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Preface

Obviously it is possible to practice pure mathematics without any interest in its applica-
tions. There are people convinced that applications might be even dangerous for the purity
of mathematical research. However there is also another, very important, tradition in science
going back to Archimedes, Newton and Gauss. In this tradition mathematics is considered
the language of nature and, by straightforward feedback, applications are the source of fresh
ideas for mathematics itself. Singularity theory is considered to be a relatively recent branch
of mathematics—it “grew out of the work of Hassler Whitney and René Thom in the 1950s
and 1960s, with crucial input from Bernard Malgrange and John Mather who put so many of
Thom’s beautiful ideas on a sound mathematical footing”1. Nevertheless singularity theory
has been extensively developed in the applications tradition for more than a half century.
Its deep and intriguing results are considered to be extremely interesting and stimulating
for interdisciplinary research. There has been fundamental progress in optics, image recogni-
tion and processing, control theory, mechanics, relativity theory and numerous other fields
of study, including those pertaining to biological, medical and social sciences. New singula-
rity theory methods and techniques for solving theoretical and practical problems are being
developed all the time.

With the aim of exploring the current and potential areas of creative interaction between
singularity theory and other mathematical disciplines, and of fostering active exchange of
ideas among people with different scientific backgrounds, a series of workshops on Singulari-
ties in Generic Geometry and Applications was proposed by Carmen Romero-Fuster and the
first workshop was organized in Spain in Valencia in 2009. The success of this workshop was
evident and the need for such a biennial feast of this most fresh and creative branch of ma-
thematics became obvious. As a result, the second workshop on singularities in geometry and
applications was organized at the Banach Center in Poland. The workshop brought together
in Będlewo, Poland, more than eighty outstanding mathematicians from fourteen countries.
The plenary lectures were as follows:

- Jean-Paul Brasselet (Some insights on the Euler local obstruction),
- James Damon (Medial/skeletal linking structures and the geometry of multi-object confi-
gurations),
- Peter Donelan (Singularities of robot manipulators: Lie groups and exponential products)
- Andrew du Plessis (Stable unfoldings of map-germs on singular varieties),
- Peter Giblin (In Memoriam Ian R. Porteous 9 October 1930 – 30 January 2011) ,
- Victor Goryunov (Local invariants of maps between 3-manifolds),
- Goo Ishikawa (Singularities of tangent varieties to curves and surfaces),
- Maxim Kazarian (Stabilization of cohomology classes represented by singularity loci)
- Isabel Labouriau (The geometry of fast and slow dynamics in nerve impulse),
- Walter Neumann (Local bilipschitz geometry of complex surfaces),
- Juan Jose Nuño-Ballesteros (Topological K-equivalence of map germs),
- Kentaro Saji (Geometry of wavefronts),
- Federico Sánchez-Bringas (Geometric invariants on Lorentzian surfaces immersed in Min-
kowski R3,1),
1Preface to the Proceedings of the First Workshop on Singularities in Generic Geometry and Applications,

Valencia 2009, Topology and its Applications 159, issue 2, 2012
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- Zbigniew Szafraniec (Quadric forms and intersection numbers for polynomial immersions),
- Farid Tari (Umbilics of surfaces in the Minkowski 3-space),
- Stephen Yau (New invariants for complex manifolds and its application to complex Plateau
problem),
- Michail Zhitomirskii (Normal forms in singularity theory versus differential geometry).

The minicourses were as follows:

- Carmen Romero Fuster (Singularity theory techniques in extrinsic geometry),
- Farid Tari and Alexey Davydov (Singularity theory of implicit differential equations).

Many of the lecturers have now presented their new results in a written form. We are very
grateful to the editors of the Journal of Singularities for making possible this special issue
containing some of the tangible outcomes of the conference in Będlewo.

Peter Giblin
Stanisłaus Janeczko
Carmen Romero-Fuster
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Ral Oset Sinha
Gaiane Panina
Guillermo Peñafort
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A LOCAL BUT NOT GLOBAL ATTRACTOR FOR A Zn-SYMMETRIC MAP

B. ALARCÓN, S.B.S.D. CASTRO, AND I.S. LABOURIAU

Abstract. There are many tools for studying local dynamics. An important problem is how
this information can be used to obtain global information. We present examples for which
local stability does not carry on globally. To this purpose we construct, for any natural n ≥ 2,
planar maps whose symmetry group is Zn having a local attractor that is not a global attractor.
The construction starts from an example with symmetry group Z4. We show that although
this example has codimension 3 as a Z4-symmetric map-germ, its relevant dynamic properties
are shared by two 1-parameter families in its universal unfolding. The same construction can
be applied to obtain examples that are also dissipative. The symmetry of these maps forces
them to have rational rotation numbers.

1. Introduction

At the end of the 19th century, Lyapunov [12] related the local stability of an equilibrium
point to the eigenvalues of the Jacobian matrix of the vector field at that point. This led to the
Markus-Yamabe Conjecture [13] in the 1960’s, and fifteen years later to a version for maps of
the original conjecture, using the relation between stability of fixed points and the eigenvalues
of the Jacobian matrix of the map at that point [11]. In the 1990’s, this was named, by analogy,
the Discrete Markus-Yamabe Conjecture and remains unproven. It may be stated as follows:

Discrete Markus-Yamabe Conjecture: Let f be a C1 map from Rm to itself such that
f(0) = 0. If all the eigenvalues of the Jacobian matrix at every point have modulus less than
one, then the origin is a global attractor.

It is known that the original conjecture holds for m = 2 and is, in this case, equivalent to the
injectivity of the vector field [10], [8]. It is false form > 2 [4], [6]. On the other hand, the Discrete
Markus-Yamabe Conjecture holds, for all m, if the Jacobian matrix of the map is triangular
and, additionally for m = 2, for polynomial maps [7]. It is false in higher dimensions, also for
polynomial maps [6]. There exists a counter-example for m = 2 that is an injective rational
map ([7]). This striking difference between the discrete and continuous versions encouraged the
study of the dynamics of continuous and injective maps of the plane that satisfy the hypotheses
of the Discrete Markus-Yamabe Conjecture. This is now known as the Discrete Markus-Yamabe
Problem. From the results in [1], it follows that the Discrete Markus-Yamabe Problem is true
for m = 2 for dissipative maps, by introducing as an extra condition the existence of an invariant
ray (a continuous curve without self-intersections connecting the origin to infinity). An invariant
ray can be, for instance an axis of symmetry.

In the presence of symmetry, that is, when the map is equivariant, the ultimate question can
be stated as follows:

Equivariant Discrete Markus-Yamabe Problem: Let f : R2 −→ R2 be a dissipative
C1 equivariant planar map such that f(0) = 0. Assume that all eigenvalues of the Jacobian
matrix at every point have modulus less than one. Is the origin a global attractor?

Given the results in Alarcón et al. [1], the Equivariant Discrete Markus-Yamabe Problem is
true if the group of symmetries of f contains a reflection. In this case, the fixed-point space of

http://dx.doi.org/10.5427/jsing.2012.6a


2 ALARCÓN, CASTRO, LABOURIAU

the reflection plays the role of the invariant ray. This situation is addressed in Alarcón et al. [3].
In the present paper, we are concerned with symmetry groups that do not contain a reflection.

The Equivariant Discrete Markus-Yamabe Problem has a negative answer if the reflection is
not a group element. In fact, the example constructed by Szlenk and reported in [7] satisfies
all the hypotheses of the Discrete Markus-Yamabe Problem, is equivariant (as we show here)
under the standard action of Z4, but the origin is not a global attractor. Indeed, there is an
orbit of period 4 and the rotation number defined in [16] is 1

4 . The example has a singularity at
the origin with Z4 codimension 3, and we show that two inequivalent 1-parameter families in its
unfolding share these dynamic properties.

We use Szlenk’s example to construct differentiable maps on the plane with symmetry group
Zn for all n ≥ 2. Each example has an attracting fixed point at the origin and a periodic orbit
of minimal period n which prevents local dynamics to extend globally. The construction may be
extended to one of the 1-parameter families mentioned above.

We adapt the Zn symmetric example to make it dissipative. In that case its symmetry implies
that the rotation number is rational. Implications of this fact are discussed in the final section.

1.1. Equivariant Planar Maps. The reference for the folllowing definitions and results is
Golubitsky et al. [9, chapter XII], to which we refer the reader interested in further detail.

Our concern is about groups acting linearly on R2 and more particularly about the action of
Zn, n ≥ 2 on R2. Identifying R2 ' C, the finite group Zn is generated by one element Rn, the
rotation by 2π/n around the origin, with action given by

Rn · z = e2πi/nz.

A map f : R2 → R2 is Zn-equivariant if
f(γx) = γf(x) ∀ γ ∈ Zn, x ∈ R2.

We also say, if the above only holds for elements in Zn, that Zn is the symmetry group of f .
Since most of our results depend on the existence of a unique fixed point for f , the following

is a useful result.

Lemma 1.1. If f is Zn-equivariant then f(0) = 0.

Proof. We have f(0) = f(γ0) = γf(0), by equivariance. The element γ = exp 2πi/n of Zn is
such that γx 6= x for all x 6= 0. It then follows that f(0) = 0. �

2. Example with an orbit of period 4

In this section, we explore the properties of an example of a local attractor which is not
global since it has an orbit of period 4. This example is due to Szlenk and is reported in [7].
A list of properties for this example is given in Proposition 2.1. We divide this section in two
subsections, the first dealing with dynamic properties and the second concerned with the study
of the singularity in Szlenk’s map.

2.1. Dynamics. Before introducing the example it is useful to establish some concepts that will
be used in the proofs to come. Let S1,n ⊂ R2 be the open sector

S1,n = {(x, y) = (r cos θ, r sin θ) : 0 < θ < 2π/n}

and define Sj,n, j = 2, · · · , n recursively by Sj,n = Rn (Sj−1,n). Then R2 =
⋃n
j=1 Sj,n, where A

is the closure of A. Moreover, S1,n = Rn (Sn,n). Then each Sj,n is a fundamental domain for the
action of Zn, in particular if f : R2 −→ R2 is Zn-equivariant then f is completely determined
by its restriction to Sj,n.

A line ray is a half line through the origin, of the form {t(α, β) : t ≥ 0}, with 0 6= (α, β) ∈ R2.
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The next Proposition establishes the relevant properties of Szlenk’s example that will be used
in the construction of other Zn-equivariant maps in the next section.

Proposition 2.1 (Szlenk’s example). Let F4 : R2 −→ R2 be defined by

F4(x, y) =

(
− ky3

1 + x2 + y2
,

kx3

1 + x2 + y2

)
for 1 < k <

2√
3
.

The map F4 has the following properties:
1) F4 is of class C1.
2) F4 is a homeomorphism.
3) Fix(F4) = {0}.
4) F 4

4 (P ) = P for P =
(
(k − 1)−1/2, 0

)
, with F j4 (P ) = Rj4(P ) 6= P for j = 2, 3.

5) 0 is a local attractor.
6) F4 is Z4-equivariant.
7) The restriction of F4 to any line ray is a homeomorphism onto another line ray.
8) F4

(
Sj,4

)
= Sj+1,4 for j = 1, · · · , 4 (mod 4) with F4 (∂Sj,4) = ∂Sj+1,4.

9) The curve F4(cos θ, sin θ) goes across each line ray and is transverse to line rays at all
points θ 6= mπ

2 for m = 0, 1, 2, 3.

Proof. Some of the statements follow from previously established results. Since we deal with
these first, the order of the proof does not follow the numbering in the list above.

Statements 1) and 4) are immediate from the expressions of F4 and of P , as remarked in [7].
Note that the periodic orbit of P of statement 4) lies in the boundary of the sectors

⋃
j ∂Sj,4.

In the appendix of [7] it is shown that the eigenvalues of DF4(x, y) lie in the open unit disk,
establishing 5). Statement 3) follows as a direct consequence of Corollary 2 in [2] and the same
estimates on the eigenvalues.

Concerning 6) note that R4, the generator of Z4, acts on the plane as R4(x, y) = (−y, x). In
order to prove that F4(x, y) is Z4-equivariant we compute

F4(R4(x, y)) = (− kx3

1 + x2 + y2
,− ky3

1 + x2 + y2
)

and

R4F4(x, y) = R4(− ky3

1 + x2 + y2
,

kx3

1 + x2 + y2
) = (

−kx3

1 + x2 + y2
,
−ky3

1 + x2 + y2
).

Observing that these are equal establishes statement 6).
The behaviour of F4 on line rays described in 7) is easier to understand if we write (x, y) in

polar coordinates (x, y) = (r cos θ, r sin θ) yielding:

(1) F4(r cos θ, r sin θ) =
kr3

1 + r2
(
− sin3 θ, cos3 θ

)
.

From this expression it follows that for each fixed θ, the line ray through (cos θ, sin θ) is
mapped into the line ray through (− sin3 θ, cos3 θ). The mapping is a bijection, since r3/(1 + r2)
is a monotonically increasing bijection from [0,+∞) onto itself. In particular, it follows from
this that F4 is injective and that F4(R2) = R2. Since every continuous and injective map in R2 is
open (see Ortega [15, Chapter 3, Lemma 2]), it follows that F4 is a homeomorphism, establishing
2).

The behaviour of F4 on sectors and their boundary is the essence of 8). From the definition
of the sectors we have

Sj+1,4 = R4 (Sj,4)
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F4

x x

y y

Figure 1. Szlenk’s example F4 maps a quarter of the unit circle into a quarter
of the astroid k

2 (− sin3 θ, cos3 θ).

and therefore, by Z4-equivariance,

F4 (Sj+1,4) = F4 (R4 (Sj,4)) = R4 (F4 (Sj,4)) .

It then suffices to show that F4

(
S1,4

)
= S2,4. The sectors S1,4 and S2,4 have the simple forms

S1,4 = {(x, y) : x > 0, y > 0} S2,4 = {(x, y) : x < 0, y > 0} .

From the expression of F4 it is immediate that if x > 0 and y > 0 then the first coordinate of
F4(x, y) is negative and the second is positive and thus F4 (S1,4) ⊂ S2,4. It remains to show the
equality, which we delay until after the proof of 9).

The expression (1) in polar coordinates shows that the circle (cos θ, sin θ), 0 ≤ θ ≤ 2π is
mapped by F4 into the curve γ(θ) = k

2 (− sin3 θ, cos3 θ) known as the astroid (Figure 1). The arc
γ(θ), 0 ≤ θ ≤ π/2 joins (0, k2 ) to (−k2 , 0). Since for θ ∈ (0, π/2) the functions cos3 θ and − sin3 θ
are both monotonically decreasing with strictly negative derivatives, then the 0 ≤ θ ≤ π/2 arc of
the astroid has no self intersections and the restriction of F4 to the quarter of a circle 0 ≤ θ ≤ π/2
is a bijection into this arc (Figure 1).

Moreover, the determinant of the matrix with rows γ(θ) and γ′(θ) is

det

(
γ(θ)
γ′(θ)

)
=

3k2

4
sin2 θ cos2 θ

showing that the arc of the astroid is transverse at each point γ(θ), 0 < θ < π/2 to the line ray
through it. Transversality fails at the end points of the arc, but the line rays still go across the
astroid at the cusp points — this is assertion 9).

Thus, F4 induces a bijection between line rays in S1,4 and line rays in S2,4 and using the
radial property 7) it follows that F4 (S1,4) = S2,4. The behaviour on the boundary of S1,4 also
follows either from the radial property or from a simple direct calculation, concluding the proof
of 8). �

2.2. Universal unfolding of F4. In this section we discuss a universal unfolding of the sin-
gularity F4 in the context of Z4-equivariant maps that fix the origin under contact equivalence.
All the preliminaries concerning equivariant unfolding theory, as well as the proof of the result,
are deferred to an appendix. The trusting reader may proceed without reading it.

Proposition 2.2. A Z4 universal unfolding under contact equivalence of the germ at the origin
of the singularity F4 is given by

G4(x, y, α, β, δ) = F4(x, y) + α(x, y) +
[
β + δ(x2 + y2)

]
(−y, x),

where parameters α, β and δ are real.
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From the point of view of the dynamics, it is important to describe the maps in the unfolding
that preserve the dynamic properties of F4. The first result is immediate from the expression of
the derivative of G4 at the origin:

Lemma 2.3. The origin is a hyperbolic local attractor for G4(x, y, α, β, δ) if and only if
α2 + β2 < 1.

Although the unfolding above refers to the germ at the origin, we show below that its expres-
sion defines a map that shares some dynamic properties of F4 for some parameter values. These
values lie on two lines in parameter space.

Proposition 2.4. Let g(x, y) be either G4(x, y, α, 0, 0) or G4(x, y, 0, β, 0). Then for α or β
positive and small enough,

• g is a global diffeomorphism;
• at every point in R2 the eigenvalues of the jacobian of g have modulus less than one;
• there exists p ∈ R2 such that g4(p) = p.

Proof. The case α > 0 is the one adressed in [7, Theorem E]. We treat the case β > 0 in a similar
manner.

The matrix DF4(x, y) is given in the appendix. In this proof denote it by

DF4 =

(
a b
c d

)
.

If µ is an eigenvalue of Dg then

µ =
1

2

(
−tr(DF4)±

√
tr2(DF4)− 4 det (DF4)− 4β(β + c− b)

)
.

We know from [7, Theorem D] that all eigenvalues of DF4 are zero on the coordinate axes and
complex otherwise. Furthermore, all eigenvalues of DF4 have modulus less than k

√
3/2 < 1.

The latter statement ensures that, for any k and for small β, the eigenvalues of Dg also have
modulus less than one.

We want to show that all eigenvalues of Dg are non-zero. When the eigenvalues of DF4 are
zero it is clear that those of Dg are not. Away from the axes, the eigenvalues of DF4 are non-zero
and det (DF4) > 0. Since det (Dg) = det (DF4) + β2 − β(b− c), the eigenvalues of Dg are zero
if and only if

det (DF4) + β2 = β(b− c).
Since b− c < 0, then for β > 0, it is always the case that the eigenvalues of Dg are nonzero.

So far, we have shown that g is a local diffeomorphism at every point. In order to show that
it is a global diffeomorphism, we show as in [7, Theorem E] that

lim
|(x,y)|→∞

|g(x, y)| =∞.

This implies that g is proper and we may invoke Hadamard’s theorem (quoted in [7]) that asserts
that a proper local diffeomorphism is a global diffeomorphism.

In order to establish the limit above we use polar coordinates and write

g(r, θ) =
kr3

1 + r2
(− sin3 θ, cos3 θ) + β(−r sin θ, r cos θ)

and hence,

|g(r, θ)|2 =
k2r6

(1 + r2)2
(sin6 θ + cos6 θ) + β2r2 + 2βk

r4

1 + r2
(sin4 θ + cos4 θ).
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Noting now that sin6 θ + cos6 θ ≥ 1/4 and sin4 θ + cos4 θ ≥ 1/2, we use 1 + r2 < 2r2 for r > 1
to write

|g(r, θ)|2 ≥ kr2

16
+ β2r2 +

βkr2

2

r→∞−→ ∞.

The existence of points of period 4 follows from the hyperbolicity of the period 4 points of F4. �

3. Construction of Zn-equivariant examples

The next examples refer to a local attractor, examples with a local repellor may be obtained
considering f−1.

Theorem 3.1. For each n ≥ 2 there exists f : R2 → R2 such that:
a) f is a differentiable homeomorphism;
b) f has symmetry group Zn;
c) Fix(f) = {0};
d) The origin is a local attractor;
e) There exists a periodic orbit of minimal period n.

Proof. For n ≥ 2, the map

(2) hn (r cos θ, r sin θ) =

(
r cos

4θ

n
, r sin

4θ

n

)
is a local diffeomorphism at all points in R2\{0}, is continuous at 0 and hn(S1,4) = S1,n,
hn(S2,4) = S2,n with |hn(x, y)| = |(x, y)|. Moreover, the restriction of hn to S1,4 is a bijection
onto S1,n and hn maps each line ray through the origin into another line ray through the origin.

Similar properties hold for the inverse

h−1n (r cos θ, r sin θ) =

(
r cos

nθ

4
, r sin

nθ

4

)
with h−1n (S1,n) = S1,4.

F4

x x

y y

Fn

n
-1

x

y

h nh

x

y

Figure 2. Construction of the Zn-equivariant example Fn in a fundamental
domain of the Zn-action, shown here for n = 6.
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x

y

Figure 3. Image of the circle (sin θ, cos θ) by the Zn-equivariant example Fn,
shown here for n = 5.

Let Fn : S1,n −→ S2,n be defined by (see Figure 2)

(3) Fn(x, y) = hn ◦ F4 ◦ h−1n (x, y) .

We extend Fn to a Zn-equivariant map Fn : R2 −→ R2 recursively, as follows.
Suppose for 1 ≤ j ≤ n − 1 the map Fn is already defined in Sj,n with Fn(Sj,n) = Sj+1,n.

If (x, y) ∈ Sj+1,n we have R−1n (x, y) ∈ Sj,n and thus Fn ◦ R−1n (x, y) is well defined, with Fn ◦
R−1n (x, y) ∈ Sj+1,n. Define Fn(x, y) for (x, y) ∈ Sj+1,n as Fn(x, y) = Rn◦Fn◦R−1n (x, y) ∈ Sj+2,n.
Finally, for (x, y) ∈ Sn−1,n we obtain Fn(x, y) ∈ S1,n.

The following properties of Fn now hold by construction, using Proposition 2.1:
• Fn is Zn-equivariant.
• Fix(Fn) = {0}.
• The origin is a local attractor.
• Fnn (P ) = P for P =

(
(k − 1)−1/2, 0

)
, with F jn(P ) 6= P for j = 2, . . . , n − 1. Note that

all F jn(P ) lie on the boundaries ∂Sj,n of the sectors Sj,n.
• Fn maps each line ray through the origin onto another line ray through the origin.

Since hn maps line rays to line rays, to see that Fn is a homeomorphism it is sufficient to
observe that γn(θ) = Fn(cos θ, sin θ), 0 ≤ θ ≤ 2π is a simple closed curve that meets each line
ray only once and does not go through the origin (Figure 3). This is true because away from the
origin both hn and h−1n are differentiable with non-singular derivatives. Since hn and h−1n map
line rays into line rays, it follows from assertion 9) of Proposition 2.1 that γn is transverse to
line rays except at the cusp points γn(θ), θ = 2mπ

n , m = 0, 1, . . . , n − 1 where the line ray goes
across it.

It remains to show that Fn is everywhere differentiable in R2. This is done in Lemma 3.2
below. �

Lemma 3.2. Fn is everywhere differentiable in R2.

Proof. First we show that DF4(0, 0) = (0) (zero matrix) implies that Fn is differentiable at the
origin with DFn(0, 0) = (0). That DF4(0, 0) = (0) means that for every ε > 0 there is a δ > 0
such that, for every X ∈ R2, if |X| < δ then

|F4(X)− F4(0, 0)−DF4(0, 0)X| = |F4(X)| < ε |X| .
Since hn and h−1n preserve the norm, we have that if Y = hn(X) then |Y | = |X| and furthermore,
for any Y such that |Y | < δ, we obtain

|Fn(Y )| =
∣∣hn (F4

(
h−1n (Y )

))∣∣ = |hn (F4(X))| = |F4(X)| < ε |X| = ε |Y | .



8 ALARCÓN, CASTRO, LABOURIAU

Therefore, since Fn(0, 0) = (0, 0) and since this holds for any ε,

lim
|X|→0

|Fn(X)− Fn(0, 0)− (0)X|
|X|

= 0

proving our claim.

Recall that in (3) and in the text thereafter the map Fn is made up by gluing different
functions on sectors: in S1,n the expression of Fn is given by hn ◦ F4 ◦ h−1n and in S2,n by
Rn ◦ hn ◦ F4 ◦ h−1n ◦ R−1n . Both expressions define differentiable functions away from the origin
since both hn and h−1n are of class C1 in R2\{(0, 0)}. We have already shown that Fn is
differentiable at the origin. It remains to prove that the derivatives of the two functions coincide
at the common boundary of ∂S1,n and ∂S2,n. At the remaining boundaries the result follows
from the Zn-equivariance of Fn.

Since we are working away from the origin, we may use polar coordinates. The expressions for
hn, Rn and their inverses take the simple forms below, where we use f̂ to indicate the expression
of f using polar coordinates in both source and target:

ĥn(r, θ) =

(
r,

4θ

n

)
ĥ−1n (r, θ) =

(
r,
nθ

4

)

R̂n(r, θ) =

(
r, θ +

2π

n

)
R̂−1n (r, θ) =

(
r, θ − 2π

n

)
.

Let F̂4(r, θ) = (Ψ4(r, θ),Φ4(r, θ)) be the expression of F4 in polar coordinates. From (1) we
get:

(4) Ψ4(r, θ) =
kr3

1 + r2

√
cos6 θ + sin6 θ =

kr3

1 + r2

√
1− 3 cos2 θ + 3 cos4 θ

(5) Φ4(r, θ) =


arctan

(
−cos3 θ

sin3 θ

)
if θ 6= kπ

arccot

(
− sin3 θ

cos3 θ

)
if θ 6= π

2 + kπ .

The derivative DF̂4(r, θ) of F̂4 is thus,

(6)


kr2

3 + r2

(1 + r2)2

√
cos6 θ + sin6 θ

kr3

1 + r2
3 sin θ cos θ

(
sin4 θ − cos4 θ

)√
cos6 θ + sin6 θ

0
3 sin2 θ cos2 θ

cos6 θ + sin6 θ


where the two alternative forms for Φ4(r, θ) yield the same expression for the derivative.

Note that the Jacobian matrix of ĥn is constant and the same is true for its inverse. The
derivatives of both R̂n and of R̂−1n are the identity. Let (r, 2π/n) be the polar coordinates of a
point ξ in (∂S1,n ∩ ∂S2,n) \{0}. In order to show that the derivatives at ξ of ĥn ◦ F̂4 ◦ ĥ−1n and
of R̂n ◦ ĥn ◦ F̂4 ◦ ĥ−1n ◦ R̂−1n coincide, we only need to show that DF̂4 at ĥ−1n (r, 2π/n) = (r, π/2)

equals DF̂4 at ĥ−1n (R̂−1n (r, 2π/n)) = (r, 0). More precisely, for any (r, θ)

Dĥn(r, θ) = An =

(
1 0
0 4

n

)
Dĥ−1n (r, θ) = Bn =

(
1 0
0 n

4

)
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and thus

D
(
R̂n ◦ ĥn ◦ F̂4 ◦ ĥ−1n ◦ R̂−1n

)
(ξ)

= DR̂n(ĥn(F̂4((r, 0)))Dĥn(F̂4((r, 0))DF̂4(r, 0)Dĥ−1n (r, 0)DR̂−1n (r, 2π/n)

= Id ·An ·DF̂4(r, 0) ·Bn · Id
= An ·DF̂4(r, 0) ·Bn

and

D
(
ĥn ◦ F̂4 ◦ ĥ−1n

)
(ξ)

= Dĥn(F̂4((r, π/2))DF̂4(r, π/2)Dĥ−1n (r, 2π/n)

= An ·DF̂4(r, π/2) ·Bn .
From (6) it follows that

DF̂4(r, π/2) = DF̂4(r, 0) =

 kr2
3 + r2

(1 + r2)2
0

0 0


completing our proof. �

The construction in the proof of Theorem 3.1 only works because Szlenk’s example F4 has
the special properties 7), 8) and 9) of Proposition 2.1. For instance, identifying R2 ∼ C the map
f(z) = z3 is Z4-equivariant, but does not have the properties above and h5 ◦ f ◦ h−15 (z) = f(z).

Alarcón et al. [1, Theorem 4.4] construct, starting from F4, an example having the additional
property that ∞ is a repelllor. The new example, H(x, y), is of the form

H(x, y) = φ(|F4(x, y)|)F4(x, y)

where φ : [0,∞) −→ [0,∞) is described in [1, Lemma 4.6].
Then H has all the properties of Proposition 2.1. Therefore, applying to H the construction

of Theorem 3.1 we obtain the following:

Corollary 3.3. For each n ≥ 2 there exists a map f : R2 → R2 satisfying properties a)–e) of
Theorem 3.1 and, moreover, for which ∞ is a repellor.

4. Final comments

It remains an interesting question to find out whether our construction can be applied to
G4 to produce a Zn universal unfolding of Fn. A partial answer is given next. The proof is
straightforward.

Lemma 4.1. If α = 0 then G4 has the property that G4 (S1,4) = S2,4.

As a consequence, the previous construction applied toG4 with α = 0 produces other examples
with Zn-symmetry and period n orbits. Furthermore, using Proposition 2.4, if also δ = 0 these
new examples are diffeomorphisms.

Note that, even though the unfolding applies only locally, the dynamic properties are robust
beyond this constraint as they hold if we use the expression of the unfolding to define a global
map.

A very interesting problem in Dynamical Systems is to describe the global dynamics with
hypotheses based on local properties of the system. The Markus-Yamabe Conjecture is an
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example but not the only one. For instance, Alarcón et al. [1] prove the existence of a global
attractor arising from a unique local attractor, using the theory of free homeomorphisms of
the plane. Recently, Ortega and Ruiz del Portal in [16], have studied the global behavior of
an orientation preserving homeomorphism introducing techniques based on the theory of prime
ends. They define the rotation number for some orientation preserving homeomorphisms of R2

and show how this number gives information about the global dynamics of the system. In this
context, even a list of elementary concepts would be too long to include here. The discussion
that follows may be taken as an appetizer for the reader willing to look them up properly in [16],
[17] and [5].

The theory of prime ends was introduced by Carathéodory in order to study the complicated
shape of the boundary of a simply connected open subset of R2. When such a subset U is non
empty and proper, by the Riemann mapping theorem, there is a conformal homeomorphism
from U onto the open unit disk. Usually this homeomorphism cannot be extended to the closed
disk. Carathéodory’s compactification associates the boundary of U with the space of prime
ends P, which is homeomorphic to S1. In that way, U ∪ P is homeomorphic to the closed unit
disk. The correspondence between points in the boundary of U and points in P may be both
multi-valued and not one to one, but if f is an orientation preserving homeomorphism with
f(U) = U , then f induces an orientation preserving homeomorphism f̃ in P. Since the space of
prime ends is homeomorphic to the unit circle, the rotation number of f̃ is well defined and the
rotation number of f is defined to be equal to the rotation number of f̃ .

The points in ∂S2U , the boundary of U in the one point compactification of the plane, that
play an important role in the dynamics are accessible points. A point α ∈ ∂S2U is accessible from
U if there exists an arc ξ such that α is an end point of ξ and ξ \ {α} ⊂ U . Then α determines
a prime end p(α) ∈ P, which may not be unique, such that ξ \ {p} ∪ {p(α)} is an arc in U ∪ P.

Accessible points are dense in ∂S2U , but for instance, in the case of fractal boundaries there
exist points which are not accessible from U . On the contrary, when the boundary is well
behaved, for instance an embedded curve of R2, accessible points define a unique prime end.
That means that accessible periodic points of f are periodic points of f̃ with the same period.
Consequently the rotation number of f is 1 divided by the period. See [17] and [5] for more
details and definitions.

Proposition 4.2. The examples Fn in Theorem 3.1 have rotation number 1/n.

Proof. Let U be the basin of attraction of the origin for F4. By construction of the maps in
Theorem 3.1, the basin of attraction of the origin for Fn,

Un =

n−1⋃
j=0

Rjn (hn(U) ∩ S1,n)

is invariant by the map Fn and is a non empty and proper simply connected open set. Moreover,
as the periodic point P is hyperbolic, the boundary of U is an embedded curve of R2 in a
neighborhood of P . In addition, P is an accessible point from Un, thus the rotation number of
Fn is 1

n . �

The fact that the symmetry forces the maps in Theorem 3.1 to have a rational rotation number
seems to point out at a connection between symmetry and rotation number. It raises the ques-
tion: for orientation preserving homeomorphisms of the plane with a non global asymptotically
stable fixed point, does Zn−equivariance imply a rational rotation number?

The question is relevant because the rotation number gives strong information about the
global dynamics of the system. For instance, consider a dissipative orientation preserving
Zn−equivariant homeomorphism f of the plane with an asymptotically stable fixed point p.
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If the question has an affirmative answer, then Proposition 2 of [16] implies that p is a global
attractor under f if and only if f has no other periodic point.
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Let E(Z4) be the set of Z4-invariant function germs from the plane to the reals. This is a ring
generated by the following Hilbert basis

(7) E(Z4) =
〈
N = x2 + y2, A = x4 + y4 − 6x2y2, B = (x2 − y2)xy

〉
in the sense that every germ in E(Z4) can be written in the form φ(N,A,B) where φ is a smooth
function of three variables.

The set of Z4-equivariant map germs is a module over the ring of invariants; it is denoted by
→
E (Z4) and generated by the following

(8) X1 = (x, y); X3 = (x(x2 − 3y2), y(y2 − 3x2));
X2 = (−y, x); X4 = (−y(y2 − 3x2), x(x2 − 3y2).

Two map-germs, g and h, are Z4-contact-equivalent if (see Mather [14], even though we follow
the notation in [9], chapter XIV) there exists an invertible change of coordinates x 7→ X(x), fixing
the origin and Z4-equivariant, and a matrix-valued germ S(x) satisfying for all γ ∈ Z4

S(γx)γ = γS(x),

with S(0) and dX(0) in the same connected component as the identity in the space of linear
maps of the plane, and such that

g(x) = S(x)h(X(x)).

The set of matrices satisfying the Z4-equivariance described above is denoted and generated as
follows

↔
E (Z4) = 〈Sj ;Tj = iSj , j = 1, . . . 4〉 ,

with

Ti =

(
0 1
−1 0

)
, S1 =

(
1 0
0 1

)
, S2 =

(
x2 xy
xy y2

)
,

S3 =

(
−x2 xy
xy −y2

)
, S4 =

(
0 x3y
xy3 0

)
.

Note that, in the Z4-equivariant context, all map germs preserve the origin. In such cases as
these, the tangent space T to the Z4-contact orbit coincides with the restricted tangent space,
RT .

The tangent space to F4 is

T→
E (Z4)

(F4) = 〈(dF4)Xi, SjF4, TjF4〉 ,

where Xi is one of the generators of
→
E (Z4) and Sj and Tj are the generators of

↔
E (Z4).

Given F4 and dividing both components by k as it does not affect the singularity, we have

dF4 =


2xy3

(1+x2+y2)2 − 3y2(1+x2+y2)−2y4
(1+x2+y2)2

3x2(1+x2+y2)−2x4

(1+x2+y2)2 − 2x3y
(1+x2+y2)2

 .

Note that all rows of this matrix have the common factor 1/(1 +x2 + y2)2, which does not affect
the singularity. Also, all the products with F4 will exhibit the common factor 1/(1 + x2 + y2),
which again does not affect the singularity. We therefore present the generators of T→

E (Z4)
(F4)

after a multiplication by the corresponding common factor. To exemplify,

S1F4 = (− y3

1 + x2 + y2
,

x3

1 + x2 + y2
)
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is reported as S1F4 = (−y3, x3). This stated, we have the following list of generators of
T→
E (Z4)

(F4), where the symbol ∼ indicates that a simplification was made through a product
by a non-zero invariant:

(dF4)X1 = 3N(N − 1)X2 + (N − 1)X4 ∼ 3NX2 +X4;

(dF4)X2 =
1

4
(N(N + 1)X1 − (N + 1)X3) ∼ NX1 −X3

(dF4)X3 =
3

4
[(N3 +N2 + 2A)X2 + (N2 +N − 2

3
A)X4];

(dF4)X4 =
1

4
[(N3 + 6A+ 3N2)X1 + (2A− 3N2 − 9N)X3];

S1F4 = 3NX2 +X4

S2F4 = −3BX1 −AX2 +NX4

S3F4 =
1

4
(NX4 −N2X2) ∼ N2X2 −NX4

S4F4 = (− 1

16
N3 − 5

32
NA)X2 +

1

8
BX3 +

7

32
N2X4

T1F4 =
1

4
(3NX1 +X3) ∼ 3NX1 +X3

T2F4 = −BX2;

T3F4 =
1

4
(A−N2)X1 −BX2;

T4F4 =
1

16
[(NA−N3)X1 − 14NBX2 − 2BX4].

We use a filtration by degree F = {Ej}j∈N0 of
→
E (Z4) where Ej\Ej+1 is the set of germs in

→
E (Z4) with all coordinates homogeneous polynomials of the same degree j and E0 =

→
E (Z4).

Note that E2j = E2j+1 for all j ≥ 0 and each Ej is a finitely generated E(Z4)-module. Moreover,
denoting asM(Z4) the unique maximal ideal in

→
E (Z4), we have

M(Z4).Ej ⊂ Ej+1.

We show that E5 ⊂ T→
E (Z4)

(F4) by showing that

E5 ⊂ T→
E (Z4)

(F4) +M(Z4)E5

and invoking Nakayama’s Lemma. We have that E5 is generated over E(Z4) as

(9) E5 =
〈
N2Xi, AXi, BXi, NXj , AXj , BXj

〉
, i = 1, 2; j = 3, 4.

We point out that there are no equivariants of degree 6 and therefore E6 contains germs of
degree 7 or higher.

Multiply by N the lower order generators of T→
E (Z4)

(F4), that is, (dF4)X1, (dF4)X2, S1F4 and

T1F4 and append AS1F4 at the end of the list; add or subtract as necessary terms inM(Z4)E5

to the generators of T→
E (Z4)

(F4). After performing these two operations, we obtain the matrix
Q below, where the entry (i, j) is the coefficient of generator j in (9) coming from the term i in
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the list of generators of T→
E (Z4)

(F4):

Q =



0 0 0 3 0 0 0 0 0 1 0 0
1 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 1 2 0 0 0 0 1 −2/3 0
3 6 0 0 0 0 −9 2 0 0 0 0
0 0 0 3 0 0 0 0 0 1 0 0
0 0 −3 0 −1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 1/8 0 0 0
3 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0
−1/4 1/4 0 0 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −2
0 0 0 0 0 0 0 0 0 0 1 0


The matrix Q is of rank 12, establishing our claim that E5 ⊂ T→

E (Z4)
(F4).

We can then simplify the generators of T→
E (Z4)

(F4) even further adding the elements in

T→
E (Z4)

(F4) ∩ E3\E5:
NX1, X3, 3NX2 +X4.

It is easily seen that there are the following two choices for a complement to T→
E (Z4)

(F4) inside
→
E (Z4)

V1 = {X1, X2, X4} and V2 = {X1, X2, NX2}.
Therefore, the Z4-equivariant codimension of F4 is 3. A universal unfolding is given by

G4(x, y, α, β, δ) = F4(x, y) + αX1 + βX2 + δNX2.

Of course a choice using V1 as a complement is just as good from the point of view of singu-
larity theory. However, our choice yields better results for the construction of an example with
symmetry Zn.
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L. BIRBRAIR AND J.J. NUÑO-BALLESTEROS

Abstract. We give a simple proof that the germs of real polynomial functions from Rn

to R are C0-A-equivalent if they are PL-K-equivalent (for example, semialgebraically). No
restriction on the polynomial functions is needed.

1. Introduction

Given two smooth map germs f, g : (Rn, 0) → (Rp, 0), if f, g are A-equivalent, then they
are K-equivalent and the same is true if we consider any other reasonable category like real or
complex analytic, Ck (k ≥ 1), C0, Lipschitz, PL, etc. The converse is known to be true for
C∞-stable map germs (according to the work of J. Mather [8]), but it is also well known that
it is false in the general case. Here, we are interested in the function case (i.e., p = 1), where it
might seem possible to recover the A-class data from the K-class.

In [5] Fukuda proved the finitness theorem for C0-A- equivalence of polynomial functions
from Kn to K, K = R,C. Benedetti and Shiota [2] proved the same result for semialgebraic
functions. In [1] the authors gave very simple models for the equivalence classes with respect to
C0-K- equivalence of semialgebraic functions. The motivation of our work is the comparison of
C0-K and C0-A equivalence for function germs.

Notice that for complex analytic functions with isolated singularity, it was shown by Saeki
[11] that if f, g : (Cn, 0)→ (C, 0) are C0- V-equivalent, then they are C0-A-equivalent. For real
analytic functions with isolated singularity and n = 2, 3, it is pointed out by King in [7] that in
this case again C0-V- equivalence implies C0-A-equivalence. The case n = 2 also follows from
the works of Prishlyak [10] and Alvarez-Birbrair- Costa-Fernandes [1].

However, it is not true in general that C0-K-equivalence implies C0-A-equivalence of functions.
For any n ≥ 7 , King [7] gives examples of polynomials f, g : (Rn, 0) → (R, 0) with isolated
singularity which are C0-V-equivalent, but not C0- A-equivalent. This combined with the result
of Nishimura [9] that C0-V-equivalence of smooth functions with isolated singularity implies
C0-K-equivalence provides the desired counterexample. The reason of these counterexamples is
that the corresponding zero-sets are homeomorphic but not PL homeomorphic.

In this work we consider the PL classification of polynomial germs f : (Rn, 0) → (R, 0) with
no necessarily isolated singularity. The main result is the following theorem.

Theorem 1.1. If two polynomials f, g : (Rn, 0) → (R, 0) are PL-K-equivalent, then they are
PL-A-equivalent.
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As a consequence, we deduce that for n = 2, 3, if two polynomials f, g : (Rn, 0) → (R, 0) are
C0-K-equivalent, then they are C0-A-equivalent. We also obtain another proof of the Finiteness
Theorem of Fukuda [5].

2. A-equivalence and triangulation

Let f, g : (Rn, 0)→ (Rp, 0) be two smooth (or C∞) map germs. We say that:
• f and g are A-equivalent if there exist diffeomorphisms h : (Rn, 0) → (Rn, 0) and k :

(Rp, 0)→ (Rp, 0) such that the following diagram commutes

(Rn, 0) f−−−−→ (Rp, 0)

h

y k

y
(Rn, 0) g−−−−→ (Rp, 0)

• f and g are K-equivalent if there exist diffeomorphisms H : (Rn×Rp, 0)→ (Rn×Rp, 0)
and h : (Rn, 0)→ (Rn, 0) such that H(Rn × {0}) = Rn × {0} and the following diagram
is commutative:

(Rn, 0) (id, f)−−−−→ (Rn × Rp, 0) πn−−−−→ (Rn, 0)

h

y H

y h

y
(Rn, 0) (id, g)−−−−→ (Rn × Rp, 0) πn−−−−→ (Rn, 0)

where id : (Rn, 0)→ (Rn, 0) is the identity mapping of Rn and πn : (Rn×Rp, 0)→ (Rn, 0)
is the canonical projection germ.

• f and g are V-equivalent if there exist a diffeomorphism h : (Rn, 0)→ (Rn, 0) such that
h(f−1(0)) = g−1(0).

In these definitions, if we have homeomorphisms (resp. PL homeomorphisms, semialgebraic
homeomorphisms) instead of diffeomorphisms, we say that f and g are C0-A, C0-K or C0-V-
equivalent (resp. PL-A, PL-K or PL- V-equivalent, semialgebraically A, K or V-equivalent).

We start with a lemma about PL A-equivalence of PL functions. We consider a PL function
f : X → R, where X is any polyhedron.

Lemma 2.1. Let f1 : X1 → R and f2 : X2 → R be two PL functions. Assume there is a
PL homeomorphism h : X1 → X2 such that h(f−11 (0)) = f−12 (0) and moreover the sign of
f1(x)f2(h(x)) is constant on X1 \ f−11 (0). Then there are neighbourhoods Ni of f−1i (0) on Xi

and Vi of 0 in R such that the restrictions fi : Ni → Vi are PL-A-equivalent.

Proof. We assume, for simplicity, that the sign of f1(x) is equal to the sign of f2(h(x)) on
X1 \ f−11 (0), the other case being analogous.

After subdivision, we can take simplicial complexes K1,K2, L1, L2 with |Ki| = Xi and |Li| =
R, such that f1 : K1 → L1, f2 : K2 → L2 are simplicial maps and h : K1 → K2 is a simplicial
isomorphism.

