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ON A NEWTON FILTRATION FOR FUNCTIONS ON A CURVE

SINGULARITY

W. EBELING AND S. M. GUSEIN-ZADE

Abstract. In a previous paper, there was defined a multi-index filtration on the ring of
functions on a hypersurface singularity corresponding to its Newton diagram generalizing (for

a curve singularity) the divisorial one. Its Poincaré series was computed for plane curve

singularities non-degenerate with respect to their Newton diagrams. Here we use another
technique to compute the Poincaré series for plane curve singularities without the assumption

that they are non-degenerate with respect to their Newton diagrams. We show that the
Poincaré series only depends on the Newton diagram and not on the defining equation.

Introduction

In [2, 3], there were defined two multi-index filtrations on the ring OCn,0 of germs of holo-
morphic functions in n variables associated to a Newton diagram Γ in Rn and to a germ of an
analytic function f : (Cn, 0)→ (C, 0) with this Newton diagram. We assumed that the function
f was non-degenerate with respect to its Newton diagram Γ. These filtrations are essentially
filtrations on the ring OV,0 = OCn,0/(f) of germs of functions on the hypersurface singularity
V = {f = 0}. They correspond to the quasihomogeneous valuations on the ring OCn,0 defined
by the facets of the diagram Γ. These facets correspond to some components of the exceptional
divisor of a toric resolution of the germ f constructed from the diagram Γ. Such a compo-
nent defines the corresponding divisorial valuation on the ring OCn,0. For n > 3 (and for a
Γ-non-degenerate f) these valuations induce divisorial valuations on the ring OV,0 and define
the corresponding multi-index filtration on it. The filtration defined in [2] was expected to be
a certain “simplification” of the divisorial one. This appeared not to be the case. For example,
a general formula for the Poincaré series of this filtration is not known even for the number of
variables n = 2. For Newton diagrams of special type, A. Lemahieu identified this filtration
with a so called embedded filtration on OV,0 [7]. In [7], a formula for the Poincaré series of the
embedded filtration for a hypersurface singularity was given. H. Hamm studied the embedded
filtration and the corresponding Poincaré series for complete intersection singularities [6].

In [3], there was given an “algebraic” definition of the divisorial valuation corresponding to
a Newton diagram (for n > 3) somewhat similar to the definition in [2]. Roughly speaking,
the difference consists in using the ring OCn,0[x−1

1 , . . . , x−1
n ] instead of OCn,0. For n = 2, this

definition does not give, in general, a valuation, but an order function (see the definition below).
For a Γ-non-degenerate f ∈ OC2,0, this order function was described as a “generalized divisorial
valuation” defined by the divisorial valuations corresponding to all the points of intersection

of the resolution (normalization) Ṽ of the curve V with the corresponding component of the
exceptional divisor. This permitted to apply the technique elaborated in [1] and to compute
the corresponding Poincaré series. (This technique has no analogue which could be applied to
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grams, Poincaré series. AMS 2010 Math. Subject Classification: 32S05, 14M25, 16W70.

http://dx.doi.org/10.5427/jsing.2012.4k


ON A NEWTON FILTRATION FOR FUNCTIONS ON A CURVE SINGULARITY 181

degenerate f , or to the case n > 2, or to the filtration defined in [2].) In this case the Poincaré
series depends only on the Newton diagram Γ and does not depend on the function f with
Γf = Γ.

The definitions in [2] and [3] make also sense for functions f degenerate with respect to their
Newton diagrams. Here we compute the Poincaré series of the filtration introduced in [3] for
n = 2 directly from the definition without the assumption that f is non-degenerate with respect
to the Newton diagram. We show that the answer is the same as in [3, Corollary 1] for non-
degenerate f . Thus, for n = 2, the Poincaré series of this filtration depends only on the Newton
diagram Γ. One can speculate that the same holds for n > 3 and for the Poincaré series of the
filtration defined in [2].

We hope that some elements of the technique used here can be applied to the case n > 3
and/or to the filtration defined in [2] as well.

One motivation to study (multi-variable) Poincaré series of filtrations comes from the fact
that they are sometimes related or even coincide with appropriate monodromy zeta functions or
with Alexander polynomials (see e.g. [1]). We show that the obtained formula for the Poincaré
series has a relation to the (multi-variable) Alexander polynomial of a collection of functions.

