x,y) = (\widetilde{P}(x,y),\widetilde{Q}(x,y)),\\ H(z,w) = (S(u,v),T(u,v)). \end{cases}$$

We have  $\Phi = H \circ \tilde{\Phi}$ . We first remark that the Milnor number of the vector field  $P\partial/\partial x + Q\partial/\partial y$ at a singularity p is the number of pre-images of  $\Phi = (P, Q)$  lying near p of any point q sufficiently near  $(0,0) \in \mathbb{C}^2$ . The result follows by noticing that, since S and T are homogeneous of degree

 $\square$ 

*m* and without common factors, the Milnor number of  $S\partial/\partial u + T\partial/\partial v$  at (0,0) is  $m^2$  (see [1], section 2).

**Corollary 1.** If  $\mathcal{F}$  is a foliation having three non-aligned singularities each of them having the property that its Milnor number is not divisible by some  $m^2$ , where  $m \in \mathbb{Z}$  and  $m \geq 2$ . Then  $\mathcal{F}$  is a primitive foliation. In particular, if  $\mathcal{F}$  has three non-aligned non-degenerate singularities, then  $\mathcal{F}$  is primitive.

**Corollary 2.** Let  $\mathcal{F}$  be a foliation having only non-degenerate singularities. Then  $\mathcal{F}$  is primitive.

*Proof.* Since all singularities of  $\mathcal{F}$  have Milnor number 1, the above corollary implies that all singularities of  $\mathcal{F}$  would lie in  $L_{\infty}$  if  $\mathcal{F}$  were non-primitive. Summing up their Milnor numbers we have  $\sum_{p \in L_{\infty}} \mu_p(\mathcal{F}) = d^2 + d + 1$ , where d is the degree of  $\mathcal{F}$ . If  $L_{\infty}$  were  $\mathcal{F}$ -invariant, we would have  $\sum_{p \in L_{\infty}} \mu_p(\mathcal{F}, L_{\infty}) = d + 1$ , which leads to a contradiction since  $\mu_p(\mathcal{F}) = \mu_p(\mathcal{F}, L_{\infty}) = 1$  for a non-degenerate singularity. If  $L_{\infty}$  were non-invariant, then  $\sum_{p \in L_{\infty}} \tau_p(\mathcal{F}, L_{\infty}) = d$ , which is a contradiction since, when  $p \in \text{Sing}(\mathcal{F})$  is non-degenerate, it holds  $\tau_p(\mathcal{F}, L_{\infty}) = \mu_p(\mathcal{F}) = 1$ .  $\Box$ 

**Corollary 3.** Let  $\mathcal{F}ol(d)$  be the space of foliations of degree d in  $\mathbb{P}^2$ . Then the set of primitive foliations contain a non-empty Zariski open set.

# 4. The study of the singularities on $L_{\infty}$

We have seen in the previous section that a non-primitive foliation  $\mathcal{F}$  and its primitive model  $\widetilde{\mathcal{F}}$  have the same singularities in the affine plane  $\mathbb{C}^2$ , and its Milnor numbers are related by Proposition 2. The objective of this section is to explore the consequences of this fact to the singularities of  $\mathcal{F}$  and  $\widetilde{\mathcal{F}}$  that lie over  $L_{\infty}$ .

Let us consider a non-primitive foliation  $\mathcal{F}$  of degree  $d_0$  having a primitive model  $\widetilde{\mathcal{F}}$  of degree  $\tilde{d}_0$ . We denote the affine degrees of  $\mathcal{F}$  and  $\widetilde{\mathcal{F}}$  respectively by d and  $\tilde{d}$ . By summing up Milnor numbers we get

$$\begin{split} \sum_{\mathbb{P}^2} \mu_p(\mathcal{F}) &= \sum_{\mathbb{C}^2} \mu_p(\mathcal{F}) + \sum_{L_{\infty}} \mu_p(\mathcal{F}) \\ &= m^2 \sum_{\mathbb{C}^2} \mu_p(\widetilde{\mathcal{F}}) + \sum_{L_{\infty}} \mu_p(\mathcal{F}) \\ &= m^2 \left( \sum_{\mathbb{P}^2} \mu_p(\widetilde{\mathcal{F}}) - \sum_{L_{\infty}} \mu_p(\widetilde{\mathcal{F}}) \right) + \sum_{L_{\infty}} \mu_p(\mathcal{F}) \end{split}$$

thus, using (5), we obtain

$$\sum_{L_{\infty}} \mu_p(\mathcal{F}) - m^2 \sum_{L_{\infty}} \mu_p(\widetilde{\mathcal{F}}) = \sum_{\mathbb{P}^2} \mu_p(\mathcal{F}) - m^2 \sum_{\mathbb{P}^2} \mu_p(\widetilde{\mathcal{F}})$$
$$= (d_0^2 + d_0 + 1) - m^2 (\tilde{d_0}^2 + \tilde{d_0} + 1).$$
(8)