We fix neighbourhoods in the target V1 = Star(0, L1) with vertices a1 < 0 < b1 and V2 =
Star(0, L2) with vertices a2 < 0 < b2. We also take the corresponding neighbourhoods in the
source N1 = f−11 (V1) and N2 = f−12 (V2). We denote by β : V1 → V2 the simplicial isomorphism
given by β(a1) = a2 and β(b1) = b2.
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We claim that h(N1) = N2 and that the following diagram is commutative:

N1
f1−−−−→ V1

h

y β

y
N2

f2−−−−→ V2.

In fact, let σ ∈ N1 be a simplex such that f1(σ) = {0}. Then σ ∈ f−11 (0) and hence
h(σ) ∈ f−12 (0) ⊂ N2. Moreover, β(0) = 0 and the above diagram is obviously commutative on
σ.

Otherwise, we take a simplex σ ∈ N1 such that f1(σ) 6= {0}. Since f1 is simplicial we must
have either f1(σ) = [0, b1] or f1(σ) = [a1, 0]. If f1(σ) = [0, b1], then f2(h(σ)) = [0, b2] by the
initial assumption and thus, h(σ) ∈ N2. On the other hand, given any vertex v of σ, if f1(v) = 0
then β(f1(v)) = 0 = f2(h(v)) and if if f1(v) = b1 then again β(f1(v)) = b2 = f2(h(v)). This
shows that the diagram is also commutative on σ in this case. The other case is analogous. �

Proof of theorem 1.1. We first note that since f, g are polynomials, by Shiota Theorem [12],
they are triangulable on a small enough neighbourhood of the origin. Hence we can choose
triangulations:

(Rn, 0) f−−−−→ (R, 0)

α1

y β1

y
(X1, 0)

f1−−−−→ (R, 0),

(Rn, 0) g−−−−→ (R, 0)

α2

y β2

y
(X2, 0)

f2−−−−→ (R, 0),
where Xi are polyhedra, fi : Xi → R are PL-maps and αi, βi are homeomorphisms.

Now, the hypothesis that f, g are PL K-equivalent implies that there is a commutative dia-
gram:

(X1, 0)
(id, f1)−−−−→ (X1 × R, 0) π1−−−−→ (X1, 0)

h

y H

y h

y
(X2, 0)

(id, f2)−−−−→ (X2 × R, 0) π1−−−−→ (X2, 0)

where h,H are PL homeomorphisms, id is the identity mapping and π1 is the projection onto
the first factor.

We write H(x, y) = (h(x), θx(y)), then we have that θx : (R, 0) → (R, 0) is a family of
homeomorphisms depending continuously on x in a neighbourhood of the origin. In particular,
we have that either: for any x, θx is always increasing, or for any x, θx is always decreasing
(depending on the local degree of H).

With this notation, the K-equivalence is written as

θx(f1(x)) = f2(h(x)), ∀x ∈ X1.

Then we have that h(f−11 (0)) = f−12 (0) and that the sign of f1(x)f2(h(x)) is constant on X1 \
f−11 (0). The result follows now from lemma 2.1. �

We give now some interesting consequences of this theorem. The first one follows from the
fact that in dimensions n = 2, 3, any homeomorphism between semialgebraic subsets can be
triangulated. Therefore, if two polynomial germs are C0-K-equivalent, then they are PL-K-
equivalent.

Corollary 2.2. Let n = 2, 3, if two polynomials f, g : (Rn, 0) → (R, 0) are C0-K-equivalent,
then they are C0-A-equivalent.
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The second corollary is for the case of isolated singularity. In this case, we have that the
C0-V-equivalence implies the C0-K-equivalence (see [9]) and the same is true in the PL category.

Corollary 2.3. If two polynomials f, g : (Rn, 0) → (R, 0) with isolated singularity are PL-V-
equivalent, then they are PL-A-equivalent.

Another easy consequence is that the theorem is also true if we consider semialgebraic home-
omorphisms instead of PL homeomorphisms. This follows from the fact that any semialgebraic
homeomorphism of semialgebraic sets can be triangulated.

Corollary 2.4. If two polynomials f, g : (Rn, 0) → (R, 0) are semialgebraically K-equivalent,
then they are semialgebraically A-equivalent.

Finally, we give another proof of the Finitness Theorem of Fukuda [5] about C0-A-equivalence
of polynomial function germs of a given degree (see also Benedetti-Shiota [2]). It is deduced from
Hardt work [6] that there is a finite number of topological types of zero-sets up to semialgebraic
homeomorphisms. Moreover, there is a finite number of possible choices for the sign of the
function on the complement of the zero-set. By theorem 1.1, we have a finite number of C0-A-
classes.

Corollary 2.5. There is a finite number of C0-A-classes in the space of all polynomial map
germs f : (Rn, 0)→ (R, 0) of degree ≤ k.
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ZERO-DIMENSIONAL SYMPLECTIC ISOLATED COMPLETE
INTERSECTION SINGULARITIES

WOJCIECH DOMITRZ

Abstract. We study the local symplectic algebra of the 0-dimensional isolated complete in-
tersection singularities. We use the method of algebraic restrictions to classify these symplectic
singularities. We show that there are non-trivial symplectic invariants in this classification.

1. Introduction

The problem of symplectic classification of singular varieties was introduced by V. I. Arnold
in [A1]. Arnold showed that the A2k singularity of a planar curve (the orbit with respect to the
standard A-equivalence of parameterized curves) split into exactly 2k+1 symplectic singularities
(orbits with respect to the symplectic equivalence of parameterized curves). He distinguished
different symplectic singularities by different orders of tangency of the parameterized curve with
the nearest smooth Lagrangian submanifold. Arnold posed a problem of expressing these new
symplectic invariants in terms of the local algebra’s interaction with the symplectic structure and
he proposed to call this interaction the local symplectic algebra. This problem was studied
by many authors mainly in the case of singular curves.

In [IJ1] G. Ishikawa and S. Janeczko classified symplectic singularities of curves in the 2-
dimensional symplectic space. A symplectic form on a 2-dimensional manifold is a special case of
a volume form on a smooth manifold. The generalization of results in [IJ1] to volume-preserving
classification of singular varieties and maps in arbitrary dimensions was obtained in [DR]. The
orbit of the action of all diffeomorphism-germs agrees with the volume-preserving orbit in the
C-analytic category for germs which satisfy a special weak form of quasi-homogeneity e.g. the
weak quasi-homogeneity of varieties is a quasi-homogeneity with non-negative weights λi ≥ 0
and

∑
i λi > 0.

P. A. Kolgushkin classified stably simple symplectic singularities of parameterized curves in
the C-analytic category ([K]).

In [DJZ2] the local symplectic algebra of singular quasi-homogeneous subsets of a symplectic
space was explained by the algebraic restrictions of the symplectic form to these subsets. The
generalization of the Darboux-Givental theorem ([AG]) to germs of arbitrary subsets of the
symplectic space obtained in [DJZ2] reduces the problem of symplectic classification of germs of
quasi-homogeneous subsets to the problem of classification of algebraic restrictions of symplectic
forms to these subsets. For non-quasi-homogeneous subsets there is one more cohomological
invariant apart of the algebraic restriction ([DJZ2], [DJZ1]). The method of algebraic restrictions
is a very powerful tool to study the local symplectic algebra of 1-dimensional singular analytic
varieties since the space of algebraic restrictions of closed 2-forms to a 1-dimensional singular
analytic variety is finite-dimensional ([D]). By this method complete symplectic classifications

1991 Mathematics Subject Classification. Primary 53D05. Secondary 58K40, 58K50, 58A10, 14H20.
Key words and phrases. symplectic manifold, local symplectic algebra, algebraic restrictions, relative Darboux

theorem, isolated complete intersection singularities.
The work of W. Domitrz was supported by Polish MNiSW grant no. N N201 397237.

http://dx.doi.org/10.5427/jsing.2012.6c


20 WOJCIECH DOMITRZ

of the A−D −E singularities of planar curves and the S5 singularity were obtained in [DJZ2].
These results were generalized to other 1-dimensional isolated complete intersection singularities:
the Sµ symplectic singularities for µ > 5 in [DT1], the T7 − T8 symplectic singularities in [DT2]
and the W8 −W9 symplectic singularities in [T].

In this paper we show that some non-trivial symplectic invariants appear not only in the case
of singular curves but also in the case of multiple points. We consider the symplectic classification
of the 0-dimensional isolated complete intersection singularities (ICISs) in the symplectic space
(C2n, ω). We need to introduce a symplectic V -equivalence to study this problem since we
consider the ideals of function-germs that have not got the property of zeros.

We recall that ω is a C-analytic symplectic form on C2n if ω is a C-analytic nondegenerate
closed 2-form, and Φ : C2n → C2n is a symplectomorphism if Φ is a C-analytic diffeomorphism
and Φ∗ω = ω.

Definition 1.1. Let f, g : (C2n, 0)→ (Ck, 0) be C-analytic map-germs on the symplectic space
(C2n, ω). f, g are symplectically V -equivalent if there exist a symplectomorphism-germ Φ :
(C2n, 0, ω) → (C2n, 0, ω) and a C-analytic map-germ M : (C2n, 0) → GL(k,C) such that such
that f ◦ Φ = M · g.

If Φ : (Cn, 0) → (Cm, 0) is a C-analytic map-germ then for an ideal I in the ring of C-
analytic function-germs on Cm we denote by Φ∗I the following ideal {f ◦ Φ : f ∈ I} in the
ring of C-analytic function-germs on Cn. The (symplectic) V -equivalence of map-germs f =
(f1, · · · , fk), g = (g1, · · · , gk) : (C2n, 0) → (Ck, 0) corresponds to the following (symplectic)
equivalence of finitely-generated ideals < f1, · · · , fk > and < g1, · · · , gk > (see [AVG]).

Definition 1.2. Ideals < f1, · · · , fk > and < g1, · · · , gk > of C-analytic function-germs at 0
on the symplectic space (C2n, ω) are symplectically equivalent if there exists a symplecto-
morphism-germ Φ : (C2n, 0, ω)→ (C2n, 0, ω) such that Φ∗ < f1, · · · , fk >=< g1, · · · , gk >.

In this paper we present the complete symplectic classification of the Ia,b, I2a+1, I2a+4, Ia+5,
I∗10 singularities. For n = 1 all V -orbits coincide with symplectic V -orbits. The situation for
n ≥ 2 is different: the Ia,b singularities split into two symplectic V -orbits, the I2a+1, I2a+4,
Ia+5 singularities split into three symplectic orbits and finally I∗10 singularity splits into four
symplectic V -orbits. The symplectic V -orbits of a map f = (f1, · · · , f2n) are distinguished by
the order of vanishing of a pullback of the germ of the symplectic form to a C-analytic non-
singular submanifold M of the minimal dimension such that the ideal of C-analytic function-
germs vanishing M is contained in the ideal < f1, · · · , f2n > (see Definition 3.2).

To obtain these results we need some reformulation and modification of the method of alge-
braic restrictions. We present it in Section 2. In Section 3 we give the definitions of discrete
symplectic invariants which completely distinguish symplectic V -singularities considered in this
paper. We recall basic facts on the classification of V -simple maps in Section 4. In Section 5 we
prove the symplectic V -classification theorem for 0-dimensional ICISs (Theorem 5.1).

2. The method of algebraic restrictions for the symplectic V -equivalence.

In this section we present basic facts on the method of algebraic restrictions adapted to the
case of the symplectic V -equivalence. The proofs of all results are small modifications of the
proofs of analogous results in [DJZ2].

Given a germ at 0 of a non-singular C-analytic submanifold M of Cm denote by Λp(M) the
space of all germs at 0 of C-analytic differential p-forms on M . By O(M) denote the ring of
C-analytic function-germs onM at 0. Given an ideal I in O(M) introduce the following subspace
of Λp(M):

Ap0(I,M) = {α+ dβ : α ∈ IΛp(M), β ∈ IΛp−1(M).}
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The relation ω ∈ IΛp(M) means that ω =
∑k
i=1 fiαi, where αi ∈ Λp(M) and fi ∈ I for

i = 1, ..., k.

Definition 2.1. Let I be an ideal of O(M) and let ω ∈ Λp(M). The algebraic restriction of
ω to I is the equivalence class of ω in Λp(M), where the equivalence is as follows: ω is equivalent
to ω̃ if ω − ω̃ ∈ Ap0(I,M).

Notation. The algebraic restriction of the germ of a p-form ω on M to the ideal I in O(M)
will be denoted by [ω]I . Writing [ω]I = 0 (or saying that ω has zero algebraic restriction to I)
we mean that [ω]I = [0]I , i.e. ω ∈ Ap0(I,M).

Definition 2.2. Two algebraic restrictions [ω]I and [ω̃]Ĩ are called diffeomorphic if there exists
the germ of a diffeomorphism Φ : M → M̃ such that Φ∗(Ĩ) = I and [Φ∗ω̃]I = [ω]I .

Definition 2.3. The germ of a function, a differential k-form, or a vector field α on (Cm, 0)
is quasi-homogeneous in a coordinate system (x1, · · · , xm) on (Cm, 0) with positive integer
weights (λ1, · · · , λm) if LEα = δα, where E =

∑m
i=1 λixi

∂
∂xi

is the germ of the Euler vector
field on (Cm, 0) and the integer δ is called the quasi-degree.

It is easy to show that α is quasi-homogeneous in a coordinate system (x1, · · · , xm) with
weights (λ1, · · · , λm) if and only if F ∗t α = tδα, where

(2.1) Ft(x1, · · · , xm) = (tλ1x1, · · · , tλmxm).

Definition 2.4. A finitely generated ideal I of O(Cm) is quasi-homogeneous if there exist
generators of I which are quasi-homogeneous in the same coordinate system (x1, · · · , xm) on Cm
with the same positive integer weights (λ1, · · · , λm).

A map-germ f = (f1, · · · , fk) : (Cm, 0) → (Ck, 0) is quasi-homogeneous if function-germs
f1, · · · , fk are quasi-homogeneous in the same coordinate system (x1, · · · , xm) on Cm with the
same positive integer weights (λ1, · · · , λm).

To prove the generalization of Darboux-Givental theorem suitable for the symplectic V -
equivalence of maps or the symplectic equivalence of ideals of function-germs we need the fol-
lowing version of the Relative Poincaré Lemma.

Lemma 2.5. Let I be a finitely generated quasi-homogeneous ideal in O(Cm). If ω ∈ IΛp(Cm)
is closed than there exists α ∈ IΛp−1(Cm) such that ω = dα.

Proof. We use the method described in [DJZ1]. We can find a coordinate system (x1, · · · , xm)
on (Cm, 0) and positive integer weights (λ1, · · · , λm) and quasi-homogeneous function-germs
f1, · · · , fk ∈ O(Cm) (in this coordinate systems with these weights) such that I =< f1, · · · , fk >.
Let δi be a quasi-degree of fi for i = 1, · · · , k.

Let Ft be a map defined in (2.1) and let Vt be a vector field along Ft for t ∈ [0; 1] such that
Vt ◦ Ft = F ′t .

Then we have F ∗0 ω = 0 and it implies that

ω = F ∗1 ω − F ∗0 ω =

∫ 1

0

(F ∗t ω)′dt =

∫ 1

0

F ∗t d(Vtcω)dt = d

(∫ 1

0

F ∗t (Vtcω)dt

)
.

Let α =
∫ 1

0
F ∗t (Vtcω)dt, then ω = dα. But ω belongs to IΛp(Cm). It implies that there exist

germs of p-forms βi in Λp(Cm) for i = 1, · · · , k such that ω =
∑k
i=1 fiβi. So we have that

α =

∫ 1

0

F ∗t (Vtc
k∑
i=1

fiβi)dt =

k∑
i=1

fi

∫ 1

0

tδiF ∗t (Vtcβi)dt.

Thus α belongs to IΛp−1(Cm). �
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The method of algebraic restrictions applied to finitely-generated quasi-homogeneous ideals
is based on the following theorem.

Theorem 2.6 (a modification of Theorem A in [DJZ2]). Let I be a finitely generated quasi-
homogeneous ideal in O(C2n).

(1) If ω0, ω1 are germs at 0 of symplectic forms on C2n with the same algebraic restriction
to I then there exists a C-analytic diffeomorphism-germ Φ of C2n at 0 of the form
Φ(x) = (x1 + φ1(x), · · · , x2n + φ2n(x)), where φi ∈ I for i = 1, · · · , 2n, such that
Φ∗ω1 = ω0.

(2) C-analytic quasi-homogeneous map-germs f = (f1, · · · , fk), g = (g1, · · · , gk) : (C2n, 0)→
(Ck, 0) on the symplectic space (C2n, ω) are symplectically V -equivalent if and only if
algebraic restrictions [ω]<f1,··· ,fk> and [ω]<g1,··· ,gk> are diffeomorphic.

Remark 2.7. It is obvious that if Φ(x) = (x1 + φ1(x), · · · , x2n + φ2n(x)) where φi ∈ I for
i = 1, · · · , 2n then Φ∗I = I

A proof of Theorem 2.6 can be obtain by a small modification of the proof of Theorem A in
[DJZ2]. One only needs Lemma 2.5 and the following fact.

Lemma 2.8. Let I be a finitely generated ideal in O(Cm). Let Xt =
∑m
i=1 fi,t

∂
∂xi

for t ∈ [0; 1]
be a family of germs of C-analytic vector fields on Cm such that fi,t ∈ I for i = 1, · · · ,m.

If Φt for t ∈ [0, 1] is a family of diffeomorphism-germs of (Cm, 0) such that

(2.2)
d

dt
Φt = Xt ◦ Φt

then

(2.3) Φt(x) = (x1 + φ1,t(x), · · · , x2n + φ2n,t(x)),

where φi,t ∈ I for i = 1, · · · , 2n.

A sketch of the proof. The map t 7→ Φt(x) is a solution of ODE dy
dt = Xt(y) with the initial

condition y(0) = x. So Φt(x) can be obtained as a limit limn→∞ TnΨ where Ψ(t, x) ≡ x and
(TΨ)(t, x) = x +

∫ t
0
Xs(Ψ(s, x))ds is the Picard’s operator. It is easy to see that if Ψ has the

form (2.3) then TΨ has the form (2.3) too. The ideal I is finitely generated. Thus Φt has also
this form. �

Theorem 2.6 reduces the problem of symplectic classification of quasi-homogeneous ideals to
the problem of classification of the algebraic restrictions of the germ of the symplectic form to
quasi-homogeneous ideals.

The meaning of the zero algebraic restriction is explained by the following theorem.

Theorem 2.9 (a modification of Theorem B in [DJZ2]). A finitely generated quasi-homogeneous
ideal I of O(C2n) contains the ideal of C-analytic function-germs vanishing on the germ of a non-
singular Lagrangian submanifold of the symplectic space (C2n, ω) if and only if the symplectic
form ω has zero algebraic restriction to I.

We now formulate the modifications of basic properties of algebraic restrictions ([DJZ2]).
First we can reduce the dimension of the manifold due to the following propositions.

If the ideal I in O(Cm) contains an ideal I(M) of function-germs vanishing on a non-singular
submanifold M ⊂ Cm then the classification of the algebraic restrictions to I of p-forms on Cm
reduces to the classification of the algebraic restrictions to I|M = {f |M : f ∈ I} of p-forms on
M . At first note that the algebraic restrictions [ω]I and [ω|TM ]I|M can be identified:
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Proposition 2.10. Let I be an ideal in O(Cm) which contains an ideal of function-germs
vanishing on a non-singular submanifold M ⊂ Cm and let ω1, ω2 be germs of p-forms on Cm.
Then [ω1]I = [ω2]I if and only if

[
ω1|TM

]
I|M

=
[
ω2|TM

]
I|M

.

The following, less obvious statement, means that the orbits of the algebraic restrictions [ω]I
and [ω|TM ]I|M also can be identified.

Proposition 2.11. Let I1, I2 be ideals in the ring O(Cm), which contain I(M1) and I(M2)
respectively, where M1,M2 are equal-dimensional non-singular submanifolds. Let ω1, ω2 be two
germs of p-forms. The algebraic restrictions [ω1]I1 and [ω2]I2 are diffeomorphic if and only if
the algebraic restrictions

[
ω1|TM1

]
I1|M1

and
[
ω2|TM2

]
I2|M2

are diffeomorphic.

To calculate the space of algebraic restrictions of germs of 2-forms we will use the following
obvious properties.

Proposition 2.12. If ω ∈ Ak0(I,C2n) then dω ∈ Ak+1
0 (I,C2n) and ω ∧ α ∈ Ak+p0 (I,C2n) for

any germ of C-analytic p-form α on C2n.

Then we need to determine which algebraic restrictions of closed 2-forms are realizable by
symplectic forms. This is possible due to the following fact.

Proposition 2.13. Let I be an ideal of O(C2n). Let r be the minimal dimension of non-singular
submanifolds M of C2n such that I contains the ideal I(M). The algebraic restriction [θ]I of the
germ of a closed 2-form θ is realizable by the germ of a symplectic form on C2n if and only if
rank(θ|T0M ) ≥ 2r − 2n.

3. Discrete symplectic invariants.

We use discrete symplectic invariants to distinguish symplectic singularity classes. We modify
definitions of these invariants introduced in [DJZ2] for the symplectic V -equivalence.

The first invariant is a symplectic multiplicity ([DJZ2]) introduced in [IJ1] as a symplectic
defect of a curve.

Let f : (C2n, 0)→ (Ck, 0) be the germ of a C-analytic map on the symplectic space (C2n, ω).

Definition 3.1. The symplectic multiplicity µsympl(f) of f is the codimension of the sym-
plectic V -orbit of f in the V -orbit of f .

The second invariant is the index of isotropy [DJZ2].

Definition 3.2. The index of isotropy ι(f) of f = (f1, · · · , fk) is the maximal order of
vanishing of the 2-forms ω|TM over all smooth submanifoldsM such that the ideal < f1, · · · , fk >
contains I(M).

These invariants can be described in terms of algebraic restrictions.

Proposition 3.3 ([DJZ2]). The symplectic multiplicity of the germ of a quasi-homogeneous
map f = (f1, · · · , fk) on the symplectic space (C2n, ω) is equal to the codimension of the orbit
of the algebraic restriction [ω]<f1,··· ,fk> with respect to the group of diffeomorphism-germs pre-
serving the ideal < f1, · · · , fk > in the space of the algebraic restrictions of closed 2-forms to
< f1, · · · , fk >.

Proposition 3.4 ([DJZ2]). The index of isotropy of the germ of a quasi-homogeneous map
f = (f1, · · · , fk) on the symplectic space (C2n, ω) is equal to the maximal order of vanishing of
closed 2-forms representing the algebraic restriction [ω]<f1,··· ,fk>.

We will use these invariants to distinguish symplectic singularities.
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4. V -simple maps

We recall some results on classification of V -simple germs (for details see [AVG]).

Definition 4.1. The germ f : (Cm, 0) → (Cn, 0) is said be V -simple if its k-jet, for any k,
has a neighborhood in the small jet space Jk0,0(Cm,Cn) that intersects only a finite number of
V -equivalence classes (bounded by a constant independent of k).

Definition 4.2. The p-parameter suspension of the map-germ f : (Cm, 0) → (Cn, 0) is
the map germ

F : (Cm × Cp, 0) 3 (y, z) 7→ (f(y), z) ∈ (Cn × Cp, 0).

Theorem 4.3 (see [AVG]). The V-simple map-germs (Cm, 0)→ (Cn, 0) with m ≥ n belong, up
to V -equivalence and suspension, to one of the three lists: the A−D − E singularities of map-
germs Cm → C (hypersurfaces with an isolated singularity), S − T − U −W − Z singularities
of map-germs C3 → C2 (1-dimensional ICISs) and singularities of map-germs C2 → C2 (0-
dimensional ICISs) presented in Table 1.

Notation Normal form Restrictions
Ia,b (yz, ya + zb) a ≥ b ≥ 2

I2a+1 (y2 + z3, za) a ≥ 3

I2a+4 (y2 + z3, yza) a ≥ 2

Ia+5 (y2 + za, yz2) a ≥ 4

I∗10 (y2, z4) -

Table 1. V-simple map-germs C2 → C2.

The normal forms in Table 1 were obtained in [G] by M. Giusti.

5. Symplectic 0-dimensional ICISs

We use the method of algebraic restrictions to obtain a complete classification of singularities
presented in Table 1.

Theorem 5.1. Any map-germ (C2n, 0) → (C2n, 0) from the symplectic space (C2n,
∑n
i=1 dpi ∧

dqi) which is V -equivalent (up to a suitable suspension) to one of the normal forms in Table 1
is symplectically V -equivalent to one and only one of the following normal forms presented in
Table 2

Proof. In the case n = 1 the proof follows from results in [DR] where it was proved that for quasi-
homogeneous singularities in the C-analytic category V -orbits coincide with volume-preserving
V -orbits. For general n we present the proof in the case of the I∗10 singularity where there are
4 different symplectic singularity classes, and in the case of the Ia+5 singularity. The proofs in
other cases are very similar.

For the I∗10 singularity we calculate the space of algebraic restrictions of 2-forms to the ideal
I =< y2, z4, x1, · · · , x2n−2 >. The ideal generated by x1, · · · , x2n−2 is contained in I. So by
Proposition 2.10 we may consider the following ideal J = I|{x1=···=x2n−2=0} =< y2, z4 > in
the ring O(C2). By Proposition 2.12 germs of 1-forms d(1/2y2) = ydy, d(1/4z4) = z3dz and
germs of 2-forms ydy ∧ dz, z3dy ∧ dz have zero algebraic restriction to J . So any algebraic
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Symplectic class Normal forms cod µsympl i
I0a,b, (n ≥ 1) (p1q1, p

a
1 + qb1, p2, q2, · · · , pn, qn) 0 0 0

I1a,b, (n ≥ 2) (p1p2, p
a
1 + pb2, q1, q2, p3, q3, · · · , pn, qn) 1 1 ∞

I02a+1, (n ≥ 1) (p21 + q31 , q
a
1 , p2, q2, · · · , pn, qn) 0 0 0

I12a+1, (n ≥ 2) (p21 + p32, p
a
2 , q1, q2 + p1p2, p3, q3, · · · , pn, qn) 1 1 1

I22a+1, (n ≥ 2) (p21 + p32, p
a
2 , q1, q2, p3, q3, · · · , pn, qn) 2 2 ∞

I02a+4, (n ≥ 1) (p21 + q31 , p1q
a
1 , p2, q2, · · · , pn, qn) 0 0 0

I12a+4, (n ≥ 2) (p21 + p32, p1p
a
2 , q1, q2 + p1p2, p3, q3, · · · , pn, qn) 1 1 1

I22a+4, (n ≥ 2) (p21 + p32, p1p
a
2 , q1, q2, p3, q3, · · · , pn, qn) 2 2 ∞

I0a+5, (n ≥ 1) (p21 + qa1 , p1q
2
1 , p2, q2, · · · , pn, qn) 0 0 0

I1a+5, (n ≥ 2) (p21 + pa2 , p1p
2
2, q1, q2 + p1p2, p3, q3, · · · , pn, qn) 1 1 1

I1a+5, (n ≥ 2) (p21 + pa2 , p1p
2
2, q1, q2, p3, q3, · · · , pn, qn) 2 2 ∞

I∗010 , (n ≥ 1) (p21, q
4
1 , p2, q2, · · · , pn, qn) 0 0 0

I∗110 , (n ≥ 2) (p21, p
4
2, q1, q2 + p1p2, p3, q3, · · · , pn, qn) 1 1 1

I∗210 , (n ≥ 2) (p21, p
4
2, q1, q2 + p1p

2
2, p3, q3, · · · , pn, qn) 2 2 2

I∗310 , (n ≥ 2) (p21, p
4
2, q1, q2, p3, q3, · · · , pn, qn) 3 3 ∞

Table 2. Classification of symplectic 0-dimensional isolated complete intersection
singularities, cod – codimension of the classes; µsympl– symplectic multiplicity; i –
index of isotropy.

restriction of the germ of a closed 2-forms to J can be presented in the following form [ω]J =
A[dy ∧ dz]J +B[zdy ∧ dz]J + C[z2dy ∧ dz]J , where A,B,C ∈ C.

If A 6= 0 then we obtain Φ∗[ω]J = [dy∧dz]J by the diffeomorphism-germ of the form Φ(y, z) =
(y, z(A + 1/2Bz + 1/3Cz2)). If A = 0 and B 6= 0 then we obtain Φ∗[ω]J = [zdy ∧ dz]J by the
diffeomorphism-germ of the form Φ(y, z) = (y, zφ(z)), where φ2(z) = B + 2/3Cz. If A = B = 0
and C 6= 0 then we obtain Φ∗[ω]J = [z2dy ∧ dz]J by the diffeomorphism-germ of the form
Φ(y, z) = (Cy, z).

Since the minimal dimension r of the germ of a non-singular submanifoldM such that I(M) ⊂
I is 2 then by Proposition 2.13 for n = 1 only the algebraic restriction [dy ∧ dz]I is realizable by
the germ of a symplectic form.

For n > 1 all algebraic restrictions are realizable by the following symplectic forms:

(5.1) dy ∧ dz +

n−1∑
i=1

dx2i−1 ∧ dx2i,

(5.2) zdy ∧ dz + dy ∧ dx1 + dz ∧ dx2 +

n−1∑
i=2

dx2i−1 ∧ dx2i,

(5.3) z2dy ∧ dz + dy ∧ dx1 + dz ∧ dx2 +

n−1∑
i=2

dx2i−1 ∧ dx2i,

(5.4) dy ∧ dx1 + dz ∧ dx2 +

n−1∑
i=2

dx2i−1 ∧ dx2i.

By a simple change of coordinates we obtain the normal forms in Table 2.
For the Ia+5 singularity the space algebraic restrictions of germs of closed 2-forms to the

ideal I =< y2 + za, yz2, x1, · · · , x2n−2 > can calculated in the same way. We obtain that any
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algebraic restriction of the germs of a closed 2-forms on C2 = {x1 = · · · = x2n−2 = 0} to
J = I|{x1=···=x2n−2=0} =< y2 + za, yz2 > can be presented in the following form

(5.5) [ω]J = A[dy ∧ dz]J +B[zdy ∧ dz]J ,
where A,B ∈ C.

First assume that A 6= 0. Let E denote the germ of the Euler vector field ay ∂
∂y + 2z ∂

∂y .
Then it is easy to check that a flow Φt of the germ of a vector field X = B

(a+4)AzE preserves J ,
LX(Ady ∧ dz) = Bzdy ∧ dz, [LX(Bzdy ∧ dz)]J = 0. Therefore Φ∗t [Ady ∧ dz + tBzdy ∧ dz]J =
[Ady ∧ dz]J for t ∈ [0; 1] (see [D]). Finally by a linear change of coordinates of the form
(y, z) 7→ (Cy,Dz), where for C,D ∈ C such that C2 = Da and CD = A we show that if
A 6= 0 then the algebraic restriction (5.5) is diffeomorphic to [dy ∧ dz]J . By a similar change of
coordinates preserving J we show that if A = 0 and B 6= 0 then the algebraic restriction (5.5) is
diffeomorphic to [zdy ∧ dz]J . As in the previous case, for n = 1 only [dy ∧ dz]I can be realizable
by the germ of a symplectic form . For n ≥ 2 algebraic restrictions are realizable by (5.1), (5.2)
and (5.4). Normal forms in Table 2 are obtained by an obvious change of coordinates. �
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MULTIPLICITIES OF DEGENERATIONS OF MATRICES AND MIXED
VOLUMES OF CAYLEY POLYHEDRA

ALEXANDER ESTEROV

Abstract. Using a certain Pick-type formula for the mixed volume of Cayley polyhedra, we
compute the multiplicity of the isolated common zero of the maximal minors for a matrix of
generic homogeneous polynomials of given degrees.

1. Introduction

The local version of D. Bernstein’s formula [Ber] expresses the local degree of a germ of a
proper analytic map in terms of the Newton polyhedra of its components, provided that the
principal parts of its components are in general position (see Theorem 5). We generalize this
formula to germs of matrix-valued functions.

Let A : Cm → Cn×k be a germ of an analytic (n×k)-matrix-valued function, where n 6 k (we
denote the space of all (n× k)-matrices by Cn×k). If rkA(0) < n and rkA(x) = n for all x 6= 0,
then m 6 k − n + 1. Suppose that m = k − n + 1 (in particular, if n = 1, then this condition
means that A : Cm → Cm is a germ of a proper analytic map). The intersection number m(A)
of the germ A(Cm) and the set of all degenerate matrices in Cn×k is well defined, because the
codimension of degenerate matrices in Cn×k equals k−n+ 1. In particular, if n = 1, then m(A)
equals the local degree of the map A : Cm → Cm.

Definition 1. Let A : Cm → Cn×k be a germ of an analytic (n × k)-matrix-valued function,
such that m = k − n + 1, rkA(0) < n and rkA(x) = n for all x 6= 0. Then the intersection
number m(A) will be called the multiplicity (of degeneration) of the germ A.

We recall the relation of this number to algebraic and topological invariants, motivating our
interest to it.

1. Relation to Buchsbaum-Rim multiplicities. In the notation of Definition 1, the multiplicity
of the matrix A is equal to dimCOCm,0/〈maximal minors of A〉, where OCm,0 is the ring of
germs of analytic functions on Cm near the origin. In particular, it equals the Buchsbaum-
Rim multiplicity of the submodule of OnCm,0, generated by the columns of A (see, for example,
Proposition 2.3 in [G]).

2. Relation to characteristic classes. Let vi be a holomorphic section of a vector bundle I
of rank k on a smooth (k − n + 1)-dimensional complex manifold M for i = 1, . . . , n. Suppose
that there is a finite number of points x ∈M such that the vectors v1(x), . . . , vn(x) are linearly
dependent. Denote the set of all such points by X. Near each point x ∈ X, choosing a local basis
s1, . . . , sk in the bundle I, one can represent vi as a linear combination vi = ai,1s1 + . . .+ai,ksk,
where ai,j are the entries of an (n × k)-matrix A : M → Cn×k defined near x. Denote the
multiplicity of A by mx. Then the Chern number ck−n+1(Iq) · [M ] is equal to the sum of the
multiplicities mx over all points x ∈ X (see, for example, [GH]).

This study was carried out within The National Research University Higher School of Economics Academic
Fund Program in 2012-2013, research grant No.11-01-0125. Partially supported by RFBR, grant 10-01-00678,
MESRF, grant MK-6223.2012.1, and the Dynasty Foundation fellowship.
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The aim of this paper is to present a formula for the multiplicity of a matrix A in terms of
the Newton polyhedra of the entries of A, provided that the principal parts of the entries are in
general position. In [Biv], a similar formula is given under the assumption that all the entries
from the same row of the matrix A have the same Newton polyhedron. [E05] contains a general
formula (see Theorem 23), which is somewhat indirect in the sense that one has to increase the
dimension of polyhedra under consideration in order to formulate the answer. The aim of this
paper is to simplify this answer combinatorially (see Theorem 7), so that no higher-dimensional
polyhedra are involved.

In Sections 2 and 3, we present the formula for the multiplicity of a matrix and the condition
of general position for the principal parts of the entries of a matrix, respectively. In Sections 5,
this formula is deduced from Theorem 23, which expresses the multiplicity of a matrix in terms
of the mixed volume of pairs of certain polyhedra (this notion is introduced in Section 4). This
requires a formula for the mixed volume of Cayley polyhedra (Theorem 24, the proof given in
Section 7), which follows from the Oda equality (A ∩ Zn) + (B ∩ Zn) = (A+ B) ∩ Zn for some
class of bounded lattice polyhedra A,B ⊂ Rn (see Section 6).

I am very grateful to the referee for many important remarks and ideas on how to improve
the paper.

2. Multiplicity in terms of Newton polyhedra

A polyhedron in Rn is the intersection of a finite number of closed half-spaces. A face of a
polyhedron A is the intersection of A and the boundary of a closed half-space, containing A.
Note that the empty set is a face of every polyhedron. The Minkowski sum of sets A and B in
Rn is the set A+B = {a+ b | a ∈ A, b ∈ B}. Note that ∅ +A = ∅ for every A.

Definition 2. Let Bi be a face of a polyhedron ∆i ⊂ Rm for i = 1, . . . , k. The collection of
faces (B1, . . . , Bk) is said to be compatible, if the sum B1 + . . . + Bk is a non-empty bounded
face of the sum ∆1 + . . .+ ∆k.

Denote the positive orthants of Rm and Zm by Rm+ and Zm+ respectively. For each point
a = (a1, . . . , am) ∈ Zm, denote the monomial xa11 . . . xamm by xa.

Definition 3. The Newton polyhedron ∆f of a germ of an analytic function f =
∑
a∈Zm

+
cax

a :

Cm → C is the convex hull of the union
⋃

a | ca 6=0

(a+ Rm+ ).

Definition 4. The restriction f |B of a germ f =
∑
a∈Zm

+
cax

a to a bounded subset B of the
Newton polyhedron ∆f is the polynomial

∑
a∈Zm∩B

cax
a. The restriction of f to the union of all

bounded faces of ∆f is called the principal part of f . The restriction to the empty set equals
zero by definition.

The principal parts of the components of a map f : Cm → Cm form the principal part of f ,
and the principal parts of the entries of an (n × k)-matrix A : Cm → Cn×k form the principal
part of A.

For a polyhedron ∆ ⊂ Rm+ , denote the number of integer lattice points in the difference Rm+ \∆
by I(∆). Recall the local version of D. Bernstein’s formula [Ber] (it can be deduced, for example
from M. Oka’s formula [O90]):

Theorem 5. Let f = (f1, . . . , fm) : Cm → Cm be a germ of an analytic map near the origin,
and the differences Rm+ \∆fi are bounded.



MULTIPLICITIES OF DEGENERATIONS OF MATRICES AND MIXED VOLUMES 29

1) The local degree of f is greater than or equal to∑
0<p6m

(−1)m−p
∑

0<i1<...<ip6m

I(∆fi1
+ . . .+ ∆fip ), (∗)

provided that f is proper.
2) The germ f is proper, and its local degree equals (∗), if and only if, for each compatible
collection of faces B1, . . . , Bm of the polyhedra ∆1, . . . ,∆m, the system of polynomial equations
f1|B1

= . . . = fm|Bm
= 0 has no roots in (C \ {0})m.

Remark. The principal parts, which satisfy the condition from part (2) of this theorem, form
a dense algebraic set in the space of principal parts of maps with given Newton polyhedra of
components.

The main result of this paper is the following generalization of this fact to multiplicities of
matrices.

Definition 6. The tropical semiring P of polyhedra is the set of all convex polyhedra in Rn
(including the empty one) with the additive operation

A ∨B = convex hull of A ∪B
and the Minkowski sum as the multiplicative operation

A+B = {a+ b | a ∈ A, b ∈ B}.

The name is justified by the fact that the support functions of A∨B and A+B are equal to
the maximum and the sum of the support functions of A and B respectively. All the polyhedra
A, satisfying the equation A + Rm+ = A, form a subring P+ ⊂ P , and Rm+ is the unit in this
subring. In particular, whenever the sum of polyhedra Aj ∈ P+ is taken over an empty set of
indices J = ∅, we set

∑
j∈J Aα = Rm+ by definition.

Theorem 7. Let A = (ai,j) : Cm → Cn×k be a germ of an (n× k)-matrix with analytic entries,
m = k − n+ 1, and the differences Rm+ \∆ai,j are bounded.
1) The multiplicity of the matrix A is greater than or equal to∑

J⊂{1,...,k}
b1+...+bn=|J|

(−1)k−|J|I
( ∨

J1t...tJn=J

|J1|=b1,...,|Jn|=bn

∑
i=1,...,n

j∈Ji

∆ai,j

)
, (∗∗)

provided that rkA(x) = n for all x 6= 0. Here the first summation is taken over all non-empty
J ⊂ {1, . . . , k} and all collections of non-negative integers bi that sum up to |J |, and

∨
is taken

over all decompositions of J into disjoint sets Ji of size bi.
2) We have rkA(x) = n for all x 6= 0, and the multiplicity of A equals (∗∗), if and only if the
principal part of A is in general position in the sense of Definition 17.

It is a purely combinatorial problem to deduce this fact from Theorem 23, and it will be
addressed in Section 5.

Example 8. Theorem 7 appears to be more convenient than Theorem 23 in many important
special cases. For instance, in the classical case of homogeneous ai,j , Theorem 7 unlike Theorem
23 gives a closed formula for the multiplicity in terms of the degrees di,j of the components ai,j .
For J ⊂ {1, . . . , k} and a decomposition |J | = b1 + . . .+ bn into non-negative integers, introduce
the number

dJb1,...,bn = min
J1t...tJn=J

|J1|=b1,...,|Jn|=bn

∑
i=1,...,n

j∈Ji

di,j .
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Corollary 9. In the setting of Theorem 7, assume that the components ai,j are homogeneous
polynomials of degree di,j.

1) The multiplicity of the matrix A is greater or equal to∑
J⊂{1,...,k}

b1+...+bn=|J|

(−1)k−|J|
(
m+ dJb1,...,bn − 1

m

)
.

2) The multiplicity is strictly greater than this number or is infinite, if and only if the entries
are not in general position in the following sense: there exist integer numbers α1, . . . , αn and
β1, . . . , βk and non-zero x ∈ Cm such that di,j > αi + βj for every i and j, and the matrix of
the entries δαi+βj

di,j
ai,j(x) is effectively degenerate in the sense of Definition 15 (as usual, δqp is 1

if p = q and 0 otherwise).

Example 10. Note that, unlike in the complete intersection case n = 1, the multiplicity of such
a homogeneous matrix can be strictly greater than expected, but still finite. For example, if
(m,n, k) = (2, 2, 3), then the matrix(

x+ y (x+ y)2 + y2 x+ y
x+ y x+ y (x+ y)2 + 2y2

)
has multiplicity 6, which is strictly greater than the answer 3, given by Part 1 for a generic

matrix of degree
(

1 2 1
1 1 2

)
. This is because the matrix above is not in general position

(consider α1 = α2 = 1, β1 = β2 = β3 = 0 in the notation of Part 2).

Example 11. Let us expand the answer given by Theorem 7 in the simplest case (m,n, k) =
(2, 2, 3). Denote ∆ai,j by ∆i,j , then (∗∗) equals

I(∆1,1 + ∆1,2 + ∆1,3)+

+I
(

(∆2,1 + ∆1,2 + ∆1,3) ∨ (∆1,1 + ∆2,2 + ∆1,3) ∨ (∆1,1 + ∆1,2 + ∆2,3)
)

+

+I
(

(∆1,1 + ∆2,2 + ∆2,3) ∨ (∆2,1 + ∆1,2 + ∆2,3) ∨ (∆2,1 + ∆2,2 + ∆1,3)
)

+

+I(∆2,1 + ∆2,2 + ∆2,3)− I(∆1,1 + ∆1,2)− I(∆1,1 + ∆1,3)− I(∆1,2 + ∆1,3)−

−I(∆2,1 + ∆2,2)− I(∆2,1 + ∆2,3)− I(∆2,2 + ∆2,3)− I((∆1,1 + ∆2,2) ∨ (∆1,2 + ∆2,1))−

−I((∆1,1 + ∆2,3) ∨ (∆1,3 + ∆2,1))− I((∆1,3 + ∆2,2) ∨ (∆1,2 + ∆2,3))−

+I(∆1,1) + I(∆1,2) + I(∆1,3) + I(∆2,1) + I(∆2,2) + I(∆2,3).

Example 12. If ∆i,j = ∆i does not depend on the column j, then the answer, given by
Theorems 7 and 23, admits a much simpler form∑

16i16...6im6k MV(∆i1 , . . . ,∆im). If ∆i,j = ∆j does not depend on the row i, then the answer,
given by Theorems 7 and 23, admits a much simpler form

∑
16j1<...<jm6k MV(∆j1 , . . . ,∆jm).

Both of these facts can be easily deduced from Theorem 23 (see [E06] and [E09] for details).
The latter one was discovered earlier in a much more general setting by Bivià-Ausina ([Biv]).

For example, if the germs ai1 ∈ 〈x2, y〉, ai2 ∈ 〈x, y3〉, ai3 ∈ 〈x2, y3〉, i = 1, 2, are in general
position, then the multiplicity of A equals 4I(∆1 + ∆2 + ∆3) − 3I(∆1 + ∆2) − 3I(∆1 + ∆3) −
3I(∆2 + ∆2) + 2I(∆1) + 2I(∆2) + 2I(∆3) = 4 · 16− 3 · (6 + 9 + 11) + 2 · (2 + 3 + 5) = 6 according
to Theorem 7 and MV(∆1,∆2) + MV(∆1,∆3) + MV(∆2,∆3) = 1 + 2 + 3 = 6 according to [Biv].
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3. General position of principal parts of matrices

By convention, each polyhedron has the empty face. In particular, some faces Bi,j in the
following definition may be empty.