1. Filtrations associated to Newton diagrams

Let (V, 0) be a germ of a complex analytic variety and let OV,0 be the ring of germs of
holomorphic functions on (V, 0). A map v : OV,0 → Z>0 ∪ {+∞} is an order function on
OV,0 if v(λg) = v(g) for a non-zero λ ∈ C and v(g1 + g2) > min{v(g1), v(g2)}. (If, moreover,
v(g1g2) = v(g1) + v(g2), the map v is a valuation on OV,0.) A collection {v1, v2, . . . , vr} of order
functions on OV,0 defines a multi-index filtration on OV,0:

(1) J(υ) := {g ∈ OV,0 : v(g) > υ}
for υ = (υ1, . . . , υr) ∈ Zr>0, v(g) = (v1(g), . . . , vr(g)), υ′ = (υ′1, . . . , υ

′
r) > υ′′ = (υ′′1 , . . . , υ

′′
r )

iff υ′i > υ′′i for all i = 1, . . . , r. (It is convenient to assume that the equation (1) defines the
subspaces J(υ) ⊂ OV,0 for all υ ∈ Zr.) The Poincaré series P{vi}(t) (t = (t1, . . . , tr)) of the
filtration (1) can be defined as

(2) P{vi}(t) :=

(∑
υ∈Zr dim(J(υ)/J(υ + 1))tυ

)∏r
i=1(ti − 1)

(t1t2 · · · tr − 1)
,

where 1 = (1, . . . , 1) ∈ Zr, tυ = tυ1
1 · · · tυrr (see e.g. [1]; it is defined when the dimensions of all

the factor spaces J(υ)/J(υ + 1) are finite). In [1] it was explained that the Poincaré series (2)
is equal to the integral with respect to the Euler characteristic

(3) P{vi}(t) =

∫
POV,0

tv(g)dχ

over the projectivization POV,0 of the space OV,0. (In the integral, t+∞i has to be assumed to
be equal to zero.)

Let f ∈ OCn,0 be a function germ with the Newton diagram Γ = Γf ⊂ Rn, V := {f = 0}. Let
γi, i = 1, . . . , r, be (all) the facets of the diagram Γ and let `i(k̄) = ci be the reduced equation
of the hyperplane containing the facet γi. One has `i(k̄) =

∑n
j=1 `ijkj (k̄ = (k1, . . . , kn)), where

`ij are positive integers, gcd (`i1, . . . , `in) = 1.

For g ∈ OCn,0[x−1
1 , . . . , x−1

n ], g =
∑
k̄∈Zn

ak̄x̄
k̄ (x̄ = (x1, . . . , xn)), let supp g := {k̄ ∈ Zn : ak̄ 6= 0}

and let

ui(g) := min
k̄:ak̄ 6=0

`i(k̄) .
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One can see that ui is a valuation on OCn,0 ⊂ OCn,0[x−1
1 , . . . , x−1

n ]. For a Newton diagram Λ in
Rn, let

ui(Λ) := min
k̄∈Λ

`i(k̄).

(It is also equal to ui(g) for any germ g with the Newton diagram Λ.) Let gγi(x̄) :=
∑

k̄:`i(k̄)=ui(g)

ak̄x̄
k̄.

The following two collections of order functions on OCn,0 corresponding to the pair (Γ, f) were
defined in [2] and [3] respectively:

v′i(g) := sup
h∈OCn,0

ui(g + hf) ,(4)

v′′i (g) := sup
h∈OCn,0[x−1

1 ,...,x−1
n ]

ui(g + hf) .(5)

(v′i and v′′i are, in general, not valuations, at least when n = 2 or when f is degenerate with
respect to its Newton diagram Γ.) They can be considered as order functions on the ring
OV,0 = OCn,0/(f) as well. (These order functions and moreover the corresponding Poincaré
series are, in general, different.)

Assume that the function f is non-degenerate with respect to its Newton diagram Γ and let
p : (X,D) → (Cn, 0) be a toric resolution of f corresponding to the Newton diagram Γ. The
facets γ1, . . . , γr of Γ correspond to some components (say, E1, . . . , Er) of the exceptional

divisor D. Let Ṽ be the strict transform of the hypersurface singularity V (it is a smooth

complex manifold) and let Ei := Ṽ ∩ Ei, i = 1, . . . , r.