The values of  $d_0$  and  $\tilde{d}_0$  in terms of the affine degrees d and  $\tilde{d}$  depend only on the fact of  $L_{\infty}$  being  $\mathcal{F}$ -invariant or not. We consider three cases:

<u>1st case</u>:  $L_{\infty}$  is  $\mathcal{F}$ -invariant but not  $\mathcal{F}$ -invariant.

We have  $d_0 = d - 1$  and  $\tilde{d}_0 = \tilde{d}$  and, putting this in equation (8),

$$\sum_{L_{\infty}} \mu_p(\mathcal{F}) - m^2 \sum_{L_{\infty}} \mu_p(\widetilde{\mathcal{F}}) = (d^2 - d + 1) - m^2(\tilde{d}^2 + \tilde{d} + 1)$$
$$= ((m\tilde{d})^2 - m\tilde{d} + 1) - m^2(\tilde{d}^2 + \tilde{d} + 1)$$
$$= -m^2\tilde{d} - m\tilde{d} - m^2 + 1.$$
(9)

This allows us to conclude the following:

**Proposition 3.** Let  $\mathcal{F}$  be a non-primitive foliation. Then  $\mathcal{F}$  has some singularity in  $L_{\infty}$ .

*Proof.* If  $L_{\infty}$  is  $\mathcal{F}$  invariant then formula (4) implies that it must contain some singularity. Suppose now that  $L_{\infty}$  is not invariant by  $\mathcal{F}$ . By linear equivalence, we can suppose that  $\widetilde{\mathcal{F}}$  leaves  $L_{\infty}$  invariant. If  $\operatorname{Sing}(\mathcal{F}) \cap L_{\infty} = \emptyset$  then  $\sum_{L_{\infty}} \mu_p(\mathcal{F}) = 0$ . The above formula gives

$$-m^2 \sum_{L_{\infty}} \mu_p(\tilde{\mathcal{F}}) = -m^2 \tilde{d} - m\tilde{d} - m^2 + 1.$$

Thus, m would be a divisor of the right side of the equation, which is absurd.

Suppose now that  $L_{\infty}$  is  $\widetilde{\mathcal{F}}$ -invariant and that  $\sum_{L_{\infty}} \mu_p(\widetilde{\mathcal{F}}) = \tilde{d}_0 + 1 = \tilde{d} + 1$ . In this case, expression (9) reads

$$\sum_{L_{\infty}} \mu_p(\mathcal{F}) - m^2(\tilde{d} + 1) = -m^2\tilde{d} - m\tilde{d} - m^2 + 1,$$

which implies

$$\sum_{L_{\infty}} \mu_p(\mathcal{F}) = -m\tilde{d} + 1.$$

This is a contradiction, since the right side is negative. We get the following conclusion:

**Proposition 4.** Let  $\mathcal{F}$  be a non-primitive foliation having a primitive model  $\widetilde{\mathcal{F}}$  leaving  $L_{\infty}$  invariant. Suppose that  $\sum_{L_{\infty}} \mu_p(\widetilde{\mathcal{F}}) = \tilde{d} + 1$ , where  $\tilde{d} = \deg(\widetilde{\mathcal{F}})$ . Then  $L_{\infty}$  is  $\mathcal{F}$ -invariant. In particular, if all singularities of  $\widetilde{\mathcal{F}}$  in  $L_{\infty}$  are non-degenerate, then  $L_{\infty}$  is  $\mathcal{F}$ -invariant.

In the situation of the Proposition 4, relation (4) reads  $\sum_{L_{\infty}} \mu_p(\tilde{\mathcal{F}}, L_{\infty}) = \tilde{d} + 1$ . Thus, the hypothesis  $\sum_{L_{\infty}} \mu_p(\tilde{\mathcal{F}}) = \tilde{d} + 1$  is a condition of minimality on the Milnor numbers of  $\tilde{\mathcal{F}}$  over  $L_{\infty}$ , as explained in the next result:

**Proposition 5.** Let  $\mathcal{F}$  be a germ of foliation having a singularity at  $p \in \mathbb{C}^2$  and let L be a germ of smooth separatrix at p. Then  $\mu_p(\mathcal{F}, L) \leq \mu_p(\mathcal{F})$ . Furthermore, equality occurs if and only if one of the two alternatives holds:

- (i) p is a non-degenerate singularity of  $\mathcal{F}$ ;
- (ii) p is a saddle-node having L as its weak separatrix.