Definition 13. Let Bi,j be a bounded face of a polyhedron ∆i,j ⊂ Rm for i = 1, . . . , n, j =
1, . . . , k. The collection of faces Bi,j is said to be matrix-compatible, if there exist vectors
c1, . . . , cn ∈ Zm and compatible faces B1, . . . , Bk of the convex hulls

∨
i(∆i,1 +ci), . . . ,

∨
i(∆i,k+

ci), such that Bi,j = (Bj − ci) ∩∆i,j for each i = 1, . . . , n, j = 1, . . . , k.

Example 14. Let ∆i,j ⊂ R1 be the rays [1,∞) [1,∞) [1,∞)
[1,∞) [2,∞) [2,∞)
[1,∞) [2,∞) [2,∞)

 ,

then every face Bi,j is either the origin of ∆i,j (denoted by ∗), or empty (denoted by ∅). In this
case, the matrix-compatible collection of faces are

B1 =

 ∗ ∗ ∗
∗ ∅ ∅
∗ ∅ ∅

 , B2 =

 ∅ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 ,

and 11 more collections with fewer non-empty faces.

Definition 15. A matrix M ∈ Cn×k, n 6 k, is said to be effectively non-degenerate, if
(t1, . . . , tn) ·M 6= (0, . . . , 0) for all (t1, . . . , tn) ∈ (C \ {0})n.

Example 16. The complex matrix  a b c
d 0 0
e 0 0


is effectively degenerate if and only if b = c = 0 (although it is degenerate for all complex
numbers a, b, c, d, e).

For an (n× k)-matrix A with analytic entries ai,j : Cm → C and a collection B of faces Bi,j
of the Newton polyhedra ∆ai,j , we denote the matrix with entries ai,j |Bi,j by A|B.

Definition 17. The principal part of an (n×k)-matrix A with analytic entries ai,j : Cm → C is
said to be in general position, if, for each matrix-compatible collection B of faces of the Newton
polyhedra ∆ai,j and for each x ∈ (C \ {0})m, the matrix A|B(x) is effectively non-degenerate.

Remark. Principal parts in general position form a dense algebraic set in the space of principal
parts of matrices with given Newton polyhedra of entries. However, this is not true, if we replace
the effective non-degeneracy of matrices with the conventional one in Definition 17. For instance,
if (m,n, k) = (1, 3, 3), and the Newton polyhedra ∆ai,j are as in the example to Definition 13,
then the only non-trivial condition, imposed by Definition 17, corresponds to the second matrix-
compatible collection of faces shown in the example:

det(A|B2) = det

 0 a00,1 a00,2
a01,0 a01,1 a01,2
a02,0 a02,1 a02,2

 6= 0,

where a0i,j is the leading coefficient of the series ai,j . However, if we replace effective nondegen-
eracy with nondegeneracy in Definition 17, then no matrix A will satisfy it, because the matrix
A|B1

is always degenerate (see the example to Definition 15).
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It would be thus interesting to describe a collection of minors of the matrices A|B, such that
1) If the principal part of A is in general position, then these minors vanish.
2) The principal parts for which these minors vanish form a (closed algebraic) set of positive
codimension in the space of all principal parts of matrices with given Newton polyhedra of
entries.

This reduces to the following problem: given K ⊂ N2, assume that ai,j are independent
variables for (i, j) ∈ K, and the entries of the matrix A equal ai,j for (i, j) ∈ K and 0 for
(i, j) /∈ K. Find a collection of minors A of the matrix A, such that
1) If A is effectively degenerate, then A = 0.
2) We have A 6= 0 for generic ai,j , (i, j) ∈ K.

4. Mixed volumes of pairs of polyhedra

Definition 18. Polyhedra ∆1 and ∆2 in Rn are said to be parallel if a+∆1 ⊆ ∆1 ⇔ a+∆2 ⊆ ∆2

for every point a ∈ Rn.
Definition 19. ([E05], [E06]) 1) A pair of polyhedra ∆1,∆2 in Rn is called bounded if both
∆1 \∆2 and ∆2 \∆1 are bounded. The set of all bounded pairs of polyhedra parallel to a given
convex cone C ⊂ Rn is denoted by BPC .

2) The Minkowski sum (∆1,∆2) + (Γ1,Γ2) of two pairs from BPC is the pair (∆1 + Γ1,∆2 +
Γ2) ∈ BPC .

3) The volume Vol(∆1,∆2) of a bounded pair (∆1,∆2) is the difference Vol(∆1\∆2)−Vol(∆2\
∆1).

4) The mixed volume is the symmetric multilinear (with respect to Minkowski summation)
function MV : BPC × . . .× BPC︸ ︷︷ ︸

n

→ R such that MV(A, . . . , A) = Vol(A) for every pair A ∈ BPC .

There exists a unique such function MV (see [E06], Section 4, Lemma 3 for existance, unique-
ness and all other basic facts about the mixed volume of pairs, mentioned below). Recall that
a polyhedron is said to be lattice if its vertices are integer lattice points. The mixed volume of
pairs of n-dimensional lattice polyhedra is a rational number with denominator n!.

Example. If C consists of one point, then BPC consists of pairs of bounded polyhedra, and

MV
(
(∆1,Γ1), . . . , (∆n,Γn)

)
= MV(∆1, . . . ,∆n)−MV(Γ1, . . . ,Γn),

where MV in the right hand side is the classical mixed volume of bounded polyhedra. If C is not
bounded, then both terms in the right hand side are infinite, but "their difference makes sense".

One can use the following formula to express the mixed volume of pairs in terms of mixed
volumes of polyhedra ([E06], Section 4, Lemma 3).

Lemma 20. For bounded pairs (∆i,Γi) ∈ BPC , i = 1, . . . , n, let H ⊂ Rn be a half-space such
that C ∩H is bounded and ∆i \H = Γi \H. Then

MV
(
(∆1,Γ1), . . . , (∆n,Γn)

)
= MV(∆1 ∩H, . . . ,∆n ∩H)−MV(Γ1 ∩H, . . . ,Γn ∩H),

where MV in the right hand side is the classical mixed volume of bounded polyhedra.

For a bounded pair of (closed) polyhedra (∆,Γ) ∈ BPC , define I(∆,Γ) as the number of
integer lattice points in the difference ∆ \ Γ minus the number of integer lattice points in the
difference Γ \∆.

Lemma 21. For bounded pairs of lattice polyhedra Ai ∈ BPC , we have

n! MV(A1, . . . , An) =
∑

0<p6m

(−1)n−p
∑

0<i1<...<ip6n

I(Ai1 + . . .+Aip).
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Proof. For the classical mixed volume of bounded polyhedra, this equality is well known (see,
for example, [Kh]). The general case can be deduced to the case of bounded polyhedra by the
previous lemma. �

5. Proof of Theorem 7

The following theorem is a special case of Theorem 5 from [E06].

Definition 22. For polyhedra ∆1, . . . ,∆n ⊂ Rm, define the Cayley polyhedron ∆1 ∗ . . . ∗∆n as
the convex hull of the union ⋃

i

{bi} ×∆i ⊂ Rn−1 ⊕ Rm,

where b1, . . . , bn are the points (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1) and (0, 0, . . . , 0) in Rn−1.
Denote Rm+ ∗ . . . ∗ Rm+ by D.

For germs of analytic functions a1, . . . , an on Cm near the origin, denote the sum t1a1 + . . .+
tn−1an−1 + an by a1 ∗ . . . ∗ an, where t1, . . . , tn−1 are the standard coordinates on Cn−1.

Theorem 23. ([E05], [E06], [E09]) Let A be an (n×k)-matrix with entries ai,j : Cm → C which
are germs of analytic functions near the origin. Suppose that the Newton polyhedra ∆i,j of the
germs ai,j intersect all coordinate axes in Rm.
1) The multiplicity of A is greater than or equal to

(m+ n− 1)! MV
(
(D,∆1,1 ∗ . . . ∗∆n,1), . . . , (D,∆1,k ∗ . . . ∗∆n,k)

)
. (∗ ∗ ∗)

2) We have rkA(x) = n for all x 6= 0, and the multiplicity of A equals (∗ ∗ ∗), if and only if, for
each compatible collection of faces B1, . . . , Bk of the polyhedra ∆1,1 ∗ . . . ∗∆n,1, . . . , ∆1,k ∗ . . . ∗∆n,k,
the polynomials (a1,1 ∗ . . . ∗ an,1)|B1

, . . . , (a1,k ∗ . . . ∗ an,k)|Bk
have no common zeroes in (C \

{0})n−1 × (C \ {0})m.

The “only if” part of (2) is actually proved in [E06], but is explicitly formulated and discussed
only in [E09], Theorem 1.21.

Recall that |S∩Zm| is denoted by I(S) for a bounded set S ∈ Rm. If the symmetric difference
of (closed) lattice polyhedra Γ and ∆ in Rm is bounded, denote the difference I(Γ\∆)−I(∆\Γ)
by I(Γ,∆). For pairs of polyhedra (Γi,∆i) in Rm, denote the pair (

∨
i Γi,

∨
i ∆i) by

∨
i(Γi,∆i)

and the pair (Γ1 ∗ . . . ∗ Γn,∆1 ∗ . . . ∗∆n) by (Γ1,∆1) ∗ . . . ∗ (Γn,∆n).

Theorem 24. If Bi,j, i = 1, . . . , n, j = 1, . . . , k, are bounded lattice polyhedra in Rm or pairs
of lattice polyhedra in BPC , and m = k − n + 1, then the mixed volume of B1,j ∗ . . . ∗ Bn,j,
j = 1, . . . , k, equals

1

k!

∑
J⊂{1,...,k}

b1+...+bn=|J|

(−1)k−|J|I
( ∨

J1t...tJn=J

|J1|=b1,...,|Jn|=bn

∑
i=1,...,n

j∈Ji

Bi,j

)
.

Note that some of Bi,j may be empty. The proof is given in Section 7. Theorem 7 follows
from Theorems 23 and 24 (one can easily check that the condition of general position in Theorem
23(2) coincides with the one given by Definition 17).

6. Fans and lattice points of polyhedra

Here we prove the equality

(A ∩ Zq) + (B ∩ Zq) = (A+B) ∩ Zq

for some class of bounded lattice polyhedra A,B ⊂ Rq (see [O97] for a conjecture in the general
case).
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Definition 25. A (rational) cone in Rq generated by (rational) vectors v1, . . . , vm is the set of
all linear combinations of v1, . . . , vm with positive coefficients.

Note that, according to this definition, a cone is not a closed set unless it is a vector subspace
of Rq, and is not an open set unless it is q-dimensional.

Definition 26. A collection of rational cones C1, . . . , Cp in Rq is said to be Z-transversal, if∑
dimCi = q and the set Zq ∩

⋃
i Ci generates the lattice Zq.

Definition 27. A (rational) fan Φ in Rq is a non-empty finite set of nonoverlapping (rational)
cones in Rq such that
1) Each face of each cone from Φ is in Φ,
2) Each cone from Φ is a face of a q-dimensional cone from Φ.

Definition 28. A collection of fans Φ1, . . . ,Φp in Rq is said to be Z-transversal with respect
to shifts c1 ∈ Rq, . . . , cp ∈ Rq, if each collection of cones C1 ∈ Φ1, . . . , Cp ∈ Φp, such that the
intersection (C1 + c1) ∩ . . . ∩ (Cp + cp) consists of one point, is Z-transversal.

Definition 29. The dual cone of a face B of a polyhedron A ⊂ Rq is the set of all covectors
γ ∈ (Rq)∗ such that {a ∈ A | γ(a) = min γ(A)} = B. The dual fan of a polyhedron is the set of
dual cones of all its faces.

Theorem 30. If the dual fans of bounded lattice polyhedra A1, . . . , Ap ⊂ Rq are Z-transversal
with respect to some shifts c1 ∈ (Rq)∗, . . . , cp ∈ (Rq)∗ and dim(A1 + . . .+Ap) = q, then

(A1 ∩ Zq) + . . .+ (Ap ∩ Zq) = (A1 + . . .+Ap) ∩ Zq.

Proof. Consider covectors c1 ∈ (Rq)∗, . . . , cp ∈ (Rq)∗ as linear functions on the polyhedra A1 ⊂
Rq, . . . , Ap ⊂ Rq respectively, and denote their graphs in Rq ⊕ R1 by Γ1, . . . ,Γp. Denote the
projection Rq ⊕ R1 → Rq by π, and denote the ray {(0, . . . , 0, t) | t < 0} ⊂ Rq ⊕ R1 by L−.

Each bounded q-dimensional face B of the sum Γ1 + . . . + Γp + L− is the sum of some
faces B1, . . . , Bp of polyhedra Γ1 + L−, . . . ,Γp + L−. Z-transversality with respect to shifts
c1 ∈ (Rq)∗, . . . , cp ∈ (Rq)∗ implies that(

π(B1) ∩ Zq
)

+ . . .+
(
π(Bp) ∩ Zq

)
= π(B1 + . . .+Bp) ∩ Zq.

Since the projections of bounded q-dimensional faces of the sum Γ1 + . . . + Γp + L− cover the
sum A1 + . . .+Ap, it satisfies the same equality:

(A1 ∩ Zq) + . . .+ (Ap ∩ Zq) = (A1 + . . .+Ap) ∩ Zq.
�

Corollary 31. Let S ⊂ Rq be the standard q-dimensional simplex, let l1, . . . , lp be linear func-
tions on S with graphs Γ1, . . . ,Γp, and let l be the maximal piecewise-linear function on pS, such
that its graph Γ is contained in the sum Γ1+ . . .+Γp. Then, for each integer lattice point a ∈ pS,
the value l(a) equals the maximum of sums l1(c1) + . . .+ lp(cp), where (c1, . . . , cp) runs over all
p-tuples of vertices of S such that c1 + . . .+ cp = a.

Proof. Denote the projection Rq ⊕R1 → Rq by π. A q-dimensional face B of Γ, which contains
the point

(
a, l(a)

)
∈ Rq ⊕ R1, can be represented as a sum of faces Bi of simplices Γi. Since

π(B1), . . . , π(Bp) are faces of the standard simplex, their dual fans are Z-transversal with respect
to a generic collection of shifts, and, by Theorem 30,(

π(B1) ∩ Zq
)

+ . . .+
(
π(Bp) ∩ Zq

)
= π(B) ∩ Zq.

In particular, a = c1 + . . . + cp for some integer lattice points ci ∈ π(Bi), which implies l(a) =
l1(c1) + . . .+ lp(cp). �
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Remark. In particular, if the functions l1, . . . , lp are in general position, then all Cqp+q integer
lattice points in the simplex pS are projections of vertices of Γ. Translating this into the tropical
language, one can prove again the following well-known fact: p generic tropical hyperplanes in
the space Rq subdivide it into Cqp+q pieces.

Example 32. If S in the formulation of Corollary 31 is not the standard simplex, then the
statement is not always true. For example, consider

S = conv
{

(1, 1), (1,−1), (−1, 1), (−1,−1)
}
,

l1(x, y) = x+ y, l2(x, y) = x− y, a = (1, 0).

If, in addition, we allow functions lj to be concave piecewise linear with integer domains of
linearity, then the statement is not true unless S is the standard simplex. That is why we cannot
use computations below to simplify the formula in the statement of Theorem 5 from [E06] in
general.

7. Proof of Theorem 24

Rewriting the mixed volume of the pairs B1,i ∗ . . . ∗Bn,i, i = 1, . . . , k, as∑
0<p6m

(−1)n−p
∑

0<i1<...<ip6n

I
(
(B1,i1 ∗ . . . ∗Bn,i1) + . . .+ (B1,ip ∗ . . . ∗Bn,ip)

)
by Lemma 21, and applying the following Lemma 33 to every term in this sum, we obtain the
statement of Theorem 24.

Lemma 33. For bounded pairs of polyhedra Ai,j = (∆i,j ,Φi,j) ∈ BPC , i = 1, . . . , n, j = 1, . . . , p,

I
(
(A1,1 ∗ . . . ∗An,1) + . . .+ (A1,p ∗ . . . ∗An,p)

)
=

=
∑

a1+...+an=p
a1>0,...,an>0

I
( ∨

J1t...tJn={1,...,p}
|J1|=a1,...,|Jn|=an

∑
i=1,...,n

j∈Ji

∆i,j ,
∨

J1t...tJn={1,...,p}
|J1|=a1,...,|Jn|=an

∑
i=1,...,n

j∈Ji

Φi,j

)
.

Proof. Every integer lattice point, participating in the left hand side, is contained in the plane
{(a1, . . . , an−1)} × Rm ⊂ Rn−1 ⊕ Rm for some non-negative integer numbers a1, . . . , an, which
sum up to p. Thus, it is enough to describe the intersection of the pair

(
(A1,1 ∗ . . .∗An,1) + . . .+

(A1,p ∗ . . . ∗An,p)
)
with each of these planes, using the following fact. �

Lemma 34. Suppose that polyhedra ∆i,j ⊂ Rm are parallel to each other for i = 1, . . . , n,
j = 1, . . . , p. Then, for each n-tuple of non-negative integer numbers a1, . . . , an which sum up to
p, (

{(a1, . . . , an−1)} × Rm
)
∩
(
(∆1,1 ∗ . . . ∗∆n,1) + . . .+ (∆1,p ∗ . . . ∗∆n,p)

)
=

= {(a1, . . . , an−1)} ×
( ∨

J1t...tJn={1,...,p}
|J1|=a1,...,|Jn|=an

∑
i=1,...,n

j∈Ji

∆i,j

)
⊂ Rn−1 ⊕ Rm.

Proof. For each hyperplane L ⊂ Rm, denote the projection Rn−1 ⊕ Rm → Rn−1 ⊕ R along
{0} ⊕ L by πL. It is enough to prove that the images of the left hand side and the right hand
side under πL coincide for each L. To prove it, apply Corollary 31, setting q to n − 1, a to
(a1, . . . , an−1), and Γj to the maximal bounded face of the projection πL

(
∆1,j ∗ . . . ∗∆n,j

)
for

every j = 1, . . . , p. �
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CLASSIFICATION OF CURVES ON SURFACES AND FREE LINKS VIA
HOMOTOPY THEORY OF WORDS AND PHRASES

TOMONORI FUKUNAGA

Abstract. In this paper, we introduce Turaev’s homotopy theory of words and phrases. As
new results, we give the classification of oriented ordered pointed irreducible multi-component
curves on surfaces which is called monoliteral type with at most six crossings up to stably
equivalence using Turaev’s homotopy theory of words and phrases. Moreover we also give the
classification of (oriented) ordered pointed irreducible free links of monoliteral type with at
most six crossings.

1. Introduction.

A knot is the image of a smooth embedding of S1 into R3. Further, a k-components link is
the image of a smooth embedding of the disjoint union of k circles into R3. When we study knots
and links, we often use link diagrams of links. A knot diagram is a smooth immersion of S1 into
R2 with transversal double points such that the two paths at each double point are assigned to
be the over path and the under path respectively (we call a double point of such immersion a
crossing). If a knot diagram D is obtained as the image of a knot by a projection of R3 to R2,
then we call D a diagram of the knot. A link diagram is defined similarly as a smooth immersion
of the disjoint union of circles to R2.

In the paper [14], L. Kauffman introduced the theory of virtual knots and links using combi-
natorially extended link diagrams which are called virtual link diagrams. A virtual knot diagram
is a planar graph of valency four endowed with the following structure: Each vertex either has an
overcrossing and undercrossing (in other words, real crossing) or is marked by a virtual crossing
(See Figure 3). A virtual link diagram is defined similarly. Then, we define virtual links by
the set of virtual link diagrams quotiented by an equivalence relation generated by the virtual
Reidemeister moves (see [14] for more details).

We call a virtual link diagram pointed if each component is endowed with a base point distinct
from the crossing points. Further, we call a virtual link diagram ordered if its components are
numerated. We also call a virtual link diagram flat when we ignore over/under at real crossings.
A pointed ordered flat virtual link is defined by a set of pointed ordered flat virtual link diagrams
quotiented by an equivalence relation generated by the flat virtual Reidemeister moves which
are applied away from the base points.

The theory of flat virtual links is closely related to the theory of curves on surfaces. In fact,
for all positive integer k, oriented ordered pointed k-components flat virtual links are in one to
one correspondency to stably equivalent classes of oriented ordered pointed k components curves
on surfaces (see [13] for example).

In this paper, we introduce the classification of oriented ordered pointed multi-components
curves on surfaces up to stable equivalence with some conditions. To do this, we use the theory of
nanowords which are introduced by Vladimir Turaev in [18] and [19]. Turaev defined generalized

2010 Mathematics Subject Classification. Primary 57M99; Secondary 68R15.
Key words and phrases. étale phrases, nanophrases, curves on surfaces, stably equivalent.
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words and phrases which are called nanowords and nanophrases. Moreover he introduced an
equivalence relation which is called S-homotopy on a set of generalized words and he proved
that if we consider some special cases of homotopy of words and phrases, then we obtain the
theory of curves on surfaces and link diagrams on surfaces. Therefore we can use the homotopy
theory of words and phrases to study curves on surfaces and link diagrams on surfaces. Another
applications of the theory of words can be found in [11] and [12]. N. Ito studies curves on a
plane and wave fronts on a plane by using Turaev’s theory of words. See [11] and [12] for more
details.

This paper is organized as follows. In section 2, we review the theory of topology of words. We
introduce some important notions to obtain the main result. In section 3, we introduce geometric
meanings of the theory of words and phrases. We describe how to construct a bijection from
the set of stable equivalence classes of curves on surfaces to the set of homotopy classes of
nanophrases. Moreover we introduce flat virtual links. This leads us to a simple presentation of
curves on surfaces. In section 4, we introduce the classification of nanowords, nanophrases and
monoliteral phrases with some conditions on the length of words and on the number of component
of phrases, which is proved by Turaev in [18] and the author in [1], [3] and [4]. In section 5, we
introduce some homotopy invariants of nanophrases which was used to classify nanophrases. In
section 6, we introduce application of the classification theorems. As a new result, we classify
oriented ordered pointed irreducible curves on surfaces of monoliteral type with at most six
crossings up to stably equivalent. Moreover we make the list of a complete representative system
of oriented ordered pointed irreducible curves on surfaces of monoliteral type with at most
six crossings. Moreover in section 8, we give the classification of (oriented) ordered pointed
irreducible free links with at most two crossings and the classification of (oriented) ordered
pointed irreducible free links of monoliteral type with at most six crossings.

2. Turaev’s Homotopy Theory of Words and Phrases

In this section we introduce Turaev’s homotopy theory of words and phrases which was intro-
duced by V. Turaev in papers [18] and [19]. We can find a survey of Turaev’s theory of words
in the paper [20].

2.1. Étale words and nanowords. In this paper an alphabet means a finite set and a letter
means an element of an alphabet. For an alphabet A and n ∈ N, a word on A of length n is a
map w : n̂ → A where n̂ is {1, 2, · · · , n}. We denote a word of length n by w(1)w(2) · · ·w(n).
Roughly speaking, a word is a finite sequence of elements of an alphabet. We regard the map
from empty set to empty set as the word of length 0 and denote it by ∅. A phrase of length k on
A is a sequence of words w1, w2, · · · , wk on A. We denote this sequence by (w1|w2| · · · |wk). We
call the number

∑k
i=1(length of wi) number of letters of the phrase. Especially if each letter in

A appear exactly twice in a word w on A, then we call this word w a Gauss word. Similarly for
a phrase P on A if each letter in A appear exactly twice in P , then we call P a Gauss phrase
(C. F. Gauss studied topology of plane curves using Gauss words. See [6] for more details).

In [18] and [19], Turaev introduced generalized words and phrases. Let α be an alphabet
endowed with an involution τ : α → α. Then an α-alphabet is a pair of an alphabet A and a
map | · | : A → α. We call this map | · | projection and we denote the image of a letter A ∈ A
under the projection |A|. We also call |A| a projection of A. Now we define generalized words
(respectively Gauss words) which are called étale words (respectively nanowords). An étale word
over α is a pair (an α-alphabet A, a word w on A). We call the length of w length of étale word
(A, w). Especially if w is a Gauss word on A, then we call a pair (A, w) a nanoword over α.
Next we define generalized phrases (respectively Gauss phrases) which are called étale phrases
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(respectively nanophrases). An étale phrase over α is a pair (an α-alphabet A, a phrase P on
A). We call length of P the length of étale phrase (A, P ). Especially if P is a Gauss phrase on
A, then we call a pair (A, P ) a nanophrase over α.

Example 2.1. Let α be an alphabet given by {a, b} with an involution τ : α → α given by
τ(a) is equal to b. Let A be a α-alphabet given by {A,B,C} with a projection given by |A| is
equal to a and |B| and |C| are equal to b. Then a pair (A, ABCABC) is a nanoword over α of
length six. Furthermore, a pair (A, (AB|AC|BC)) is a nanophrase over α of length three with
six letters. On the other hand, a pair (A, ABCBC) is an étale word over α of length five, but not
nanoword over α since the letter A appear only once in the word ABCBC. A pair (A, ABAB)
is not nanoword, since the letter C does not appear. A pair (A − {C}, ABAB) is a nanoword
over α of length four.

2.2. S-homotopy of nanophrases and étale phrases. In the paper [18] Turaev defined
an equivalence relation on nanophrases which is called S-homotopy. This is suggested by the
Reidemeister moves in the theory on knots. In this subsection, we introduce S-homotopy theory
of words and phrases.

To define S-homotopy of nanophrases we prepare some definitions. First we define isomor-
phism of nanophrases.

Definition 2.1. Let (A1, (w1| · · · |wk)) and (A2, (v1| · · · |vk)) be nanophrases of length k over
an alphabet α. Then (A1, (w1| · · · |wk)) and (A2, (v1| · · · |vk)) are isomorphic if there exist a
bijection ϕ between A1 and A2 such that |A| = |ϕ(A)| for all A ∈ A1 and vj = ϕ(wj) for each
j ∈ k̂.

Next we define S-homotopy moves of nanophrases.

Definition 2.2. Let S be a subset of α×α×α. Then we define S-homotopy moves (H1) - (H3)
of nanophrases as follows:

(H1) (A, (xAAy)) −→ (A \ {A}, (xy))
for all A ∈ A and x, y are sequences of letters in A \ {A}, possibly including
the | character.

(H2) (A, (xAByBAz)) −→ (A \ {A,B}, (xyz))
if A,B ∈ A satisfy |B| = τ(|A|). x, y, z are sequences of letters in A \ {A,B},
possibly including the | character.

(H3) (A, (xAByACzBCt)) −→ (A, (xBAyCAzCBt))
if A,B,C ∈ A satisfy (|A|, |B|, |C|) ∈ S. x, y, z, t are sequences of letters in
A, possibly including the | character.

We call this S homotopy data.
Now we define S-homotopy of nanophrases.

Definition 2.3. Let (A1, P1) and (A2, P2) be nanophrases over α. Then (A1, P1) and (A2, P2)
are S-homotopic (denote 'S) if they are related by a finite sequence of isomorphism, S-homotopy
moves (H1) - (H3) and inverse of (H1) - (H3).

Remark 2.1. S-homotopy moves and isomorphism of nanophrases do not change length of
nanophrases. Thus for two different integers k1 and k2, a nanophrase of length k1 and a
nanophrase of length k2 are not homotopic to each other.

Especially if S is the diagonal set of α× α× α, then we call S-homotopy homotopy.
We denote the set {Nanophrases of length k over α}/(S−homotopy) by Pk(α, S) and P1(α, S)

by N (α, S).
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Example 2.2. Nanophrases (AB|ADDCBC) and (BA|CACB) with |A| = |B| = |C| ∈ α over
α are homotopic. Indeed

(AB|ADDCBC) ' (AB|ACBC) ' (BA|CACB).

Next we define S-homotopy of étale phrases. To do so, we define desingularization of étale
phrases.

For a nanophrase (A, P ) and a letter A in A, we define multiplicity of the letter A by the
number of A in the phrase P . We denote multiplicity of A by mP (A). Let Ad be an α-alphabet
{Ai,j := (A, i, j)|A ∈ A, 1 ≤ i < j ≤ mP (A)} with the projection |Ai,j | := |A| for all Ai,j .
The phrase P d is obtained from P by first deleting all A ∈ A for which mP (A) is less than or
equal to one. Then for each A ∈ A for which mP (A) is grater than or equal to two and each
i = 1, 2, . . .mP (A), we replace the i-th entry of A in P by

A1,iA2,i . . . Ai−1,iAi,i+1Ai,i+2 . . . Ai,mP (A).

The resulting (Ad, P d) is a nanophrase with
∑
mP (A)(mP (A) − 1) letters and called a desin-

gularization of (A, P ). Note that if (A, P ) is a nanophrase, then desingularization of (A, P ) is
isomorphic to itself.

Example 2.3. Let α be an alphabet. Let A be an α-alphabet given by {A,B,C} and P be a
phrase given by (AA|BB|A|C). Then desingularization of an étale phrase (A, P ) is given by

({A12, A13, A23, B12}, (A12A13A12A23|B12B12|A13A23|∅)),

with |A12| = |A13| = |A23| = |A| and |B12| = |B|.

Now we define S-homotopy of étale phrases.

Definition 2.4. Two étale phrases (A1, P1) and (A2, P2) over α are S-homotopic (denoted
(A1, P1) ' (A2, P2)) if ((A2)d, (P2)d) can be obtained from ((A1)d, (P1)d) by a finite sequence
of isomorphism, S-homotopy moves (H1) - (H3) and the inverse of moves (H1) - (H3).

Remark 2.2. By the definition of homotopy of étale phrases, every homotopy invariant I of
nanophrases extends to a homotopy invariant I of étale phrases by I(P ) := I(P d).

We recall two lemmas from [18] and [19].

Lemma 2.1 (Turaev [18], [19]). Let (α, S) be homotopy data and A be an α-alphabet. Let
A,B,C be distinct letters in A and let x, y, z, t be words in A \ {A,B,C} such that xyzt is a
Gauss phrase. Then the following (i)-(iii) hold :

(i) (A, (xAByCAzBCt)) 'S (A, (xBAyACzCBt))
if (|A|, τ(|B|), |C|) ∈ S,

(ii) (A, (xAByCAzCBt)) 'S (A, (xBAyACzBCt))
if (τ(|A|), τ(|B|), |C|) ∈ S,

(iii)(A, (xAByACzCBt)) 'S (A, (xBAyCAzBCt))
if (|A|, τ(|B|), τ(|C|)) ∈ S.

Lemma 2.2 (Turaev [18], [19]). Suppose that S∩(α×b×b) 6= ∅ for all b ∈ α. Let (A, (xAByABz))
be a nanoword over α with |B| = τ(|A|) where x, y, z are words in A \ {A,B} such that xyz is
a Gauss phrase. Then

(A, (xAByABz)) 'S (A \ {A,B}, (xyz)).
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Figure 1. The flat Reidemeister moves.

3. Geometric Interpretation of Homotopy of Nanophrases.

In this section we explain geometric interpretation of S-homotopy of nanophrases which was
introduced in the paper [19].

3.1. Stable equivalence of curves on surfaces. In this subsection we introduce stable equiv-
alence of curves on surfaces. First we define some terminologies. Through this paper a curve
means the image of a generic immersion of an oriented circle into an oriented surface. The word
“generic” means that the curve has only a finite set of self-intersections which are all double and
transversal. A k-component curve is defined in the same way as a curve with the difference that
they may be formed by k curves. These curves are called components of the k-component curve.
A k-component curve is pointed if each component is endowed with a base point (the origin)
distinct from the crossing points of the k-component curve. A k-component curve is ordered if
its components are numerated. Next we introduce an equivalence relation which is called stably
equivalence. Two ordered, pointed curves are stably homeomorphic if there is an orientation
preserving homeomorphism of their regular neighborhoods in the ambient surfaces mapping the
first multi-component curve onto the second one and preserving the order, the origins and the
orientations of the components.

Now we define stable equivalence of ordered, oriented, pointed multi-component curves [14]:
Two ordered, pointed multi-component curves are stably equivalent if they can be related by a
finite sequence of the following transformations: (i) a move replacing an ordered, pointed multi-
component curve with a stably homeomorphic one; (ii) the flat Reidemeister moves away from
the origin as in Figure 1.

We denote the set of stable equivalence classes of ordered, oriented, pointed k-component
curves by Ck.

Remark 3.1. The theory of stable equivalence of curves is closely related to the theory of virtual
strings. See [17], [21] and Section 3.3 in this paper for more details.

3.2. Geometric interpretation of S-homotopy of nanophrases. In the paper [19] Turaev
gave geometric meanings of S-homotopy of nanophrases over α with an involution τ for some α,
S and τ . More precisely, Turaev proved the following theorem.

Theorem 3.1 (Turaev [19]). There is a canonical bijection between Ck and Pk(α0, S0) where α0

is equal to {a, b} with an involution τ0 where τ0(a) is equal to b and S0 is equal to {(a, a, a), (b, b, b)}.

The way of making a nanophrase P (C) from an ordered, oriented, pointed k-component curve
C is as follows. Let us label the double points of the curve C by distinct letters A1, · · · , An.
Starting at the origin of first component of C and following along C in the positive direction,
we write down the labels of double points which we passes until return to the origin. Then we
obtain a word w1. Similarly we obtain words w2, · · · , wk on the alphabet A = {A1, · · · , An}
from second component, · · · , k-th component. Let t1i (respectively, t2i ) be the tangent vector to
C at the double point labeled Ai appearing at the first (respectively, second) passage through
this point. Set |Ai| is equal to a, if the pair (t1i , t

2
i ) is positively oriented, and |Ai| is equal to b

otherwise. Then we obtain a required nanophrase P (C) := (A, (w1| · · · |wk)).
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A

B

Figure 2. An example

Figure 3. A real crossing and a virtual crossing.

Remark 3.2. By the above theorem if we classify the homotopy classes of nanophrases, then we
obtain the classification of ordered, pointed multi-component curves under the stable equivalence
as a corollary.

Example 3.1. Consider a two-component pointed ordered curve shown in Fig. 2. Assume that
a left circle is first component of this curve and a right circle is second component of this curve.
Then a nanophrase which corresponds to this curve is ({A,B}, (AB|AB)) with |A| is equal to b
and |B| is equal to a.

Moreover let Lk be the set of stable equivalence classes of k-component pointed ordered oriented
link diagrams (definition of the stable equivalence of link diagrams is given in [19] for example).
Then Turaev proved following theorem.

Theorem 3.2 (Turaev [19]). There is a canonical bijection between Lk and Pk(α∗, S∗) where
α∗ is equal to {a+, a−, b+, b−} with an involution τ∗(a±) is equal to b∓ and S∗ is equal to
{(a±, a±, a±), (a±, a±,a∓), (a∓,a±,a±), (b±, b±, b±), (b±, b±, b∓), (b∓, b±, b±)}.

The method of making nanophrase P (L) from ordered, pointed k-component link L is similar
to the case Theorem 3.1. See [19] for more details.

Remark 3.3. We can find another applications of the theory of nanowords and étale words to
geometry and topology in papers [11] and [12]. N. Ito used the theory of nanowords to study
planar curves and wave fronts on R2.

3.3. Presentation of curves on surfaces by virtual strings. In this subsection, we in-
troduce useful method to illustrate curves on surfaces. To do so, we introduce virtual string
diagrams and virtual strings.

A virtual string diagram is a planar graph of valency four endowed with the following structure:
each vertex either is an unmarked crossing (in other words, real crossing) or is marked by a virtual
crossing (see Figure 3). Then we define a virtual string by a virtual string diagram modulo flat
virtual Reidemeister moves which are illustrated in Figure 4. We also use terminologies pointed,
ordered and oriented same as in the case of curves on surfaces.

It is known the stable equivalence theory of pointed ordered curves on surfaces is equivalent
to the theory of pointed ordered virtual strings by the correspondence illustrated in Figure 5
(see [13], [19] for example). Therefore in the rest of this paper, we illustrate curves on surfaces
as virtual strings diagrams.



CLASSIFICATION OF CURVES ON SURFACES AND FREE LINKS 43

Figure 4. Flat virtual Reidemeister moves.

Figure 5. The correspondence of virtual strings and curves on surfaces.

4. Classification of Nanophrases and Étale Phrases up to Homotopy.

In this section, we introduce classification theorems of nanowords, nanophrases, étale words
and étale phrases up to homotopy which were proved in [1], [3], [4] and [18].

4.1. Classification of nanowords and étale words. First, we introduce classification of
nanowords with at most six letters (see [18]). Note that an arbitrary nanoword of length two is
homotopic to an empty nanoword ∅ by a first homotopy move.

Theorem 4.1 (Turaev [18]). Let w be a nanoword of length four over α. Then w is either
homotopic to the empty nanoword or isomorphic to the nanoword wa,b := (A = {A,B}, ABAB)
where |A| = a, |B| = b ∈ α with a 6= τ(b). Moreover for a 6= τ(b), the nanoword wa,b is
non-contractible and two nanowords wa,b and wa′,b′ are homotopic if and only if a = a′ and
b = b′.

Next we introduce homotopy classification of nanowords with length less than or equal to
six. Pick three letters a, b, c ∈ α (possibly coinciding). Let A be an α-alphabet consisting
of three letters A, B and C where |A| is a, |B| is b and |C| is c. Consider nanowords over
α, w1

a,b,c = ABCABC, w2
a,b,c = ABCACB, w3

a,b,c = ABCBAC, w4
a,b,c = ABCBCA, and

w5
a,b,c = ABACBC. It is easily checked that a nanoword of length six is either homotopic to a

nanoword with length less than or equal to four or isomorphic to wi
a,b,c for some i ∈ {1, 2, 3, 4, 5}.

We now point out obvious sufficient conditions for wi
a,b,c to be isomorphic to the empty word.

If a = τ(b) or c = τ(b), then w1
a,b,c ' ∅. We say that an ordered triple a, b, c ∈ α is 1-regular

if a 6= τ(b) 6= c.
If c = τ(b), then w2

a,b,c ' ∅. We say that an ordered triple a, b, c ∈ α is 2-regular if c 6= τ(b).
If a = τ(b), then w3

a,b,c ' ∅. We say that an ordered triple a, b, c ∈ α is 3-regular if a 6= τ(b).
If c = τ(b), then w4

a,b,c ' ∅. We say that an ordered triple a, b, c ∈ α is 4-regular if c 6= τ(b).
(This coincides with the 2-regularity).
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If a = b = c = τ(a), then w5
a,b,c ' ∅. We say that an ordered triple a, b, c ∈ α is singular if

a = b = c = τ(a) and 5-regular otherwise.
The following theorem gives the homotopy classification of nanowords of length six.

Theorem 4.2 (Turaev [18]). For i ∈ {1, 2, 3, 4, 5} and any i-regular triple a, b, c ∈ α, the
nanoword wi

a,b,c is neither contractible nor homotopic to a nanoword of length 4. The nanowords
wi corresponding to i-regular triples a, b, c and a′, b′, c′ are homotopic if and only if (a, b, c) is equal
to (a′, b′, c′). For i 6= j, the nanowords wi corresponding to i-regular triples are not homotopic to
nanowords wj corresponding to j-regular triples with one exception: w4

a,b,c is homotopic to w5
a,b,c

for a = b = c 6= τ(a).

Turaev constructed some homotopy invariants of nanowords, and proved the above classifica-
tion theorems in [18].

Moreover, Turaev classified words with at most five letters.

Theorem 4.3 (Turaev [18]). A multiplicity-one-free word of length less than or equal to four
in the alphabet α has one of the following forms: aa, aaa, aaaa, aabb, abba, abab with distinct
a, b ∈ α The words aa, aabb, abba are contractible. The words aaa and aaaa are contractible if
and only if τ(a) is equal to a. The word abab is contractible if and only if τ(a) is equal to b.
Non-contractible words of type aaa, aaaa and abab are homotopic if and only if they are equal.

4.2. Classification of nanophrases and étale phrases. Next we introduce classification
theorems of nanophrases and étale phrases which were proved by the author in [1], [3] and [4].

First, we introduce the homotopy classification of nanophrases with at most four letters

without condition on length. Set P 1,1;p,q
a := (∅| · · · |∅|

p

Ǎ |∅| · · · |∅|
q

Ǎ |∅| · · · |∅) with |A| = a
for 1 ≤ p < q ≤ k. Classification of nanophrases with at most two letters is described as follows.

Theorem 4.4 ([3]). Let P be a nanophrase of length k with 2 letters. Then P is either homotopic
to (∅| · · · |∅) or isomorphic to P 1,1;p,q

a for some p, q ∈ {1, · · · k}, a ∈ α. Moreover P 1,1;p,q
a and

P 1,1;p′,q′

a′ are homotopic if and only if p is equal to p′, q is equal to q′ and a is equal to a′.

To describe the classification theorem of nanophrases with four letters without condition on
length, we use following notations.

P 4;p
a,b := (∅| · · · |∅|

p

ˇABAB |∅| · · · |∅),

P 3,1;p,q
a,b := (∅| · · · |∅|

p

ˇABA |∅| · · · |∅|
q

B̌ |∅| · · · |∅),

P 2,2I;p,q
a,b := (∅| · · · |∅|

p

ǍB |∅| · · · |∅|
q

ǍB |∅| · · · |∅),

P 2,2II;p,q
a,b := (∅| · · · |∅|

p

ǍB |∅| · · · |∅|
q

B̌A |∅| · · · |∅),

P 1,3;p,q
a,b := (∅| · · · |∅|

p

Ǎ |∅| · · · |∅|
q

ˇBAB |∅| · · · |∅),

P 2,1,1I;p,q,r
a,b := (∅| · · · |∅|

p

ǍB |∅| · · · |∅|
q

Ǎ |∅| · · · |∅|
r

B̌ |∅| · · · |∅),

P 2,1,1II;p,q,r
a,b := (∅| · · · |∅|

p

B̌A |∅| · · · |∅|
q

Ǎ |∅| · · · |∅|
r

B̌ |∅| · · · |∅),

P 1,2,1I;p,q,r
a,b := (∅| · · · |∅|

p

Ǎ |∅| · · · |∅|
q

ǍB |∅| · · · |∅|
r

B̌ |∅| · · · |∅),

P 1,2,1II;p,q,r
a,b := (∅| · · · |∅|

p

Ǎ |∅| · · · |∅|
q

B̌A |∅| · · · |∅|
r

B̌ |∅| · · · |∅),

P 1,1,2I;p,q,r
a,b := (∅| · · · |∅|

p

Ǎ |∅| · · · |∅|
q

B̌ |∅| · · · |∅|
r

ǍB |∅| · · · |∅),
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P 1,1,2II;p,q,r
a,b := (∅| · · · |∅|

p

Ǎ |∅| · · · |∅|
q

B̌ |∅| · · · |∅|
r

B̌A |∅| · · · |∅),

P 1,1,1,1I;p,q,r,s
a,b := (∅| · · · |∅|

p

Ǎ |∅| · · · |∅|
q

Ǎ |∅| · · · |∅|
r

B̌ |∅| · · · |∅|
s

B̌ |∅| · · · |∅),

P 1,1,1,1II;p,q,r,s
a,b := (∅| · · · |∅|

p

Ǎ |∅| · · · |∅|
q

B̌ |∅| · · · |∅|
r

Ǎ |∅| · · · |∅|
s

B̌ |∅| · · · |∅),

P 1,1,1,1III;p,q,r,s
a,b := (∅| · · · |∅|

p

Ǎ |∅| · · · |∅|
q

B̌ |∅| · · · |∅|
r

B̌ |∅| · · · |∅|
s

Ǎ |∅| · · · |∅),
with |A| is equal to a and |B| is equal to b. If a is equal to τ(b), then nanophrases P 4;p

a,b , P
2,2I;p,q
a,b

and P 2,2II;p,q
a,b are homotopic to (∅| · · · |∅). So when we write P 4;p

a,b , P
2,2I;p,q
a,b and P 2,2II;p,q

a,b we
always assume that a is not equal to τ(b).

Under the above notations the classification of nanophrases with four letter is described as
follows.