For n > 3, the set Ei is an irreducible component of the exceptional divisor D = D ∩ Ṽ
of the resolution p|Ṽ : (Ṽ ,D) → (V, 0). The divisorial valuation vEi on OV,0 defined by this

component coincides with v′′i : see [3]. For n = 2, the set Ei is, in general, reducible (if the

integer length si of the facet (edge) γi is greater than 1). Let Ei =
si⋃
j=1

E(j)
i be the decomposition

into irreducible components (E(j)
i are points on the curve Ṽ ). One can show that in this case

v′′i (g) = min
j
vE(j)

i
(g), where vE(j)

i
are the corresponding divisorial valuations on OV,0. This order

function v′′i can be regarded as a generalized divisorial valuation.

2. The Poincaré series

Let Γ be a Newton diagram in R2 with the facets (edges) γ1, . . . , γr and let f be a function

germ (C2, 0) → (C, 0) with the Newton diagram Γ. One can see that f = xayb
r∏
i=1

fi, where fi

is such that fγi = λix̄
k̄i(fi)γi for certain λi ∈ C∗ and k̄i ∈ Z2

>0. The Newton diagram Γi of the

germ fi consists of one segment congruent (by a shift; in particular, parallel) to the facet γi with
the vertices on the coordinate lines in R2.

Let M i := u(Γi), i.e. M i = (Mi1, . . . ,Mir), where Mij := uj(Γi). (One can see that
M i = simi in the notations of [3].)

Theorem 1. One has

(6) P{v′′i }(t) =

r∏
i=1

(1− tMi)

(1− tu(x))(1− tu(y))
.

Corollary 1. For the number of variables n = 2, the Poincaré series P{v′′i }(t) depends only on
the Newton diagram Γ and does not depend on f with Γf = Γ.



ON A NEWTON FILTRATION FOR FUNCTIONS ON A CURVE SINGULARITY 183

For the proof of Theorem 1 we need some auxiliary statements. We first introduce some
notations.

For a Newton diagram Λ in R2, let ΣΛ be the corresponding Newton polygon: ΣΛ :=⋃̄
q∈Λ

(
q̄ + R2

>0

)
. Let OΛ be the set of functions g ∈ OC2,0 with the Newton diagram Γg = Λ.

For υ ∈ Zr>0, let OΛ
υ := {g ∈ OΛ : v′′(g) = υ}. The set OC2,0 \ {0} is the disjoint union of the

sets OΛ over all diagrams Λ. According to (3) one has

(7) P{v′′i }(t) =
∑
Λ

∫
POΛ

tv
′′(g)dχ .

For g ∈ OΛ, one has v′′i (g) > ui(Λ). We shall first show that the integrals in (7) can be
restricted only to functions g ∈ POΛ with v′′(g) = u(Λ).

Proposition 1. For a Newton diagram Λ in R2, let υ ∈ Zr>0 be such that υ > u(Λ), i.e.

υi > ui(Λ) for all i = 1, . . . , r and υi > ui(Λ) for some i. Then the set POΛ
υ has Euler

characteristic equal to zero.

Remark. The direct analogue of this proposition does not hold for the filtration defined by
the order functions {v′i}. As an example one can take f(x, y) = y5 + xy2 + x2y + x5 whose
Newton diagram Γ has the set of vertices {(0, 5), (1, 2), (2, 1), (5, 0)}. One has `1(k̄) = 3kx + ky,
`2(k̄) = kx + ky, `3(k̄) = kx + 3ky. Let Λ be the Newton diagram with the set of vertices
{(0, 5), (1, 2)}. One has u(Λ) = (5, 3, 7). Let us take υ = (7, 3, 7). One can see that for the order
functions {v′i} the set OΛ

υ consists of the germs g(x, y) =
∑
aijx

iyj from OΛ with a05 = a12 6= 0

and a06 = a13 = 0. This gives χ(POΛ
υ ) = 1. For the order functions {v′′i } the set OΛ

υ consists of

the germs with a05 = a12 6= 0, a06 = a13 = 0 and a07 − a14 + a21 6= 0. This gives χ(POΛ
υ ) = 0 in

accordance with Proposition 1.

For the proof of Proposition 1 we need two lemmas.
Let OΛ

υ be non-empty. For g ∈ OΛ with v′′(g) = υ and for i = 1, . . . , r, one can find

h(= hi) ∈ OC2,0[x−1, y−1] such that the Newton diagram of g+hf lies in the (closed) half-plane
Hi := {k̄ : `i(k̄) > υi}, but there are no h for which the Newton diagram of g + hf lies in the
open half-plane {k̄ : `i(k̄) > υi}. Let Λ∗ be the union of the compact edges of the (infinite)

polygon Σ∗Λ :=

(
r⋂
i=1

Hi

)
∩ΣΛ, where ΣΛ is the Newton polygon corresponding to Λ. (Λ∗ is not,

in general, a Newton diagram since it may have non-integral vertices. Nevertheless we shall use
the name “diagram” for it.)