*Proof.* Suppose that  $\mathcal{F}$  is induced at p by a local vector field  $P\partial/\partial x + Q\partial/\partial y$ , where  $P, Q \in \mathcal{O}_p$ . Let us denote  $\mu_p(P,Q) := \mu_p(\mathcal{F})$ . For a vector field  $P\partial/\partial x + Q_1Q_2\partial/\partial y$ , where  $Q_1, Q_2 \in \mathcal{O}_p$ , we have  $\mu_p(P,Q_1Q_2) = \mu_p(P,Q_1) + \mu_p(P,Q_2)$  (see [1]). Let us suppose that the separatrix L has equation y = 0, so that  $\mathcal{F}$  is induced by a vector field of the form  $P\partial/\partial x + yQ_1\partial/\partial y$  for some  $Q_1 \in \mathcal{O}_p$ . Thus

$$\mu_p(\mathcal{F}) = \mu_p(P, yQ_1) = \mu_p(P, y) + \mu_p(P, Q_1) = \mu_p(\mathcal{F}, L) + \mu_p(P, Q_1),$$

where we used that  $\mu_p(\mathcal{F}, L) = \mu_p(P, y)$ . The result follows by noticing that  $\mu_p(P, Q_1) \ge 0$ . Now, equality holds if and only if  $\mu_p(P, Q_1) = 0$ . This means that the vector field  $P\partial/\partial x + Q_1\partial/\partial y$ 

is non-singular at p. Since P(p) = 0 we must have  $Q_1(p) \neq 0$ . This gives at least one non-zero eigenvalue for  $P\partial/\partial x + Q\partial/\partial y$ , which implies (i) or (ii). Reciprocally, if p is a non-degenerate singularity, then  $\mu_p(\mathcal{F}) = \mu_p(\mathcal{F}, L) = 1$ . In the case of a saddle-node having y = 0 as weak separatrix, after an analytic change of coordinates, we may suppose that we have the normal form of the saddle node:  $x^{k+1}\partial/\partial x + y(1 + \lambda x^k)\partial/\partial y$ , where  $\lambda \in \mathbb{C}$  and  $k \geq 0$ . Its easy to see that  $\mu_p(\mathcal{F}) = \mu_p(\mathcal{F}, L) = k + 1$ .

<u>2nd case</u>:  $L_{\infty}$  is  $\mathcal{F}$ -invariant but not  $\widetilde{\mathcal{F}}$ -invariant. We have  $d_0 = d$  and  $\tilde{d}_0 = \tilde{d} - 1$ . Equation (8) gives

$$\sum_{L_{\infty}} \mu_p(\mathcal{F}) - m^2 \sum_{L_{\infty}} \mu_p(\widetilde{\mathcal{F}}) = (d^2 + d + 1) - m^2((\tilde{d} - 1)^2 + \tilde{d})$$
  
=  $((m\tilde{d})^2 + m\tilde{d} + 1) - m^2(\tilde{d}^2 - \tilde{d} + 1)$   
=  $m^2(\tilde{d} - 1) + m\tilde{d} + 1.$ 

Let us suppose that the sum of Milnor numbers of  $\mathcal{F}$  at  $L_{\infty}$  is minimal, that is  $\sum_{L_{\infty}} \mu_p(\mathcal{F}) = d_0 + 1 = d + 1$ . This gives

$$-m^2 \sum_{L_{\infty}} \mu_p(\widetilde{\mathcal{F}}) = m^2(\widetilde{d}-1).$$

This implies that  $\tilde{d} = 1$  and  $\sum_{L_{\infty}} \mu_p(\tilde{\mathcal{F}}) = 0$ , that is,  $\tilde{\mathcal{F}}$  is the radial foliation. Thus,  $\mathcal{F}$  is a homogeneous foliation. As commented on Example 1, for a homogeneous foliation  $\mathcal{F}$  of degree  $d_0$ , it holds  $\sum_{L_{\infty}} \mu_p(\mathcal{F}) = d_0 + 1$ . We can thus state the following result:

**Proposition 6.** Let  $\mathcal{F}$  be a non-primitive foliation of degree  $d_0$  which leaves  $L_{\infty}$  invariant, having a primitive model  $\widetilde{\mathcal{F}}$  for which  $L_{\infty}$  is non-invariant. It holds  $\sum_{L_{\infty}} \mu_p(\mathcal{F}) = d_0 + 1$  if and only if  $\mathcal{F}$  is a homogeneous foliation and, in this case,  $\widetilde{\mathcal{F}}$  is the radial foliation.