Theorem 4.5 ([3]). Let P be a nanophrase of length k with four letters. Then P is either
homotopic to nanophrase with less than or equal to two letters or isomorphic to PX;Y

a,b for some
X ∈ {4, (3, 1), · · · , (1, 1, 1, 1III)}, Y ∈ {1, · · · , k, (1, 2), · · · , (k − 3, k − 2, k − 1, k)}. Moreover
PX;Y
a,b and PX′;Y ′

a′,b′ are homotopic if and only if X = X ′, Y = Y ′, a = a′ and b = b′.

Finally we introduce the classification of étale phrases with at most four letters which are
called monoliteral type.

An étale phrases P is called monoliteral if P has only empty word as its components or
consists of a single letter. For example, étale phrases (AAA|AAAA|∅|AA), (AA|A) and (∅|∅|∅)

are monoliteral phrases. Now we consider the following étale phrases: P 1,1;l1,l2
a := (∅| · · · |∅|

l1
ǎ

|∅| · · · |∅|
l2
ǎ |∅| · · · |∅),

P 3;l
a := (∅| · · · |∅|

l

ǎ3 |∅| · · · |∅),

P 2,1;l1,l2
a := (∅| · · · |∅|

l1

ǎ2 |∅| · · · |∅|
l2
ǎ |∅| · · · |∅),

P 1,2;l1,l2
a := (∅| · · · |∅|

l1
ǎ |∅| · · · |∅|

l2

ǎ2 |∅| · · · |∅),

P 1,1,1;l1,l2,l3
a := (∅| · · · |∅|

l1
ǎ |∅| · · · |

l2
ǎ |∅| · · · |∅|

l3
ǎ |∅| · · · |∅),

P 4;l
a := (∅| · · · |∅|

l

ǎ4 |∅| · · · |∅),

P 3,1;l1,l2
a := (∅| · · · |∅|

l1

ǎ3 |∅| · · · |∅|
l2
ǎ |∅| · · · |∅),

P 2,2;l1,l2
a := (∅| · · · |∅|

l1

ǎ2 |∅| · · · |∅|
l2

ǎ2 |∅| · · · |∅),

P 1,3;l1,l2
a := (∅| · · · |∅|

l1
ǎ |∅| · · · |∅|

l2

ǎ3 |∅| · · · |∅),

P 2,1,1;l1,l2,l3
a := (∅| · · · |∅|

l1

ǎ2 |∅| · · · |
l2
ǎ |∅| · · · |∅|

l3
ǎ |∅| · · · |∅),

P 1,2,1;l1,l2,l3
a := (∅| · · · |∅|

l1
ǎ |∅| · · · |

l2

ǎ2 |∅| · · · |∅|
l3
ǎ |∅| · · · |∅),

P 1,1,2;l1,l2,l3
a := (∅| · · · |∅|

l1
ǎ |∅| · · · |

l2
ǎ |∅| · · · |∅|

l3

ǎ2 |∅| · · · |∅),

P 1,1,1,1;l1,l2,l3,l4
a := (∅| · · · |∅|

l1
ǎ |∅| · · · |∅|

l2
ǎ |∅| · · · |∅|

l3
ǎ |∅| · · · |∅|

l4
ǎ |∅| · · · |∅),

where a ∈ α and l, l1,l2,l3,l4 ∈ k̂ with l1 < l2 < l3 < l4.
Note that if a is equal to τ(a), then P 4;l

a and P 3;l
a are homotopic to the empty phrase. So

when we write P 4;l
a or P 3;l

a we always assume that a is not equal to τ(a). Now we describe the
classification theorem of monoliteral étale phrases with less than or equal to four letters.
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Theorem 4.6 ([4]). Let P be a multiplicity-one-free monoliteral étale phrase over α with less
than or equal to four letters. Then P is either homotopic to (∅)k or isomorphic to one of the fol-
lowing étale phrases: P 1,1;l1,l2

a , P 4;l
a , P 3,1;l1,l2

a , P 1,3;l1,l2
a , P 2,1,1;l1,l2,l3

a , P 1,2,1;l1,l2,l3
a , P 1,1,3;l1,l2,l3

a ,
P 1,1,1,1;l1,l2,l3,l4
a , P 3;l

a , P 2,1;l1,l2
a , P 1,2;l1,l2

a and P 1,1,1;l1,l2,l3
a for some l1, l2, l3, l4 ∈ k̂ and a ∈ α.

Moreover they are homotopic if and only if they are equal with one exception : P 3,1;l1,l2
a and

P 1,3;l1,l2
a are homotopic to P 1,1;l1,l2

a if a is equal to τ(a).

Remark 4.1. A finite sequence of homotopy moves from P 3,1;l1,l2
a to P 1,1;l1,l2

a is realized as follows:

(P 3,1;l1,l2
a )d = (∅| · · · |∅|A12A13A14A12A23A24A13A23A34|∅| · · · |∅|A14A24A34|∅| · · · |∅)

' (∅| · · · |∅|A13A12A14A23A12A24A23A13A34|∅| · · · |∅|A14A24A34|∅| · · · |∅)
' (∅| · · · |∅|A13A12A23A14A12A23A24A13A34|∅| · · · |∅|A24A14A34|∅| · · · |∅)
' (∅| · · · |∅|A13A14A24A13A34|∅| · · · |∅|A24A14A34|∅| · · · |∅)
' (∅| · · · |∅|A13A13A34|∅| · · · |∅|A34|∅| · · · |∅)
' (∅| · · · |∅|A34|∅| · · · |∅|A34|∅| · · · |∅)
= (P 1,1;l1,l2

a )d.

Similarly a finite sequence of homotopy moves from P 1,3;l1,l2
a to P 1,1;l1,l2

a is realized as follows:

(P 1,3;l1,l2
a )d = (∅| · · · |∅|A12A13A14|∅| · · · |∅|A12A23A24A13A23A34A14A24A34|∅| · · · |∅)

' (∅| · · · |∅|A12A13A14|∅| · · · |∅|A12A24A23A13A34A23A14A34A24|∅| · · · |∅)
' (∅| · · · |∅|A12A14A13|∅| · · · |∅|A12A24A23A34A13A23A34A14A24|∅| · · · |∅)
' (∅| · · · |∅|A12A14A13|∅| · · · |∅|A12A24A13A14A24|∅| · · · |∅)
' (∅| · · · |∅|A12|∅| · · · |∅|A12A24A24|∅| · · · |∅)
' (∅| · · · |∅|A12|∅| · · · |∅|A12|∅| · · · |∅)
= (P 1,1;l1,l2

a )d.

Proof of classification theorems of nanophrases and monoliteral phrases are described in [1],
[3] and [4]. In the next section we introduce some invariants and show examples of classifications.

5. Homotopy Invariants of Nanophrases.

In this section we introduce some homotopy invariants for nanophrases which we used to
prove the classification theorems.

5.1. Component length vector. In this sub-subsection, we define the component length vector
of nanophrases (see [1], [3] and [8]).

Let P = (w1|w2| · · · |wk) be a nanophrase over α. For l ∈ k̂, we define w(l) ∈ Z/2Z by the
length of wl. We call the vector

w(P ) := (w(1), · · · , w(k)) ∈ (Z/2Z)k

the component length vector.

Proposition 5.1 ([3]). The component length vector is a homotopy invariant of nanophrases.

Remark 5.1. Note that the component length vector is a S-homotopy invariant of nanophrases
for all S.

Example 5.1. Consider nanophrases (A|A) and (∅|∅). Then w((A|A)) is equal to (1, 1). On
the other hand, w((∅|∅)) is equal to (0, 0). Therefore (A|A) and (∅|∅) are not homotopic each
other.
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5.2. Linking vector. In this sub-section we introduce the linking vector of nanophrases (See
[3] and [8]). Let π be the group which is defined as follows:

π := (a ∈ α|aτ(a) = 1, ab = ba for all a, b ∈ α ).

Let P be a nanophrases (w1|w2| · · · |wk) of length k over α. We define lP (i, j) ∈ π for i < j by

lP (i, j) :=
∏

A∈Im(wi)∩Im(wj)

|A|.

We call a vector lk(P ) := (lP (1, 2), lP (1, 3), · · · , lP (1, k), lP (2, 3), · · · , lP (k − 1, k)) ∈ π
1
2k(k−1)

the linking vector of P .

Proposition 5.2 ([3]). The linking vector of nanophrases is a homotopy invariant of nanophrases.

Remark 5.2. This invariant is also S-homotopy invariant for all S.

Example 5.2. Consider nanophrases (A|A) and (B|B) over α where |A| is equal to a and |B|
is equal to b. Then lk((A|A)) is equal to a ∈ π and lk((B|B)) is equal to b ∈ π. Therefore (A|A)
and (B|B) are homotopic if and only if a is equal to b.

6. Gibson’s So invariant.

In the paper [8], A.Gibson defined a homotopy invariant of nanophrases over the one-element
set. First we define some notations. Let (A, P = (w1| · · · |wk)) be a nanophrase over the one-
element set. For a letter A ∈ Ai := {A ∈ A|Card(w−1i (A)) = 2}, we define lj(A) ∈ Z/2Z as
follows : When we write P as xAyAz where x, y and z are words in A possibly including "|"
character, lj(A) is modulo 2 of the number of letters which appear exactly once in y and once
in the j-th component of the phrase P . Then we define l(A) ∈ (Z/2Z)k by

l(A) := (l1(A), l2(A), · · · , lk(A)).

Let v be a vector in (Z/2Z)k. Then we define dj(v) ∈ Z by

dj(v) := Card({A ∈ Aj |l(A) = v}),

and we define Bj(P ) ∈ 2(Z/2Z)
k

by

Bj(P ) := {v ∈ (Z/2Z)k \ {0}|dj(v) = 1 mod 2}.

Then we define the So(P ) ∈ (2(Z/2Z)
k

)k by

So(P ) := (B1(P ), B2(P ), · · · , Bk(P )).

Theorem 6.1 (Gibson [8]). So is a homotopy invariant of nanophrases over the one-element
set.

Example 6.1. Consider nanophrases (P 2,1;l1,l2)d and (P 2,1;l1,l2)d. Then

So((P 2,1;l1,l2
a )d) = (∅, · · · , ∅,

l1
ˇ{el2}, ∅, · · · , ∅),

and

So((P 2,1;m1,m2
a )d) = (∅, · · · , ∅,

m1

ˇ{em2
}, ∅, · · · , ∅),

where ei is equal to (0, · · · , 0,
i

1̌, 0, · · · , 0). Therefore we obtain that P 2,1;l1,l2
a is not homotopic

to P 2,1;m1,m2
a if (l1, l2) is not equal to (m1,m2).

Remark 6.1. The author and A.Gibson generalized the So invariant for nanophrases over the
one element set to a homotopy invariant over an arbitrary α in papers [5] and [10] independently.
These two generalizations are equivalent. See [5] and [10] for more details.



48 TOMONORI FUKUNAGA

6.1. Invariant Ro for nanophrases over the one-element set. In this subsection, we intro-
duce an invariant of nanophrases over the one-element set which was defined in [4]. Let (A, P )
be a nanophrase over the one-element set. For two letters X ∈ Al1 and Y ∈ Al2 , we define
dlP (X,Y ) ∈ Z/2Z by

dlP (X,Y ) = Card{Z ∈ Al1l2 |n(X,Z) = 1, n(Y,Z) = −1} mod 2,

and for integers l1 and l2, we define deP (l1, l2) ∈ Z/2Z by

deP (l1, l2) = Card{(X,Y ) ∈ Al1 ×Al2 |dl(X,Y ) = 1} mod 2.

Then we define Ro(P ) by
Ro(P ) = (de(l1, l2))l1<l2 .

Proposition 6.1 ([4]). The Ro is a homotopy invariant for nanophrases over the one-element
set.

Example 6.2. Consider the étale phrase P 2,2;l1,l2
a . Then

(P 2,2;l1,l2
a )d = (∅| · · · |∅|A12A13A14A12A23A24|∅| · · · |∅|A13A23A34A14A24A34|∅| · · · |∅).

We denote (P 2,2;l1,l2
a )d by P . In this caseãĂĂ

dlP (A12, A34) = Card{A14} = 1

and

deP (i, j) =

{
1 if (i, j) = (l1, l2),

0 otherwise.

Therefore Ro(P ) is equal to e(l1,l2). On the other hand Ro((∅| · · · |∅)) is equal to 0. Therefore,
this example shows that P 2,2;l1,l2

a is not homotopic to the empty phrase.

Using the above invariants and some properties on nanophrases and étale phrases, we can
classify nanophrases and monoliteral phrases at most four letters without condition on length.

7. An Application to Curves on Surfaces.

By the theorems in Section 3, if we put α that is equal to α0 and τ is equal to τo, then we
obtain the classification of pointed ordered curves on surfaces up to stable equivalence.

7.1. Applications of the classification of nanophrases. In the papers [1], [2] and [4], the
author proved the following corollaries.

Corollary 7.1 ([1]). There are exactly 19 stable equivalence classes of two-component pointed,
ordered, oriented, curves on surfaces with minimum crossing number less than or equal to 2.

More generally we can prove a following statement.

Corollary 7.2 ([2]). Let k be an positive integer. Then there are exactly

1 +
1

2
k2 + k3 +

1

2
k4

stable equivalence classes of ordered, pointed, k-component surface curves with minimal crossing
number less than or equal to two.

An ordered, pointed multi-component surface-curve is called irreducible if it is not stably
equivalent to a surface-curve with a simply closed component.
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Figure 6. The list of irreducible curves. See also Remark 7.1.

Corollary 7.3 ([3]). Any irreducible ordered, pointed multi-component surface-curve with min-
imal crossing number less than or equal to two is stably equivalent to one of the ordered, pointed
multi-component curves arising from the following list (see also Remark 7.1). There are exactly
52 stable equivalence classes of irreducible ordered, pointed, multi-component surface-curves.

Remark 7.1. We would like to list up the all stable equivalence classes of irreducible ordered,
pointed multi-component surface-curves with minimal crossing number less than or equal to
two. However there are too many curves to list up. Therefore we make just the list of multi-
component curves without order and orientation of the components in Figure 6. If we choose
order and orientation of components, then we obtain a ordered, pointed multi-component curve
on surface. Two different pictures from Figure 6 never produce equivalent ordered, pointed multi-
component curves on surfaces. On the other hand it is possible that two different additional
structures (orientation and the order) on the same picture yield equivalent ordered, pointed
multi-component curves on surfaces. More precisely, 2 (respectively 2, 8, 4, 24, 12) different
ordered, pointed multi-component surface-curves arise from the upper left (respectively upper
middle, upper right, lower left, lower middle, lower right) picture. By Theorem 4.5, ordered,
pointed multi-component surface-curves arising from pictures in Figure 6 are stably equivalent
if and only if nanophrases associated to these curves are homotopic, and we can obtain all of
the stable equivalent classes of irreducible ordered, pointed multi-component curves on surfaces
with minimal crossing number less than or equal to two by specifying order and orientation for
multi-component curves in Figure 6.

7.2. An application of the classification of monoliteral phrases. In this sub-section we
introduce an application of the classification of monoliteral phrases with at most four letters.
To do so, we introduce a notion of monoliteral type curves. A curve on a surface is called of
monoliteral type if the curve is stably equivalent to a curve which corresponds to a nanophrase
obtained by desingularization of a monoliteral phrase. Now we describe the classification of irre-
ducible monoliteral ordered pointed multi-component curves on surfaces with minimal crossing
number less than or equal to six.

Corollary 7.4. Any irreducible monoliteral ordered pointed multi-component curve on a surface
with minimal crossing number less than or equal to six is stably equivalent to one of the or-
dered, pointed multi-component curves in Figures 7 and 8. Therefore there are exactly 26 stable
equivalence classes of irreducible ordered, pointed, multi-component surface-curves.

Remark 7.2. Curves in Figure 7 correspond to monoliteral phrases of type PX;Y
a and curves in

Figure 8 correspond to monoliteral phrases of type PX;Y
b .
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Figure 7. The half of list of monoliteral curves. Each component is numerated
from right to left.



CLASSIFICATION OF CURVES ON SURFACES AND FREE LINKS 51

Figure 8. The half of list of monoliteral curves. Each component is numerated
from left to right.
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Figure 9. A flat virtualization move

Proof. We put that α is equal to α0, and τ is equal to τ0, then by Theorem 4.6 we obtain the
list of a complete representable system of homotopy class of nanophrases which does not contain
empty words as components of phrase as follows: (aaaa), (aaa|a), (aa|aa), (a|aaa), (aa|a|a),
(a|aa|a), (a|a|aa), (a|a|a|a), (aaa), (aa|a), (a|aa), (a|a|a), (a|a), (bbbb), (bbb|b), (bb|bb), (b|bbb),
(bb|b|b), (b|bb|b), (b|b|bb), (b|b|b|b), (bbb), (bb|b), (b|bb), (b|b|b) and (b|b). Note that in this case
τ0(a) is not equal to a and τ0(b) is not equal to b, therefore (ccc|c), (c|ccc) and (c|c) are not
homotopic each other for each c ∈{a, b}. Therefore by Theorem 3.1 there are exactly 26 stable
equivalence classes of pointed ordered irreducible curves on surfaces of monoliteral type with at
most six crossings.

Moreover by the correspondence of curves and phrases, we obtain the list of curves on surfaces
in Figures 7 and 8. �

Remark 7.3. In the paper [8], A. Gibson classified un-pointed oriented flat virtual virtual knots
with at most four crossings using the theory of nanowords. See [8] for more details.

8. An application to free links.

In this subsection, we give the classification of ordered pointed free links with some conditions
using the classification of nanophrases and monoliteral phrases.

The theory of free knots and links was introduced by V . O. Manturov in [15] and [16]. A free
link is an equivalence class of flat virtual link diagrams modulo flat virtual Reidemeister moves
and flat virtualization move which is illustrated in Figure 9. We can define ordered, pointed,
irreducible and monoliteral for free links similarly as in the case for flat virtual links.

It is known that there is a canonical bijection between the set of ordered pointed k-component
free links and the set of homotopy classes of nanophrases over the one element set {a} with the
involution a 7→ a. See [9] and [15] for example.

Now we apply the classification of nanophrases and monoliteral phrases to the classification
of ordered pointed irreducible free links.

Corollary 8.1. There are exactly 12 irreducible ordered pointed free links with at most two real
crossings.

Proof. We put α is equal to {a}, and τ is equal to the identity map on {a}, then by the Theorem
4.5 we obtain the list of a complete representable system of homotopy classes of nanophrases
which does not contain empty words as components of phrase as follows: (ABA|B), (A|BAB),
(AB|A|B), (BA|A|B), (A|AB|B), (A|BA|B), (A|B|AB), (A|B|BA), (A|B|A|B), (A|B|B|A),
(A|A|B|B) and (A|A) where |A| and |B| are equal to a. Therefore there are 12 irreducible
ordered pointed free links with at most two real crossings. �

Corollary 8.2. There are exactly nine irreducible ordered pointed free links of monoliteral type
with at most six real crossings.
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Proof. We put α is equal to {a}, and τ is equal to the identity map on {a}, then by Theorem 4.6
we obtain the list of a complete representable system of homotopy classes of nanophrases which
does not contain empty words as components of phrase as follows: (aa|aa), (aa|a|a), (a|aa|a),
(a|a|aa), (a|a|a|a), (aa|a), (a|aa), (a|a|a) and (a|a). Therefore there are nine irreducible ordered
pointed free links of monoliteral type with at most six real crossings. �

Remark 8.1. We can construct the table of irreducible ordered pointed free links of monoliteral
type with at most six crossings similarly as in the case of curves on surfaces. It is similar to the
Figure 7. If we delete curves which correspond to (aaaa), (aaa|a), (a|aaa) and (aaa), then we
obtain the required table. Therefore we avoid drawing the table.

Remark 8.2. From Corollary 8.1, there are no pointed free knots with at most two crossings.
Examples of non trivial (pointed) free knots were found by V. O. Manturov and A. Gibson
independently. See [15] and [9] for more details. On the other hand, by Corollary 8.2, there
are no pointed free knots with at most six crossings. More generally, in the paper [18] Turaev
proved there is no pointed free knot of monoliteral type in terms of the theory of nanowords.
See [18] for more details.
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SINGULARITIES OF TANGENT VARIETIES TO CURVES AND SURFACES
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Abstract. It is given the diffeomorphism classification on generic singularities of tangent
varieties to curves with arbitrary codimension in a projective space. The generic classifica-
tions are performed in terms of certain geometric structures and differential systems on flag
manifolds, via several techniques in differentiable algebra. It is provided also the generic dif-
feomorphism classification of singularities on tangent varieties to contact-integral curves in
the standard contact projective space. Moreover we give basic results on the classification of
singularities of tangent varieties to generic surfaces and Legendre surfaces.

1. Introduction

Embedded tangent spaces to a submanifold draw a variety in the ambient space, which is
called the tangent variety to the submanifold. Tangent varieties appear in various geometric
problems and applications naturally. See for instance [1][10][6]. Developable surfaces, varieties
with degenerate Gauss mapping and varieties with degenerate projective dual are obtained by
tangent varieties. Tangent varieties provide several important examples of non-isolated singu-
larities in applications of geometry. We observe relations of tangent varieties to invariant theory
and geometric theory of differential equations (see [29], also see Examples 2.7 and 9.1).

It is known, in the three dimensional Euclidean space, that the tangent variety (tangent
developable) to a generic space curve has singularities each of which is locally diffeomorphic to
the cuspidal edge or to the folded umbrella (cuspidal cross cap), as is found by Cayley and Cleave
[9]. Cuspidal edge singularities appear along ordinary points, while the folded umbrella appears
at an isolated point of zero torsion [6][35].

The classification was generalised to more degenerate cases by Mond [32][33] and Scherbak
[38][4] and applied to various geometry (see for instance [8][24]). If we consider a curve together
with its osculating framings, we are led to the classification of tangent varieties to generic oscu-
lating framed curves, possibly with singularities in themselves, in the three dimensional space.
Then the list consists of 4 singularities: cuspidal edge, folded umbrella and moreover swallowtail
andMond surface (‘cuspidal beak to beak’) [20]. However the author could not find any literature
treating the classification of singularities appearing in tangent varieties to higher codimensional
curves.

The diffeomorphism types of tangent varieties to curves are invariant under projective trans-
formations. In this paper, we consider curves in projective spaces and show the classification
results on generic singularities of tangent varieties to curves with arbitrary codimension in pro-
jective spaces.

The tangent variety can be defined for a ‘frontal’ variety. A frontal variety has the well-defined
embedded tangent space at each point, even where the variety is singular. In Cauchy problem
of single unknown function, we have wave-front sets, which are singular hypersurfaces [3]. They
are called fronts and form an important class of frontal varieties. Also higher codimensional
wave-fronts are examples of frontal varieties, which appear in, for instance, Cauchy problem of
several unknown functions, where initial submanifolds of arbitrary codimension evolve to frontal
varieties (cf. [13][26]).

http://dx.doi.org/10.5427/jsing.2012.6f
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First, in §2, we introduce the notion of frontal maps and frontal varieties, generalising that
of submanifolds and fronts (Definition 2.1). Moreover we define their tangent maps and tangent
varieties (Definition 2.2). Then we give the classification of tangent varieties to generic curves
in projective spaces (Theorem 2.6). In fact we find that the tangent variety to a generic curve
in RPN+1 has the unique singularity, the higher codimensional cuspidal edge, if N + 1 ≥ 4.

In the geometric theory of curves, however, we usually treat not just curves but we attach
an appropriate frame with curves. Thus, to solve the generic classification problem properly, we
relate the study of tangent varieties to certain kinds of differential systems on appropriate flag
manifolds in §3. Note that the method was initiated by Arnol’d and Scherbak [38]. Also note
that it is standard to use flag manifolds in the theory of space curves ([40]). We can utilise various
types of flag manifolds. In fact, in this paper, we select three kinds of flag manifolds and three
kinds of differential systems, correspondingly to the classes of curves endowed with osculating-
frames, with tangent-frames and with tangent-principal-normal-frames. Then we present the
classification results on the singularities of which generically appear for these three kinds of
classes of curves in projective spaces (Theorems 3.3, 3.4, 3.6).

In §4, the notion of types of curve-germs are recalled. Curves of finite type are frontal and
their tangent varieties are frontal. We classify the generic types of curves, and then we show a
kind of determinacy of the tangent variety for each generic type of curves.

In §5, we classify the list of types of generic curves satisfying geometric conditions. To do
this, we establish the codimension formulae giving the codimension of the set of curves, for given
type, which satisfy a given geometric integrality condition in each case. Then the transversality
theorem implies the restriction on types of generic curves.

In §6, we introduce the key notion of openings of differentiable map-germs, which has close
relations with that of frontal varieties. We collect necessary results on differentiable algebras
to solve the generic classification problems treated in this paper. Moreover, in §7, using the
method of differentiable algebra, we show the normal forms of tangent varieties appearing in the
generic classification problems we have treated in this paper. In particular the main results in
this paper, Theorems 2.6, 3.3, 3.4 and 3.6 are proved.

In §8, we treat contact-integral curves and their tangent varieties. If V is a symplectic vector
space, then the projective space P (V ) has the canonical contact structure. Then we give the
generic diffeomorphism classification of singularities on tangent varieties to ‘osculating framed
contact-integral’ curves in P (V ) (Theorems 8.5, 8.6). For this, in particular, we show that the
diffeomorphism type of Tan(γ) is unique for a curve of type (1, 3, 4, 6) in RP 4 in this paper.
Note that it is known that the diffeomorphism type of TanTan(γ) is not unique ([18]).

In §9, we treat the classification problem of singularities of tangent varieties to surfaces,
exhibiting several examples and observations. First we observe that the tangent varieties to
generic smooth surfaces are not frontal. We characterise the class of surfaces whose tangent
varieties are frontal. In particular we show that the tangent varieties to Legendre submanifolds
in the five dimensional standard contact projective space P (R6) = RP 5 are frontal, if the tangent
variety has a dense regular set. Recall that the singularity of tangent variety to a curve along
ordinary points is the cuspidal edge. Therefore the singularity of tangent variety at almost any
point on a curve is diffeomorphic to cuspidal edge, which is a generic singularity of wave front.
We study the analogous problem for tangent varieties to Legendre surfaces. Then we observe
that the situation becomes absolutely different. In fact we introduce the notion of hyperbolic
and elliptic ordinary points on Legendre surface in RP 5 and show that the transverse section of
the tangent variety to the surface, by a 3-plane, has D4-singularities (Theorem 9.5).

In the last section §10, we collect open problems related to several results obtained in this
paper.
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In this paper all manifolds and maps are assumed to be of class C∞ unless otherwise stated.

2. Frontal maps and tangent varieties.

Definition 2.1. Let N andM be manifolds of dimension n and m respectively. Suppose n ≤ m.
A mapping f : Nn →Mm is called frontal if

(i) the regular locus

Reg(f) = {x ∈ N | f : (N, x)→ (M,f(x)) is an immersion}
of f is dense in N and
(ii) there exists a C∞ mapping f̃ : N → Gr(n, TM) =

⋃
y∈M Gr(n, TyM) satisfying

f̃(x) = f∗(TxN), for x ∈ Reg(f).

Here Gr(n, TyM) is the Grassmannian of n-planes in TyM . Note that the lifting f̃ is uniquely
determined if it exists and is called the Grassmannian lifting of f .

We define a subbundle C ⊂ TGr(n, TM) by setting, for v ∈ TLGr(n, TM), L ∈ TyM ,

v ∈ CL ⇐⇒ π∗(v) ∈ L ⊂ TyM.

The differential system C is called the canonical differential system. The Grassmannian lifting f̃
is a C-integral map, that is, f̃∗(TN) ⊂ C. We describe the canonical system in the next section
(Remark 3.7) in the case M is a projective space.

If f is an immersion, then f is frontal. A wave-front hypersurface is frontal. The key observa-
tion for the classification of singularities of tangent varieties is that the tangent variety Tan(γ)
to a curve γ of finite type is frontal. The lifting Grassmannian is obtained by taking osculating
planes to the curves (See §4). If n = m, then f is frontal if the condition (i) is fulfilled, f̃(x)
being Tf(x)R

m.
If f̃ is an immersion, then the frontal mapping is called a front. In [17], we called a frontal

hypersurface (m = ` + 1), a “front hypersurface". However we would like to reserve the notion
“front" for the case that the Grassmannian lifting is an immersion, as in the Legendre singularity
theory. Note that frontal maps are studied also in [28][27][37].

Definition 2.2. Let f : (Rn, a)→ (Rm, b), n ≤ m be a frontal map-germ and

f̃ : (Rn, a)→ Gr(n, TRm) ∼= Rm ×Gr(n,Rm)

be the Grassmannian lifting of f .
A tangent frame to f means a system of vector fields v1, . . . , vn : (Rn, a) → TRm along f

such that v1(x), . . . , vn(x) form a basis of f̃(x) ⊂ Tf(x)R
m. Then the tangent map Tan(f, v) :

(R2n, (a, 0))→ (Rm, b) is defined by

Tan(f, v)(s, x) := f(x) +

n∑
i=1

sivi(x).

If we choose another tangent frame u1, . . . , un of f and define

Tan(f, u)(s, x) = f(x) +

n∑
i=1

siui(x).

Then Tan(f, u) and Tan(f, v) are right-equivalent. Therefore the tangent variety Tan(f) to a
frontal map-germ is uniquely determined as a parametrised variety.
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For a frontal map-germ f : (Rn, 0)→ RPN+1 in a projective space we define the tangent map
Tan(f) : (Rn, 0)→ RPN+1 by taking a local projective coordinate (RPN+1, f(0))→ (RN+1, 0)
(cf. §4).

Remark 2.3. In this paper we treat only tangent varieties, which are closely related to the
secant varieties. The secant variety of a submanifold S ⊂ RPn is the ruled variety obtained
by taking the union of secants connecting two distinct points on S and by taking its closure
([41][12]). See also Example 9.1. The secant variety is parametrised by the ‘secant map’ and
the tangent map is the ‘boundary’ of secant map in some sense. For the singularities of secant
maps, see [14].

Let γ : (R, 0) → RPN+1 be a germ of immersion and γ(t) = (x1(t), x2(t), . . . , xN+1(t)) be a
local representation of γ. Then γ′(t) gives the tangent frame of γ. Then the tangent variety to
γ is given by Tan(γ) : (R2, 0)→ RN+1 defined by

Tan(γ)(s, t) = γ(t) + s γ′(t) = (xi(t) + s x′i(t))1≤i≤N+1 .

Note that s is the parameter of tangent lines, while t is the parameter of the original curve γ.
If t = 0 is a singular point of γ, then the velocity vector γ′(0) = 0, and hence the above

map-germ does not give the parametrisation of the tangent variety. However if there is k > 0
such that v(t) = (1/tk)γ′(t) is a tangent frame of γ, then we set

Tan(γ)(s, t) = γ(t) + s

(
1

tk
γ′(t)

)
=

(
xi(t) + s

(
1

tk
x′i(t)

))
1≤i≤N+1

.

We take k = 0 when γ is an immersion at 0.
In the above case, γ is frontal and under a mild condition Tan(γ) is also frontal.

Theorem 2.4. Let γ : (R, 0) → RPN+1 be a curve of finite type (§4). Then γ is frontal.
Moreover the tangent map Tan(γ) : (R2, 0)→ RPN+1 of γ is frontal.

Theorem 2.4 is proved in §4.

Remark 2.5. Let γ be a curve of finite type. Then it is natural to ask what Tan(Tan(γ)) is,
because Tan(γ) is frontal. For a curve γ in RPN+1, N ≥ 2, the tangent plane to Tan(γ) along
each ruling (tangent line) is constant, that is the osculating 2-plane. Therefore Tan(Tan(γ)) is
a 3-fold, not a 4-fold, ruled by osculating 2-planes of the original curve γ ([18]).

We classify the map-germ Tan(γ) by local right-left diffeomorphism equivalence. Two map-
germs f : (N, a) → (M, b) and f ′ : (N ′, a′) → (M ′, b′) are called diffeomorphic or right- left
equivalent if there exist diffeomorphism-germs σ : (N, a) → (N ′, a′) and τ : (M, b) → (M ′, b′)
such that f ′ ◦ σ = τ ◦ f .

In the followings, I is an open interval.

Theorem 2.6. (1) ([9]) For a generic curve γ : I → RP 3 in C∞-topology, the curve γ is of
finite type at each point in I and the tangent variety Tan(γ) to γ at each point in I is locally
diffeomorphic to the cuspidal edge or to the folded umbrella (cuspidal cross cap).

(2) Let N + 1 ≥ 4. For a generic curve γ : I → RPN+1 in C∞-topology, the curve γ is of
finite type at each point in I and the tangent variety Tan(γ) to γ at each point of I is locally
diffeomorphic to the cuspidal edge.

The genericity means the existence of an open dense subset O ⊂ C∞(I,RPN+1) such that
any γ ∈ O satisfies the consequence.
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The cuspidal edge is parametrised by the map-germ (R2, 0)→ (RN+1, 0), (N + 1 ≥ 3) defined
by

(u, x) 7→ (u, x2, x3, 0, . . . , 0).

Note that it is diffeomorphic (right-left equivalent) to the germ

(t, s) 7→ (t+ s, t2 + 2st, t3 + 3st2, . . . , tN+1 + (N + 1)stN ),

and also to
(t, s) 7→ (t+ s, t2 + 2st, t3 + 3st2, 0, . . . , 0),

A folded umbrella is parametrised by the germ (R2, 0)→ (R3, 0) defined by

(t, s) 7→ (t+ s, t2 + 2st, t4 + 4st3),

which is diffeomorphic to

(u, x) 7→ (u, x2 + ux,
1

2
x4 +

1

3
ux3).

A folded umbrella is often called a cuspidal cross cap.

Figure 1. cuspidal edge and folded umbrella.

Theorem 2.6 is proved in §7.

Example 2.7. (umbilical bracelet) Let

V N+2 = {a0x
N+1 + a1x

Ny + · · ·+ aNxy
N + aN+1y

N+1} ∼= RN+2

be the space of homogeneous polynomials of degree N +1 in two variables x, y. The polynomials
with zeros of multiplicity N +1 form a curve C in P (V ) ∼= RPN+1. The tangent variety Tan(C)
to C coincides with the set of polynomials with zeros of multiplicity ≥ N . The surface Tan(C)
has cuspidal edge singularities along C. In particular in the case N + 1 = 3, the tangent variety
Tan(C) to C is called the umbilical bracelet([35][11]). If N + 1 ≥ 4, Tan(Tan(C)) ⊂ P (V N+2)
coincides with of polynomials with with zeros of multiplicity ≥ N − 1.

Remark 2.8. The tangent surface to a curve is obtained as a union of strata of envelope
generated by the dual curve to the original curve. The generating family associated to the dual
curve is determined, up to parametrised K-equivalence in several cases. We recall the notion of
types of curves in a projective space in §4. If the type A = (a1, . . . , aN+1) of a curve in RPN+1

is one of followings

(I)N,r : (1, 2, . . . , N,N + r), (r = 0, 1, 2, . . . ),

(II)N,i : (1, 2, . . . , i, i+ 2, . . . , N + 1, N + 2), (0 ≤ i ≤ N − 1),

(III)N : (3, 4, . . . , N + 2, N + 3),

then the generating family is determined by the type of the curve [16]. In each case, a normal
form of the tangent variety can be obtained from the generating family

F (t, x) = taN+1 + x1t
aN+1−a1 + x2t

aN+1−a2 + · · ·+ xN t
aN+1−aN + xN+1 = 0,
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by solving

F = 0,
∂F

∂t
= 0, . . . ,

∂N−1F

∂tN−1
= 0,

deleting the divisor {t = 0} if necessary. For example, for the type (II)3,2 : (1, 2, 4, 5), we have
generating family

F (t, x) = t5 + x1t
4 + x2t

3 + x3t+ x4.

Then the tangent variety is obtained by solving t5 + x1t
4 + x2t

3 + x3t+ x4 = 0,
5t4 + 4x1t

3 + 3x2t
2 + x3 = 0,

20t3 + 12x1t
2 + 6x2t = 0.

In fact, from these equations, we get a map-germ (R2, 0)→ (R4, 0) by

x2 = −10

3
t2 − 2x1t, x3 = 5t4 + 2x1t

3, x4 = −8

3
t5 − x1t

4,

which is diffeomorphic to the open folded umbrella (see Theorems 3.6, 7.2).

3. Differential systems on flag manifolds.

First we recall the flag manifolds and the canonical differential systems on flag manifolds. For
the generality on differential systems, see [23].

Let V be a vector space of dimension n and 0 < n1 < n2 < · · · < n` < n. Then we define the
flag manifold

F = Fn1,n2,...,n`
(V ) :=

{
Vn1
⊂ Vn2

⊂ · · · ⊂ Vn`
⊂ V | dim(Vnj

) = nj , (1 ≤ j ≤ `)
}
.

Note that

dim(F) = n1(n− n1) + (n2 − n1)(n− n2) + · · ·+ (n` − n`−1)(n− n`).

Denote by πi : Fn1,n2,...,n`
(V )→ Gr(ni, V ) the canonical projection to the i-th member of the

flag. The canonical differential system C = Cn1,n2,...,n`
⊂ TF is defined by, for v ∈ TVF ,V ∈ F ,

v ∈ CV ⇐⇒ πi∗(v) ∈ TGr(ni, Vni+1
)(⊂ TGr(ni, V )), (1 ≤ i ≤ `− 1).

Then C is a bracket-generating (completely non-integrable) subbundle of TF with

rank(C) = n1(n2 − n1) + (n2 − n1)(n3 − n2) + · · ·+ (n` − n`−1)(n− n`).

A C∞ curve Γ : I → F from an open interval I is called a C-integral curve if Γ′(t) ∈ CΓ(t) for
any t ∈ I. A C-integral curve can be phrased as a C∞-family

c(t) = (Vn1
(t), Vn2

(t), . . . , Vn`
(t))

of flags in F such that each Vni
(t) moves along Vni+1

(t) at every moment infinitesimally.

Let V be an (N + 2)-dimensional vector space. For the study of tangent varieties to curves,
it is natural to regard the following flag manifolds

F1,2 = F1,2(V ) := {V1 ⊂ V2 ⊂ V | dim(Vi) = i},

and
F1,2,3 = F1,2,3(V ) := {V1 ⊂ V2 ⊂ V3 ⊂ V | dim(Vi) = i}.

The canonical systems T = C1,2 and N = C1,2,3 are defined as follows: For (V1, V2) ∈ F1,2,

v ∈ T(V1,V2) ⇐⇒ π1∗(v) ∈ TP (V2)(⊂ TP (V )).
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For (V1, V2, V3) ∈ F1,2,3,

w ∈ N(V1,V2,V3) ⇐⇒ π1∗(w) ∈ TP (V2)(⊂ TP (V )), π2∗(w) ∈ TGr(2, V3)(⊂ TGr(2, V )).

Then we have

Proposition 3.1. Let γ : (R, 0) → P (V N+2) ∼= RPN+1 be a C∞ curve. Suppose Reg(γ)
is dense in (R, 0). Then γ is frontal if and only if γ = π1 ◦ c for some C1,2-integral curve
c : (R, 0)→ F1,2(V ).

In fact c gives a tangent frame of γ. In this case, γ is called tangent-framed.

Proposition 3.2. Let γ : (R, 0)→ P (V N+2) ∼= RPN+1 be a frontal curve. Suppose Reg(Tan(γ))
is dense in (R2, 0). Then Tan(γ) is frontal if and only if γ = π1 ◦κ for some C1,2,3-integral curve
κ : (R, 0)→ F1,2,3(V ).

In fact, if Tan(γ) is frontal, then V1(t) = γ(t), the tangent (projective) line V2(t) to γ at t and
the tangent (projective) plane to Tan(γ) at (t, 0) form a C1,2,3-integral lifting of γ. Conversely if
c(t) = (V1(t), V2(t), V3(t)) is a C1,2,3-integral curve, then Tan(γ) has the constant tangent plane
V3(t) along each ruling, and (t, s) 7→ TV1(t)P (V3)(t) gives the Grassmannian lifting of Tan(γ).

The projection of a C1,2,3-integral curve is called a tangent-principal-nomal-framed curve.

Theorem 3.3. (1) Let N + 1 = 3. For a generic C1,2-integral curve c : I → F1,2(V 4) in C∞-
topology, the tangent variety Tan(γ) to the tangent-framed curve γ = π1 ◦ c : I → P (V 4) = RP 3

at each point is locally diffeomorphic to the cuspidal edge, the folded umbrella or the swallowtail.
(2) Let N + 1 ≥ 4. For a generic C1,2-integral curve c : I → F1,2(V N+2) in C∞-topology, the

tangent variety Tan(γ) to the tangent-framed curve γ = π1 ◦ c : I → P (V ) = RPN+1 at each
point is locally diffeomorphic to the cuspidal edge or the open swallowtail.

The swallowtail (R2, 0)→ (R3, 0) is given by

(t, s) 7→ (t2 + 2s, t3 + 3st, t4 + 4st2),

which is diffeomorphic to

(u, x) 7→ (u, x3 + ux,
3

4
x4 +

1

2
ux2).

The open swallowtail (R2, 0)→ (RN+1, 0), N + 1 ≥ 4 is given by

(t, s) 7→ (t2 + 2s, t3 + 3st, t4 + 4st2, t5 + 5st3, 0, . . . , 0),

which is diffeomorphic to

(u, x) 7→ (u, x3 + ux,
3

4
x4 +

1

2
ux2,

3

5
x5 +

1

3
ux3, 0, . . . , 0).

Theorem 3.4. (1) Let N + 1 = 3. For a generic C1,2,3-integral curve κ : I → F1,2,3(V 4)
in C∞-topology, the tangent variety Tan(γ) to the tangent-principal-normal-framed curve γ =
π1 ◦ κ : I → P (V 4) = RP 3 at each point is locally diffeomorphic to the cuspidal edge, the folded
umbrella, the Mond surface or the swallowtail.

(2) Let N + 1 ≥ 4. For a generic C1,2,3-integral curve κ : I → F1,2,3(V N+2) in C∞-topology,
the tangent variety Tan(γ) to the tangent-principal-normal-framed curve γ = π1◦κ : I → P (V ) =
RPN+1 at each point is locally diffeomorphic to the cuspidal edge, the open Mond surface or the
open swallowtail.

The Mond surface (R2, 0)→ (R3, 0) is given by

(t+ s, t3 + 3st2, t4 + 4st3),
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which is diffeomorphic to

(u, x) 7→ (u, x3 + ux2,
3

4
x4 +

2

3
ux3)).

The Mond surface is called also cuspidal beaks ([25]) or cuspidal beak to beak (‘bec à bec’).
The open Mond surface (R2, 0)→ (RN+1, 0), N + 1 ≥ 4 is given by

(t, s) 7→ (t+ s, t3 + 3st2, t4 + 4st3, t5 + 5st4, 0, . . . , 0),

(u, x) 7→ (u, x3 + ux2,
3

4
x4 +

2

3
ux3,

3

5
x5 +

1

2
ux4, 0, . . . , 0).

Now we recall on osculating-framed curves (cf. [20]). Let V be an (N + 2)-dimensional real
vector space. Consider the complete flag manifold:

F = F1,2,...,N+1(V ) := {V1 ⊂ V2 ⊂ · · ·VN+1 ⊂ V | dim(Vi) = i, 1 ≤ i ≤ N + 1}.

Then dimF = (N+1)(N+2)
2 . We denote by πi : F → Gr(i, V ) the canonical projection

πi(V1, V2, . . . , VN+1) = Vi.

The canonical system C = C1,2,...,N+1 ⊂ TF is defined by

v ∈ C(V1,...,VN+1) ⇐⇒ πi∗(v) ∈ TGr(i, Vi+1)(⊂ TGr(i, V )), (1 ≤ i ≤ N).

For a C∞ curve γ : I → P (V ) = RPN+1, if we consider Frenet-Serret frame, or the os-
culating projective moving frame, Γ = (e0(t), e1(t), . . . , eN+1(t)) : I → GL(RN+2) = GL(N +
2,R), γ(t) = [e0(t)], then, setting Vi(t) := 〈e0(t), e1(t), . . . , ei−1(t)〉R, (1 ≤ i ≤ N + 1), we
have a C-integral lifting γ̃ : I → F of γ for the projection π1 : F → P (V ), by γ̃(t) =
(V1(t), V2(t), . . . , VN+1(t)). In this case, γ is called osculating-framed. Note that the framing
of an osculating-framed curve is uniquely determined if an orientation of the curve and a metric
on P (V ) are given.