Lemma 1. In the situation described above, there exists an index i (1 6 i 6 r) such that Λ∗

has an edge δi parallel to γi and (strictly) longer than γi.

Proof. We shall prove that there exists an edge of the diagram Λ∗ which is (strictly) longer than
the edge of Λ parallel to it. This implies that this edge is parallel to a certain edge γi of the
diagram Γ and is longer than it. Since we assumed OΛ

υ being non-empty, all edges of Λ∗ are
parallel to edges of Λ. Let a0 < a1 < . . . < aσ be the kx-coordinates of all the vertices of Λ.
Let b0 6 b1 6 . . . 6 bσ be the kx-coordinates of the corresponding vertices of Λ∗, i.e. [bi−1, bi]
is the projection of the segment of Λ∗ parallel to the segment of Λ projected to [ai−1, ai] (bi−1

and bi may coincide). One can see that a0 = b0 and aσ 6 bσ. Then either bi = ai for all
i = 0, 1, . . . , σ or [ai−1, ai] ( [bi−1, bi] for some i ∈ {0, 1, . . . , σ}. But the first case cannot
happen since Λ∗ 6= Λ. �
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We shall also use the following generalized version of the division with remainder for Laurent
polynomials.

Lemma 2. Let p(z) and q(z) be Laurent polynomials in z. Assume that supp q has length s, i.e.

q(z) =
s∑
i=0

biz
d+i with b0 6= 0, bs 6= 0, and let d′ be an integer. Then the polynomial p(z) has a

unique representation of the form p(z) = q(z)a(z) + r(z) with r(z) =
s−1∑
i=0

ciz
d′+i .

Proof of Proposition 1. Let i be as in Lemma 1. Let the integer length of γi be equal to si.
Then the segment δi contains at least si integer points. Let Q1, . . . , Qsi be si consecutive
integer points on the segment δi. Let g ∈ OΛ be such that v′′(g) = υ (> u(Λ)) and let
g̃ = g + hf be a Laurent polynomial such that supp g̃ ⊂ Hi = {`i(k̄) > υi}. Lemma 2 implies
that g̃γi(x, y) = fγi(x, y)pi(x, y) + ri(x, y), where supp ri ⊂ {Q1, . . . , Qsi} and ri 6= 0 (otherwise
vi(g) > υi = ui(Λ

∗)). (Let us recall that supp fγi consists of si + 1 consecutive points on the
line containing γi.) Moreover the polynomial ri depends only on g and does not depend on the
choice of g̃ (i.e. on the choice of h).

One can see that all functions g′ of the form g + (λ − 1)ri with λ 6= 0 lie in OΛ and satisfy
the condition v′′i (g′) = v′′i (g). Thus the set POΛ

υ is fibred by C∗-families and therefore its Euler
characteristic is equal to zero. �

Proposition 1 implies that

(8) P{v′′i }(t) =
∑
Λ

∫
POΛ

u(Λ)

tv
′′(g)dχ .

Proposition 2. Suppose that a Newton diagram Λ contains an edge δ not congruent to any
edge of Γ, i.e. either not parallel to all the edges γi, or parallel to one of them, but of another
length. Then χ(POΛ

u(Λ)) = 0.

Proof. Assume first that the edge δ is either not parallel to all the edges γi, or it is parallel to
γi, but is shorter than γi. Let q̄ = (qx, qy) and q̄′ = (q′x, q

′
y), qx > q′x, be the vertices of the

edge δ and let Λ′ be the set of points k̄ in Λ with kx > qx. A function germ g ∈ OΛ
u(Λ) can be

represented as g1 + g2, where supp g1 ⊂ Λ′, supp g2 ⊂ ΣΛ \ Λ′. (Note that g1 6= 0 and g2 6= 0.)
One can see that all the functions of the form g1 + λg2 with λ 6= 0 lie in OΛ

u(Λ). Thus the set

POΛ
u(Λ) is fibred by C∗-families and therefore its Euler characteristic is equal to zero.

