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KAHN’S CORRESPONDENCE AND COHEN–MACAULAY MODULES

OVER ABSTRACT SURFACE AND CURVE SINGULARITIES

VOLODYMYR GAVRAN

Abstract. We generalize Kahn’s correspondence between Cohen–Macaulay modules over
normal surface singularities over an algebraically closed field and vector bundles over some

projective curves to abstract surface singularities, which need not be algebras over a field. As

a consequence, we also generalize to the abstract case the Drozd–Greuel criterion for tameness
of curve singularities [4].

1. Introduction

In [7] Kahn established a connection between the categories of (maximal) Cohen–Macaulay
modules over normal surface singularities and vector bundles over a special divisor on the ex-
ceptional locus of the resolution of this singularity. In the case of arbitrary normal surface
singularity Kahn’s conditions from [7, Theorem 1.4] are quite cumbersome and difficult to deal
with. However, in the case of minimally elliptic singularities there is a simple and explicit de-
scription of this connection. Kahn himself [7] and Drozd, Greuel and Kashuba [6] used this
result to obtain a classification of Cohen–Macaulay modules over simple elliptic and cusp sin-
gularities, to establish a tame-wild criterion for minimally elliptic singularities, as well to study
Cohen–Macaulay modules over some curve singularities. In particular, in [6] it is obtained a
classification of Cohen–Macaulay modules over the curve singularities of type Tpq, which gave
a new proof that they are Cohen–Macaulay tame. Previously this result was obtained quite
implicitly using deformations and semicontinuity theorems [4].

In this paper we extend these results to a more general situation. Namely, we consider abstract
surface and curve singularities, that is complete noetherian rings of Krull dimension 2 or 1, which
need not be algebras over an algebraically closed field or over a field at all. We establish that
Kahn’s results hold for this situation too, though some details of the proof change. Using them,
we also generalize the tame-wild criteria from [4, 6] to the abstract situation. Unfortunately,
the case when the residue field is of characteristic 2 remains unconsidered, since we have to use
the suspension trick of Knörrer [10] which does not work in this case. We also have to change
the definition of Tpq singularities using a parametrization description instead of equations. It is
necessary since the classification of such singularities in positive characteristic, moreover, in the
abstract situation is still inaccessible, though some important results have been obtained in [2].
Note that in the abstract case one cannot use the deformation arguments from [4], since there
are no appropriate results about semicontinuity (in the paper [3] only the case of algebras over
an algebraically closed field is considered and this restriction is unavoidable there).

2. The result of Kahn

We are going to generalize the results of Kahn [7] in the following situation. Let (X,x)
be a spectrum of a local complete and normal noetherian ring (R,m) of Krull dimension 2
with maximal ideal m and residue field k. We call such schema an (abstract) normal surface
singularity, since in general the ring R is not supposed to be an algebra over the field. Such
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singularity is isolated, that means its closed point x, which corresponds to m, is a unique singular
point of X. It is known from [11] that there exists a resolution of (X,x), that is a birational

projective morphism π : (X̃, E) → (X,x), where X̃ is smooth and π induces an isomorphism

X̃ \ E ' X \ {x}, where E = π−1(x)red is an exceptional locus. The resolution is obtained by
finite sequence X = X0 ← X1 ← X2 ← ...← Xn where X is normalization of X and each Xi+1

is obtained from Xi by blowing up all the singular points of Xi and normalizing the resulting

surface X̃ = Xn. Put E =
l⋃

i=1

Ei, where Ei are the irreducible components of E (all of them are

projective curves over k). Note that X̃ is minimal resolution if and only if there is no component
Ei which is a smooth rational curve with self-intersection index Ei · Ei = −1. Recall some
necessary definitions we need (for details cf. [7]).

Definition 1. A module M over R is called reflexive if M∨∨ 'M , where M∨ = HomR(M,R).
In our case such modules coincide with maximal Cohen-Macaulay modules over R and we denote
by MCM(X) the category of reflexive R-modules.

A locally free sheaf F on X̃ is called full if F ' (π∗M)∨∨ for some M ∈ MCM(X).

An effective divisor Z > 0 on X̃ is called a reduction cycle if
(i) OZ(−Z) is generically generated by global sections (i.e. generated outside a finite set);
(ii) H1(E,OZ(−Z)) = 0;
(iii) ω∨Z is generically generated by global sections, where ωZ = ωX̃(Z)⊗OZ .
For a reduction cycle Z the functor RZ : MCM(X) → VB(Z) from category of reflexive

modules to category of locally free sheaves on Z is defined by RZ(M) = (π∗M)∨∨ ⊗OZ .