Theorem 3.5. ([20]) Let N + 1 = 3. For a generic C-integral curve c : I → F(V 4) in C∞-
topology, the tangent variety Tan(γ) to the osculating-framed curve γ = π1 ◦ c : I → P (V 4) =
RP 3 at each point of I is locally diffeomorphic to the cuspidal edge, the folded umbrella, the
swallowtail or to the Mond surface (Figure 2).

Figure 2. cuspidal edge, folded umbrella, swallowtail and Mond surface in R3.

In this paper we treat higher codimensional cases, and we show the following

Theorem 3.6. Let N + 1 ≥ 4. For a generic C-integral curve c : I → F in C∞-topology, the
tangent variety to the osculating-framed curve γ = π1 ◦ c : I → P (V N+2) = RPN+1 at each
point is locally diffeomorphic to the cuspidal edge, the open folded umbrella (cuspidal non-cross
cap), the open swallowtail or to the open Mond surface (Figure 3).
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The open folded umbrella (R2, 0)→ (RN+1, 0), N ≥ 3 is given by

(t, s) 7→ (t+ s, t2 + 2st, t4 + 4st3, t5 + 5st4, 0, . . . , 0),

which is diffeomorphic to

(u, x) 7→ (u, x2 + ux,
1

2
x4 +

1

3
ux3,

2

5
x5 +

1

4
ux4, 0, . . . , 0).

Figure 3. cuspidal edge, open folded umbrella, open swallowtail and open
Mond surface in R4.

Our main results, Theorems 3.3, 3.4, 3.6 are proved in §7.

Lastly in this section, we describe the canonical system C = C1,2,...,k+1 on F1,2,...,k+1(V N+2).
Let V1 = (V11, V21, . . . , Vk+1,1) ∈ F1,2,...,k+1(V N+2). Fix a flag V N+2 ⊃ WN+1 ⊃ WN ⊃
WN−k+1 such that WN−i+1 ∩ Vi+1 1 = {0}, i = 0, 1, . . . , k. Take the open neighbourhood U of
V1 defined by

U :=
{

(V1, V2, . . . , Vk+1) ∈ F1,2,...,k+1(V N+2) | WN−i+1 ∩ Vi+1 = {0}, i = 0, 1, . . . , k} .
Take non-zero vectors e0 ∈ V11, e1 ∈ V21 ∩WN+1, e2 ∈ V31 ∩WN , . . . , ek ∈ Vk+1 1 ∩WN−k+2.
Adding a basis (ek+1, . . . , eN+1) of WN−k+1, we get a basis (e0, e1, e2, . . . , ek, ek+1, . . . , eN+1) of
V . Then, for each V = (V1, V2, . . . , Vk+1), Vi has a basis v0, v1, . . . , vi−1 (a ‘moving frame’) of
the form

vi = ei +

N+1∑
j=i+1

x i
j ej , 0 ≤ i ≤ k.

Then the condition that a curve in F1,2,...,k+1(V N+2) C-integral is equivalent to that the com-
ponents of the curve satisfies the conditions

(vi−1)′ =

N+1∑
j=i

(x i−1
j )′ej ∈ 〈v0, v1, . . . , vi〉E1 , 1 ≤ i ≤ k.

Thus we see that the differential system C = C1,2,...,k+1 is defined by

dx i−1
j − x i

j dx
i−1
i = 0, (1 ≤ i ≤ k, i+ 1 ≤ j ≤ N + 1),

for the system of local coordinates
(
x i
j

)
0≤i≤k,i+1≤j≤N+1

of F1,2,...,k+1(V N+2).

Remark 3.7. For a (N+2)-dimensional vector space V , the Grassmannian bundle Gr(n, TP (V N+2))
over P (V N+2) is identified with the flag manifold F1,n+1(V N+2),

F1,n+1(V N+2) = {V1 ⊂ Vn+1 ⊂ V N+2 | dim(V1) = 1,dim(Vn+1) = n+ 1}.

Remark that the Grassmannian liftings of frontal maps Nn → P (V N+2) are C-integral of the
canonical system C = C1,n+1.
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The canonical system C1,n+1 on F1,n+1(V N+2) is locally given by

dx 0
i+1 −

n∑
j=1

x j
i+1dx

0
j = 0, (n ≤ i ≤ N),

for a system of local coordinates x 0
i+1, (0 ≤ i ≤ N), x j

i+1, (1 ≤ j ≤ n, n ≤ i ≤ N). The projection
π1 : Gr(n, TP (V N+2))→ P (V N+2) is represented by (x 0

1 , . . . , x
0
N+1). If we write xi = x 0

i (1 ≤
i ≤ n), yk = x 0

n+k (1 ≤ k ≤ N − n+ 1) and p i
k = x i

n+k (1 ≤ k ≤ N − n+ 1, 1 ≤ i ≤ n), then we
have

dyk −
n∑
i=1

p i
k dxi = 0, 1 ≤ k ≤ N − n+ 1.

Therefore the condition that a map F : Ln → Gr(n, TP (V N+2)) is C-integral is expressed by

d(yk ◦ F )−
n∑
i=1

(p i
k ◦ F ) d(xi ◦ F ) = 0, 1 ≤ k ≤ N − n+ 1.

4. Type of a curve in a space with flat projective structure.

Let M be an m-dimensional C∞ manifold. A flat projective structure on M is given by
an atlas {(Uα, ϕα)} where M =

⋃
α Uα, ϕα : Uα → ϕα(Uα) ⊂ Rm, and transition functions

ϕβ◦ϕ−1
α : ϕα(Uα∩Uβ)→ ϕβ(Uα∩Uβ) are fractional linear with a common denominator. Then an

admissible chart is called a system of projective local coordinates. The projective space P (V m+1)
for a vector space V m+1 has the canonical flat projective structure. Also Grassmannians and
Lagrange Grassmannians have flat projective structures (cf. [22]).

Let γ : I →M be a C∞-curve in a manifoldM with a flat projective structure. Take a system
of projective local coordinates (x1, x2, . . . , xm) centred at γ(t0) and the local affine representation
(R, t0)→ (Rm, 0),

γ(t) = T (x1(t), x2(t), . . . , xm(t))

of γ. Consider the (m× k)-matrix

Wk(t) :=
(
γ′(t0), γ′′(t0), · · · , γ(k)(t0)

)
for any integer k ≥ 1 and k =∞. Note that the rank of Wk(t0) is independent of the choice on
representations for γ.

Definition 4.1. We call γ of finite type at t = t0 ∈ I if the (m×∞)-matrix

W∞(t0) =
(
γ′(t0), γ′′(t0), · · · , γ(k)(t0), · · · · · ·

)
is of rank m. Define, for 1 ≤ i ≤ m, ai := min {k | rankWk(t0) = i} . Then we have a sequence
of natural numbers 1 ≤ a1 < a2 < · · · < am, and we call γ of type (a1, a2, . . . , am) at t = t0 ∈ I.

If (a1, a2, . . . , am) = (1, 2, . . . ,m), then t = t0 is called an ordinary point of γ.

It is easy to see

Lemma 4.2. A curve-germ γ : (R, 0) → M in a manifold M with a flat projective structure,
is of type (a1, a2, . . . , am) at 0 if and only if there exists a system of projective local coordinates
(x1, x2, . . . , xm) centred at γ(0) such that

x1(t) = ta1 + o(ta1), x2(t) = ta2 + o(ta2), . . . , xm(t) = tam + o(tam).
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Lemma 4.3. Let γ : (R, 0)→ P (RN+2) = RPN+1 be a curve and γ̃ : (R, 0)→ RN+2 \ {0} be
a lifting of γ. Set W̃r(t) = (γ̃(t), γ̃′(t), · · · , γ̃(r)(t)). Then γ is of type A = (a1, a2, . . . , aN+1) if
and only if ai = min{r | rank W̃r(t0) = i+ 1}, 1 ≤ i ≤ N + 1.

Moreover we see

Lemma 4.4. Let γ : (R, 0) → P (RN+2) = RPN+1 a curve of finite type. There is unique
C1,2,3,...,N+1-integral C∞ lifting Γ : (R, 0) → F1,2,3,...,N+1(RN+2) of γ. Moreover by the pro-
jection of Γ, we have C1,2,3-integral lifting κ : (R, 0) → F1,2,3(RN+1) and C1,2-integral lifting
c : (R, 0)→ F1,2(RN+1) of γ.

Proof : The first half is proved in [20] (Lemma 6.1). We take the lifting γ̃ : (R, 0)→ RN+2 \ {0}
defined by

γ̃(t) = T (1, ta1 + o(ta1), ta2 + o(ta2), . . . , taN+1 + o(taN+1)) .

of γ. Consider the (N + 2)× (N + 2)-matrix

A(t) =

(
γ̃(t),

1

a1!
γ̃(a1)(t), · · · , 1

aN+1!
γ̃(aN+1)(t)

)
.

Let Vi(t) be the linear subspace of RN+2 generated by the first i- columns of A(t). Then
Γ : (R, 0) → F1,2,3,...,N+1(RN+2) is uniquely determined by Γ(t) = (V1(t), V2(t), . . . , VN+1(t)).
The lower triangle components of A(t) give the local representation of Γ, therefore Γ is C∞.
Moreover κ(t) = (V1(t), V2(t), V3(t)) and c(t) = (V1(t), V2(t)). �

Proof of Theorem 2.4 : Theorem 2.4 follows from Lemma 4.4 and Proposition 3.2. Here we give
concretely the Grassmannian lifting of Tan(γ) in term of Wronskian.

Lemma 4.5. Let γ : (R, 0)→ RPN+1 be a curve-germ of type (a1, a2, . . . , aN+1) and

γ(t) = (x1(t), x2(t), . . . , xN+1(t))

be a local affine representation of γ. Then the tangent variety to γ is parametrised by

f(s, t) = Tan(γ)(s, t) := γ(t) + s
1

α(t)
γ′(t) =

(
xi(t) + s

1

α(t)
x′i(t)

)
1≤i≤N+1

,

where α(t) = ta1−1. We set fi(s, t) = xi(t) +
s

α(t)
x′i(t). Then we have

Wi2

W12
df1 +

W1i

W12
df2.

Here

Wij(t) =

∣∣∣∣ x′i(t) x′j(t)
x′′i (t) x′′j (t)

∣∣∣∣ .
Proof : We have

dfi(s, t) =
x′i(t)

α(t)
ds+

(
x′i(t) + s

(
x′i(t)

α(t)

)′)
dt.

Then we have ∣∣∣∣∣ x′1 x′2

x′1 + s
(
x′
1

α

)′
x′2 + s

(
x′
2

α

)′ ∣∣∣∣∣ =
s

α
W12.
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Therefore we have, for 3 ≤ i ≤ n+ 1,

dfi =
α

sW12
(df1, df2)

 x′2 + s
(
x′
2

α

)′
−x′2

−x′1 − s
(
x′
1

α

)′
x′1

( x′i

x′i + s
(
x′
i

α

)′ )

=
Wi2

W12
df1 +

W1i

W12
df2.

�

Remark 4.6. Note that
Wi2

W12
and

W1i

W12
are C∞ functions on t of order ai−a1, ai−a2 respectively.

The above formula gives the Grassmannian lifting f̃ : (R2, 0)→ Gr(2, TRN+1) of f = Tan(γ).

Remark 4.7. If we set g : (R2, 0) → (R2, 0), g(s, t) = (f1(s, t), f2(s, t)). Then we have that
f3, . . . , fn+1 ∈ Rg and that f is an opening of g in the sense of §6.

5. Codimension formulae and the genericity.

We consider the jet space Jr(I,RPN+1). Let A = (a1, a2, . . . , aN , aN+1) be a strictly in-
creasing sequence of positive integers. For r > aN+1, we define

Σ(A) = {jrγ(t0) | t0 ∈ I, γ : (I, t0)→ RPN+1 is of type A at t0}.

Theorem 5.1. ([38]) Σ(A) is a semi-algebraic submanifold of codimension
∑N+1
i=1 (ai− i) in the

jet space Jr(I,RPN+1).

Proof : Let Jr(1, N + 1) be the fibre of the projection π : Jr(I,RPN+1) → I ×RPN+1. Then
Jr(1, N + 1) is identified with the space R(N+1)r of (N + 1) × r-matrices. Then there exists
an affine subspace Λ ⊂ R(N+1)r such that Σ(A) is an image of the polynomial embedding
GL(N + 1,R) × Λ → R(N+1)r defined by (A,W ) 7→ AW for A ∈ GL(N + 1,R),W ∈ Λ.
Therefore Σ(A) is a semi- algebraic manifold.

The codimension of the set consisting of jets with rank(Wa1−1) = 0 is equal to (N + 1)(a1 −
1). The codimension of the set consisting of jets with rank(Wa1−1) = 0, rank(Wa1) = 1 and
rank(Wa2−1) = 1 is equal to (N+1)(a1−1)+N(a2−a1−1). Thus we have that the codimension
of Σ(A) is calculated as

(N + 1)(a1 − 1) +N(a2 − a1 − 1) + (N − 1)(a3 − a2 − 1) + · · ·+ (aN+1 − aN − 1),

which is equal to
∑N+1
i=1 (ai − i). �

Corollary 5.2. For a generic curve γ : I → RPN+1, and for any t0 ∈ I, the type of γ at t0 is
equal to

(1, 2, 3, . . . , N,N + 1) or (1, 2, 3, . . . , N,N + 2).

Proof : By the transversality theorem, there exists an open dense subset O ⊂ C∞(I,RPN+1)
in C∞-topology such that for any γ ∈ O and for any t0 ∈ I, the type A of γ at t0 satisfies∑N+1
i=1 (ai − i) ≤ 1. Then we have ai = i, 1 ≤ i ≤ N and aN+1 = N + 1 or aN+1 = N + 2, and

thus we have the required result. �
To treat osculating-framed curves, we consider the jet space of C-integral curves, C = C1,2,...,N+1,

JrC(I,F) ⊂ Jr(I,F). Define

ΣC(A) := {jrΓ(t0) | Γ : (R, t0)→ F is C-integral, π1 ◦ Γ is of type A}
in JrC(I,F) for sufficiently large r.
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Theorem 5.3. ([20]) JrC(I,F) is a submanifold of Jr(I,F) and the codimension of ΣC(A) in
JrC(I,F) is equal to aN+1 − (N + 1).

Remark 5.4. Since any curve of finite type lifts to an C-integral curve, ΣC(A) is not empty for
any A.

By the transversality theorem for C-integral curves, we have the following result:

Theorem 5.5. For a generic C-integral curve Γ : I → F1,2,...,N+1(V N+2), the type A of π1 ◦ Γ
at any point of I is given by one of the following:

A = (1, 2, 3, . . . , N,N + 1), (1, 2, . . . , i, i+ 2, . . . , N + 1, N + 2), (i = 0, . . . , N).

Proof : By Theorem 5.3, for a genetic Γ, the type of π1 ◦ Γ at a point in I satisfies that aN+1 −
(N + 1) ≤ 1, namely that aN+1 ≤ N + 2. Then we have the list of types. �

In general, we consider the canonical system C = C1,2,...,k+1 on F = F1,2,...,k+1(V N+2), we
consider the jet space of C-integral curves, JrC(I,F) ⊂ Jr(I,F). Define

ΣC(A) := {jrc(t0) | c : (R, t0)→ F is C-integral, π1 ◦ c is of type A}
in JrC(I,F) for sufficiently large r.

Theorem 5.6. JrC(I,F) is a submanifold of Jr(I,F) and the codimension of ΣC(A) in JrC(I,F)
is equal to

N+1∑
i=k

(ai − i)− (N − k + 1)(ak − k).

Note that, if k = N , the formula is reduced to aN+1 − (N + 1) (Theorem 5.3).

Proof of Theorem 5.6: Recall that C = C1,2,...,k+1 is defined by

dx i−1
j − x i

j dx
i−1
i = 0, (1 ≤ i ≤ k, i+ 1 ≤ j ≤ N + 1)

for the system of local coordinates
(
x i
j

)
0≤i≤k,i+1≤j≤N+1

of F1,2,...,k+1(V N+2) (§3). Then a C-
integral curve Γ : I → F is obtained just form x i−1

i -components, 1 ≤ i ≤ k, and x k
j -components,

by integration. Then we see, at each point t0 ∈ I, ord(x 0
j =

∑j
`=1 ord(x j−1

j ). We have that the
type of Γ at t0 is equal to A = (a1, . . . , aN+1) if and only if

ord(x 0
1 ) = a1, ord(x 1

2 ) = a2 − a1, . . . , ord(x k−1
k ) = ak − ak−1,

and the type of the curve (x k
k+1, . . . , x

k
N+1) : (I, t0)→ RN−k is of type (ak+1−ak, . . . , aN+1−ak).

Thus the codimension of ΣC(A) is calculated as

(a1−1)+(a2−a1−1)+· · ·+(ak−ak−1−1)+

N+1∑
k+1

(aj − ak − (j − k)) =

N+1∑
i=k

(ai−i)−(N−k+1)(ak−k).

�

Remark 5.7. Let π : F1,2,...,k,k+1 → F1,2,...,k be the canonical projection defined by

π(V1, V2, . . . , Vk, Vk+1) = (V1, V2, . . . , Vk).

Then the π-fibres are projective subspaces of the flag manifold F1,2,...,k+1. In the above proof,
the functions x k

k+1, . . . , x
k
N+1 form a system of local projective coordinates of the π-fibre.
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By the transversality theorem for C-integral curves, we have the following results:

Theorem 5.8. For a generic C1,2-integral curve c, the type A of the tangent-framed curve π1 ◦ c
at any point of I is given by one of the following:

(1, 2, 3, . . . , N,N + 1), (1, 2, 3, . . . , N,N + 2), (2, 3, 4, . . . , N + 1, N + 2).

Proof : By Theorem 5.6, for a genetic c, the type of π1 ◦c at a point in I satisfies that
∑N+1
i=1 (ai−

i) − N(a1 − 1) ≤ 1, namely that
∑N+1
i=1 (ai − i) ≤ N(a1 − 1) + 1. Then (N + 1)(a1 − 1) ≤∑N+1

i=1 (ai−i) ≤ N(a1−1)+1. Therefore a1 ≤ 2 and, if a1 = 2, thenA = (2, 3, 4, . . . , N+1, N+2).
If a1 = 1, then

∑N+1
i=1 (ai − i) ≤ 1. Therefore we have the result. �

Theorem 5.9. For a generic C1,2,3-integral curve κ, the type A of the tangent-principal-normal-
framed curve π1 ◦ κ at any point of I is given by one of the following:

(1, 2, 3, . . . , N,N + 1), (1, 2, 3, . . . , N,N + 2), (1, 3, 4, . . . , N + 1, N + 2), (2, 3, 4, . . . , N + 1, N + 2).

Proof : By Theorem 5.6, for a genetic c, the type of π1 ◦c at a point in I satisfies that
∑N+1
i=2 (ai−

i) − (N − 1)(a2 − 2) ≤ 1, namely that
∑N+1
i=2 (ai − i) ≤ (N − 1)(a2 − 2) + 1. Then N(a2 −

2) ≤
∑N+1
i=2 (ai − i) ≤ (N − 1)(a2 − 2) + 1, and we have a2 ≤ 3. If a2 = 3, then A =

(1, 3, 4, . . . , N + 1, N + 2) or (2, 3, 4, . . . , N + 1, N + 2). If a2 = 2, then A = (1, 2, 3, . . . , N,N + 1)
or (1, 2, 3, . . . , N,N + 2). �

Remark 5.10. We observe that, in all lists of the generic classifications of types, there are just
three possibilities of the leading two digits: (1, 2), (1, 3) and (2, 3). These cases correspond to
the cases where the projection of the tangent variety to the osculating plane is diffeomorphic to
the map-germ (R2, 0)→ (R2, 0), the fold singularities (x, u) 7→ (x2, u), ‘beak to beak’ (x, u) 7→
(x3 + ux2, u) and Whitney’s cusp map (x, u) 7→ (x3 + ux, u) respectively.

6. Opening procedure of differentiable map-germs.

To describe singularities of frontal mappings, we introduce the notion of “openings" of map-
pings.

The tangent variety to a curve in RPN+1 projects locally to the tangent variety to a space
curve in the osculating 3-space, and to a plane curve in the osculating 2- plane. Then the tangent
variety in RPN+1 can be regarded as an “opening" of a tangent variety to a space curve and
to a plane curve. For example, the open swallowtail, which is an opening of the swallowtail,
appears in many context. It appears as a singular Lagrangian variety [2], and as a singular
solution to certain partial differential equation [13]. The open folded umbrella appears as a
‘frontal-symplectic singularity’ ([21]).

Figure 4. Opening of swallowtail.
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We denote by Ea the R-algebra of C∞ function-germs on (Rn, a) with the maximal ideal ma.
If a is the origin, then we use En,mn instead of Ea,ma respectively.

Definition 6.1. ([15][19]) Let f : (Rn, a)→ (Rm, b) be a C∞ map-germ with n ≤ m. We define
the Jacobi module of f :

Jf = {
m∑
j=1

pj dfj | aj ∈ Ea, (1 ≤ j ≤ m) } ⊂ Ω1
a,

in the space Ω1
a of 1-form germs on (Rn, a). Further we define the ramification module Rf by

Rf := {h ∈ Ea | dh ∈ Jf}.

Note that Jf is just the first order component of the graded differential ideal J •f in Ω•a
generated by df1, . . . , dfm. Then the singular locus is given by Σf = {x ∈ (Rn, a) | rankJf (x) <
n}. Also we consider the Kernel field Ker(f∗ : TRn → TRm), of f near a. Then we see that,
for another map-germ f ′ : (Rn, a) → (Rm′

, b′) with Jf ′ = Jf , n ≤ m′, we have Σf ′ = Σf and
Ker(f ′∗) = Ker(f∗).

Related notion was introduced in [34].

Lemma 6.2. Let f : (Rn, a)→ (Rm, b) be a C∞ map-germ.
(1) f∗Eb ⊂ Rf ⊂ Ea and Rf is an Eb-module via f∗.
(2) For another map-germ f ′ : (Rn, a)→ (Rm′

, b′), Jf ′ = Jf if and only if Rf ′ = Rf .
(3) If τ : (Rm, b) → (Rm, b′) is a diffeomorphism-germ, then Rτ◦f = Rf . If σ : (Rn, a′) →

(Rn, a) is a diffeomorphism-germ, then Rf◦σ = σ∗(Rf ).

Proof : (1) follows from that, if h ∈ Rf and dh =
∑m
j=1 pjdfj , then we have

d{(k ◦ f)h} =

m∑
j=1

{(k ◦ f)pj + h (∂k/∂yj)} dfj .

(2) It is clear that Jf ′ = Jf implies Rf ′ = Rf . Conversely suppose Rf ′ = Rf . Then any
component f ′j of f ′ belongs to Rf ′ = Rf , hence dfj ∈ Jf . Therefore Jf ′ ⊂ Jf . By the symmetry
we have Jf ′ = Jf .

(3) follows from that Jτ◦f = Jf and Jf◦σ = σ∗(Jf ). �

Definition 6.3. Let f : (Rn, a)→ (Rm, b), n ≤ m be a C∞ map-germ. Given h1, . . . , hr ∈ Rf ,
the map-germ F : (Rn, a)→ Rm ×Rr = Rm+r defined by

f = (f1, . . . , fm, h1, . . . , hr)

is called an opening of f , while f is called a closing of F .
An opening F = (f, h1, . . . , hr) of f is called a versal opening (resp. mini-versal opening) of

f , if 1, h1, . . . , hr form a (minimal) system of generators of Rf as an Eb-module via f∗.

Note that an opening of an opening of f is an opening of f .

Here we summarise known results on the ramification module. A map-germ f : (Rn, a) →
(Rm, b) is called finite if dimR Ea/(f∗mb)Ea <∞.

Proposition 6.4. (Theorem 1.3 of [17], Corollary 2.4 of [19]) If f : (Rn, a)→ (Rm, b) is finite
and of corank at most one. Then we have

(1) Rf is a finite Eb-module. Therefore there exists a versal opening of f .
(2) 1, h1, . . . , hr ∈ Rf generate Rf as Eb-module if and only if they generate the vector space

Rf/f∗(mb)Rf over R.
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Remark 6.5. By Proposition 6.4, we see that 1, h1, . . . , hr ∈ Rf form a minimal system of
generators of Rf as Eb-module if and only if they form a basis of R-vector space Rf/f∗(mb)Rf .

Let k ≥ 0,m ≥ 0. To present the normal forms of Morin map, consider variables t, λ =
(λ1, . . . , λk−1), µ = (µij)1≤i≤m,1≤j≤k and polynomials

F (t, λ) = tk+1 +

k−1∑
i=1

λjt
j , Gi(t, µ) =

k∑
j=1

µijt
j , (1 ≤ i ≤ m).

Let f : (Rk+km, 0)→ (Rm+k+km, 0) be a Morin map defined by

f(t, λ, µ) := (F (t, λ), G(t, µ), λ, µ),

for the above polynomials F and G.
For ` ≥ 0, we denote by F(`), Gi(`) the polynomials

F(`)(t, λ) =

∫ t

0

s`F (s, λ)ds, Gi (`)(t, µ) =

∫ t

0

s`Gi(s, µ)ds.

Then we have:

Proposition 6.6. (Theorem 3 of [15]) The ramification module Rf of the Morin map f is
minimally generated over f∗Em+k+km by the 1 + k + (k − 1)m elements

1, F(1), . . . , F(k), G1 (1), . . . , G1 (k−1), . . . , Gm (1), . . . , Gm (k−1).

The map-germ F : (Rk+mk, 0)→ (Rm+k+km ×Rk+(k−1)m, 0) = (R2(k+km), 0) defined by

F =
(
f, F(1), . . . , F(k), G1 (1), . . . , G1 (k−1), . . . , Gm (1), . . . , Gm (k−1)

)
is a versal opening of f .

Remark 6.7. It is shown in [15] moreover that F is an isotropic map for a symplectic structure
on R2(k+km).

Proposition 6.8. (cf. Proposition 1.6 of [17], Lemma 2.4 of [18]) Let f : (Rn, a) → (Rm, b)
be a C∞ map-germ and F : (Rn+`, (a, 0)) → (Rm+`, (b, 0)) be an unfolding of f : F (x, u) =
(F1(x, u), u) and F1(x, 0) = f(x). Let i : (Rn, a)→ (Rn+`, (a, 0)) be the inclusion, i(x) = (x, 0).
Then we have:

(1) i∗RF ⊂ Rf .
(2) If f is of corank ≤ 1 with n ≤ m, then i∗RF = Rf . If 1, H1, . . . ,Hr generate RF via F ∗,

then 1, i∗H1, . . . , i
∗Hr generate Rf via f∗.

(3) Let ` be a positive integer and F = (F1(t, u), u) : (Rn, 0) → (Rn, 0) an unfolding of f :
(R, 0) → (R, 0), f(t) = F1(t, 0) = t`. Suppose H1, . . . ,Hr ∈ RF ∩ mn. Then 1, H1, . . . ,Hr gen-
erate RF via F ∗ if and only i∗H1, . . . , i

∗Hr generate m`+1
1 /m2`

1 . In particular F1(1), . . . , F1(`−1)

form a system of generators of RF via F ∗ over En.

Proof : (1) is clear. (2) Let H ∈ RF . Then dH ∈ JF . Hence d(i∗H) = i∗(dH) ∈ i∗JF ⊂
Jf . Therefore i∗H ∈ Rf . Let f be of corank at most one. Suppose h ∈ Rf . Then dh =∑m
j=1 ajdfj for some aj ∈ Ea. There exist Aj , Bk ∈ E(a,0) such that i∗Aj = aj and the 1-

form
∑m
j=1Ajd(F1)j +

∑`
k=1Bkdλk is closed (cf. Lemma 2.5 of [19]). Then there exists an

H ∈ E(a,0) such that dH =
∑m
j=1Ajd(F1)j +

∑`
k=1Bkdλk ∈ JF and d(i∗H) = i∗(dH) = dh.

Then there exists c ∈ R such that h = i∗H + c = i∗(H + c), and H + c ∈ RF . Therefore
h ∈ i∗RF . Since i∗ is a homomorphism over j∗ : E(b,0) → Eb, where j : (Rm, 0) → (Rm+`, 0) is
the inclusion j(y) = (y, 0), we have the consequence. (3) It is easy to show thatRf = R+m`1. By
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Proposition 6.4 (2), 1, H1, . . . ,Hr generate RF as En-module via F ∗ if and only if they generate
RF /F ∗(mn)RF over R. Since

RF /F ∗(mn)RF ∼= (R + m`1)/(f∗m1)(R + m`1) ∼= m`+1
1 /m2`

1

we have the consequence. �

Proposition 6.9. Let f : (Rn, a)→ (Rm, b), n ≤ m be a C∞ map-germ.
(1) For any versal opening F : (Rn, a)→ (Rm+r, F (a)) of f and for any opening G : (Rn, a)→
(Rm+s, G(a)), there exists an affine bundle map Ψ : (Rm+r, F (a))→ (Rm+s, G(a)) over (Rm, f(a))
such that G = Ψ ◦ F .
(2) For any mini-versal openings F : (Rn, a)→ (Rm+r, F (a)) and F ′ : (Rn, a)→ (Rm+r, F ′(a))
of f , there exists an affine bundle isomorphism Φ : (Rm+r, F (a))→ (Rm+r, F ′(a)) over (Rm, f(a))
such that F ′ = Ψ ◦ F . In particular, the diffeomorphism class of mini-versal opening of f is
unique.
(3) Any versal openings F ′′ : (Rn, a) → (Rm+s, F ′′(a)) of f is diffeomorphic to (F, 0) for a
mini-versal opening of f .

Proof : (1) Let F = (f, h1, . . . , hr) and G = (f, k1, . . . , ks). Since kj ∈ Rf , there exist

c 0
j , c

1
j , . . . , c

r
j ∈ Eb

such that kj = c 0
j ◦ f + (c 1

j ◦ f)h1 + · · ·+ (c rj ◦ f)hr. Then it suffices to set

Ψ(y, z) = (y, (c 0
j (y) + c 1

j (y)z1 + · · ·+ c rj (y)zr)1≤j≤s).

(2) By (1) there exists an affine bundle map Ψ with F ′ = Ψ ◦ F . From the minimality, we have
that the matrix (c ij (b)) is regular. (See Remark 6.5). Therefore Ψ is a diffeomorphism-germ.
(3) Let F = Ψ ◦ F ′′ for some affine bundle map Ψ. Then the matrix (c ij (b)) is of rank r.
Therefore F ′′ is diffeomorphic to (F, k1, . . . , ks−r) for some kj ∈ Rf . Write each kj = Kj ◦F for
some Kj ∈ EF (a). Then we set Ξ(y, z, w) = (y, z, w −K ◦ F ). Then Ξ is a local diffeomorphism
on Rm+r+(s−r) and Ξ ◦ (F, k1, . . . , ks−r) = (F, 0). �

7. Normal forms of tangent surfaces.

According to a geometric restriction expressed in differential system, we have imposed on
curves in projective spaces a system of differential equations (§3). The genericity, in such a
restricted class of curves, naturally implies a restriction on types of curves (§5). Then we use
the following results to solve the classification problem. For the concrete expression of normal
forms, see §3.

Theorem 7.1. (1) In RP 3, the tangent variety of a curve of type (1, 2, 3) (resp. (1, 2, 4), (2, 3, 4),
(1, 3, 4)) is locally diffeomorphic to the cuspidal edge (the folded umbrella, the swallowtail, the
Mond surface) in R3.

(2) (Higher codimensional case.) In RPN+1, N + 1 ≥ 4,
(i) the tangent variety of a curve of type (1, 2, 3, a4, . . . , aN+1) is locally diffeomorphic to the

cuspidal edge (R2, 0)→ (R3, 0) composed with the inclusion to (RN+1, 0).
(ii) the tangent variety of a curve of type (1, 3, 4, 5, a5, . . . , aN+1) is locally diffeomorphic to

the open Mond surface (R2, 0)→ (R4, 0) composed with the inclusion to (RN+1, 0).
(iii) the tangent variety of a curve of type (2, 3, 4, 5, a5, . . . , aN+1) is locally diffeomorphic to

the open swallowtail (R2, 0)→ (R4, 0) composed with the inclusion to (RN+1, 0).

Proof : (1) is proved in Theorem 1 (n = 2) in [18]. (2) In each case, the idea is to show that the
tangent map-germ Tan(γ) is diffeomorphic to a mini-versal opening of an appropriate map-germ:

(i) the fold map-germ (R2, 0)→ (R2, 0).
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(ii) the Mond surface (R2, 0)→ (R3, 0).
(iii) the swallowtail (R2, 0)→ (R3, 0).
Then, by Proposition 6.9, the diffeomorphism class of the tangent map-germ is unique and

we get the required results.
Let γ : (R, 0)→ RPN+1 be a curve-germ of type (a1, a2, . . . , aN+1),

γ(t) = (x1(t), x2(t), . . . , xN+1(t))

a local affine representation of γ as in Lemma 4.2, and

f(s, t) = (f1(s, t), f2(s, t), . . . , fN+1(s, t)) =

(
xi(t) + s

1

α(t)
x′i(t)

)
1≤i≤N+1

,

the parametrisation of the tangent variety to γ, where α(t) = ta1−1. We may suppose x1(t) = ta1 .
We define g′ : (R2, 0)→ (R2, 0) by g′ = (f1, f2). Then, by Lemma 4.5 and Remark 4.7, we see

that f3, . . . , fN+1 ∈ Rg′ . Note that f1(s, t) = x1(t)+a1s is a regular function. We regard f1(s, t)
as an unfolding parameter u. Then there exist diffeomorphism-germ σ : (R2, 0) → (R2, 0) and
τ : (R2, 0) → (R2, 0) such that σ is of form σ(u, t) = (σ1(u), tσ2(u, t)) and g = τ ◦ g′ ◦ σ is
equal to (i) (u, t) 7→ (u, t2 + ut), (ii) (u, t) 7→ (u, t3 + ut2), (iii) (u, t) 7→ (u, t3 + ut). Then
f3 ◦ σ, . . . , fN+1 ◦ σ belongs Rg = Rg′◦σ. Then, by Lemma 6.8, (i) F = (f1 ◦ σ, f2 ◦ σ, f3 ◦ σ),
(ii)(iii) F = (f1 ◦ σ, f2 ◦ σ, f3 ◦ σ, f4 ◦ σ), are versal opening of g respectively. Note that in cases
(ii) and (iii), F is a versal opening of also Mond surface and swallowtail respectively. Then, by
Proposition 6.8 (3), we have that f ◦σ is diffeomorphic to (i) (u, t2 +ut, 2

3 t
3 + 1

2ut
2, 0, . . . , 0), (ii)

(u, t3 + ut2, 3
4 t

4 + 2
3ut

3, 3
5 t

5 + 1
2ut

4, 0, . . . , 0), (iii) (u, t3 + ut2, 3
4 t

4 + 1
2ut

2, 3
5 t

5 + 1
3ut

3, 0, . . . , 0), as
required. �

Theorem 7.2. The tangent variety of a curve of type (1, 2, 4, 5, a5, . . . , aN+1) is locally diffeo-
morphic to the open folded umbrella (R2, 0)→ (R4, 0) composed with the inclusion to (RN+1, 0).

Proof : We argue as in Theorem 7.1. However in this case (f1 ◦ σ, f2 ◦ σ, f3 ◦ σ, f4 ◦ σ) is not a
versal opening of g = (u, t2 + ut). (In fact the open folded umbrella is not a versal opening of
the folded umbrella (R2, 0)→ (R3, 0). )

To show Theorem 7.2, we define

R(2)
g :=

{
h ∈ t2E2 | dh ∈ t2Jg

}
.

Then fi ◦ σ ∈ R(2)
g , (i ≥ 3). We see that f3 ◦ σ, f4 ◦ σ generate R(2)

g over g∗E2. In fact
h1, . . . , hr generate R(2)

g as E2-module if and only if i∗h1, . . . , i
∗hr generate m4

1/m
6
1 over R.

(See Lemma 2.4 of [18]). Also h1 = 1
2 t

4 + 1
3ut

3, h2 = 2
5 t

5 + 1
4ut

4 generate R(2)
g . We write

fi ◦σ = (ai ◦g)h1 +(bi ◦g)h2, (i ≥ 3), for some ai, bi ∈ E2. We define Ψ : (RN+1, 0)→ (RN+1, 0)
by

Ψ(x) = (x1, x2, a3(x1, x2)x3 + b3(x1, x2)x4, a4(x1, x2)x3 + b4(x1, x2)x4,
xi − ai(x1, x2)x3 + bi(x1, x2)x4(5 ≥ i)).

Then Ψ is a diffeomorphism-germ and Ψ ◦ f ◦ σ = (g, h1, h2, 0). Thus we have that f ◦ σ is
diffeomorphic to (g, h1, h2, 0) = (u, t2 + ut, 1

2 t
4 + 1

3ut
3, 2

5 t
5 + 1

4ut
4, 0, . . . , 0) as required. �

Proofs of the classification theorems. Theorems 2.6, 3.3, 3.4, 3.6 follow from Theorems 5.8, 5.9,
5.5 and Theorems 7.1, 7.2.

We are led, in our generic classifications in a geometric setting, to find the following result,
which we use in §8.
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Theorem 7.3. The tangent variety of a curve of type (1, 3, 4, 6, a5, . . . , aN+1) in RPN+1, N+1 ≥
4, has unique diffeomorphism class.

We may call it the ‘unfurled Mond surface’, distinguished with the open Mond surface. The
normal form (R2, 0)→ (RN+1, 0) of the unfurled Mond surface is given by

(s, t) 7→
(
t+ s, t3 + 3st2, t4 + 4st3, t6 + 6st5, 0, . . . , 0

)
,

which is diffeomorphic to

(x, u) 7→
(
u, t3 + ut2,

3

4
t4 +

2

3
ut3,

1

2
t6 +

2

5
ut5, 0, . . . , 0

)
.

To show Theorem 7.3, we prepare the following:

Lemma 7.4. (cf. Lemma 2.4 of [18]) Let g : (R2, 0) → (R2, 0) be the map-germ defined by
g(t, u) = (u, t3 + ut2). We set

R(3)
g :=

{
h ∈ t3E2 | dh ∈ t3Jg

}
.

and set T = t3 + ut2, Ti = 3
i+3 t

i+3 + 2
i+2ut

i+2, (i = 1, 2, 3, . . . ). Then we have (1) R(3)
g =

Rg ∩ t5E2. (2) R(3)
g is a finite E2-module via g∗ : E2 → E2 generated by T3, TT1, T

2
1 . (3) Let

ι : (R, 0) → (R2, 0), ι(t) = (t, 0). Then h1, . . . , h` ∈ R(3)
g generate R(3)

g as E2-module via g∗ if
and only if ι∗h1, . . . , ι

∗h` generate t6E1/t9E1 over R. (Note that T1 6∈ R(3)
g .)

Proof : (1) First note that R(3)
g =

{
h ∈ t3E2

∣∣∣∣ ∂h∂t ∈ t3 ∂T∂t E2
}
. Let h ∈ R(3)

g . Then
∂h

∂t
∈ t4E2

and h ∈ t3E2. Therefore h ∈ Rg ∩ t5E2. Conversely let h ∈ Rg ∩ t5E2. Then
∂h

∂t
= t3

∂T

∂t
K for

some K ∈ E2. Since h(0, 0) = 0, we have
∂h

∂u
∈ t5E2. Therefore dh ∈ t3Jg and h ∈ R(3)

g . Thus
we have the equality.

(2) Let h ∈ R(3)
g . Then h = a ◦ g + b ◦ gT1 + c ◦ gT2, for some a, b, c ∈ E2. Since h ∈ t5E2,

h = ã◦gT 3 + b̃◦gTT1 + c̃◦gTT2, for some ã, b̃, c̃ ∈ E2. Note that T 3, TT1, TT2 ∈ R(3)
g . Moreover

we have directly

T 3 =
32

15
uT 2

1 + 2TT3 +
14

3
T4, TT2 =

16

15
T 2

1 +
7

3
uT4, T4 =

4

7
TT1 −

20

21
uT3.

Therefore we have

TT2 = −20

9
u2T3 +

4

3
uTT1 +

16

15
T 2

1 , T
3 =

(
2T − 40

9
u3

)
T3 +

8

3
u2TT1 +

32

15
uT 2

1 .

(3) ι∗ : E2 → E1 induces ι∗ : R(3)
g → t6E1, which is clearly surjective. Moreover we have

(ι∗)−1(t9E1) = g∗m2R(3)
g . Therefore ι∗ induces an isomorphism R(3)

g /g∗m2R(3)
g
∼= t6E1/t9E1

as R-vector spaces. By (2) and by Malgrange-Mather’s preparation theorem [5], we have the
required result. �

Proof of Theorem 7.3: We give the proof for the case N + 1 = 4. In general case we can argue
similarly.

Let γ : (R, 0) → RP 4 be a curve of type (1, 3, 4, 6). The tangent map-germ Tan(γ) is an
opening of a Mond surface. However it is not versal. So we need a specialised idea to show the
determinacy result in this situation. Let

γ(t) = (t, t3 + ϕ(t), t4 + ψ(t), t6 + ρ(t)),
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with ϕ ∈ m4
1, ψ ∈ m5

1, ρ ∈ m7
1. Then f = Tan(γ) is given by

f(s, t) =
(
t+ s, t3 + 3st2 + Φ(t), t4 + 4st3 + Ψ(t), t6 + 6st5 +R(t)

)
,

where Φ(s, t) = ϕ(t) + sϕ′(t),Ψ(s, t) = ψ(t) + sψ′(t), R(s, t) = ρ(t) + sρ′(t). We set u = t + s.
Then

f(u, t) =
(
u, −2t3 + 3ut2 + Φ̃(t), −3t4 + 4ut3 + Ψ̃(t), −5t6 + 6ut5 + R̃(t)

)
,

where Φ(s, t) = ϕ(t) + (u − t)ϕ′(t),Ψ(s, t) = ψ(t) + (u − t)ψ′(t), R(s, t) = ρ(t) + (u − t)ρ′(t).
From the determinacy of tangent varieties to curves of type (1, 3, 4) in R3 ([33], [16]), we have
that there exist diffeomorphism-germ σ : (R2, 0) → (R2, 0) of form σ(u, t) = (σ1(u), tσ2(u, t))
and a diffeomorphism-germ τ : (R4, 0)→ (R4, 0) such that

f ◦ σ(u, t) = (u, T (u, t), T1(u, t), T3(u, t) + S3(u, t)) ,

with
T = t3 + ut2, T1 =

3

4
t4 +

2

3
ut3, T3 =

1

2
t6 +

2

5
ut5,

S3 ∈ R(3)
g , g = (u, t3 + ut2), ι∗S3 ∈ m7

1. Then we have, by Lemma 7.4,

S3 = A3 ◦ g T3 +B3 ◦ g TT1 + C3 ◦ g T 2
1 ,

for some A3, B3, C3 ∈ E2 with A3(0, 0) = 0. Define Ξ : (R4, 0)→ (R4, 0) by

Ξ(x1, x2, x3, x4) =
(
x1, x2, x3 +A1(x1, x2)x4 +B1(x1, x2)x2x3 + C1(x1, x2)x2

3,

x4 +A3(x1, x2)x4 +B3(x1, x2)x2x3 + C3(x1, x2)x2
3

)
.

Then the Jacobi matrix of Ξ is the unit matrix, so Ξ is a diffeomorphism-germ and

Ξ−1 ◦ f ◦ σ =

(
u, t3 + ut2,

3

4
t4 +

2

3
ut3,

1

2
t6 +

2

5
ut5
)
.

�

8. Singularities on tangent varieties to osculating framed contact- integral
curves.

We give results on the classification of singularities of tangent varieties to contact-integral
curves (resp. osculating framed contact-integral curves) in a contact projective space.