Now assume that the edge δ of the diagram Λ is parallel to γi and is longer than it. Let
q̄ = (qx, qy) and q̄′ = (q′x, q

′
y), qx > q′x, (respectively q̄0 = (q0x, q0y) and q̄′0 = (q′0x, q

′
0y), q0x > q′0x)

be the vertices of the edge δ (respectively of the edge γi) and let Λ′ be defined as above:

Λ′ = {k̄ ∈ Λ : kx > qx}. Let g(x̄) =
∑
ak̄x̄

k̄ ∈ OΛ
u(Λ), f(x̄) =

∑
ck̄x̄

k̄ (x̄ = (x, y)) and let

g1(x̄) = gΛ′(x̄)− aq̄x̄q̄ + (aq̄/cq̄0)fγi(x̄) · x̄q̄−q̄0 ,

where gΛ′(x̄) =
∑
k̄∈Λ′

ak̄x̄
k̄, g2 = g − g1. One has supp g1 ⊂ Λ′ ∪ (q̄, q̄′), supp g2 ⊂ ΣΛ \ Λ′,

fγi 6 | (g2)γi (in OC2,0[x−1, y−1]), where (q̄, q̄′) denotes the open line segment connecting the two

points. All the functions of the form g1 + λg2 with λ 6= 0 lie in OΛ
u(Λ). Thus the set POΛ

u(Λ) is

again fibred by C∗-families and therefore its Euler characteristic is equal to zero. �

Proposition 3. Let the Newton diagram Λ consist (only) of segments congruent to γi for i ∈
I ⊂ {1, . . . , r}. Then χ(POΛ

u(Λ)) = (−1)#I .
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Proof. For I = ∅, the statement is obvious. Let I 6= ∅. Let POΛ
i be the set of functions

g ∈ POΛ
u(Λ) with fγi |gγi (in OC2,0[x−1, y−1]). One has

POΛ
u(Λ) = POΛ \

⋃
i∈I

POΛ
i .

Therefore

(9) χ(POΛ
u(Λ)) = χ(POΛ) +

∑
I′⊂I,I′ 6=∅

(−1)#I′χ

(⋂
i∈I′

POΛ
i

)
.

Let q̄i, i = 0, 1, . . . ,#I, be the vertices of the diagram Λ. The set POΛ consists of functions
g(x̄) =

∑
ak̄x̄

k̄ with aq̄i 6= 0 for i = 0, 1, . . . ,#I and ak̄ = 0 for k̄ 6∈ ΣΛ. Its Euler characteristic
is equal to zero. Assume that I ′ ( I, I ′ 6= ∅. Let [q̄, q̄′] be an edge of Λ congruent to γi,
i ∈ I \ I ′ (q̄ = (qx, qy), q̄′ = (q′x, q

′
y), qx > q′y). Let Λ′ = {k̄ ∈ Λ : kx > qx}. For g ∈

⋂
i∈I′ POΛ

i ,
let g1(x̄) = gΛ′(x̄), g2 = g − g1. All the functions of the form g1 + λg2 with λ 6= 0 belong to⋂
i∈I′ POΛ

i . Thus
⋂
i∈I′ POΛ

i is fibred by C∗-families and therefore χ(
⋂
i∈I′ POΛ

i ) = 0.

Let fI(x̄) :=
∏
i∈I fi(x̄). The intersection

⋂
i∈I POΛ

i (the Euler characteristic of which cor-
responds to I ′ = I in (9)) consists of the functions g ∈ POC2,0 such that gΛ(x̄) = λx̄ā(fI)ΓfI

where ΓfI is the Newton diagram of fI , λ 6= 0 and x̄ā is a certain monomial. Therefore

χ

(⋂
i∈I

POΛ
i

)
= 1.

�

Proof of Theorem 1. Propositions 1 and 2 imply that

(10) P{v′′i }(t) =
∑
Λ

∫
POΛ

u(Λ)

tv
′′(g)dχ

where the sum runs over all diagrams Λ consisting only of edges congruent to some of the edges
γi of the diagram Γ. Let the edges of Λ be congruent to the edges γi with i ∈ I = I(Λ).
Proposition 3 implies that the summand in (10) corresponding to such a diagram Λ is equal to
(−1)#Itu(Λ). All the diagrams of this sort are obtained from the diagrams ΓI = ΓfI by shifts
by non-negative integral vectors k̄, i.e. Λ = k̄ + ΓI . One has u(Λ) = `(k̄) +

∑
i∈IM i. Therefore

P{v′′i }(t) =
∑
k̄∈Z2

>0

∑
I⊂{1,...,r}

(−1)#It`(k̄)+
∑

i∈I Mi

=

 ∑
k̄∈Z2

>0

t`(k̄)

 ·
 ∑
I⊂{1,...,r}

(−1)#It
∑

i∈I Mi



=

r∏
i=1

(1− tMi)

(1− tu(x))(1− tu(y))
.