Theorem 2. [7, Theorem 1.4] Let π : (X̃, E) → (X,x) be a resolution of a normal surface

singularity, and let Z be a reduction cycle on X̃. Then the functor RZ maps non-isomorphic
objects from MCM(X) to non-isomorphic ones from VB(Z) and a vector bundle F ∈ VB(Z) is
isomorphic to RZM for some reflexive module M if and only if it is generically generated by
global sections and there is an extension of F to a vector bundle F2 on 2Z such that the exact
sequence

0 −→ F (−Z) −→ F2 −→ F −→ 0

induces a monomorphism H0(E,F (Z))→ H1(E,F ).

The proof of this theorem is divided into the following two propositions. Note that in our case
the proof of Proposition 3 is absolutely analogous to the original one, so we can omit it here.

Proposition 3. [7, Proposition 1.6] Let Z > 0 be a cycle on X̃ such that OZ(−Z) is generically
generated by global sections and H1(E,OZ(−Z)) = 0. Assume that F is a locally free sheaf on

X̃ and denote by F = F ⊗OZ its restriction to Z. Then, F is full if and only if
(i) F is generically generated by global sections;
(ii) The coboundary map H0(E,F (Z))→ H1(E,F ) is injective.

Proposition 4. [7, Proposition 1.9] Let Z be a reduction cycle on X̃ and assume that F is a
locally free sheaf on Z such that

(i) F is generically generated by global sections;
(ii) There is an extension of F to a locally free sheaf over O2Z such that H0(E,F (Z)) →

H1(E,F ) is injective.

Then there is a full sheaf F on X̃ with F ⊗ OZ
∼= F . The extension of F to a full sheaf on

X̃ is unique up to isomorphism.
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Proof. We follow the proof of Kahn with some obvious changes, which are necessary due to the
fact that an underlying field may not exist, or if existing it may not be algebraically closed. We
omit most of details that shall not be changed in our case. Fix an extension F2 of sheaf F . The
sheaf F from Proposition 3 is constructed as the projective limit lim←−Fn of sheaves Fn, where
sheaf Fn+1 is such locally free extension of the sheaf Fn over O(n+1)Z that the following sequence
is exact

0→ F (−nZ)→ Fn+1 → Fn → 0.

Note that these extensions exist because the obstructions for the existence belong to H2(E,F∨⊗
F (−nZ)), which is zero by dimensional reasons.

To prove the uniqueness it is enough to show that at every step of the construction given
above the next sheaf is defined uniquely up to isomorphism.

We can consider an extension of the sheaf Fn to a locally-free sheaf Fn+1 over O(n+1)Z as

an element of the group Ext1O(n+1)Z
(Fn, F (−nZ)). Choosing an element e from this space such

that e is locally-free over O(n+1)Z , we obtain that all locally-free extensions of Fn correspond

to the points of the coset e + Ext1OnZ
(Fn, F (−nZ)). There is an obvious action of the group

of automorphisms of the sheaf Fn on the group Ext1O(n+1)Z
(Fn, F (−nZ)). Namely, if e is an

extension of Fn by F (−nZ) and ϕ is an automorphism of Fn then by the product ϕ∗e we mean
the pull-back of e with respect to ϕ. Then it is enough to show that an arbitrary locally-free
extension is of the form ϕ∗e for some ϕ ∈ Aut(Fn). Put ϕ = id +h, where h ∈ End(Fn). Then
ϕ∗e = e + h∗e and we can consider the product h∗e as the element of H1(E,F∨ ⊗ F (−nZ)) ∼=
Ext1OnZ

(Fn, F (−nZ)). We have that h∗e = δ(h), where the map δ : H0(E,F∨n ⊗Fn)→ H1(F∨⊗
F (−nZ)) is induced by the exact sequence 0→ F∨⊗F (−nZ))→ F∨n+1⊗Fn+1 → F∨n ⊗Fn → 0.

It is possible to consider only those h that belong to the set H0(E,F∨ ⊗ F (−(n− 1)Z)), which
is contained in the radical of End(Fn) in the case n > 1. Note that the natural restriction of the
coboundary map to δ′ : H0(E,F∨ ⊗ F (−(n− 1)Z))→ H1(E,F∨ ⊗ F (−nZ)) is surjective by [7,
Claim, p.148]. This proves the statement for n > 1.