Let V be a symplectic vector space of dimension 2n+ 2. Consider the isotropic flag manifold:

FLag = FLag(V ) := {V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ Vn+1 ⊂ V | Vn+1 is Lagrangian}.
Note that FLag is a finite quotient of U(n + 1),dim(FLag) = (n + 1)2 and that FLag(V ) is
embedded into F(V ) = F1,2,...,n+1,...,2n+1(V ) by taking symplectic orthogonals:

(V1, V2, . . . , Vn, Vn+1) 7→ (V1, V2, . . . , Vn, Vn+1, V
s
n , . . . , V

s
2 , V

s
1 ),

Define a differential system E ⊂ TFLag by

v ∈ E(V1,...,Vn+1) ⇐⇒ πi∗(v) ∈ T Gr(i, Vi+1)(⊂ T IGr(i, V )), (1 ≤ i ≤ n).

where IGr means the isotropic Grassmannian, πi : FLag → IGr(i, V ) is the canonical projection.
Then rank(E) = n+ 1 and E is bracket generating.

If n = 1, then we have dimFLag = 4 and E is an Engel structure on FLag ([22]).
An E-integral curve c : I → FLag is a C∞ family

(V1(t), V2(t), . . . , Vn(t), Vn+1(t))

of isotropic flags in the symplectic vector space V such that Vi(t) moves momentarily in Vi+1(t).
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Remark 8.1. The projective space P (V 2n+2) ∼= RP 2n+1 has the canonical contact structure
D ⊂ T (P (V )) : For V1 ∈ P (V ) and for v ∈ TV1P (V ), we define

v ∈ DV1 ⇐⇒ π1∗(v) ∈ T (P (V s1 ))(⊂ T (P (V ))).

If c : I → FLag(V ) is an E-integral curve, then γ = π1 ◦ c : I → P (V ) is a D-integral curve.

We consider the space JrE(I,FLag(R2n+2) of E-integral jets in
Jr(I,FLag(R2n+2)) and set

ΣE(A) := {jrΓ(t0) | t0 ∈ I,Γ : (R, t0)→ FLag(R2n+2) is E-integral, π1 ◦ Γ is of type A}.
Then we have the codimension formula for osculating framed contact-integral curves.

Theorem 8.2. The set of E-integral curves c : I → FLag(R2n+2) such that the osculating-framed
contact-integral curve π1 ◦ c : I → P (V 2n+2) is of type A = (a1, a2, . . . , a2n+1) is not empty if
and only if

an+j = an+1 + an − an+1−j , (2 ≤ j ≤ n+ 1),

and then its codimension in the jet space of E-integral curves is given by an+1 − (n+ 1).

Proof : To show Theorem 8.2, first we give systems of projective coordinates on FLag(V ). For
the case n = 1, refer the paper [22].

We fix a flag V0 = (V10, V20, . . . , Vn+1 0) ∈ FLag(V ). Then we take the open set U ⊂ FLag(V )
defined by

U := {(V1, V2, . . . , Vn+1) ∈ FLag(V ) | V1 ∩ V s10 = {0}, V2 ∩ V s20 = {0}, . . . , Vn+1 ∩ V sn+1 0 = {0}
}
.

Take V1 = (V11, V21, . . . , Vn+1 1) ∈ U . Then we have the decomposition V = Vn+1 1⊕Vn+1 0 into
Lagrangian subspaces, and the decomposition

Vn+1 1 = V11 ⊕ (V21 ∩ V s10)⊕ (V31 ∩ V s20)⊕ · · · ⊕ (Vn+1 1 ∩ V sn 0),

Vn+1 0 = V10 ⊕ (V20 ∩ V s11)⊕ (V30 ∩ V s21)⊕ · · · ⊕ (Vn+1 0 ∩ V sn 1),

of each Lagrangian subspace into one-dimensional subspaces. Take non-zero vectors e0 ∈ V11,
ei ∈ Vi+1 1 ∩ V si 0, (1 ≤ i ≤ n), f0 ∈ V10 and fi ∈ Vi+1 0 ∩ V si 1, (1 ≤ i ≤ n), to get a symplectic
basis (e0, e1, . . . , en; f0, f1, . . . , fn) of V .

Then, for each V = (V1, V2, . . . , Vn+1) ∈ UV0 , Vn+1 has a basis (v0, v1, . . . , vn) uniquely
expressed as

vi = ei +

n∑
j=0

x i
j fj , (0 ≤ i ≤ n),

for some (x i
j )0≤i,j≤n. Since Vn+1 is a Lagrangian subspace of V , we have that x i

j = x j
i , 0 ≤

i, j ≤ n. Then there exist uniquely λ k
i , (1 ≤ k ≤ i ≤ n), such that

wk = vk−1 +

n∑
i=k

λ k
i vi, (1 ≤ k ≤ n+ 1),

form a basis of Vn+1 such that Vk = 〈w1, . . . , wk〉R , (1 ≤ k ≤ n+ 1). Then actually we have

wk = ek−1 +

n∑
i=k

λ k
i ei +

n∑
j=0

(
x k−1
j +

n∑
i=k

λ k
i x

i
j

)
fj , (1 ≤ k ≤ n+ 1).

Thus, givenV0,V1 ∈ FLag(V ), we have a chart U → R(n+1)2 of FLag(V ), given by the symmetric
matrix (x i

j )0≤i,j≤n and λ k
i , (1 ≤ k ≤ i ≤ n). From another choice of V0,V1 ∈ FLag(V ), we

have another chart with fractional linear transition functions.
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The projection π1 : FLag(V )→ P (V ) is expressed by

(
x i
j , λ

k
i

)
7→

[
1 : λ 1

1 : · · · : λ n
1 : x 0

0 +

n∑
i=1

λ 1
i x

i
0 : · · · : x 0

n +

n∑
i=1

λ 1
i x

i
n

]
.

We set X k
j := x k

j +

n∑
i=k+1

λ k+1
i x i

j , (0 ≤ j ≤ n, 0 ≤ k ≤ n). Then the differential system E is

locally given by {
dλ k

i − λ
k+1
i dλ k

k = 0, 1 ≤ k ≤ n, k + 1 ≤ i ≤ n,

dX k−1
j −X k

j dλ
k
k = 0, 1 ≤ k ≤ n, 0 ≤ j ≤ n.

We see that each E-integral curve Γ is obtained from the components λ k
k , 1 ≤ k ≤ n, and the

x n
n -component, by iterative integrations.
The type (a1, a2, . . . , an, an+1, an+2, . . . , a2n+1) of γ = π1 ◦ Γ is expressed in terms of

uk := ord(λ k
k ), 1 ≤ k ≤ n, v := ord(x n

n )

by
ai = u1 + u2 + · · ·+ ui, (1 ≤ i ≤ n)

an+1 = u1 + u2 + · · ·+ un + v,
an+1+j = u1 + u2 + · · ·+ 2un−j+1 + · · ·+ 2un + v, (1 ≤ j ≤ n),

Let A = (a1, . . . , an, an+1, an+2, . . . , a2n, a2n+1) be a strictly increasing sequence of positive
integers. Then The above system of equations has an integer solution (u1, . . . , un, v) if and only
if an+1+i − an+i = an − an−i. If the non-empty condition is fulfilled, then the codimension of
the set

Σ(A) = {jrΓ(t0) | Γ : (I, t0)→ FLag(V ) is E-integral, type(π1 ◦ Γ) = A}
in JrE(I,FLag(V )) is calculated by

a1 − 1 + (a2 − a1 − 1) + · · ·+ (an+1 − an − 1) = an+1 − (n+ 1).

�

By Theorem 8.2 and by the transversality theorem for E-integral curves, we have the following
result: We separate cases into three groups from the classification viewpoint of singularities.

Theorem 8.3. ([22]) Let 2n + 1 = 3. For a generic E-integral curve c : I → FLag(R4) in
C∞-topology, the type A of π1 ◦ c at any point t ∈ I is given by

A = (1, 2, 3), (1, 3, 4), (2, 3, 5).

The tangent varieties to the osculating-framed Legendre curve γ = π1 ◦ c : I → P (V ) ∼= RP 3

is locally diffeomorphic to the cuspidal edge, to the Mond surface or to the generic folded pleat
(Figure 5).

Remark 8.4. In the above Theorem 8.3, the type of the curve γ is restricted to (1, 2, 3), (1, 3, 4)
or (2, 3, 5). The local diffeomorphism class of the tangent variety Tan(γ) is determined if
type(γ) = (1, 2, 3) or (1, 3, 4), but it is not determined if type(γ) = (2, 3, 5) and there are
exactly two diffeomorphism classes, generic one and non-generic one.

Note that we have obtained in [22] also the generic classification of singularities of tangent
varieties to π2 ◦ c : I → LG(V ) in Lagrangian Grassmannian.

In the higher codimensional case, we have:
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Figure 5. cuspidal edge, Mond surface and generic folded pleat in R3.

Theorem 8.5. Let 2n + 1 ≥ 7. For a generic E-integral curve c : I → FLag(R2n+2) in C∞-
topology, the type of osculating-framed contact-integral curve γ = π1 ◦ c : I → P (V ) ∼= RP 2n+1

at each point of I is given by one of
A = (1, 2, 3, 4, . . . , n, n+ 1, n+ 2, . . . , 2n+ 1),

(1, 2, 3, 4, . . . , n, n+ 2, n+ 3, . . . , 2n+ 2),
· · · · · · · · ·

(1, 2, 4, 5, . . . , n+ 1, n+ 2, n+ 3, . . . , 2n+ 2),
(1, 3, 4, 5, . . . , n+ 1, n+ 2, n+ 3, . . . , 2n+ 2),
(2, 3, 4, 5, . . . , n+ 1, n+ 2, n+ 3, . . . , 2n+ 2).

Moreover the tangent variety Tan(γ) to the osculating-framed contact- integral curve γ is locally
diffeomorphic to the cuspidal edge, the open folded umbrella, the open Mond surface, or to the
open swallowtail.

We should be careful in the low codimensional case:

Theorem 8.6. Let 2n+1 = 5. For a generic E-integral curve c : I → FLag(R6) in C∞-topology,
the type of osculating-framed contact-integral curve γ = π1 ◦ c : I → P (V ) ∼= RP 5 at each point
of I is given by one of

(1, 2, 3, 4, 5), (1, 2, 4, 5, 6), (1, 3, 4, 6, 7), (2, 3, 4, 5, 7).

Moreover the tangent variety Tan(γ) to the osculating-framed contact- integral curve γ is locally
diffeomorphic to the cuspidal edge, the open folded umbrella, the unfurled Mond surface, or to
the open swallowtail.

Proofs of Theorems 8.5, 8.6: By the transversality theorem, we reduce the list in each case
from Theorem 8.2. In each case, we have the uniqueness of the diffeomorphism class of tangent
varieties by Theorem 7.1, except for the case A = (1, 3, 4, 6, 7). For the case A = (1, 3, 4, 6, 7),
we use Theorem 7.3. �

It is natural to consider the generic classification of tangent varieties to contact-integral curves
I → P (V ) = RP 2n+1. Here, we give just the result on non-framed three dimensional case
(n = 1):

Proposition 8.7. For a generic contact-integral curve γ : I → P (V 4) ∼= RP 3, and for any
t0 ∈ I, the type of γ at t0 is equal to (1, 2, 3) or to (1, 3, 4) and the tangent variety Tan(γ) of γ
is locally diffeomorphic to the cuspidal edge or to the Mond surface.

Proof : Take the local coordinates λ, µ, ν of P (V ) such that the contact structure is given by
dµ = νdλ − λdν. We express γ(t) = (λ(t), µ(t), ν(t)). Since γ is contact-integral, we have that
µ′(t) = ν(t)λ′(t)− λ(t)ν′(t). Therefore µ′′(t) = ν(t)λ′′(t)− λ(t)ν′′(t) and

µ′′′(t) = ν′(t)λ′′(t) + ν(t)λ′′′(t)− λ′(t)ν′′(t)− λ(t)ν′′′(t).
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Tan(S) 2X R

Figure 6. Tangent variety of Veronese surface.

Then

det

 λ′ µ′ ν′

λ′′ µ′′ ν′′

λ′′′ µ′′′ ν′′′

 = (λ′ν′′ − λ′′ν′)2.

Therefore, if type(λ(t), ν(t)) = (1, 2), then type(γ(t)) = (1, 2, 3). Moreover we have

µ′′′′ = 2ν′λ′′′ + νλ′′′′ − 2λ′ν′′′ − λν′′′′.
Then

rank


λ′ µ′ ν′

λ′′ µ′′ ν′′

λ′′′ µ′′′ ν′′′

λ′′′′ µ′′′′ ν′′′′

 = rank


λ′ ν′ 0
λ′′ ν′′ 0
λ′′′ ν′′′ λ′ν′′ − λ′′ν′
λ′′′′ ν′′′′ λ′ν′′′ − λ′′′ν′

 .

Therefore the rank of the above matrix is 3 at t if and only if λ′ν′′−λ′′ν′ 6= 0 or λ′ν′′′−λ′′′ν′ 6=
0 at t. By the transversality theorem, we have that, for a generic γ and for any t0 ∈ I,
(a) λ′(t0)ν′′(t0) − λ′′(t0)ν′(t0) 6= 0 or (b) λ′(t0)ν′′(t0) − λ′′(t0)ν′(t0) = 0 and λ′(t0)ν′′′(t0) −
λ′′′(t0)ν′(t0) 6= 0. In case (a), type(γ) = (1, 2, 3) at t0. In case (b), type(γ) = (1, 3, 4) at t0.
Then, by Theorem 7.1(1), we have the required result. �

9. Singularities of tangent varieties to surfaces.

First we observe that the tangent varieties to a generic smooth surface are not frontal.

Example 9.1. Let V =

A =

 a11 a12 a13

a12 a22 a23

a13 a23 a33

 ∣∣∣∣∣∣ 3× 3, symmetric

,

the vector space of quadratic forms of variables x, y, z. Then dim(V ) = 6. Let S = P ({rank(A) =
1}) ⊂ P (V ) ∼= RP 5 be the Veronese surface. Then we see that the tangent variety consists of
the projection of the locus of semi- indefinite matrices of rank 2 and S. Note that the secant
variety Sec(S), the closure of the union of secants connecting any pair of points on S, consists
of the projection of the locus of matrices of rank ≤ 2 :

Tan(S) = S ∪ P ({rank(A) = 2, semi-indefinite})
( Sec(S) = P ({rank(A) ≤ 2}) ( P (V ).

See Figure 6. The tangent variety Tan(S) is not frontal. Note that, even if S is algebraic,
Tan(S) is semi-algebraic in general over the real numbers. For a generic surface S ∈ RP 5,
tangent varieties Tan(S) are perturbed into a non-frontal hypersurface.

Therefore the tangent variety Tan(S) to a generic surface S ⊂ RP 5 is never frontal.

Let V be a (N + 3)-dimensional vector space. Let us consider a flag manifold

F = F1,3(V ) := {V1 ⊂ V3 ⊂ V } ∼= Gr(2, T (P (V ))),
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F1,3(V ) = 3N+2, with local coordinates x1, x2, y1, . . . , yN , p1, . . . , pN , q1, . . . , qN . The canonical
differential system T = C = C1,3 is given by dyi = pidx1 + qidx2, (1 ≤ i ≤ N). A frontal map-
germ f : (R2, 0)→ P (V ) = RPN+2 lifts to a C1,3-integral map-germs, therefore f is an opening
of g = (x1 ◦ f, x2 ◦ f) : (R2, 0)→ R2 with the dense set of regular points.

Thus it is possible to study the singularities of tangent varieties to frontal surfaces as the
singularity theory on C1,3-integral mappings. The general studies from this viewpoint are left to
a forthcoming paper.

Now, let us consider another type of flag manifold: F1,3,5(V ) = {V1 ⊂ V3 ⊂ V5 ⊂ V }. and the
canonical system N = C1,3,5 ⊂ T (F1,3,5(V )) defined by

v ∈ C1,3,5(V1,V3,V5) ⇐⇒ πi∗(v) ∈ T (Gr(i, Vi+2))(⊂ T (Gr(i,R6)), i = 1, 3.

If N = 3, then dim(F1,3,5(R6)) = 13 and rank(C1,3,5) = 8. In fact, N is given by
dx 0

3 = x 1
3 dx

0
1 + x 2

3 dx
0

2

dx 0
4 = x 1

4 dx
0

1 + x 2
4 dx

0
2

dx 0
5 = x 1

5 dx
0

1 + x 2
5 dx

0
2

dx 1
5 = x 3

5 dx
1

3 + x 4
5 dx

1
4

dx 2
5 = x 3

5 dx
2

3 + x 4
5 dx

2
4

for a system of projective local coordinates

x 0
1 , x

0
2 , x

0
3 , x

0
4 , x

0
5 , x

1
3 , x

1
4 , x

1
5 , x

2
3 , x

2
4 , x

2
5 , x

3
5 , x

4
5

of F1,3,5(V 6).

Proposition 9.2. Let f : (R2, 0)→ P (V N+3) be a frontal map-germ. Suppose that the regular
locus of the tangent map Tan(f) : (R4, 0)→ P (V ) is dense. Then Tan(f) is frontal if and only
if f is the projection of a C1,3,5-integral map by π1 : F1,3,5(V )→ P (V ).

Proof : Suppose Tan(f) is frontal and g : (R4, 0) → Gr(4, T (P (V ))) = F1,5(V ) is the Grass-
mannian lifting of Tan(f). Then g|R2×0 lifts a C1,3,5-integral map F : (R2, 0) → F1,3,5(V )
and π1 ◦ F = f . Conversely if π1 ◦ F = f for a C1,3,5-integral map F , then Tan(f) lifts to
G : (R4, 0)→ F1,3,5(V ) by G(s1, s2, t1, t2) = F (0, 0, t1, t2). �

Let V 6 be a symplectic vector space. Let us consider the canonical contact structure on
P (V ) = RP 5. Let S ⊂ RP 5 be a Legendre surface. Then S lifts to a C1,3,5-integral surface.
Therefore, by Theorem 9.2, we have:

Corollary 9.3. Let i : (R2, 0) → RP 5 be a Legendre immersion-germ. Suppose the regular
locus Reg(Tan(i)) of the tangent variety is dense in (R2, 0). Then the tangent variety Tan(i) :
(R2, 0)→ RP 5 is a frontal.

Definition 9.4. A point p of a Legendre surface S in RP 5 is called an ordinary point if there
exists a local projective-contact coordinates x1, x2, x3, x4, x5 and a C∞ local coordinates (u, v)
of S centred p such that locally S is given by

x1 = u,
x2 = v,
x3 = 1

2au
2 + buv + 1

2cv
2 + higher order terms,

x4 = 1
2bu

2 + cuv + 1
2ev

2 + higher order terms,

x5 = −( 1
6au

3 + 1
2bu

2v + 1
2cuv

2 + 1
6ev

3) + higher order terms,

with
D = {dx5 − x1dx3 − x2dx4 + x3dx1 + x4dx2 = 0},
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and

rank
(
a b c
b c e

)
= 2.

An ordinary point p is called hyperbolic (resp. elliptic, parabolic), if moreover

H := 4(ac− b2)(be− c2)− (ae− bc)2

is negative (resp. positive, zero).

Note that the set of hyperbolic (resp. elliptic) ordinary points is an open subset in S. Then
we have the following fundamental result:

Theorem 9.5. The tangent variety Tan(S) to a Legendre surface S in RP 5 at a hyperbolic
ordinary point (resp. an elliptic ordinary point) is locally diffeomorphic to (D+

4 -singularity in
R3)×R2 (resp. (D−4 -singularity in R3)×R2) in R5.

Tan(S) 2X R2X R

Figure 7. Tangent varieties along hyperbolic and elliptic ordinary points on a
surface in RP 5.

In [36], a simple criterion on D4 has been found by Saji. The D±4 -singularity in R3 is given
by the map-germ (R2, 0)→ (R3, 0)

(u, v) 7→ (uv, u2 ± 3v2, u2v ± v3).

Theorem 9.6. ([36]) Let f : (R2, 0) → (R3, 0) be a front and (f, ν) : (R2, 0) → R3 × S2 a
Legendre lift of f . Then f is diffeomorphic to D+

4 (resp. D−4 ) if and only if f is of rank zero at
0 and the Hessian determinant of

λ(u, v) := det

(
∂f

∂u
(u, v),

∂f

∂v
(u, v), ν(u, v)

)
at (0, 0) is negative (resp. positive).

Note that D4-singularity is not a generic singularity of wave-fronts in R3, but is a generic
singularity of wave-fronts in R4. The criterion for D4-singularities in R4 is also given in [36].
Moreover we remark that Saji’s criterion is valid also for the case with parameters and it char-
acterises the trivial deformation of D4-singularity. In fact the same line of proof in [36] works as
well for the case with parameters:

Theorem 9.7. Let F = (ft)t∈(Rr,0) : (R2×Rr, 0)→ (R3, 0) be a family of fronts and (F,N) =

(ft, νt) : (R2 ×Rr, 0) → R3 × S2 a family of Legendre lifts of F . Then F is diffeomorphic to
the trivial deformation of D+

4 (resp. D−4 ) if and only if ft is of rank zero at 0 and the Hessian
determinant of

λ(u, v, t) := det

(
∂ft
∂u

(u, v),
∂ft
∂v

(u, v), νt(u, v)

)
with respect to (u, v) at (0, 0, t) is negative (resp. positive), for any t ∈ (Rr, 0).
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Proof of Theorem 9.5: Let x1 = u, x2 = v,
x3 = 1

2au
2 + buv + 1

2cv
2 + ϕ(u, v),

x4 = 1
2bu

2 + cuv + 1
2ev

2 + ψ(u, v),

x5 = −( 1
6au

3 + 1
2bu

2v + 1
2cuv

2 + 1
6ev

3) + ρ(u, v),

ord(ϕ) ≥ 3, ord(ψ) ≥ 3, and

ρu = uϕu + vψu − ϕ, ρu = uϕu + vψu − ψ.
As an integrability condition, we have that ϕv = ψu. The tangent map of S is given by x1 =
u+ s, x2 = v + t,

x3 = 1
2au

2 + buv + 1
2cv

2 + ϕ+ s (au+ bv + ϕu) + t (bu+ cv + ϕv) ,

x4 = 1
2bu

2 + cuv + 1
2ev

2 + ψ + s (bu+ cv + ψu) + t (cu+ ev + ψv) ,

x5 = −( 1
6au

3 + 1
2bu

2v + 1
2cuv

2 + 1
6ev

3) + ρ
+s
(
− 1

2au
2 − buv − 1

2cv
2 + ρu

)
+ t
(
− 1

2bu
2 − cuv − 1

2ev
2 + ρv

)
.

Take the transversal slice s = −u, t = −v. Then we have map-germ g : (R2, 0)→ (R3, 0),

g1(u, v) = − 1
2au

2 − buv − 1
2cv

2 + ϕ− uϕu − vϕv,
g2(u, v) = − 1

2bu
2 − cuv − 1

2ev
2 + ψ − uψu − vψv,

g3(u, v) = 1
3au

3 + bu2v + cuv2 + 1
3ev

3 + ρ− uρu − vρv.
We show that g is diffeomorphic to D4-singularity, by using Saji’s criterion (Theorem 9.6).

First, we have dg3 = −udg1−vdg2. Therefore g is a front and we can take ν = 1√
u2+v2+1

(u, v, 1).
Second, we see f is of rank zero. Third,

λ(u, v) = det(gu, gv, ν) = det

 g1u g1v u
g2u g2v v

0 0
√
u2 + v2 + 1


=
√
u2 + v2 + 1 (g1ug2v − g1vg2u)

The 2-jet of h := g1ug2v − g1vg2u at 0 is given by

j2h(0) = (ac− b2)u2 + (ae− bc)uv + (be− c2)v2 (mod. m3
2).

Therefore we have that the Hessian determinant of λ at 0 is given by

H = det

(
2(ac− b2) ae− bc
ae− bc 2(be− c2)

)
By Theorem 9.6, we see that g is diffeomorphic to D±4 if and only if ∓H > 0. Moreover, we can
show similarly that, regarding S as the parameter space, the tangent map-germ is diffeomorphic
to the trivial unfolding of D4- singularity with two parameters, by using Theorem 9.7. Hence
we have Theorem 9.5. �

10. Tangent maps to frontal maps and open problems.

Let V be a (N + 2n)-dimensional vector space with positive natural numbers N,n. Consider
the flag manifolds:

F1,n+1,2n+1 = F1,n+1,2n+1(V ) := {V1 ⊂ Vn+1 ⊂ V2n+1 ⊂ V },
with the canonical differential system C1,n+1,2n+1, and

F1,n+1 = F1,n+1(V ) := {V1 ⊂ Vn+1 ⊂ V },
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with the canonical differential system C1,n+1. Note that F1,n+1 is identified with the Grassman-
nian bundle Gr(n, T (P (V ))). Consider the canonical projections

F1,n+1,2n+1
Π−→ F1,n+1

π−→ F1 = P (V ) = RPN+2n−1.

Similarly to the proof of Proposition 9.2, we have

Proposition 10.1. Let f : (Rn, 0) → RPN+2n−1 be a frontal map-germ. Suppose the regular
locus Reg(Tan(f)) of the tangent map Tan(f) : (R2n, 0) → RPN+2n−1 is dense in (R2n, 0).
Then Tan(f) is frontal if and only if the Grassmannian lift f̃ : (Rn, 0)→ F1,n+1 of f for π, lifts
to a C1,n+1,2n+1-integral lift f : (Rn, 0)→ F1,n+1,2n+1 for Π.

It is natural to proceed to consider the tangent varieties to Legendre submanifolds.
Let V be a (2n+ 2)-dimensional symplectic vector space. Consider the Lagrange (isotropic)

flag manifold:

FLag = FLag(V ) := {V1 ⊂ Vn+1 ⊂ V | Vn+1 is Lagrange.},
with the canonical differential system E ⊂ TFLag. In general we have

Corollary 10.2. Let g : (Rn, 0) → FLag be E-integral and Tan(π1 ◦ g) : (R2n, 0) → P (V ) the
tangent map-germ of π1 ◦g : (Rn, 0)→ P (V ). Suppose that Reg(Tan(π1 ◦g)) is dense in (Rn, 0).
Then Tan(π1 ◦ g) is frontal.

Proof : Note that FLag is embedded in F1,n+1,2n+1 by (V1, Vn+1) 7→ (V1, Vn+1, V
s
1 ), where V s1

is the symplectic skew-orthogonal to V1, and E is the restriction of C1,n+1,2n+1. Therefore
Proposition 10.2 follows from Proposition 10.1.

Here we give alternative direct proof. Since f is Legendre, f = (λ, µ, ν) satisfies dµ =∑n
i=1 (νidλi − λidνi). The tangent map-germ Tan(f) = (Λ,M,N) is given by Λ

M
N

 =

 λ
µ
ν

+

n∑
j=1

sj

 ∂λ/∂uj
∂µ/∂uj
∂ν/∂uj

 .

Then we have

dM = dµ+

n∑
j=1

sjd (∂µ/∂uj) +
∑n
j=1 (∂µ/∂uj) dsj

= dµ+
n∑
i=1

n∑
j=1

sj (νid (∂λi/∂uj)− λid (∂νi/∂uj))

+
n∑
i=1

n∑
j=1

(νi (∂λi/∂uj)− λi (∂νi/∂uj)) dsj

=

n∑
i=1

(νidΛi − λidNi) .

Thus M ∈ R(Λ,N) and Tan(f) is frontal. �
Then Corollary 10.2 implies

Corollary 10.3. Let f : (Rn, 0) → P (V ) = RP 2n+1 be a germ of Legendre immersion and
Tan(f) : (R2n, 0) → P (V ) the tangent map-germ of f . Suppose that Reg(Tan(f)) is dense in
(Rn, 0). Then Tan(f) is frontal.

We conclude the paper by posing open generic classification problems, which remain to be
solved first:
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Problem 1: Classify the singularities of tangent varieties to generic contact-integral curves in
P (V 2n+2) ∼= RP 2n+1 for a symplectic vector space V of dimension 2n+2, under diffeomorphisms
and contactomorphisms.
Problem 2: Classify the singularities of tangent varieties to generic surfaces in RP 5. It would
be natural to relate singularities of tangent variety to the method of height function or hight
family (cf. [39][31]).
Problem 3: Classify the singularities of tangent varieties to generic frontal surfaces (projections
of generic C1,3-integral surfaces in F1,3(R6)) in RP 5.
Problem 4: Classify the singularities of tangent varieties to projections in RP 5 of generic C1,3,5-
integral surfaces in F1,3,5(R6).
Problem 5: Classify the singularities of tangent varieties to Legendre surfaces in RP 5 along
parabolic ordinary points. Moreover classify the singularities of tangent varieties of generic
Legendre surfaces in RP 5. (See §9.)
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PEDAL FOLIATIONS AND GAUSS MAPS OF HYPERSURFACES IN
EUCLIDEAN SPACE

SHYUICHI IZUMIYA AND MASATOMO TAKAHASHI

Abstract. The singular point of the Gauss map of a hypersurface in Euclidean space is
the parabolic point where the Gauss-Kronecker curvature vanishes. It is well-known that the
contact of a hypersurface with the tangent hyperplane at a parabolic point is degenerate.
The parabolic point has been investigated in the previous research by applying the theory
of Lagrangian or Legendrian singularities. In this paper we give a new interpretation of the
singularity of the Gauss map from the view point of the theory of wave front propagations.

1. Introduction

The singular point of the Gauss map of a hypersurface in Euclidean space is the parabolic
point of the hypersurface where the Gauss-Kronecker curvature vanishes [1, 12]. There have been
many researches on singularities of Gauss maps [2, 3, 17, 19]. The pedal of the hypersurface (cf.
[6, 12]) is the wavefront set whose singular points are the same as the parabolic points of the
hypersurface. Actually, we can show that the pedal is defined in Sn−1×R. We call it a cylindrical
pedal (or, dual hypersurface) of the hypersurface [5, 12, 20]. By definition, the Gauss map is
the Sn−1-component of the cylindrical pedal. In this paper we consider the R-component of the
cylindrical pedal which defines a function on the hypersurface. We call it a pedal height function
on the hypersurface. The pedal height function is traditionally called the support function of
the hypersurface with respect to the origin. We investigate, in this paper, geometric meanings
of the singularities of the pedal height function. A pedal foliation is the foliation defined by the
level set of the pedal height function.

On the other hand, we investigated relationships between caustics and wave front propagations
as an application of the theory of graphlike Legendrian unfoldings in [11, 14]. The image of the
pedal foliation by the Gauss map is considered to be a wave front propagation of a certain
graphlike Legendrian unfolding (cf. §5). By applying the results in [11, 14], we obtain a new
interpretation of the singularity of the Gauss map from the view point of the theory of wave front
propagations (cf. §6). In §4, we briefly review the essential part of the theories of Lagrangian
singularities and graphlike Legendrian unfoldings which we use in this paper. Especially, we give
a correct proof of Proposition 4.1 in [14], which is one of the key propositions in the theory of
graphlike Legendrian unfoldings (Proposition 4.3). In §6 we focus on the case for surfaces in R3.
We give a classification of the surface with the constant pedal height function (i.e., the most
degenerate case). Moreover, we give extra new conditions which characterize cusps of Gauss
maps (cf. [2]).

We shall assume throughout the whole paper that all maps and manifolds are C∞ unless the
contrary is explicitly stated.
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2. Hypersurfaces in Euclidean space

In this section we review the classical theory of differential geometry on hypersurfaces in
Euclidean space and introduce some singular mappings associated to geometric properties of
hypersurfaces.

Let X : U → Rn be an embedding, where U ⊂ Rn−1 is an open subset. We denote that
M = X(U) and identify M and U through the embedding X. The tangent space of M at
p = X(u) is

TpM = 〈Xu1
(u),Xu2

(u), . . . ,Xun−1
(u)〉R.

For any a1,a2, . . . ,an−1 ∈ Rn, we define

a1 × a2 × · · · × an−1 =

∣∣∣∣∣∣∣∣∣∣∣

e1 e2 · · · en
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an−11 an−12 · · · an−1n

∣∣∣∣∣∣∣∣∣∣∣
,

where {e1, . . . , en} is the canonical basis of Rn and ai = (ai1, a
i
2, . . . , a

i
n). It follows that we can

define the unit normal vector field

n(u) =
Xu1(u)× · · · ×Xun−1(u)

‖Xu1(u)× · · · ×Xun−1(u)‖

along X : U → Rn. A map G : U → Sn−1 defined by G(u) = n(u) is called the Gauss map of
M = X(U). Since n(u) is the unit normal vector of Sn−1, we can identify TpM and Tn(u)S

n−1.
Under this identification, the derivative of the Gauss map dG(u) can be interpreted as a linear
transformation on the tangent space TpM at p = X(u). We call the linear transformation
Sp = −dG(u) : TpM → TpM the shape operator (or Weingarten map) of M = X(U) at
p = X(u). We denote the eigenvalues of Sp by κi(p) (i = 1, . . . , n − 1) which we call principal
curvatures. We call the eigenvector of Sp the principal direction. By definition, κi(p) is a principal
curvature if and only if det(Sp − κi(p)I) = 0. The Gauss-Kronecker curvature of M = X(U) at
p = X(u) is defined to be K(p) = detSp = Πn−1

i=1 κi(p).
We say that a point p = X(u) ∈M is an umbilical point if Sp = κ(p)1TpM . We also say that

M is totally umbilical if all points of M are umbilical. Then we have the following proposition
(cf. [9, page 147, Proposition 4] for n = 3). For general dimensions, the proof is given by the
same method as that of [9].

Proposition 2.1. Suppose thatM = X(U) is totally umbilical, then κ(p) is a constant κ. Under
this condition, we have the following classification:

(1) If κ 6= 0, then M is a part of a hypersphere.
(2) If κ = 0, then M is a part of a hyperplane.

In the extrinsic differential geometry, totally umbilical hypersurfaces are considered to be the
model hypersurfaces in Euclidean space. Since the set {Xu1

, . . . ,Xun−1
} is linearly independent,

we induce the Riemannian metric (first fundamental form) ds2 =
∑n−1
i,j=1 gijduiduj on M =

X(U), where gij(u) = 〈Xui(u),Xuj (u)〉 for any u ∈ U . We define the second fundamental
invariant by hij(u) = 〈−nui(u),Xuj (u)〉 for any u ∈ U . We have the following Weingarten
formula:

Gui(u) = −
n−1∑
j=1

hji (u)Xuj (u),
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where (hji (u)) = (hik(u))(gkj(u)) and (gkj(u)) = (gkj(u))−1. By the Weingarten formula, the
Gauss-Kronecker curvature is given by

K(p) =
det(hij(u))

det(gαβ(u))
.

For a hypersurface X : U → Rn, we say that a point u ∈ U or p = X(u) is a flat point (or, a
geodesic point) if hij(u) = 0 for all i, j. Therefore, p = X(u) is a flat point if and only if p is an
umbilical point with the vanishing principal curvature. We say that a point p = X(u) ∈M is a
parabolic point if K(p) = 0.

The cylindrical pedal of M = X(U) is defined by

CPM : U → Sn−1 × R ; CPM (u) = (n(u), 〈X(u),n(u)〉).
We remark that CPM is called the dual of M = X(U) (cf. [5, 7]). For a plane curve γ(s),
P eγ(s) = 〈γ(s),n(s)〉n(s) is called the pedal curve of γ (cf. [6]), so that we call CPM the
cylindrical pedal. We have the following result (cf. [12]):

Proposition 2.2. Let M = X(U) be a hypersurface in Rn. Then the following are equivalent:
(1) M is totally umbilical with κ = 0.
(2) The Gauss map of M = X(U) is a constant map.
(3) The cylindrical pedal of M = X(U) is a point.
(4) M is a part of a hyperplane.

We can easily show that a point p = X(u) is a parabolic point of M = X(U) (i.e., a singular
point of the Gauss map) if and only if it is a singular point of the cylindrical pedal. Therefore
we have the following proposition:

Proposition 2.3. Let M = X(U) be a hypersurface in Rn. Then the following are equivalent:
(1) p = X(u) is a parabolic point of M (i.e., K(u) = 0).
(2) p = X(u) is a singular point of the Gauss map of M = X(U).
(3) p = X(u) is a singular point of the cylindrical pedal of M = X(U).

The Gauss map G(u) is the first component of the cylindrical pedal CPM (u). We have a
natural question as follows:
Question. What kind of information are provided by the second component of the cylindrical
pedal?

We define a function hπ : U → R by hπ(u) = 〈X(u),n(u)〉. It has been called hπ the support
function of M = X(U) with respect to the origin. Since hπ is the second component of the
cylindrical pedal, we call it the pedal height function of M = X(U) here. We remark that hπ is
invariant under the SO(n)-action and not invariant under the Euclidean motions.

3. Pedal foliations

A pedal foliation is the foliation in U (or M = X(U)) defined by the level set of the pedal
height function hπ. We write

Fπ(M) = {(hπ)−1(t0) | hπ(u0) = t0 ∈ R}.
as the pedal foliation and denote by Lπu0

(M) the leaf through u0 with hπ(u0) = t0. We call
Lπu0

(M) a pedal leaf of M = X(U) through u0 ∈ U . The pedal foliation might be singular in
general. The singular point of the pedal foliation is a critical point of the pedal height function
hπ.

In order to explain the critical point of the pedal height function hπ, we decompose X(u)

into the tangent component XT (u) and the normal component X⊥(u). For any p = X(u), we
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have X(u) = XT (u) +X⊥(u) where XT (u) ∈ TpM and X⊥(u) ∈ TpM⊥. Then we have the
following proposition.

Proposition 3.1. Let X : U → Rn be a hypersurface. Then u ∈ U is a singular point of the
pedal function hπ if and only if XT (u) ∈ KerSp.

Proof. By definition, there exist µi (i = 1, . . . , n−1) such that XT (u) =
∑n−1
i=1 µiXui(u). Since

we have 〈X(u),Xuj (u)〉 =
∑n−1
i=1 µigij(u), we have

∑n−1
j=1 g

kj(u)〈X(u),Xuj (u)〉 = µk. It follows
that

XT (u) =

n−1∑
i=1

n−1∑
j=1

gij(u)〈X(u),Xuj (u)〉Xui(u).

By the Weingarten formula Gui(u) = −
∑n−1
j=1 h

j
i (u)Xuj (u), we have

∂hπ

∂ui
(u) = 〈X(u),Gui(u)〉 = −

n−1∑
j=1

hji (u)〈X(u),Xuj (u)〉

= −
n−1∑
j=1

n−1∑
k=1

hik(u)gkj(u)〈X(u),Xuj (u)〉 = −
n−1∑
k=1

hik(u)µk.

Therefore, we have
n−1∑
i=1

gji(u)
∂hπ

∂ui
(u) = −

n−1∑
k=1

(
n−1∑
i=1

gji(u)hik(u)

)
µk = −

n−1∑
k=1

hjk(u)µk.

Thus, ∂hπ/∂ui(u) = 0 for i = 1, . . . , n− 1 if and only if
∑n−1
k=1 h

j
k(u)µk = 0 for j = 1, . . . , n− 1.

This completes the proof. 2

Then we have the following corollary.

Corollary 3.2. Let p = X(u) be a singular point of hπ. Then X(u) is a normal vector of M
at p or K(p) = 0 and XT (u) ∈ KerSp.

Proof. If XT (u) 6= 0, then KerSp 6= ∅. This means that K(p) = 0. If XT (u) = 0, then
X(u) = X⊥(u). 2

We can show that the pedal foliation is non-singular in generic.

Corollary 3.3. Let X : U → Rn be an embedding from an open region U ⊂ Rn−1. Suppose that
p = X(u) is a singular point of hπ and non-geodesic point (i.e., non-flat umbilical point). Then,
under a small Euclidean motion of M = X(U), hπ is non-singular at p = X(u).

Proof. By the assumption, KerSp 6= TpM. If K(p) 6= 0, the position vector X(u) is not a
normal vector at p = X(u) under a small Euclidean motion of M.

Suppose that K(p) = 0. If we rotateM = X(U) around the normal direction (i.e, fixining the
direciton of n(u)) at the point p = X(u), then p = X⊥(u) +XT (u) (i.e., of course XT (u)) does
not move but KerSp moves. Therefore, we have XT (u) 6∈ KerSp by a small Euclidean motion
of M = X(U). 2

By the above corollary, the pedal foliation is non-singular in generic at least locally, so that
we are interested in differential geometric properties of leaves.

We now consider the restriction G|Lπu0
(M) of the Gauss map G on the pedal leaf through

u0 ∈ U , which is called the pedal Gauss map of M = X(U) at u0 ∈ U.
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4. Graphlike Legendrian unfoldings

In order to apply the theories of Lagrangian singularities and graphlike Legendrian unfold-
ings, we explain the essential parts of the theories which we need in this paper. The detailed
descriptions and the results are referred to be the articles [1, 11, 14, 22, 23].

Firstly, we consider the cotangent bundle π : T ∗Rn → Rn. Let (x, p) = (x1, . . . , xn, p1, . . . , pn)
be the canonical coordinate on T ∗Rn. Then the canonical symplectic structure on T ∗Rn is given
by the canonical two form ω =

∑n
i=1 dpi ∧ dxi. Let i : L ⊂ T ∗Rn be a submanifold. We say

that i is a Lagrangian submanifold if dimL and i∗ω = 0. Let F : (Rk × Rn, 0) → (R, 0) be an
n-parameter unfolding of function germs. We say that F is a Morse family of functions if the
map germ

∆F =

(
∂F

∂q1
, . . . ,

∂F

∂qk

)
: (Rk × Rn, 0)→ (Rk, 0)

is a non-singular, where (q, x) = (q1, . . . , qk, x1, . . . , xn) ∈ (Rk × Rn, 0). In this case, we have a
smooth n-dimensional submanifold germ C(F ) = (∆F )−1(0) ⊂ (Rk × Rn, 0) and a map germ
L(F ) : (C(F ), 0)→ T ∗Rn defined by

L(F )(q, x) =

(
x,
∂F

∂x1
(q, x), . . . ,

∂F

∂xn
(q, x)

)
.

We can show that L(F )(C(F )) is a Lagrangian submanifold germ. We say that F is a generating
family of L(F )(C(F )).

We now define an equivalence relation among Lagrangian submanifold germs. Let F,G :
(Rk × Rn, 0) → (R, 0) be Morse families of functions. Then the Lagrangian submanifold
germs (L(F )(C(F )),0) and (L(G)(C(G)),0) are said to be Lagrangian equivalent if there ex-
ist a symplectic diffeomorphism germ τ̂ : (T ∗Rn, p) → (T ∗Rn, p′) and a diffeomorphism germ
τ : (Rn, π(p))→ (Rn, π(p′)) such that τ̂(L(F )(C(F )) = L(G)(C(G)) and π ◦ τ̂ = τ ◦ π, where τ̂
is a symplectic diffeomorphism germ if τ̂∗ω = ω. By using the Lagrangian equivalence, we can
define the notion of Lagrangian stability for Lagrangian submanifold germs by the ordinary way
(see, [1, Part III]).

We can interpret the Lagrangian equivalence by using the notion of generating families. Let
Ex be the ring of function germs of x = (x1, . . . , xn) variables at the origin. Let F,G : (Rk ×
Rn, 0) → (R, 0) be function germs. We say that F and G are P -R+-equivalent if there exist a
diffeomorphism germ Φ : (Rk × Rn, 0) → (Rk × Rn, 0) of the form Φ(q, x) = (φ1(q, x), φ2(x))
and a function germ h : (Rn, 0) → (R, 0) such that G(q, x) = F (Φ(q, x)) + h(x). For any
F1 : (Rk × Rn, 0) → (R, 0) and F2 : (Rk′ × Rn, 0) → (R, 0), Let F : (Rk × Rn, 0) → (R, 0) be a
function germ. We say that F is an R+-versal deformation of f = F |Rk×{0} if

Eq = Jf +

〈
∂F

∂x1
|Rk × {0}, . . . , ∂F

∂xn
|Rk × {0}

〉
R

+ 〈1〉R,

where

Jf =

〈
∂f

∂q1
(q), . . . ,

∂f

∂qk
(q)

〉
Eq
.