<u>3rd case</u>:  $L_{\infty}$  is both  $\mathcal{F}$ -invariant and  $\widetilde{\mathcal{F}}$ -invariant. We have  $d_0 = d$  and  $\tilde{d}_0 = \tilde{d}$ , thus

$$\sum_{L_{\infty}} \mu_p(\mathcal{F}) - m^2 \sum_{L_{\infty}} \mu_p(\widetilde{\mathcal{F}}) = (d^2 + d + 1) - m^2(\tilde{d}^2 + \tilde{d} + 1)$$
$$= ((m\tilde{d})^2 + m\tilde{d} + 1) - m^2(\tilde{d}^2 + \tilde{d} + 1)$$
$$= -m^2\tilde{d} + m\tilde{d} - m^2 + 1.$$

Suppose now that  $\sum_{L_{\infty}} \mu_p(\widetilde{\mathcal{F}}) = \tilde{d}_0 + 1 = \tilde{d} + 1$ . This is equivalent to

$$\sum_{L_{\infty}} \mu_p(\mathcal{F}) - m^2(\tilde{d}+1) = -m^2\tilde{d} + m\tilde{d} - m^2 + 1,$$

which in its turn is equivalent to

$$\sum_{L_{\infty}} \mu_p(\mathcal{F}) = m\tilde{d} + 1 = d + 1 = d_0 + 1.$$

We reach the following conclusion:

**Proposition 7.** Let  $\mathcal{F}$  be a non-primitive foliation of degree  $d_0$  having a primitive model  $\widetilde{\mathcal{F}}$  of degree  $\tilde{d}_0$ . Suppose that both foliations leave  $L_{\infty}$  invariant. Then  $\sum_{L_{\infty}} \mu_p(\widetilde{\mathcal{F}}) = \tilde{d}_0 + 1$  if and only if  $\sum_{L_{\infty}} \mu_p(\mathcal{F}) = d_0 + 1$ .

This results shows an interesting behavior concerning non-primitive foliations and their primitive models. If  $\mathcal{F}$  is a non-primitive foliation having  $\widetilde{\mathcal{F}}$  as primitive model, both of them having the line at infinity invariant, then the passage from  $\widetilde{\mathcal{F}}$  to  $\mathcal{F}$  degenerates all singularities in the affine plane  $\mathbb{C}^2$ , in the sense that  $\mu_p(\mathcal{F}) = m^2 \mu_p(\widetilde{\mathcal{F}})$  for every  $p \in Sing(\mathcal{F})_{|\mathbb{C}^2} = Sing(\widetilde{\mathcal{F}})_{|\mathbb{C}^2}$ , where *m* is the degree of ramification. On the other hand, this process does not degenerate the singularities of  $\widetilde{\mathcal{F}}$  lying in  $L_{\infty}$ , in the sense that, considering Proposition 5, if all singularities of  $\widetilde{\mathcal{F}}$  in  $L_{\infty}$  are either non-degenerate or saddle-nodes with weak separatrix over  $L_{\infty}$ , then the same property holds for the singularities of  $\mathcal{F}$  in  $L_{\infty}$ .

Acknowledgements. The authors thank the Universidad de Valladolid, Spain, for hospitality.

# References

- César Camacho, Alcides Lins Neto, and Paulo Sad. Topological invariants and equidesingularization for holomorphic vector fields. J. Differential Geom., 20(1):143–174, 1984.
- [2] Antonio Campillo and Jorge Olivares. Polarity with respect to a foliation and Cayley-Bacharach theorems. J. Reine Angew. Math., 534:95–118, 2001. DOI: 10.1515/crll.2001.036
- [3] Ludger Kaup and Burchard Kaup. Holomorphic functions of several variables, volume 3 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, 1983.
- [4] Rogério S. Mol. The polar curve of a foliacion on  $\mathbb{P}^2$ . To appear in the Annales de la Faculté des Sciences de Toulouse.

Gilberto D. Cuzzuol Departamento de Matemática Universidade Federal de Itajubá Rua São Paulo, 377 35900-373 - Itabira - MG BRAZIL gilcuzzuol@unifei.edu.br

Rogério S. Mol Departamento de Matemática Universidade Federal de Minas Gerais Av. Antônio Carlos, 6627 C.P. 702 30123-970 - Belo Horizonte - MG BRAZIL rsmol@mat.ufmg.br