Let us consider the case n = 1. The reduction cycle Z is a scheme over the ring R = R/ml for
some l > 0. Put B = EndR(F ). It is necessary to note that not every element h ∈ H0(E,F∨⊗F )

defines an invertible morphism ϕ = id +h, because H0(E,F∨ ⊗ F ) ∼= B which is not a vector
space and there exists locally-free extensions of F which are not full. Consider at first the
situation when the underlying field exists (this means l = 1) and it is infinite. The set of those
h ∈ B for which id +h is invertible form an open and dense subset in B. Since δ′ is linear and
surjective, the Aut(F )-orbit of e is open and dense in e + Ext1OZ

(F, F (−Z)) and contains only
full extensions of F . Therefore, any two such orbits have common points, hence, coincide.

Consider now the case when the field k is finite. Consider the sheaf F over OZ and its locally

free extension F2 over O2Z . Consider the schema Y = X ⊗k K and its resolution Ỹ = X̃ ⊗k K,

where K is an algebraic closure of k. Reduction cycle on Ỹ is Z = Z ⊗k K. The sheaf F
corresponds then to the sheaf F over OZ such that for every open U on Z F (U) ∼= F (U)⊗kK. In

the same way the sheaf F 2 corresponds to F2 and it is a locally free extension of F over O2Z . For

the scheme Ỹ and the sheaf F Proposition 4 holds. In particular if F ′2 is a locally free extension

of F over O2Z , not equal to F2, then F 2
∼= F

′
2. Denote by E(F ) the set of isomorphism classes

of locally free extension of F over O2Z . Fix some sheaf F2 ∈ E(F ). The group G = Gal(K/k)
acts on AutK(F 2) in an obvious way and E(F ) is the set of all K/k-forms of sheaf F2 in the
sense of [14]. It is easy to see (analogous to [14]) that there exists an injective map of sets
E(F ) −→ H1(G,AutK(F 2)). At last, we are going to show that H1(G,AutK(F 2)) = {1}. Put

B = EndK(F 2). We have that B = B⊗kK, B
×

= AutK(F 2) and B
×
/(1+radB) ∼=

∏
GLni(K).
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On the other hand there exists a chain of subgroups 1 + radB = G0 ⊃ G1 ⊃ ... ⊃ Gm = 0 such
that Gi/Gi+1

∼= K+. From the fact that H1(G,GLn(K)) = H1(G,K+) = {1} and the exact
sequence for Galois cohomology we are done.

Suppose now that there is no underlying field. Let e1 be some full extension. Then, by the
result obtained above e1 ≡ e0+h∗e0(modm) for some h ∈ B. This means that e1 = e0+h∗e0+u
for some u ∈ mExt1OZ

(F, F (−Z)). Since δ′ is surjection, u = δ′(v) = v∗e0 for some v ∈ mB,
soe1 = e0 + h∗e0 + v∗e0 = e0 + (h+ v)∗e0 = ϕ∗e0 for the invertible ϕ = id +(h+ v). �

For minimally elliptic singularities we fix some notations. We define a minimally elliptic

singularity such that R be a Gorenstein ring, i.e. ωX ' OX and H1(X̃,OX̃) ' K, where

K is the residue field of H0(X̃,OX̃). As in the original work of Kahn we can choose in a

role of a reduction cycle Z on X̃ the fundamental cycle, for which we have OZ ' ωZ . The
restriction char K = 0 (which allows to use the Grauert-Riemenschneider vanishing theorem) can
be omitted since H1(E,OZ(−Z)) by Serre’s duality is dual to H0(E,ωZ(Z)) = H0(E,OZ(Z)) =
0, because deg OZ(Z) = Z · Z < 0.

Note that in the minimally elliptic case Z coincides with the cohomological cycle [12, p.

99], that is the unique cycle Z1 on X̃ such that Z1 is smallest among all divisors supported
on E and the length of the module H1(E,OZ1

) takes the maximal value. From isomorphisms

R1π∗OX̃ ' H1(E,OZ), R1π∗OX̃ ' H1(X̃,OX̃) we have that H1(E,OZ) ' H1(X̃,OX̃) and by

Serre’s duality H1(E,OZ) is dual to H0(E,OZ), so H0(E,OZ) ' K. For a full sheaf F on X̃ and

the locally free sheaf F of OZ-modules define hi as the dimension over K of the i-th cohomology.

Theorem 5. [7, Theorem 2.1] Let π : (X̃, E) → (X,x) be a resolution of a minimally elliptic

singularity and let Z be the fundamental cycle on X̃. Then there is a bijective correspondence, in-
duced by RZ , between isomorphism classes of non-projective indecomposable reflexive R-modules
and isomorphism classes of locally free sheaves of OZ-modules of the form nOZ ⊕ G with G
indecomposable and

(i) G is generically generated by global sections;
(ii) H1(E,G) = 0;
(iii) n = h0(E,G(Z)).

The proof is analogous to the Kahn’s situation.