Then we have the following theorem[1, page 304 and 325]:

Theorem 4.1. Let F : (Rk × Rn, 0) → (R, 0) and G : (Rk × Rn, 0) → (R, 0) be Morse families
of functions. Then we have the following:
(1) L(F )(C(F )) and L(G)(C(G)) are Lagrangian equivalent if and only if F and G are P -R+-
equivalent.
(2) L(F )(C(F )) is a Lagrange stable if and only if F is an R+-versal deformation of f .
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In [1], the assertion (1) of the above theorem is a slightly different. It is used the notion of
stable P -R+-equivalences among Morse families. However, the above assertion is enough for our
situation.

Secondly, we now give a brief review on the theory of graphlike Legendrian unfoldings. The
notion of graphlike Legendrian unfoldings is defined in the projective cotangent bundle π :
PT ∗(Rn×R)→ Rn×R (cf. [11]). We remark that the affine open subset Uτ = {((x, t), [ξ : τ ])|τ 6=
0} of PT ∗(Rn×R) is canonically identified with the 1-jet space J1(Rn,R), see in [11, 14]. For a
Morse family of functions F : (Rk×Rn, 0)→ (R, 0), we define a map LF : (C(F ), 0)→ J1(Rn,R)
by

LF (q, x) =

(
x, F (q, x),

∂F

∂x1
(q, x), . . . ,

∂F

∂xn
(q, x)

)
.

Then (LF (C(F )),0) is a Legendrian submanifold germ which is called a graphlike Legendrian
unfolding. We call the set germ W (LF ) = π(LF (C(F )) the graphlike wave front of LF (C(F )).
A graphlike Legendrian unfolding (LF (C(F )),0) is said to be non-degenerate if F |C(F ) is non-
singular. We say that F is a generating family of the graphlike Legendrian unfolding LF (C(F )).
We can use all equivalence relations introduced in the previous paper [13, 14, 15]. Especially,
the S.P+-Legendrian equivalence among graphlike Legendrian unfoldings was given in the above
context. Since we do not need the definition here, we omit to give the definition (see [13]). We
also consider the stability of graphlike Legendrian unfolding with respect to S.P+ -Legendrian
equivalence which is analogous to the stability of Lagrangian submanifold germs with respect to
Lagrangian equivalence (cf. [1, Part III]). We denote that F (q, x, t) = F (q, x)− t and f(q, t) =
f(q)−t for f(q) = F (q, 0).We can represent the extended tangent space of f : (Rk×R, 0)→ (R, 0)
relative to S.P+-K by

Te(S.P
+-K)(f) =

〈
∂f

∂q1
(q), . . . ,

∂f

∂qk
(q), f(q)− t

〉
E(q,t)

+ 〈1〉R.

For an unfolding F : (Rk × Rn, 0)→ (R, 0) of f, F is S.P+-K-versal deformation of f if

E(q,t) = Te(S.P
+-K)(f) +

〈
∂F

∂x1
|Rk × {0}, . . . , ∂F

∂xn
|Rk × {0}

〉
R
.

Then we have the following theorem [11, 14, 23].

Theorem 4.2. Let F : (Rk × Rn, 0)→ (R, 0) be a Morse family of functions. Then LF (C(F ))
is S.P+-Legendre stable if and only if F is a S.P+-K-versal deformation of f.

We gave a proof of the following proposition in [14]. However, there are some gaps on the
arguments of the proof. Here we give a correct proof of Proposition 4.1 in [14].

Proposition 4.3. Let F : (Rk × Rn, 0) → (R, 0) be a Morse family of functions. If LF (C(F ))
is a S.P+-Legendre stable, then L(F )(C(F )) is a Lagrange stable.

Proof. Since LF (C(F )) is a S.P+-Legendre stable,

dimR
E(q,t)〈

∂f

∂q1
(q), . . . ,

∂f

∂qk
(q), f(q)− t

〉
E(q,t)

+ 〈1〉R
<∞.

It follows that dimREq/〈 ∂f∂q1 (q), . . . , ∂f∂qk (q), f(q)〉Eq < ∞, namely, f is a K-finitely determined
(see the definition [8, 18]). It is a well-known result that f is a K-finitely determined if and only if
f is an R+-finitely determined, see [8]. Under the condition that f is an R+-finitely determined,
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F is an R+-versal deformation of f if and only if F is an R+-transversal deformation of f ,
namely, there exists a number ` ∈ N such that

Eq = Jf +

〈
∂F

∂x1
|Rk × {0}, . . . , ∂F

∂xn
|Rk × {0}

〉
R

+ 〈1〉R +M`+1
q .(1)

Hence it is enough to show the equality (1) by Theorem 4.1. Let g(q) ∈ Eq. Since g(q) ∈ E(q,t),
there exist λi(q, t), µ(q, t) ∈ E(q,t) (i = 1, . . . , k) and c, cj ∈ R (j = 1, . . . , n) such that

g(q) =

k∑
i=1

λi(q, t)
∂f

∂qi
(q) + µ(q, t)(f(q)− t) + c+

n∑
j=1

cj
∂F

∂xj
(q, 0).(2)

Differentiating the equality (2) with respect to t, we have

0 =
k∑
i=1

∂λi
∂t

(q, t)
∂f

∂qi
(q) +

∂µ

∂t
(q, t)(f(q)− t)− µ(q, t).(3)

We put t = 0 in (3), 0 =
∑k
i=1(∂λi/∂t)(q, 0)(∂f/∂qi)(q) + (∂µ/∂t)(q, 0)f(q) − µ(q, 0). Also we

put t = 0 in (2), then

g(q) =

k∑
i=1

λi(q, 0)
∂f

∂qi
(q) + µ(q, 0)f(q) + c+

n∑
j=1

cj
∂F

∂xj
(q, 0)

=

k∑
i=1

αi(q)
∂f

∂qi
(q) +

∂µ

∂t
(q, 0)f2(q) + c+

n∑
j=1

cj
∂F

∂xj
(q, 0),(4)

for some αi ∈ Eq, i = 1 . . . , k. Again differentiating (3) with respect to t and put t = 0, then

0 =

k∑
i=1

∂2λi
∂t2

(q, 0)
∂f

∂qi
(q) +

∂2µ

∂t2
(q, 0)f(q)− 2

∂µ

∂t
(q, 0).

Hence (4) is equal to

k∑
i=1

βi(q)
∂f

∂qi
(q) +

1

2

∂2µ

∂t2
(q, 0)f3(q) + c+

n∑
j=1

cj
∂F

∂xj
(q, 0),

for some βi ∈ Eq, i = 1, . . . , k. Inductively, we take `-times differentiate (3) with respect to t and
put t = 0, then we have

g(q) =

k∑
i=1

γi(q)
∂f

∂qi
(q) +

1

`!

∂`µ

∂t`
(q, 0)f `+1(q) + c+

n∑
j=1

cj
∂F

∂xj
(q, 0),

for some γi ∈ Eq, i = 1, . . . , k. It follows that g(q) is contained in the right hand of (1). This
completes the proof. 2

We consider a relationship of the equivalence relations between Lagrangian immersion germs
and corresponding graphlike Legendrian unfoldings. Let LF : (C(F ), 0) → (J1(Rn,R), p0) and
LG : (C(G), 0)→ (J1(Rn,R), q0) be graphlike Legendrian unfolding germs. We say that graph-
like wave fronts W (LF ) and W (LG) are S.P+-diffeomorphic if there exists a diffeomorphism
germ Φ : (Rn × R, π(p0)) → (Rn × R, π(q0)) of the form Φ(x, t) = (φ1(x), t + α(x)) such that
Φ(W (LF )) = W (LG). Then we have the following result:
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Theorem 4.4. ([14]) Suppose that L(F )(C(F )) and L(G)(C(G)) are Lagrange stable. Then
Lagrangian submanifold germs L(F )(C(F )) and L(G)(C(G)) are Lagrangian equivalent if and
only if graphlike wave fronts W (LF ) and W (LG) are S.P+-diffeomorphic.

5. Height functions

We respectively define two functions

H : U × Sn−1 → R

by H(u,v) = 〈X(u),v〉 and
H̃ : U × (Sn−1 × R)→ R

by H̃(u, (v, t)) = H(u,v) − t = 〈X(u),v〉 − t. We call H a family of height functions and H̃
a family of extended height functions of M = X(U). We denote that hv(u) = H(u,v) and
h̃(v,t)(u) = H̃(u, (v, t)). By the straightforward calculations, we can show the following proposi-
tion:

Proposition 5.1. Let M = X(U) be a hypersurface in Rn. Then
(1) (∂hv/∂ui)(u) = 0 (i = 1, . . . , n− 1) if and only if v = ±n(u).
(2) h̃(v,t)(u) = (∂h̃(v,t)/∂ui)(u) = 0 (i = 1, . . . , n−1) if and only if (v, t) = ±(n(u), 〈n(u),X(u)〉).

For v = G(u), we have

∂2H

∂ui∂uj
(u,v) = 〈Xuiuj (u),v〉 = −〈Xui(u),nuj (u)〉 = hij(u).

Therefore, for any v = G(u), det (H(hv)(u)) = det((∂2H/∂ui∂uj)(u,v)) = 0 if and only if
K(p) = 0 (i.e., p = X(u) is a parabolic point), where H(hv)(u) is the Hessian matrix of hv at a
point u. By the above calculation, we have the following results [12]:

Proposition 5.2. For any p = X(u), we have the following assertions:
Suppose that v = G(u), then

(1) p is a parabolic point if and only if det (H(hv)(u)) = 0.
(2) p is a flat point if and only if rankH(hv)(u) = 0.

We now consider the relationship with the theories of Lagrangian singularities and graphlike
Legendrian unfoldings. By [12, Proposition 4.1], we have the following proposition.

Proposition 5.3. Let X : U →M be an embedding.
(1) The family of height functions H : U × Sn−1 → R of M = X(U) is a Morse family of

functions.
(2) The family of extended height functions H̃ : U × (Sn−1 × R) → R of M = X(U) is a

graphlike Morse family of hypersurfaces.

By the arguments in §4, we have a graphlike Legendrian unfolding whose generating family
is the height function of M = X(U). By Proposition 5.1, we have

C(H) = {(u,±n(u)) ∈ U × Sn−1 | u ∈ U }.
It follows that we have a graphlike Legendrian unfolding LH : C(H) → T ∗Sn−1 × R ∼=

J1(Sn−1,R) defined by

LH(u,±n(u)) = (L(H)(u,±n(u)), 〈±n(u),X(u)〉),
where L(H) : C(H) → T ∗Sn−1 is the corresponding Lagrangian immersion. By definition, we
have the following corollary of the above proposition:
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Corollary 5.4. Under the above notations, LH(C(H)) is a graphlike Legendrian unfolding such
that the height function H : U × Sn−1 → R of M = X(U) is a generating family of LH(C(H)).

By Corollary 5.4 and Proposition 5.1, we have the graphlike Legendrian unfolding LH(C(H))
whose graphlike wave front is the cylindrical pedal ±CPM of M = X(U). We call LH(C(H))
the Legendrian lift of the cylindrical pedal CPM of M = X(U). By definition, we have
H(u,±n(u)) = ±〈X(u),n(u)〉 = ±hπ(u). Therefore, we have the following proposition.

Proposition 5.5. The restriction of the height function H|C(H) is non-singular at u ∈ U if
and only if the pedal height function hπ is non-singular at u ∈ U.

It follows that the graphlike Legendrian unfolding LH(C(H)) is non-degenerate if and only if
the pedal height function hπ is non-singular.

6. Families of wave fronts induced by Gauss maps

In this section, we consider general geometric properties of singularities of the pedal foliation
of a hypersurface in Euclidean space. Let Fπ(M) be the pedal foliation on a hypersurface
M = X(U). Suppose that p = X(u0) ∈M is a non-singular point of the pedal height function hπ,
so that the germ of the pedal foliation (Fπ(M), p) is non-singular. We call the germ of the pedal
leaf Lπu0

(M) through p the central pedal leaf of the pedal foliation germ (Fπ(M), p). We consider
the family of pedal Gauss map germs {G|Lπu(M)}hπ(u)∈(R,hπ(u0)). Let π1 : Sn−1 × R → Sn−1

and π2 : Sn−1 × R → R be the canonical projections. Then G(Lπu(M)) = π1(π−12 (t) ∩ CPM )
for each t ∈ (R, hπ(u0)) is the small front of the non-degenerate graphlike Legendrian unfolding
LH(C(H)). Thus, the family of the image of pedal Gauss map germs {G|Lπu(M)}hπ(u)∈(R,hπ(u0))

is a family of wave fronts corresponding to the graphlike Legendrian unfolding LH(C(H)). We
can apply the theory of graphlike Legendrian unfoldings.

On the other hand, in order to understand the geometric meaning of singularities of Gauss
maps (or equivalently, cylindrical pedal), we review the theory of contact of submanifolds with
foliations [10, 13, 14]. Let Xi (i = 1, 2) be submanifolds of Rn with dimX1 = dimX2, gi :
(Xi, x̄i) → (Rn, ȳi) be immersion germs and fi : (Rn, ȳi) → (R, 0) be submersion germs. For a
submersion germ f : (Rn, 0) → (R, 0), we denote that F(f) is the regular foliation defined by
f ; i.e., F(f) = {f−1(c) | c ∈ (R, 0)}. We say that the contact of X1 with the regular foliation
F(f1) at ȳ1 is the same type as the contact of X2 with the regular foliation F(f2) at ȳ2 if there
is a diffeomorphism germ Φ : (Rn, ȳ1) → (Rn, ȳ2) such that Φ(X1) = X2 and Φ(Y1(c)) = Y2(c)
for each c ∈ (R, 0), where Yi(c) = f−1i (c). In this case we write

K(X1,F(f1); ȳ1) = K(X2,F(f2); ȳ2).

We apply the method of Goryunov [10, Appendix] to the case forR+-equivalence among function
germs, so that we have the following:

Proposition 6.1. ([13]) Let Xi (i = 1, 2) be submanifolds of Rn with dimX1 = dimX2 −
1, gi : (Xi, x̄i) → (Rn, ȳi) be immersion germs and fi : (Rn, ȳi) → (R, 0) be submersion
germs. We assume that x̄i are singularities of function germs fi ◦ gi : (Xi, x̄i) → (R, 0). Then
K(X1,F(f1); ȳ1) = K(X2,F(f2); ȳ2) if and only if f1 ◦ g1 and f2 ◦ g2 are R+-equivalent.

We consider a function H : Rn × Sn−1 → R defined by H(x,v) = 〈x,v〉. For a hypersurface
X : U → Rn, we have H = H ◦ (X × 1Sn−1). We denote hv(x) = H(x,v) for v ∈ Sn−1. Suppose
that v0 = n(u0) and t0 = hπ(u0) = 〈X(u0),v0〉. By Proposition 5.1, h−1v0

(t0) is tangent to
M at p0 = X(u0). We denote the tangent hyperplane of M at p0 by TMp0 . Then h−1v0

(t) for
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t ∈ (t0 − ε, t0 + ε) is a hyperplane parallel to TMp0 . Therefore, we have a foliation PF(TMp0)
consists of the family of hyperplane parallel to TMp0 :

PF(TMp0) = {h−1v0
(t) | t ∈ (t0 − ε, t0 + ε)}.

We call PF(TMp0) the foliation of parallel tangent hyperplanes of M at p0
We now give a characterization of singularities of Gauss maps and cylindrical pedals. Let

Xi : (U i, ui) → (Rn, pi), (i = 1, 2) be hypersurface germs and Hi : (U i × Sn−1, (ui,vi)) → R
be families of height functions on M i = Xi(U i), where vi = Gi(ui), (i = 1, 2). Then we
have Lagrangian submanifold germs L(Hi)(C(Hi)) in T ∗Sn−1 which cover the Gauss maps Gi
as Lagrangian maps. We also have the graphlike Legendrian unfoldings LHi(C(Hi)) whose
graphlike wavefronts are the cylindrical pedals CPMi(U i).

Theorem 6.2. Suppose that the Lagrange submanifold germs L(Hi)(C(Hi)) are Lagrangian
stable. Then the following conditions are equivalent:

(1) L(H1)(C(H1)) and L(H2)(C(H2)) are Lagrangian equivalent,
(2) (CPM1(U1), (v1, t1)) and (CPM2(U2), (v2, t2)) are S.P+-K-diffeomorphic,
(3) LH1(C(H1)) and LH2(C(H2)) are S.P+-Legendrian equivalent,
(4) K(M1,PF(TM1

p1); p1) = K(M2,PF(TM2
p2); p2).

Proof. By Proposition 6.1, the conditions (4) is equivalent to the condition that the height
function germs h1v1 and h1v2 are R+-equivalent. By the assumption and Theorem 4.1, Hi is an
R+-versal unfolding of hivi as germs. Then the uniqueness theorem of the R+-versal unfoldings
(cf. [4, 18]) asserts that h1v1 and h1v2 are R+-equivalent if and only if H1 and H2 are P -R+-
equivalent. The last condition is equivalent to the condition (1) by Theorem 4.1. Since the
cylindrical pedal is the graphlike wave front of the graphlike Legendrian unfolding generated
by the family of height functions, the conditions (1) and (2) are equivalent by Theorem 4.4.
Moreover, by [14, Proposition 3.5], the conditions (2) and (3) are equivalent. This completes the
proof. 2

We remark that the condition (1) of the above theorem implies that the corresponding Gauss
maps G1 and G2 are A-equivalent. Here two map germs f, g : (Rn,0) → (Rp,0) are said to be
A-equivalent if there exist diffeomorphism germs φ : (Rn,0)→ (Rn,0) and ψ : (Rp,0)→ (Rp,0)
such that f ◦ φ = ψ ◦ g. Therefore, the singular sets of the Gauss maps (i.e., the parabolic
sets of M i) correspond to each other by the condition (1). In general, the A-equivalence of
the Gauss maps does not imply the Lagrangian equivalence of the corresponding Lagrangian
submanifolds. Moreover, the above theorem asserts that the pictures of the family of the images
of the pedal Gauss maps (the wave front propagations) are also corresponding. In the next
section we consider the detailed properties of the pedal foliations in the case for surfaces in R3.

7. Surfaces in Euclidean 3-space

In this section we consider surfaces in the Euclidean 3-space. Let X : U → R3 be an
embedding, where U ⊂ R2 is an open set. In §3 we introduced the notion of pedal foliations.
When hπ is constant? This the case that codimension of the pedal foliation is zero. We give a
classification of surfaces such that hπ is constant.

Proposition 7.1. Let X : U → R3 be an regular surface. Suppose that hπ is constant. Then
we have the following cases:

(1) M = X(U) is a subset of a plane,
(2) M = X(U) is a subset of a sphere around the origin,
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(3) M = X(U) is a subset of a circular cylinder around the origin CCY(r), where CCY(r) is
given by a rotation of the standard circular cylinder

SCCY(r) = {x = (x1, x2, x3) ∈ R3 | x21 + x22 = r2 }

around the origin, where r > 0,
(4)M = X(U) is a subset of a circular cone CCO(r, a), where CCO(r, a) is given by a rotation

of the standard circular cone

SCCO(r, a) = {x = (x1, x2, x3) ∈ R3 | x21 + x22 − r2(x3 − a)2 = 0, x3 > a }

around the origin, where r > 0,

Proof. Suppose that XT ≡ 0. Then 〈X⊥(u),G(u)〉 = 〈X(u),G(u)〉 = hπ(u) = r, so that
X⊥(u) = rG(u). Therefore, 〈X(u),X(u)〉 = r2. This means that M = X(U) is a subset of a
sphere around the origin with the radius |r|.

We consider the case XT 6≡ 0. Then we have two sets U1 = {u ∈ U |XT (u) 6= 0} and
U2 = {u ∈ U |XT (u) = 0}. It is clear that U1 is an open set and U1∪U2 = U. By the assumption,
U1 6= ∅. Moreover, by Corollary 3.3, U1 ⊂ K−1(0). If U2 = ∅, then M is a developable surface.
Suppose that U2 6= ∅. If U2 ∩ K−1(0) has an interior point v0 ∈ U , then there exists an open
neighbourhood V of v0 such that XT |V ≡ 0. By the previous argument, X(V ) is a part of a
sphere, so that K(v) 6= 0 on V. This is a contradiction, so that U2∩K−1(0) has no interior points.
Thus, we have ∂U1 = U2∩K−1(0). Moreover, if U \K−1(0) is non-empty, then U \K−1(0) ⊂ U2.
By the above arguments, we have IntU2 = U \ K−1(0). In this case X(IntU2) is a part of a
sphere and X(U1) is a developable surface. Therefore, we may suppose that U2 = ∅, so that M
is a developable surface.

It is classically known that developable surfaces is determined completely as follows [21]: A
developable surface is classified into one of the following cases:

(1) a part of a cylindrical surface,
(2) a part of a cone,
(3) a part of a tangent surface,
(4) the glue of the above three surfaces.
Suppose that M is a part of a cylindrical surface. It is parametrized at least locally by

X(s, u) = γ(s) + ue, where γ(s) is a unit speed space curve and e is a unit constant vector.
Moreover, we can choose that γ(s) is a planar curve such that t(s) ⊥ e, where t(s) = γ′(s) is
a unit tangent vector. In this case the unit normal of X(s, u) is given by n(s, u) = t(s) × e.
Therefore, we have hπ(s, u) = 〈γ(s) + ue, t(s)× e〉 = 〈γ(s), t(s)× e〉 = 〈γ(s)× t(s), e〉 = r. By
the Frenet-Serret formulae, we have 0 = (∂hπ/∂s)(s, u) = 〈γ(s)×κ(s)n(s), e〉, where n(s) is the
principal normal vector. Since γ is a planar curve and t(s) ⊥ e, we have γ(s) × κ(s)n(s) ≡ 0.
If κ ≡ 0 on some interval I, then γ is a line on I, so that X|I × R is a part of a plane.
If κ 6= 0 on some interval I, γ(s) and n(s) are parallel on I. There exists λ(s) such that
γ(s) = λ(s)n(s), so that ±λ(s) = 〈λ(s)e, e〉 = 〈λ(s)n× t(s), e〉 = 〈γ(s)× t(s), e〉 = r. It follows
that X(s, u) = rn(s) + ue. This means that X(s, u) is on a circular cylinder around the origin
for s ∈ I.

Suppose thatM is a part of a cone. It is parametrized at least locally byX(s, u) = a+uδ(s),
where δ(s) is a unit speed spherical curve and a is a constant vector. Then t(s) = δ′(s) is a unit
vector such that δ(s) and t(s) are orthogonal. In this case the unit normal of X(s, u) is given
by n(s, u) = δ(s) × t(s) = d(s). The moving frame {δ, t,d} is called a Sabban frame along the
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spherical curve δ [16]. We have the Frenet-Serret type formulae: δ′(s) = t(s),
t′(s) = κg(s)d(s)− δ(s),
d′(s) = −κg(s)t(s),

where κg(s) = 〈t′(s),d(s)〉 is the geodesic curvature of δ(s). By the assumption, we have
hπ(s, u) = 〈a,d(s)〉 = r and 0 = (∂hπ/∂s)(s, u) = 〈a,d′(s)〉 = 〈a,−κg(s)t(s)〉. If κg ≡ 0,
then δ is a geodesic in the unit sphere, so that it is a great circle. Moreover, d(s) is a constant
vector. This means that X(s, u) is in the plane 〈x,d〉 = r. If κg(s) 6= 0 on some interval I, then
〈a, t(s)〉 = 0 on I. Therefore t(s) is a planer curve, so that δ is a curve in the plane 〈x,a〉 = c.
If we consider a vector ã = (c/‖a‖2)a, then δ(s)− ã is orthogonal to a. Moreover, we have

〈δ(s)− ã, δ(s)− ã〉 = 〈δ(s), δ(s)〉 − 2〈δ(s), ã〉+ 〈ã, ã〉 = 1− c2

‖a‖2
.

This means that δ(s) is in the circle in the plane 〈x,a〉 = c. We have the case (4).
Finally, we suppose that M is a part of a tangent surface. It is parametrized at least locally

by X(s, u) = γ(s) + ut(s), where γ(s) is a unit speed curve with κ(s) 6= 0 and t(s) is the unit
tangent vector of γ. We denote the principal normal vector by n(s) and the binormal vector
by b(s) of γ. It is known that the unit normal vector of X(s, u) is the binormal vector b(s)
of γ. Therefore, we have hπ(s, u) = 〈γ(s) + ut(s), b(s)〉 = 〈γ(s), b(s)〉 = r. Thus, we have
∂hπ/∂s(s, u) = 〈t(s), b(s)〉 + 〈γ(s), t′(s)〉 = −τ(s)〈γ(s),n(s)〉 = 0, where τ(s) is the torsion of
γ. If τ ≡ 0, then γ is a planer curve, so that t(s) is also planer. Therefore X(s, u) is part of
a plane. If τ(s) 6= 0 on an interval I, then 〈γ(s),n(s)〉 = 0, so that there exist λ(s), µ(s) such
that γ(s) = λ(s)t(s) + µ(s)b(s). Since µ(s) = 〈γ(s), b(s)〉 = r, we have γ(s) = λ(s)t(s) + rb(s)
for s ∈ I. It follows that

t(s) = γ′(s) = λ′(s)t(s) + λ(s)t′(s) + rb′(s) = λ′(s)t(s) + κ(s)(λ(s)− r)n(s).

Therefore, we have λ′(s) = 1 and λ(s) = r. This is a contradiction. If κ(s) = 0 on an interval
J, then γ(s) is a line such that the direction is given by t(s). Then X(s, u) is a line on J × R,
which is singular. This completes the proof. 2

Since the leaf of the pedal foliation on a surface is a regular curve in generic, we consider
generic properties of regular curves on a surface. Let γ : I → U ⊂ R2 be a regular curve such
that γ = X ◦ γ is a unit speed curve. Then t(s) = γ′(s) is the unit tangent vector field. Let
nγ(s) is the unit normal vector field ofM = X(U) along γ.We define the relative normal vector
field of γ by e(s) = nγ(s)× t(s). Then we have the following Frenet-Serret type formulae:

t′(s) = κg(s)e(s) + κn(s)nγ(s),
e′(s) = −κg(s)t(s) + τg(s)nγ(s),
n′γ(s) = −κn(s)t(s)− τg(s)e(s),

where κn(s) is the normal curvature, κg(s) is the geodesic curvature and τg(s) is the geodesic
torsion. The frame {t(s), e(s),nγ(s)} is called the Darboux frame. It is known that

1) γ is an asymptotic curve of M if and only if κn = 0,
2) γ is a geodesic of M if and only if κg = 0,
3) γ is a principal curve of M if and only if τg = 0.

By the Frenet-Serret type formulae, G ◦ γ = nγ is singular at s if and only if κn(s) = τg(s) = 0.

Proposition 7.2. Let Lπu0
(M) be a non-singular pedal leaf through u0 ∈ U. Let γ : I → U be a

regular curve such that γ = X ◦γ is a parametrization of the pedal leaf Lπu0
(M) with γ(s0) = u0.

Then the following conditions are equivalent:
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(1) The pedal Gauss map G|Lπu0
(M) is singular at p = X(u0),

(2) κn(s0) = τg(s0) = 0,
(3) The tangent line TpLπu0

(M) gives the principal direction with the zero principal curvature.

Proof. Since G|Lπu0
(M) is parametrized by G ◦ γ = nγ , it has been already shown that the

conditions (1) and (2) are equivalent. The condition (2) means that t(s0) directs both the
asymptotic and the principal directions. Here, we have TpLπu0

(M) = 〈t(s0)〉R Therefore, the
conditions (2) and (3) are equivalent. 2

We now revisit the characterizations of the cusp point of the Gauss map in [2]. There are some
geometric characterization of the cusp point of the Gauss map. We add extra new conditions to
the characterizations of the cusp point of the Gauss map here.

Theorem 7.3. Suppose that the Gauss map G of M = X(U) is stable. Then the parabolic locus
K−1(0) is a regular curve and the following conditions are equivalent:

(1) p = X(u0) is a cusp of the Gauss map G,
(2) p = X(u0) is a swallowtail of the cylindrical pedal CPM ,
(3) The central pedal leaf Lπu0

(M) is tangent to the parabolic locus K−1(0). Moreover, for any
ε > 0, there exist u1 6= u2 ∈ U such that |u1 − u2| < ε, the tangent planes at u1, u2 are different
but hπ(u1) = hπ(u2) and the pedal leaf Lπu1

(M) = Lπu2
(M) is transverse to the parabolic locus

K−1(0),
(4) The family of the images of the pedal Gauss maps {G|Lπu(M)}hπ(u)=t∈(R,t0) is the swal-

lowtail bifurcation on S2.

Proof. In the previous contexts (cf. [12]), it has been already known that the conditions (1) and
(2) are equivalent. Since the cylindrical pedal CPM is a graphlike wave front and the family of
images of Pedal Gauss maps is the family of corresponding small fronts, so the conditions (2) and
(4) are equivalent by using the classification of non-degenerate graphlike Legendrian unfoldings
in [11, Theorem 2.3]. By Proposition 7.2, the tangent line TpLπu0

(M) gives the principal direction
with the vanishing principal curvature. There is a characterization of the cusp point of the Gauss
map in [3] that the principal direction with the vanishing principal curvature is tangent to the
parabolic point at the point and transverse at the other points. This means that the conditions
(1) and (3) are equivalent. 2
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LOCAL CLASSIFICATION OF CONSTRAINED HAMILTONIAN SYSTEMS
ON 2-MANIFOLDS

KONSTANTINOS KOURLIOUROS

Abstract. We give local classification results for Constrained Hamiltonian Systems, i.e., for
differential systems of the form Xyω = df , where ω is a singular 2-form and f is a function,
both defined and smooth (analytic) on a 2-dimensional manifold M .

1. Introduction-Main Results

All the objects considered in this paper belong in any fixed category (that is smooth, real
or complex analytic). For convenience we fix real objects in the smooth (C∞)-category, unless
otherwise stated. There exist many definitions of Constrained Hamiltonian Systems (CHS) most
of them extrinsic, as restrictions of Hamiltonian systems on submanifolds of their symplectic
phase spaces representing the constraints (c.f. [8], [9], [11], [14], [17], [18]). In our case the
following intrinsic definition of CHS (without reference to an ambient symplectic manifold) is
more convenient (see [14], [15] for the Hamiltonian case and [13], [16], [20] for the general, not
necessarily Hamiltonian, case):

Definition 1.1. A CHS on a manifold M is a differential system of the form:

(1.1) Xyω = df

defined by a pair γ = (f, ω) ∈ C∞(M)×∧2(M), consisting of a function f (or generally a closed
1-form α) and a closed 2-form ω.

If we view the 1-form df as a section of the cotangent bundle T ∗M → M , any such pair
γ = (f, ω) determines the diagram:

TM
Ω:=yω−−−−→ T ∗Myπ xdf

M
Id−−−−→ M

where Ω is the skew-symmetric vector bundle morphism1 between the tangent and cotangent
bundles over M (equivalently, a morphism between the modules of vector fields and 1-forms),
defined by interior multiplication y with ω. A solution of the CHS is then a vector field X :
M → TM that makes the above diagram commutative. In local coordinates the 1-form df is
the gradient covector ∇f : x 7→ ∂f/∂x and if we denote by t 7→ x(t) the phase curve of X, then
equation (1.1) above is written in coordinate form as:

(1.2) Ω(x)ẋ = ∇f(x)

The author is grateful to his scientific advisors J.Lamb and D.Turaev, as well as to M. Zhitomirskii, W.
Domitrz and S. Pnevmatikos for valuable discussions and their attention on the work.

1i.e., a vector bundle map, skew-symmetric linear in the fibers and inducing the identity on the base

http://dx.doi.org/10.5427/jsing.2012.6h
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where Ω(x) = (ωij(x))1≤i,j≤n is the smooth skew-symmetric matrix-valued map (a n× n skew-
symmetric matrix with coefficients ωij smooth functions of x) associated to the 2-form ω in the
fixed basis of Rn.

Notice that smooth solutionsX of the CHS (1.1) might not exist, even locally. The obstruction
is the singular locus Σ(ω) of the 2-form ω, i.e., the locus of points where the rank of ω is smaller
than the dimension ofM . For this reason we call the set Σ(ω) impasse set2 and any of its points,
impasse point.

In this paper we give initial results for the classification problem of generic (typical) singulari-
ties of CHS γ = (f, ω) at impasse points Σ(ω). We restrict our study on 2-dimensional manifolds
M and the first occuring singularities of 2-forms (Martinet singularities). The impasse set in
this case is a smooth curve Σ(ω) ⊂M , also called the Martinet curve.

By equivalence of (germs of) CHS we mean equivalence of (germs of) pairs γ = (f, ω) and
γ′ = (f ′, ω′) by (germs of) diffeomorphisms Φ (changes of coordinates preserving the point of
application) acting on the space of (germs of) pairs C∞(M)× ∧2(M):

Φ∗γ′ := (Φ∗f ′,Φ∗ω′) = (f, ω) =: γ.

The topology of the space of CHS is the usual Whitney C∞-topology.
In the nondegenerate case where ω defines a symplectic structure, the CHS reduces to a

Hamiltonian system with Hamiltonian f and the local classification problem reduces to the well
known Hamiltonian normal forms (c.f. [1], [4]): there exist coordinates (Darboux coordinates)
such that the germ of the Hamiltonian system γ = (f, ω) is equivalent to the normal form

(1.3) γ = (x1(or x2), dx1 ∧ dx2)

at the regular points of f and to

(1.4) γ = (λ(f2), dx1 ∧ dx2)

at its nondegenerate critical points, where f2 = f2(x1, x2) is a nondegenerate quadratic form
(the first term in the Taylor expansion of f at the origin) and λ is a function of 1-variable such
that λ(0) = 0, λ′(0) 6= 0. The proof of the normal form (1.3) follows easily from the Darboux
theorem (c.f. [1]). Normal form (1.4) may be obtained also from the Morse-Darboux lemma (c.f.
[6]). The result holds in the smooth and analytic (real or complex) categories. The germ λ in
the normal form (1.4) is a functional modulus, characteristic for the pair γ = (f, ω) (c.f. [6] and
references therein).

In the degenerate case where ω vanishes along the points of the smooth line Σ(ω), the singu-
larities of functions are defined (for the 2-dimensional case) by the relative positions of the curve
f−1(0) with the characteristic vector field Xω of ω:

span{Xω}(x) = TxΣ(ω) ∩Kerx(ω) = TxΣ(ω),

(i.e., by the relative positions of f−1(0) with the Martinet curve Σ(ω)). We fix germs at the
origin 0 ∈ Σ(ω). The following cases (singularity classes) occur typically:

(i) f−1(0) is smooth and transversal to the Martinet curve at the origin:

Xω(f)(0) 6= 0

(ii) the germ f−1(0) is smooth and tangent to the Martinet curve at the origin, with 1st-order
(nondegenerate) tangency:

Xω(f)(0) = 0, X2
ω(f)(0) 6= 0,

where X2
ω(f) = Xω(Xω(f)).

2see [16] and [20] for a survey of impasse singularities for the case of general constrained systems, defined by
tangent bundle endomorphisms.
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Martinet ([12]) has shown that a generic germ of a singular 2-form ω at a point on the curve
Σ(ω) is equivalent to the normal form

(1.5) ω = x1dx1 ∧ dx2.

In these coordinates the germ of the Martinet curve is given by Σ(ω) = {x1 = 0} and the
characteristic vector field by Xω = ∂/∂x2.

Let now f be a function germ at a generic point 0 ∈ Σ(ω), i.e., satisfying the transversality
condition (i). The following theorem implies that it is possible to reduce f to a simple normal
form by a diffeomorphism leaving the Martinet 2-form ω = (1.5) fixed.

Theorem 1.2. All germs of CHS γ = (f, ω) at impasse points of type (i) are equivalent to the
normal form

(1.6) γ = (±x2, x1dx1 ∧ dx2).

Moreover, the diffeomorphism bringing γ to its normal form is unique.

Remark 1.3. The theorem holds in both smooth and real analytic categories. The existence
of the “±” sign is related to the canonical orientation of the Martinet curve Σ(ω) = {x1 = 0}
induced by the opposite orientations of the two symplectic half spaces Σ+

0 = {x1 > 0}, Σ−0 =
{x1 < 0}, defined by the restriction of ω on each one of them. In particular there does not
exist a germ of a diffeomorphism preserving the Martinet germ ω =(1.5) and sending x2 to
−x2. In the complex analytic category such an orientation is not defined and the theorem still
holds true after we drop the “±” sign from the normal form (1.6); indeed, the diffeomorphism
(x1, x2) 7→ (ix1,−x2) conjugates x2 to −x2 and leaves ω invariant.

Consider now a germ f at a point 0 ∈ Σ(ω) of type (ii). The condition of 1st-order tangency
of the pair of curves (Σ(ω), f−1(0)) implies that the restriction of f on Σ(ω) has a nodegenerate
(Morse) critical point at the origin. Notice that any such singularity is reducible by a diffeo-
morphism preserving Σ(ω) = {x1 = 0} to the classical normal form f = x1 ± x2

2. The next
theorem implies that it is impossible to achieve this normal form (or any normal form with a
finite number of parameters) under the action of diffeomorphisms preserving also the Martinet
2-form ω =(1.5).

Theorem 1.4. Germs of CHS γ = (f, ω) at impasse points of type (ii) are not finitely de-
termined. In particular, for any germ γ there exists a function germ λ of 1-variable and with
vanishing 1-jet:

λ(t) =
∑
i≥2

λit
i, λ2 6= 0,

such that γ is equivalent to the invariant normal form

(1.7) γ = (x1 + λ(x2), x1dx1 ∧ dx2).

Moreover, the diffeomorphism bringing γ to its normal form is unique.

Remark 1.5. The theorem holds in both smooth and analytic (real or complex) categories.
Invariance of the normal form (1.7) means that it cannot contain (as a singularity class) equiv-
alent germs γ and γ′ with different λ and λ′. In the analytic category this means that: two
germs f and f ′ will be equivalent by an analytic diffeomorphism preserving ω if and only if the
corresponding series λ and λ′ are exactly the same. It is convenient to express λ invariantly, in
terms of the pair γ = (f, ω) as:

λ(t) =
∑
i≥2

Xi
ω(f)(0)ti, X2

ω(f)(0) 6= 0.
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It follows that for any l ≥ 2 the system of coefficients {X2
ω(f)(0), ..., X l

ω(f)(0)} is a complete
invariant for the classification of l-jets of germs f under diffeomorphisms preserving ω. The
existence of the modulus λ and in particular of its first order term λ2 = X2

ω(f)(0) admits a nice
geometric description in terms of action integrals for ω = dα (for some primitive 1-form α):

A(c) =

∫
c

α,

along “half-cycles” c, i.e., along smooth curves with at least two points of intersection with Σ(ω)
(in a sufficiently small neighborhood of the origin).

Theorems 1.2 and 1.4 along with the Hamiltonian normal forms (1.3) and (1.4) give a complete
classification of generic singularities (of codimension ≤ 2) of pairs γ = (f, ω) on 2-manifolds.
Germs (1.3) (of codimension 0) and germs (1.6) (of codimension 1) are both stable, (1, 0) and
(1, 1)-determined respectively3. The isolated singularities (1.4) and (1.7) (of codimension 2) are
unstable and not finitely determined4.

For the proofs of the theorems we use the homotopy method. We review some basic facts in
Section 2 and we prove Theorems 1.2 and 1.4. In Section 3 we give the geometric description
of the first term of the modulus λ. In the last Section 4 we discuss the weaker classification
problem of germs of phase portraits (orbital equivalence) of CHS and we show how to get a list
of simple normal forms, even for non-generic (degenerate) singularities.

2. The Homotopy Method-Proofs of Theorems

Fix K = R (or C) and consider germs of pairs γ = (f, ω) at the origin 0 ∈ Σ(ω) of the plane
(K2, 0), where f : (K2, 0) → (K, 0) vanishes at the origin. We will say that γ0 = (f0, ω0) and
γ1 = (f1, ω1) are equivalent if there exists a germ of a diffeomorphism Φ : (K2, 0) → (K2, 0)
fixing the origin (Φ(0) = 0) and such that Φ∗γ1 = γ0. To find such equivalences we connect γ0

and γ1 by a curve
γt = (ft, ωt), t ∈ [0, 1],

where we may write:
ft = f0 + tφ, ωt = ω0 + tdα,

for the pair (φ, dα) = (f1 − f0, ω1 − ω0). We seek for 1-parameter families of diffeomorphisms
Φt depending smoothly (analytically) on t ∈ [0, 1], fixing the origin (Φt(0) = 0 for all t ∈ [0, 1]),
inducing the identity on (K2, 0) for t = 0 (Φ0 = Id) and such that Φ∗t γt = γ0. Let vt be the
1-parameter family of vector fields generated by any such diffeomorphism Φt:

dΦt(x)

dt
= vt(Φt(x)), Φ0(x) = x.

This family depends smoothly (analytically, e.t.c.) on t ∈ [0, 1] and it has a singular point at
the origin vt(0) = 0, for all t ∈ [0, 1] (since the origin is a fixed point for Φt). Then the following
proposition is well known:

Proposition 2.1. If there exists a solution vt, vt(0) = 0 of the equations

(2.1) vtydft = −φ,

(2.2) vtyωt = −α+ dh,

for some function germ h = h(x1, x2) vanishing at the origin, then the pairs γ0 and γ1 are
equivalent.

3(i, j)-determinacy means that the pair (f, ω) is equivalent to its (i, j)-jet (jif, jjω).
4some authors call these singularity classes “wild” (c.f. [19]).
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Proof. The time 1-map of the flow Φt generated by vt is the desired diffeomorphism. �

In problems of classification of pairs it is convenient to fix a singularity of one object and
classify the other object relative to the symmetries of the first. Here5 we fix the singularity
f and we normalise ω relative to the symmetries of f . This simplifies calculations due to the
following simple:

Lemma 2.2. Let f be a generic function germ at the origin 0 ∈ Σ(ω) of the plane (of type (i)
or (ii)). Then the pair γ = (f, ω) is equivalent to the preliminary normal form

(2.3) γ = (±x2, φ(x1, x2)dx1 ∧ dx2)

in the (i) case and to

(2.4) γ = (x1 ± x2
2, φ(x1, x2)dx1 ∧ dx2)

in the (ii) case, where φ is a nonsingular function germ at the origin, vanishing along the
Martinet curve: φ|x1=0 = 0.

Proof. The diffeomorphism Φ = (Φ1,Φ2) bringing f to normal form preserves Σ(ω) = {x1 = 0}
and sends the Martinet normal form (1.5) to φ(x1, x2)dx1 ∧ dx2, where φ = Φ1detΦ∗ vanishes
on x1 = 0 as desired. �

2.1. Case (i).

Proof of Theorem 1.2. We consider the “+”-sign case. The “-”-sign case follows the same lines.
We fix the singularity (Σ(ω) = {x1 = 0}, f = x2) and we consider 1-parameter families of 2-
forms ωt = ω + tda, where ω0 = (1.5) is the Martinet germ and ω1 = da is a 2-form which can
be chosen to vanish on x1 = 0 by the previous lemma. Write dα = φ1(x1, x2)dx1 ∧ dx2. Since
ω1 = d(α+ dξ) for any function ξ, we may always choose the primitive α in the form

α = α1(x1, x2)dx2,

where α1 is a function germ vanishing to second order on x1 = 0, i.e., such that

(2.5) α1|x1=0 =
∂α1

∂x1
|x1=0 = φ1|x1=0 = 0.

It follows that the 1-parameter family of 2-forms ωt = φt(x1, x2)dx1∧dx2 may be always chosen
so that

φt(x1, x2) = x1(1 + tφ11(x1, x2)),

where φ11 is the smooth germ defined by division φ1 = x1φ11. Consider now a 1-parameter
family vt = (vt,1, vt,2) of germs of vector fields at the origin preserving the pair ({x1 = 0}, x2).
Since vt preserves x2 we have that vt,2 = 0. Since vt is also tangent to x1 = 0 we have that the
first coordinate vt,1 vanishes on x1 = 0. After the substitution vt = (vt,1, 0) in the homological
equation (2.2) we arrive to the system:

φtvt,1 = α1 − ∂h
∂x2

0 = ∂h
∂x1

,

where h is some arbitrary germ. We differentiate along the x1-axes and we arrive to the simplest
Cauchy problem for the unknown function ψ = φtvt,1:

(2.6)
{ ∂ψ

∂x1
= φ1,

ψ|x1=0 = 0.