�
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3. Relation with an Alexander polynomial

One can see that the equation (6) gives the Poincaré series P{v′′i }(t) as a finite product/ratio

of “cyclotomic” binomials of the form (1 − tM ) with M ∈ Zr>0. This looks similar to the
usual A’Campo type expressions for monodromy zeta functions or for Alexander polynomials
of algebraic links [4]. Here we shall describe a relation between the Poincaré series (6) and a
certain Alexander polynomial.

A notion of the multi-variable Alexander polynomial for a finite collection of germs of functions
on (Cn, 0) was defined in [8]: see Proposition 2.6.2 therein. (In [8] it is called the (multi-variable)
zeta function.) In a somewhat more precise form this definition can be found in [5]. (The
definition in [5] gives the one for a collection of functions if one considers the corresponding
principal ideals.)

As above, let Γ be a Newton diagram in R2 with the edges γ1, . . . , γr of integer lengths
s1, . . . , sr and let p : (X,D) → (C2, 0) be a toric modification of (C2, 0) corresponding to the

diagram Γ. For i = 1, . . . , r, let C̃i be a germ of a smooth curve on X transversal to the

component Ei of the exceptional divisor D. Let Ci = p(C̃i) be the image of C̃i in (C2, 0) (a
curvette corresponding to the component Ei) and let Li = Ci ∩S3

ε be the corresponding knot in
the 3 sphere S3

ε = S3
ε (0) for ε > 0 small enough. The curve Ci can be defined by an equation

gi = 0 where gi is a function germ (C2, 0) → (C, 0) with the Newton diagram consisting of one
segment parallel to γi, with (integer) length 1 and with the vertices on the coordinate lines.

Let ∆g(t) and ∆gs(t) be the Alexander polynomials of the collections of functions g =

(g1, . . . , gr) and gs = (gs11 , . . . , g
sr
r ) respectively. The polynomial ∆g(t) is the classical Alexan-

der polynomial ∆L(t) of the link L =
⋃
Li (see e.g. [4]). A one-variable analogue of ∆gs(t) is

considered in [4, I.5] as the Alexander polynomial of the multilink L(s) :=
⋃
siLi. One has

∆g(t) =

∏r
i=1(1− tmi)

(1− tu(x))(1− tu(y))
,

∆gs(t) =

∏r
i=1(1− tsmi)

(1− tu(x))(1− tu(y))
,

where smi = (s1m1i, s2m2i, . . . , srmri). The main result of [1] says that ∆g(t) = ∆L(t) coincides

with the Poincaré series of the filtration corresponding to the Newton diagram of the function∏r
i=1 gi.
Let the reduced Poincaré series of the filtration defined by {v′′i } be

P̃{v′′i }(t) := P{v′′i }(t)/P{ui}(t), where P{ui}(t) =
1

(1− tu(x))(1− tu(y))

is the Poincaré series of the filtration defined by the quasihomogeneous valuations {ui} on OC2,0.
One has

(11) P̃{v′′i }(t) =

r∏
i=1

(1− tsimi).

Let

∆̃gs(t) := ∆gs(t)/∆x
gs(t) ·∆y

gs(t)

where ∆x
gs(t) and ∆y

gs(t) are the Alexander polynomials of the sets of functions gs = {gs11 , . . . , g
sr
r }

restricted to the coordinate axes Cx and Cy respectively. One can regard ∆̃gs(t) as the Alexander
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polynomial of the set of functions gs restricted to the complex torus (C∗)2 ⊂ C2. One has

(12) ∆̃gs(t) =

r∏
i=1

(1− tsmi).

One can see that a relation between (11) and (12) can be described in the following way. Consider
products of r ordered cyclotomic binomials in r variables. Such a product

r∏
i=1

(1− tNi), N i = (Ni1, . . . , Nir),

can be described by the corresponding r× r-matrix N := (Nij). The transposition of the matrix
induces an involution on the set of products of this sort. One can see that this involution maps
the product (11) for the Poincaré series to the product (12) for the Alexander polynomial.
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