3. Curve singularities

During this section we suppose that A is a reduced, complete, local and noetherian ring of
Krull dimensional 1 with maximal ideal m and residue field k. Such a ring A is said to be a
curve singularity. By Cohen’s structure theorem A is a finite algebra over a discrete valuation
ring O with residue field equal to k. We assume O and k are of characteristic not equal to
2 and k is perfect (another possible assumption for k is that char k 6= 2, 3). For uniformizing
parameter x ∈ O, p, q ∈ N such that 1

p + 1
q 6

1
2 and α ∈ O× define the singularities Tpq by the

parametrization in the following way:
if p and q are both odd, Tpq is isomorphic to the subalgebra of O2 generated by (x2, xq−2)

and (αxp−2, x2);
if p is odd and q is even, Tpq is isomorphic to the subalgebra of O3 generated by (x, x, αxp−2)

and (0, xq/2−1, x2);
if p and q are both even, Tpq is isomorphic to the subalgebra ofO4 generated by (x, x, αxp/2−1, 0)

and (xq/2−1, 0, x, x) if (p, q) 6= (4, 4) and by (x, 0, x, x) and (0, x, x, αx) with α 6= 0, 1 if (p, q) =
(4, 4).
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From the parametrization given above we can represent singularity Tpq as the quotient
O[[y]]/(f), where f = (x2 − yq−2)(xp−2 − α2y2) and note that it is isolated. Also note that
in the case when O is the ring of power series over a field of characteristic zero or char k doesn’t
divide p or q (by [2]) this definition of Tpq coincides with the standard one from the Arnold’s
classification list [1]. We are going to prove that the following theorem still holds:

Theorem 6. [4, Theorem 1] Let A be a curve singularity of infinite Cohen-Macaulay type. Then
it is of tame type if and only if it dominates one of the singularities Tpq.

For proving sufficiency we must prove the tameness of Tpq. We can do it in the following way.
Define the singularity Tpq2 as O[[y, z]]/(z2 + f). The minimal resolution of Tpq2 is given for

instance in [8] and [9], where it is obtained by blowing-up and normalizations and proved that
the exceptional locus of a minimal resolution of Tpq2 is either elliptic curve or a so-called cyclic
configuration. The description of the vector bundles on cyclic configurations is given in [5] and
according to our case this description implies that indecomposable vector bundles on E are in
one-to-one correspondence to triples of the form (d,m, p(t)), where d is some finite sequence of
integers called aperiodic [6], m is positive integer and p(t) ∈ k[t] \ {0}. Applying the result of
Kahn we immediately obtain that Tpq2 is of tame type.

The tameness of Tpq then follows from the tameness of Tpq2 by the results of Knörrer. Namely,
there exist functors from the categories of matrix factorizations (we keep the notations of paper
[10]) G :MF(f)→MF(f+z2) and Rest :MF(f+z2)→MF(f) such that every X ∈MF(f)
is a direct summand in Rest◦G(X). This implies that one-parameter families of Cohen–Macaulay
modules over Tpq2 exhaust the category of Cohen–Macaulay modules over Tpq, so Tpq is of tame
type.

For proving necessity we produce similar observations as in [4]. Let Ā be the normalization

of A in its full ring of fractions and Ā =
s∏

i=1

Ai be its decomposition into a product of discrete

valuation rings. By ti we denote the uniformizing element of the ring Ai. For a ring B such
that A ⊂ B ⊂ Ā let B/mB ' B1 × ...× Bm, where each Bi is a local algebras of dimension di.
Set d(B) = d1 + ...+ dm. Let ei be the idempotent of Ā such that Ai = eiA, t = (t1, ..., ts) and
θ ∈ m such that Ām = θĀ. Put A′ = tĀ+A, A′′ = θtĀ+A and A′i = A′+Oei. In this situation
the overring conditions of the [4, Theorem 3] rewrites in the following form

Theorem 7. [4, Theorem 3] Let A be a curve singularity of infinite CM type. The following
condition are necessary and sufficient for A to be of tame CM type:

(O1) d(Ā) 6 4 and t2Ā ⊂ m,
(O2) d(A′) 6 3 and A′i has no local 3-dimensional factor,
(O3) if d(Ā) = 3, then d(A′′) 6 2.

The conditions (O1-O3) are invariant under separable field extensions of k and under our
assumptions for k we can choose separable extension K of k such that the residue fields of all
algebras above are equal to K. Then we obtain the original conditions from [4, Theorem 3]. The
proof of the theorem is analogous to the original one. Namely, necessity follows from geometric
observation just as in [4]. Then using the parametrization of Tpq we prove that if A satisfies the
conditions (O1-O3) of the previous theorem then it dominates some of Tpq.
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