5after the kind suggestion of the reviewer.
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This admits a unique smooth (analytic) solution:

ψ(x1, x2) =

∫ x1

0

φ1(s, x2)ds.

By the fact that φt vanishes on x1 = 0 for all t ∈ [0, 1] and that ψ vanishes on x1 = 0 to second
order (since φ1|x1=0 = 0), it follows that there exists a unique smooth (analytic) solution vt,1 of
the homological equation (2.2), vanishing on x1 = 0 and represented by:

vt,1(x1, x2) =

∫ x1

0
φ1(s, x2)ds

φt(x1, x2)
.

This finishes the proof. �

2.2. Case (ii). The proof of the previous theorem relies on the existence and uniqueness of solu-
tions of the simplest Cauchy problem (2.6), i.e., on the fact that the origin is a non-characteristic
point of the initial manifold x1 = 0 for the characteristic vector field6 Ef = ±∂/∂x1. In the case
(ii) where f−1(0) has 1st-order tangency with x1 = 0 at the origin (and so does the characteristic
vector field Ef = (±2x2,−1)) existence and uniqueness of solutions of the analogous Cauchy
problem is not guaranteed7. The following lemma gives the necessary and sufficient conditions
for existence and uniqueness of smooth (resp. single-valued analytic) solutions.

Lemma 2.3. Let µ = µ(x1, x2) be an arbitrary smooth (resp. analytic) function germ vanishing
at the origin. Then the Cauchy problem

(2.7)
{ 2x2

∂ξ
∂x1
− ∂ξ

∂x2
= µ,

ξ|x1=0 = 0,

admits a smooth (resp. analytic) solution ξ if and only if µ vanishes on x1 = 0. Moreover, the
solution is unique.

Proof. Notice first that the origin is an isolated characteristic point and thus if a solution ξ of
the Cauchy problem exists, then it will be unique. We consider the associated Cauchy problem
for ξ with initial conditions along the transversal x2 = 0:

2x2
∂ξ

∂x1
− ∂ξ

∂x2
= µ,

ξ|x2=0 = ξ1(x1),

where ξ1 is a an arbitrary function germ vanishing at the origin. For this Cauchy problem the
origin is a non-characteristic point and thus a unique smooth (resp. analytic) solution ξ exists
for any function germ µ in the right-hand side. We seek necessary and sufficient conditions on
µ such that ξ vanishes on x1 = 0. If we parametrise the x1-axis by τ , then the characteristic
curves t 7→ (−t2 + x1(0),−t + x2(0)) of the characteristic vector field Ef emanating from this
axis define a map F (t, τ) = (x1(t, τ), x2(t, τ)) given by

F (t, τ) = (−t2 + τ,−t).
This map is obviously a diffeomorphism germ at the origin with inverse

F−1(x1, x2) = (−x2, x1 + x2
2).

In the (t, τ)-plane the solution is given by

ξ̃(t, τ) =

∫ t

0

µ̃(s, τ)ds+ ξ̃1(0),

6i.e., the characteristic direction is transversal to the initial manifold at that point c.f. [7]
7see [10] for a solution of the problem in the complex analytic case, in terms of multivalued functions.
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and it projects on the (x1, x2)-plane to the single valued (smooth, analytic) solution

ξ(x1, x2) = ξ̃(F−1(x1, x2)).

The preimage of the curve x1 = 0 on the (t, τ)-plane consists of the two branches t = ±
√
τ of

the parabola (in the real case τ ≥ 0). It follows that the solution ξ vanishes on x1 = 0 if and
only if

ξ̃(±
√
τ , τ) =

∫ ±√τ
0

µ̃(s, τ)ds = 0.

We view this expression symbolically as a function of ε = ±
√
τ :

ζ(ε) =

∫ ε

0

µ̃(s, ε2)ds.

Since ζ(0) = 0 we have that ζ(ε) = 0 if and only if ζ ′(ε) = µ̃(ε, ε2) = 0, which in turn is
equivalent to µ(0, x2) = 0. Thus we have determined a unique smooth solution ξ for the specific
choice of the transversal. Now we show that the solution does not depend on the choice of the
transversal, which means that the solution ξ is also unique. If we choose another transversal for
initial manifold of the associated Cauchy problem, say x2 = g(x1), with new initial condition
ξ|x2=g(x1) = ξ2(x1), then, we arrive as above to a unique solution ξ′ which will vanish on x1 = 0
if and only if µ does. Thus we have specified two solutions ξ and ξ′ of the same Cauchy problem
(2.7). Write Ξ = ξ′ − ξ for their difference. Then Ξ satisfies the homogeneous Cauchy problem

2x2
∂Ξ

∂x1
− ∂Ξ

∂x2
= 0,

Ξ|x1=0 = 0,

which obviously, does not admit any nonzero solutions. Thus Ξ = ξ′ − ξ = 0 and the lemma is
proved. �

Proof of Theorem 1.4. Fix the pair (Σ(ω) = {x1 = 0}, f = x1 + x2
2) (the “-”-sign case follows

again the same lines) and consider 1-parameter families of vector fields vt = (vt,1, vt,2) preserving
this pair and having a singular point at the origin. Such a general family can be represented as
vt = (−2x2vt,2, vt,2), where vt,2 is a function germ, vanishing again on x1 = 0. The homological
equation (2.2) reduces in that case to the system

−2x2φtvt,2 = α1 − ∂h
∂x2

φtvt,2 = − ∂h
∂x1

,

for some arbitrary germ h. Write ψ = φtvt,2. It has second order vanishing on x1 = 0 (since
both φt and the unknown vt,2 must vanish on x1 = 0.) Then by the integrability condition for
h we have that the unknown function ψ must be a solution of the following Cauchy problem:

(2.8)
{ 2x2

∂ψ
∂x1
− ∂ψ

∂x2
= φ1,

ψ|x1=0 = ∂ψ
∂x1
|x1=0 = 0,

Since φ1 vanishes on x1 = 0 we have from the previous lemma that there exists a unique solution
ψ vanishing on x1 = 0. Since we want our solution to vanish on x1 = 0 to second order,
we differentiate the equation along the x1-axis and we put ξ = ∂ψ/∂x1. Then ξ must be a
solution of the Cauchy problem (2.7) of the above lemma, where we put µ = ∂φ1/∂x1 in the
right hand-side. It follows that the Cauchy problem (2.8) admits a unique smooth solution ψ
if and only if φ1 vanishes to second order on x1 = 0. If this is the case, then from the initial
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substitution ψ = φtvt,2, we have have determined a unique smooth (resp. analytic) solution vt,2
of the homological equation (2.2), given by the formula

vt,2(x1, x2) =
ψ(x1, x2)

φt(x1, x2)
.

Since ψ vanishes to second order on x1 = 0 we have that vt,2 vanishes also on x1 = 0 as required.
In particular, any 1-parameter family of 2-forms of the form ωt = ω0 + tda can be reduced by a
unique diffeomorphism preserving the pair (x1 = 0, x1 + x2

2) to the normal form:

(2.9) Φ∗tωt|t=1 = x1λ̃(x2)dx1 ∧ dx2,

where λ̃ is an arbitrary function germ of 1-variable, λ̃(0) 6= 0. The invariance of this normal
form is implied also by the previous lemma; indeed if ωt = x1λ̃t(x2)dx1∧dx2 is any 1-parameter
family of 2-forms, then any 1-parameter family of diffeomorphisms preserving f and realising
equivalences between them, whould generate a 1-parameter family of vector fields vt which should
satisfy the homological equation (2.2) and in particular the Cauchy problem (2.8) with a righ
hand-side of the form φ1 = x1φ̃(x2), where φ̃ is an arbitrary germ. Non-existence of smooth
(resp. single-valued analytic) solutions ψ = φtvt,2 of the latter Cauchy problem is guaranteed
by the previous lemma. Thus the germs ω0 and ω1 will be equivalent if and only if λ0 = λ1.

To obtain the initial normal form (1.7) of the theorem we consider the diffeomorphism
(x1, x2) 7→ (x1,

∫ x2

0
λ̃(s)ds) which sends ω =(2.9) to the Martinet 2-form ω =(1.5) and the

germ f = x1 + x2
2 to:

f = x1 + λ(x2),

where

(2.10) λ(x2) = (

∫ x2

0

λ̃(s)ds)2.

Obviously λ(0) = λ′(0) = 0 and λ′′(0) = 2(λ̃(0))2 6= 0. The theorem is proved. �

2.3. Geometric Description of the First Modulus λ2. Fix the Martinet germ ω0 and write
Σ0(ω) = Σ+

0 t Σ−0 for the germs of the symplectic half-spaces so that Σ+
0 = {x1 > 0} and

Σ−0 = {x1 < 0}. Let c = c(t) be any “half-cycle”, i.e., a curve lying in the neighborhood of the
origin with two points of intersection with the Martinet curve, such as for example c = f−1(ε) =
{x1 + x2

2 = ε} for some ε > 0 fixed (say ε = 1). Let c̄ be the closed curve obtained by the union
of c and the segment of the Martinet curve x1 = 0 lying between the two intersection points.
Write D ⊂ Σ+

0 (or D ⊂ Σ−0 ) for the closed region whose boundary is c̄ and A0(D) for the signed
integral:

A0(D) =

∫
D

ω0.

Since ω0 vanishes on x1 = 0, this integral will be equal to the action integral along the half-cycle
c:

A0(D) =

∫
c

α0,

where α0 is a primitive of ω0. We may choose α0 = x2
1dx2/2 and for the specific choice of

c = f−1(1) we compute the action to be A0(D) = 8/15.
Consider now a 2-form germ ω1 with the same Martinet curve x1 = 0 and let Φ be a germ of

diffeomorphism sending ω0 to ω1. Since Φ preserves x1 = 0 then the following formula holds:

A0(D) =

∫
D

ω0 =

∫
D

Φ∗ω1 =

∫
Φ(D)

ω1 = A1(Φ(D)) ⇔
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⇔
∫
c

α0 =

∫
Φ(c)

α1.

It follows that if the diffeomorphism Φ may be chosen to preserve also the germ f = x1 + x2
2,

then Φ(c) = c and thus the signed action integrals have to be equal:

A0(D) = A1(D).

For the 1-jet ω1 = λ̃0ω0 in particular, we have A1(D) = λ̃08/15 and hence, ω1 cannot be
equivalent to ω0 for any λ̃0 6= 1 (the orbits of ω0 and ω1 under the action of symmetries of
f = x1 + x2

2, belong to different cohomology classes for any λ̃0 6= 1).

Remark 2.4. The same result can be obtained if we fix ω0 and vary the half-cycles c(λ2) =

{x1 + λ2x
2
2 = 1}, λ2 > 0; it suffices to substitute λ̃0 =

√
λ2/2 in the calculation of A0(c(λ2)).

3. Orbital Equivalence of CHS

We fix real objects in C∞-category. The results of the previous section show that the classi-
fication problem of CHS γ = (f, ω) at impasse points Σ(ω) becomes wild for all singularities of
codimension ≥ 1. Despite this fact, if we are interested in the configuration of phase curves in a
neighborhood of an impasse point (orbital equivalence), then the classification problem admits
simple normal forms (without moduli) even for arbitrary deep singularities. Notice that for any
germ f at the origin, there is a well defined Hamiltonian vector field X± in any of the symplectic
half-spaces Σ±0 with Hamiltonian f± = f |Σ±0 and symplectic form the restriction ω± = ω|Σ±0 of
the Martinet 2-form ω on each one of them. If f is a generic function germ (or any germ whose
differential does not vanish on Σ(ω) = {x1 = 0}) then there does not exist a smooth extension
of X± along Σ(ω) to a smooth vector field X = Xf such that

(3.1) Xfyω = df.

The singularities of this type are called impasse singularities in the literature of constrained
systems (c.f. [16], [20] and references therein). The notion of orbital (phase) equivalence for
constrained (not necessarilly Hamiltonian) systems has been also introduced in these references.
For the Hamiltonian case we need the following modifications.

Definition 3.1. Let γ = (f, ω) and γ′ = (f ′, ω′) be two germs of CHS at the origin of the
plane. Then γ will be called orbitally (or phase) equivalent with γ′ if there exists a germ of a
diffeomorphism Φ fixing the origin, sending the impasse curve Σ(ω) of γ to the impasse curve
Σ(ω′) of γ′ and the oriented phase curves of γ in Σ0 to the oriented phase curves of γ′ in Σ′0

Remark 3.2. The definition implies that orbital equivalence of CHS is exactly orbital equiva-
lence of the Hamiltonian vector fields X and X ′ defined on the symplectic components Σ0 and
Σ′0 respectively. Since the diffeomorphism Φ sends oriented phase curves of X to oriented phase
curves of X ′ it sends the germ of the foliation by level curves {f = c} to the foliation {f ′ = c′}.
The diffeomorphism Φ is not required to preserve the symplectic structures ω± and ω′± of the
components. In particular the following cases are possible:

(a)
Φ(Σ±0 (ω)) = Σ±0 (ω′)

and Φ sends oriented phase curves of X± to oriented phase curves of X ′±, or
(b)

Φ(Σ±0 (ω)) = Σ∓0 (ω′)

and Φ sends oriented phase curves of X± to oriented phase curves of X ′∓.
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3.1. The Extended Vector Field. Despite the fact that the Hamiltonian vector fields X±
do not extend to a smooth vector field Xf satisfying equation (3.1), there exist many smooth
extensions E with the following property: oriented phase curves of E coincide with the oriented
phase curves of X+ in the symplectic half-space Σ+

0 and with the oriented phase curves of −X−
in Σ−0 . Following [20]:

Definition 3.3. Let ω = σ(x)v be any singular 2-form with smooth impasse curve σ−1(0),
where v is an area form of the plane. The Extended Vector Field Ef of the CHS γ = (f, ω) is
the smooth vector field defined by the equation:

(3.2) Efyω = σdf,

or equivalently, by the Hamiltonian system

(3.3) Efyv = df,

The fact that Ef is indeed an extension of the CHS γ as defined above, follows from the
relation (in Martinet coordinates)

X =
1

x1
Ef , x1 6= 0,

that is, multiplication by the positive (resp. negative) function x1 at points of the half-space Σ+
0

(resp. Σ−0 ).
Let now Γ = (Ef ,Σ) and Γ′ = (Ef ′ ,Σ

′) be two pairs consisting of the germs at the origin of
the extended vector fields and the impasse curves of γ and γ′ respectively.

Definition 3.4. The pairs Γ and Γ′ will be called orbitally equivalent if there exists a germ of
a diffeomorphism Φ fixing the origin, sending Σ to Σ′ and sending oriented phase curves of Ef
to oriented phase curves of Ef ′ , i.e., there exists a nonvanishing function germ Q at the origin
such that:

(3.4) Φ∗Ef = QEf ′ .

The following proposition allows us to reduce the problem of orbital equivalence of CHS γ to
the orbital classification of the corresponding pairs Γ (as in [20]):

Proposition 3.5. The germs of the CHS γ and γ′ are phase equivalent iff the germs of the pairs
Γ and Γ′ are phase equivalent.

Proof. Let γ and γ′ be phase equivalent and suppose that the diffeomorphism Φ satisfies (a).
Let x(t) be an oriented phase curve of the extended vector field Ef in Σ+

0 (ω). Then it is also an
oriented phase curve of X+ and thus Φ(x(t)) ∈ Σ+

0 (ω′) is an oriented phase curve of X ′+ and
thus of Ef ′ . Let now x(t) be an oriented phase curve of Ef in Σ−0 (ω). It is also a phase curve of
−X− and thus Φ(x(t)) ⊂ Σ−0 (ω′) is a phase curve of −X ′−. It follows that Φ(x(t)) is an oriented
phase curve of Ef ′ which proves the required phase equivalence of the pairs Γ and Γ′. In the
case where the diffeomorphism Φ satisfies (b), one obtains in a similar way a diffeomorphism of
the oriented phase curves of Ef with those of −Ef ′ . The converse of the proposition is proved
in a similar way. �

Write G(Σ) for the pseudogroup of symmetries of the impasse curve Σ, i.e., diffeomorphism
germs preserving {x1 = 0} and fixing the origin. The orbital classification of pairs Γ is then
equivalent to the problem of classification of germs of extended vector fields Ef relative to G(Σ)-
action. This problem in turn contains (for Q = 1 in equation (3.4)) the classification of the
defining functions germs f relative to G(Σ)-action. The answer to the latter problem is very well
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known and has been given by V. I. Arnold in [3]. For the 2-dimensional case the results may be
summarised in the following list of simple singularities (see also [2], [5]):

(3.5)

±x2

x1 ± xk+1
2 , k ≥ 1

±xk1 ± x2
2, k ≥ 2

x1x2 ± xk2 , k ≥ 2
x3

2 ± x2
1.

It follows:

Corollary 3.6. Let γ = (f, ω) be a germ of a CHS at an impasse point where the germ of f is
a simple boundary singularity (relative to G(Σ)). Then γ is orbitally equivalent to the normal
form

γ = (f, x1dx1 ∧ dx2),

where f is a germ from the list (3.5) above.

In the figures below the phase portraits for singularities for k ≤ 3 are presented. To draw
them, we draw the phase portrait of the extended vector field Ef and we change the orientation
of the phase curves to one of the two half-spaces. The impasse curve is represented by the bolded
vertical line. The dotted origin corresponds to the singular point of the f .
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Figure 1. Phase portraits of simple singularities for k ≤ 3 with the “-” sign.
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Figure 2. Phase portraits of simple singularities for k ≤ 3 with the “+” sign.



LOCAL CLASSIFICATION OF CONSTRAINED HAMILTONIAN SYSTEMS ON 2-MANIFOLDS 111

References

[1] V. I. Arnol’d, Mathematical Methods of Classical Mechanics, Springer-Verlag, Graduate Texts in Mathemat-
ics

[2] V. I. Arnol’d, S. M. Gusein-Zade, A. N. Varchenko, Singularities of Differentiable Maps, Monographs in
Mathematics, Volume I, Birkhäuser, 1985

[3] V. I. Arnol’d, Critical Points of Functions on a Manifold with Boundary, The simple Lie Grous Bk,
Ck and F4 and Singularities of Evolutes, Russian Mathematical Surveys, 33:5, 99-116, 1978 DOI:
10.1070/RM1978v033n05ABEH002515

[4] V.I. Arnold, A. B. Givental’, Symplectic Geometry, Dynamical Systems IV, Encyclopaedia of Mathematical
Sciences, Springer-Verlag

[5] V. I. Arnol’d, V.V. Goryunov, O.V. Lyashko, V. A. Vasil’ev, Singularity Theory I & II, Dynamical Systems
VI, VIII, Encyclopaedia of Mathematical Sciences, Springer-Verlag

[6] Y. Colin de Verdiere, J. Vey, Le lemme de Morse Isochore, Topology, Vol. 18, 1979, 283-293 DOI:
10.1016/0040-9383(79)90019-3

[7] R. Courant, D. Hilbert, Methods of Mathematical Physics I & II, Interscience Publishers, John Wiley &
Sons

[8] P. A. M. Dirac, Generalized Hamiltonian Dynamics, Canadian Journal of Mathematics, Vol. 0, No. 2, 1950,
pp. 129-148 DOI: 10.4153/CJM-1950-012-1

[9] L.Faddeev, R. Jackiw, Hamiltonian Reduction of Unconstrained and Constrained Systems, Physical Review
Letters, Volume 60, Number 17, 1988 DOI: 10.1103/PhysRevLett.60.1692

[10] J. Leray, Uniformization de la solution du Problème Linéaire Analytique de Cauchy près de la Variété qui
Porte les Données de Cauchy. (Problème de Cauchy. I), Bulletin de la S.M.F., tome 85, (1957), 389-429

[11] A. Lichnerowicz, Les varietes de Poisson at leurs Algebres de Lie Associees, J. Differential Geometry, 12,
(1977), 253-300

[12] J. Martinet, Sur les Singularités des Formes Différentielles, Ann. Inst. Fourier(Grenoble), 20, 1970, no. 1,
pp. 95-178

[13] J. Mather, Solutions of Generic Linear Equations, Dynamical Systems, 1972, pp. 185-193
[14] S. Pnevmatikos, Evolution Dynamique d’un System Mecanique en Presence de Singularites Generiques,

Singularities & Dynamical Systems, North Holland Mathematical Studies, 1983. DOI: 10.5802/aif.983
[15] S. Pnevmatikos, Structures symplectiques Singulières Génériques, Ann. del’ Inst. Fourier, 34, No. 3, pp.

201-218, 1984
[16] J. Sotomayor, M. Zhitomirskii, Impasse Singularities of Differential Systems of the Form A(x)ẋ = F (x),
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TOPOLOGICAL TRIVIALITY OF FAMILIES OF MAP GERMS FROM R2

TO R2

J.A. MOYA-PÉREZ AND J.J. NUÑO-BALLESTEROS

Abstract. We show that a 1-parameter unfolding F : (R2 ×R, 0)→ (R2 ×R, 0) of a finitely
determined map germ f is topologically trivial if it is excellent in the sense of Gaffney and
the family of the discriminant curves ∆(ft) is topologically trivial. We also give a formula to
compute the number of cusps of 1-parameter unfoldings.

1. Introduction

In a previous paper [10], we consider the topological classification of finitely determined map
germs f : (R2, 0) → (R2, 0), by means of the analysis of the associated link. The link is
obtained by taking a small enough representative f : U ⊂ R2 → R2 and the restriction of
f to S̃1

ε = f−1(S1
ε ), where S1

ε is a small enough sphere centered at the origin. It follows that
the link is a stable map γ : S1 → S1 which is well defined up to A-equivalence and that f is
topologically equivalent to the cone of its link. We also describe the topology of such links by
using an adapted version of the Gauss word.

In this paper we consider a 1-parameter unfolding of f , that is, a map germ F : (R2×R, 0)→
(R2 × R, 0) of the form F (x, t) = (ft(x), t) and such that f0 = f . We are interested in the
topological triviality of F , which means that it is topologically equivalent as an unfolding to
the constant unfolding. Our main result is that F is topologically trivial if it is excellent in the
sense of Gaffney [4] and moreover, the family of the discriminant curves ∆(F ) is a topologically
trivial deformation of ∆(f). This can be seen as a real version of the same result obtained by
Gaffney for complex analytic map germs [4, Theorem 9.9]. In fact, since ∆(f) is a plane curve,
the topological triviality of F in the complex case is equivalent to the constancy of the Milnor
number µ(∆(ft)). In the real case, we show that this is also a sufficient condition, although it is
not necessary in general. In order to have a necessary and sufficient condition we should need
an invariant which controls the topological triviality of a family of real plane curves. In the last
section we consider unfoldings which are not topologically trivial and give a result about the
number of cusps that appear in ft.

The techniques used to prove this result have been already used by the second named author
in [11], where he gets a sufficient condition for the topological triviality in the case R2 to R3.
The topological triviality of plane-to-plane has been also studied by Fukuda in [3]. We also refer
to the work of Ikegami and Saeki [6] for related results.

For simplicity, all map germs considered are real analytic except otherwise stated, although
most of the results here are also valid for C∞-map germs, if they are finitely determined. We
adopt the notation and basic definitions that are usual in singularity theory (e.g., A-equivalence,
stability, finite determinacy, etc.), as the reader can find in Wall’s survey paper [12].
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2. The link of a finitely determined map germ

Two smooth map germs f, g : (R2, 0)→ (R2, 0) are A-equivalent if there exist diffeomorphism
germs φ, ψ : (R2, 0)→ (R2, 0) such that g = ψ ◦ f ◦ φ−1. If φ, ψ are homeomorphisms instead of
diffeomorphisms, then we say that f, g are topologically equivalent.

We say that f : (R2, 0)→ (R2, 0) is k-determined if for any map germ g with the same k-jet,
we have that g is A-equivalent to f . We say that f is finitely determined if it is k-determined
for some k.

Let f : U → V be a smooth proper map, where U, V ⊂ R2 are open subsets. We denote by
S(f) = {p ∈ U : Jfp = 0} the singular set of f , where Jf is the Jacobian determinant. It is a
consequence of the Whitney’s work [13] that f is stable if and only if the following two conditions
hold:

(1) 0 is a regular value of Jf , so that S(f) is a smooth curve in U .
(2) The restriction f |S(f) : S(f) → V is an immersion with only transverse double points,

except at isolated points, where it has simple cusps.
We denote ∆(f) = f(S(f)) and we define X(f) as the closure of f−1(∆(f))\S(f). If f is stable,
then S(f) is a smooth plane curve and ∆(f), X(f) are plane curves whose only singularities are
simple cusps or transverse double points. In figure 1 we present the stable map f : R2 → R2

defined by f(x, y) = (x, xy + y4 − y2/2), which has two cusps and one transverse double fold.

∆

 = cusps
 = double folds

S

f -1 (∆)

f

Figure 1.

Given a finitely determined map germ f : (R2, 0) → (R2, 0), if it is real analytic, we can
consider its complexification f̂ : (C2, 0) → (C2, 0). It is well known that f̂ is also finitely
determined as a complex analytic map germ. Then, by the Mather-Gaffney geometric criterion
[12], it has an isolated instability. In other words, we can find a small enough representative
f̂ : U → V , where U, V are open sets, such that

(1) f̂−1(0) = {0},
(2) the restriction f̂ |U\{0} is stable.

From the condition (2), both the cusps and the double folds are isolated points in U \ {0}. By
the curve selection lemma [9], we deduce that they are also isolated in U . Thus, we can shrink
the neighbourhood U if necessary and get a representative such that f̂ |U\{0} is stable with only
simple folds. Coming back to the real map f , we have the following immediate consequence.

Corollary 2.1. Let f : (R2, 0) → (R2, 0) be a finitely determined map germ. Then there is a
representative f : U → V , where U, V ⊂ R2 are open sets, such that

(1) f−1(0) = {0},
(2) f : U → V is proper,
(3) the restriction f |U\{0} is stable with only simple folds.
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Definition 2.2. We say that f : U → V is a good representative for a finitely determined map
germ f : (R2, 0)→ (R2, 0), if the conditions (1), (2) and (3) of corollary 2.1 hold.

If f is finitely determined, then the three set germs S(f), ∆(f) and X(f) are plane curves
with an isolated singularity at the origin and they will play an important role in the topological
classification of f . In the complex case, given a plane curve (X, 0) with reduced equation
h(u, v) = 0 in (C2, 0), its Milnor number is the colength of the ideal generated by the partial
derivatives hu, hv, that is,

µ(X, 0) = dimC
O2

〈hu, hv〉
.

Definition 2.3. If f : (R2, 0)→ (R2, 0) is a finitely determined map germ, we denote by µ(∆(f))

the Milnor number of the discriminant ∆(f̂) of the complexification f̂ : (C2, 0)→ (C2, 0).

Example 2.4. Let us consider f : (R2, 0) → (R2, 0) given by f(x, y) = (x, x2y + y3/3). We
have that S(f) has defining equation x2 + y2 = 0 and hence, ∆(f) is given by 4u6 + 9v2 = 0.
Although ∆(f) = {0} as set germs, we have that µ(∆(f)) = 5, which is the Milnor number of
the complex curve given by this equation.

We finish this section with an important result due to Fukuda [1], which tell us that any
finitely determined map germ, f : (Rn, 0) → (Rp, 0), with n ≤ p, has a conic structure over its
link. In order to simplify the notation, we only state the result in our case n = p = 2.

Given ε > 0, we denote:

S1
ε = {x ∈ R2 : ‖x‖2 = ε}, D2

ε = {x ∈ R2 : ‖x‖2 ≤ ε}.
and given a map germ f : (R2, 0)→ (R2, 0) we consider a representative f : U → V and put:

S̃1
ε = f−1(S1

ε ), D̃2
ε = f−1(D2

ε ).

Theorem 2.5. Let f : (R2, 0) → (R2, 0) be a finitely determined map germ. Then, up to A-
equivalence, there is a representative f : U → V and ε0 > 0, such that, for any ε with 0 < ε ≤ ε0
we have:

(1) S̃1
ε is diffeomorphic to S1.

(2) The map f |S̃1
ε

: S̃1
ε → S1

ε is stable, in other words, it is a Morse function all of whose
critical values are distinct.

(3) f |D̃2
ε
is topologically equivalent to the cone of f |S̃1

ε
.

Definition 2.6. Let f : (R2, 0)→ (R2, 0) be a finitely determined map germ. We say that the
stable map f |S̃1

ε
: S̃1

ε → S1
ε is the link of f , where f is a representative such that (1), (2) and

(3) of theorem 2.5 hold for any ε with 0 < ε ≤ ε0. This link is well defined, up to A-equivalence.
We also say that ε0 is a Milnor-Fukuda radius for f .

Since any finitely determined map germ is topologically equivalent to the cone of its link, we
have the following immediate consequence.

Corollary 2.7. Two finitely determined map germs f, g : (R2, 0) → (R2, 0) are topologically
equivalent if and only if their associated links are topologically equivalent.

Remark 2.8. If we consider a multigerm f : (R2, S) → (R2, 0), with S = {x1, . . . , xr}, the
construction of the link can be done in an analogous way. By reviewing carefully Fukuda’s
arguments, we see that the only difference is the condition (1) of theorem 2.5: now S̃1

ε is not
diffeomorphic to S1 anymore, but it is diffeomorphic to a disjoint union of r copies S1t . . .tS1.
However, the other conditions (2) and (3) are still valid in this case.
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3. Gauss words

In this section we recall briefly (for more information and examples see [10]) how we define
an adapted version of the Gauss word in our particular case of study and some consequences of
such definition.

Definition 3.1. Let γ : S1 → S1 be a stable map, that is, such that all its singularities are of
Morse type and its critical values are distinct. We fix orientations in each S1 and we also choose
base points z0 ∈ S1 in the source and a0 ∈ S1 in the target.

Suppose that γ has r critical values labeled by r letters a1, . . . , ar ∈ S1 and let us denote their
inverse images by z1, . . . , zk ∈ S1. We assume they are ordered such that a0 ≤ a1 < · · · < ar
and z0 ≤ z1 < · · · < zk and following the orientation of each S1.

We define a map σ : {1, . . . , k} → {a1, . . . , ar, a1, . . . , ar} in the following way: given i ∈
{1, . . . , k}, then γ(zi) = aj for some j ∈ {1, . . . , r}; we define σ(i) = aj , if zi is a regular
point and σ(i) = aj , if zi is a singular point (i.e., the bar aj is used to distinguish whether the
inverse image of the critical value is regular or singular). We call Gauss word to the sequence
σ(1) . . . σ(k).

For instance, the link of the cusp f(x, y) = (x, xy+y3) has two critical values with four inverse
images and the associated Gauss word is abab (see figure 2).

(1) (2) (3)

z

z

z

z

a

b

b a

z abab

4

3

2

1

1z z z2 3 4

Figure 2.

It is obvious that the Gauss word is not uniquely determined, since it depends on the chosen
orientations and base points in each S1. Different choices will produce the following changes in
the Gauss word:

(1) a cyclic permutation in the letters a1, . . . , ar;
(2) a cyclic permutation in the sequence σ(1) . . . σ(k);
(3) a reversion in the set of the letters a1, . . . , ar;
(4) a reversion in the sequence σ(1) . . . σ(k).

We say that two Gauss words are equivalent if they are related through these four operations.
Under this equivalence, the Gauss word is now well defined.

In order to simplify the notation, given a stable map γ : S1 → S1, we denote by w(γ) the
associated Gauss word and by ' the equivalence relation between Gauss words. We also denote
by deg(γ) the topological degree. Then, we can state the main result of this section (see [10]).

Theorem 3.2. Let γ, δ : S1 → S1 be two stable maps. Then γ, δ are topologically equivalent if
and only if 

w(γ) ' w(δ), if γ, δ are singular,

|deg(γ)| = |deg(δ)|, if γ, δ are regular.
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Remark 3.3. By following step by step the proof of this theorem in [10] we can observe the fol-
lowing fact: if γ, δ : S1 → S1 are stable maps with w(γ) ' w(δ) and if we fix any homeomorphism
in the target ψ : S1 → S1 such that ψ(∆(γ)) = ∆(δ), then there is a unique homeomorphism in
the source φ : S1 → S1 such that ψ ◦ γ ◦ φ−1 = δ.

By combining this observation with corollary 2.7 we have an analogous result for map germs:
let f, g : (R2, 0)→ (R2, 0) be two finitely determined map germs that are topologically equivalent.
If we fix any homeomorphism in the target ψ : (R2, 0)→ (R2, 0) such that ψ(∆(f)) = ∆(g), then
there is a unique homeomorphism in the source φ : (R2, 0)→ (R2, 0) such that ψ ◦ f ◦ φ−1 = g.

4. Cobordism of links

We recall that a cobordism between two smooth manifolds M0,M1 is a smooth manifold
with boundary W such that ∂W = M0 tM1. Analogously, a cobordism between smooth maps
f0 : M0 → N0 and f1 : M1 → N1 is another smooth map F : W → Q such that W,Q are
cobordisms between M0,M1 and N0, N1 respectively, and for each i = 0, 1, F−1(Ni) = Mi and
the restriction F |Mi : Mi → Ni is equal to fi. In the case that f0, f1 belong to some special class
of maps (for instance, immersions, embeddings, stable maps, etc.), then we also require that the
cobordism F belongs to the same class.

Definition 4.1. Given two stable maps γ0, γ1 : S1 → S1, a cobordism between γ0 and γ1 is a
stable map Γ : S1 × I → S1 × I, where I = [0, 1] and such that for i = 0, 1,

Γ−1(S1 × {i}) = S1 × {i}, Γ|S1×{i} = γi × {i}.

The first condition implies that Γ(S1 × {0}) ⊂ S1 × {0}, Γ(S1 × {1}) ⊂ S1 × {1} and
Γ(S1 × (0, 1)) ⊂ S1 × (0, 1), but in general, Γ is not level preserving (see figure 3).

Γ

Figure 3.

Lemma 4.2. Let Γ be a cobordism between γ0, γ1. If ∆(Γ) is diffeomorphic to ∆(γ0)× I, then
γ0, γ1 are topologically equivalent.

Proof. Since ∆(Γ) is diffeomorphic to ∆(γ0)× I, Γ cannot have cusps or double folds. Thus, Γ
restricted to Γ−1(∆(Γ)) is a local diffeomorphism and it follows that Γ−1(∆(Γ)) is also diffeo-
morphic to γ−1

0 (∆(γ0))× I.
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Γ  (∆(Γ)) ≈ γ  (Δ(γ  )) x [0,1]-1
0
-1

0 Δ(Г) ≈ Δ(γ  ) x [0,1]0

Г

a

a

i

i

z

zj

j

Figure 4.

In particular, for each critical value or each inverse image of γ0 there is a unique arc joining
the point in S1 × {0} with a point in S1 × {1} corresponding to a critical value or an inverse
image of γ1 respectively. We choose the orientations and the base points of γ0, γ1 in such a way
that if two critical values are joined by an arc, then they share the same label ai and if two
inverse images are joined by an arc, then they share the same label zj (see figure 4).

With these choices, it follows that w(γ0) = w(γ1) and hence γ0 and γ1 are topologically
equivalent by theorem 3.2. �

Remark 4.3. If Γ is a cobordism between γ0, γ1 such that ∆(Γ) is diffeomorphic to ∆(γ0)× I,
then it can be shown that Γ is trivial, that is, Γ is A-equivalent to the product cobordism γ0×id :
S1 × I → S1 × I by diffeomorphisms Φ,Ψ : S1 × I → S1 × I such that Φ|S1×{0},Ψ|S1×{0} = id.

To show this, we first choose a diffeomorphism ψ : ∆(γ0)×I → ∆(Γ) such that ψ(p, 0) = (p, 0),
for all p ∈ ∆(γ0). We denote by φ : γ−1

0 (∆(γ0)) × I → Γ−1(∆(Γ)) the induced diffeomorphism
by Γ in such a way that φ(s, 0) = (s, 0), for all s ∈ γ−1

0 (∆(γ0)) and the following diagram is
commutative:

Γ−1(∆(Γ))
Γ−−−−→ ∆(Γ)xφ xψ

γ−1
0 (∆(γ0))× I γ0×id−−−−→ ∆(γ0)× I

We extend the diffeomorphisms φ, ψ to S1 × I. This can be done by using standard arguments
of extensions of vector fields. Details are left to the reader.

5. Extending the cone structure

Let f : U → V be a good representative of a finitely determined map germ f : (R2, 0) →
(R2, 0). Since ∆(f) is a 1-dimensional analytic subset, we can also shrink the neighborhoods
U, V so that this set is contractible. In this case ∆(f) \ {0} has a finite number of connected
components, each one of them is an edge joining the origin with the boundary of V . We orient
each one of this edges from 0 to ∂V . We denote by X : ∆(f) \ {0} → R2 the unit normal vector
field of ∆(f) \ {0} with respect to this orientation (see figure 5).

Definition 5.1. Let f : U → V be a good representative of a finitely determined map germ
f : (R2, 0) → (R2, 0) such that ∆(f) is contractible. We say that ε > 0 is a convenient radius
for f if the following conditions hold:
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y

X(y)∆(ƒ)

Figure 5.

(1) S1
ε is transverse to ∆(f),

(2) S̃1
ε is diffeomorphic to S1,

(3) S1
ε intersects ∆(f) properly, that is, S1

ε intersects each connected component of ∆(f)\{0}
at exactly one point.

It is easy to see that S1
ε intersects ∆(f) properly if and only if S1

ε cuts each point of ∆(f)
following the orientation of the outward-pointing normal of S1

ε . In other words, S1
ε cuts ∆(f)

properly if and only if
det(X(y), y) > 0, ∀y ∈ S1

ε ∩∆(f).

If ε0 is a Milnor-Fukuda radius, then S1
ε intersects ∆(f) properly for any 0 < ε ≤ ε0, but in

general, this may not be true.

Theorem 5.2. Let f : U → V be a good representative of a finitely determined map germ
f : (R2, 0)→ (R2, 0) such that ∆(f) ⊂ V is contractible and let ε > 0 be a convenient radius for
f. Then,

(1) f |S̃1
ε

: S̃1
ε → S1

ε is topologically equivalent to the link of f .

(2) f |D̃2
ε

: D̃2
ε → D2

ε is topologically equivalent to the cone of f |S̃1
ε
.

Proof. Let ε0 > 0 be a Milnor-Fukuda radius for f . If ε ≤ ε0, then the result follows from
theorem 2.5. We assume ε > ε0 and take 0 < δ < ε0. We consider the two associated links
γ0 = f |S̃1

δ
and γ1 = f |S̃1

ε
and we denote by

C2
δ,ε = {y ∈ R2 : δ ≤ ‖y‖2 ≤ ε}, C̃2

δ,ε = f−1(C2
δ,ε),

and Γ = f |C̃2
δ,ε

: C̃2
δ,ε → C2

δ,ε, which defines a cobordism between γ0 and γ1. We only need
to show that γ0 and γ1 are topologically equivalent, since in this case we have that the cone
structure of f |D̃2

δ
can be extended to f |D̃2

ε
.

Let ∆1, . . . ,∆r be the connected components of ∆(f) \ {0}. Since ∆(f) ⊂ V is closed,
contractible and regular outside the origin, we have that each ∆i is diffeomorphic to an open
interval, whose end points are the origin and another point of ∂V . Now, both S1

δ and S1
ε intersect

∆(f) properly, so that S1
δ ∩∆i = {xi} and S1

ε ∩∆i = {x′i} for each i = 1, . . . , r. It follows that

∆(Γ) = x1x′1 ∪ · · · ∪ xrx′r,
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where xix′i is the closed interval in ∆i joining the points xi and x′i (see figure 6). Therefore,
∆(Γ) is diffeomorphic to {x1, . . . , xr}× [δ, ε] and γ0 and γ1 are topologically equivalent by lemma
4.2. �

S

δ

ε

S1

1 ∆(ƒ)
V

x

x’i

i

Figure 6.

6. Topological triviality of families

Given a map germ f : (R2, 0) → (R2, 0), a 1- parameter unfolding is a map germ F :
(R2 × R, 0) → (R2 × R, 0) of the form F (x, t) = (ft(x), t) and such that f0 = f . Here, we
consider that the unfolding is origin preserving, that is, ft(0) = 0 for any t. Hence, we have a
1-parameter family of map germs ft : (R2, 0)→ (R2, 0).

Definition 6.1. Let F be a 1-parameter unfolding of a finitely determined map germ f :
(R2, 0)→ (R2, 0).

(1) We say that F is excellent if there is a representative F : U → V × I, where U, V, I are
open neighborhoods of the origin in R2 × R,R2 and R respectively, such that for any
t ∈ I, ft : Ut → V is a good representative in the sense of definition 2.2.

(2) We say that F has constant topological type if for any t 6= t′, the map germs ft and f ′t
are topologically equivalent.

(3) We say that F is topologically trivial if there are homeomorphism germs Ψ,Φ : (R2 ×
R, 0)→ (R2×R, 0) such that they are unfoldings of the identity and F = Ψ◦(f× id)◦Φ.

(4) We say that F is µ-constant if the Milnor number µ(∆(ft)) is independent of t.

Example 6.2. Any topologically trivial unfolding F has constant topological type, but the
converse is not true in general. Let us consider ht : R2 → R the equation of S(ft) for each t,
given by

ht(x, y) = (x+ 3y)(5x− 2y)st(x, y),
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with st(x, y) = ((x− 2)2 + (y − 3)2)t− ε2t (see figure 7). Then, we set:

ft(x, y) = (x,

∫
ht(x, y)dy).

It is not difficult to check that the Gauss word is constant w(ft) = ababcdcd. As a consequence,
the map germs ft and ft′ are topologically equivalent for any t 6= t′. However, it is clear that
our family is not topologically trivial.

S(ƒ )t S(ƒ )0

st

Figure 7.

Theorem 6.3. Let F be an excellent unfolding of a finitely determined map germ f : (R2, 0)→
(R2, 0). If ∆(F ) is topologically trivial, then F is topologically trivial.

Proof. Let F : U → V × I be a representative of the unfolding F , where U, V, I are open
neighborhoods of the origin in R2 × R,R2 and R respectively, and such that ft : Ut → V is
a good representative of the map germ ft, for any t ∈ I. We can shrink the neighborhoods if
necessary and assume that ∆(f0) ⊂ V is contractible.

On the other hand, since ∆(F ) is topologically trivial, by shrinking again the neighbourhoods
if necessary, there is a homeomorphism Ψ : V × I → V × I of the form Ψ = (ψt, t) such that
ψ0 = id and ψt(∆(ft)) = ∆(f), for any t ∈ I. In particular, ∆(ft) is homeomorphic to ∆(f0)
and it is also contractible.

We take X : (V \ {0}) × I → R2 such that Xt(y) = X(y, t) is the unit normal vector at
each point y ∈ ∆(ft) \ {0} as in definition 5.1. We also denote by gt : Ut → R the function
gt(x) = ‖f(x)‖2 and G : U → R, given by G(x, t) = gt(x).

Let ε0 > 0 be a Milnor-Fukuda radius for f and let 0 < ε ≤ ε0. We have that ε is a regular
value of g0, S̃1

ε = g−1
0 (ε) is diffeomorphic to S1 and that S1

ε intersects properly to ∆(f), that is,

det(X0(y), y) > 0, ∀y ∈ S1
ε ∩∆(f).

Once ε is fixed, we can choose δ > 0 such that for any t ∈ (−δ, δ), ε is also a regular value of gt
and

det(Xt(y), y) > 0, ∀y ∈ S1
ε ∩∆(ft).

By the fibration theorem, we have that S̃1
ε,t = g−1

t (ε) is diffeomorphic to S̃1
ε , and hence to S1.

Moreover, the above condition gives that S1
ε is transverse to ∆(ft) and that S1

ε intersects ∆(ft)
properly. In conclusion, we have shown that ε is a convenient radius for ft, for any t ∈ (−δ, δ).
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By theorem 5.2, γε,t = ft|S̃1
ε,t

is the link of ft and ft|D̃2
ε,t

is topologically equivalent to the cone
of γε,t.

Since γε,t : S̃1
ε,t → S1

ε , with t ∈ (−δ, δ), is stable, we have that this family of links is trivial.
Hence, each ft|D̃2

ε,t
is topologically equivalent to f |D̃2

ε
. By remark 3.3, there is a unique homeo-

morphism in the source φt such that ψt ◦ ft ◦ φ−1
t = f . Note that the unicity of φt implies that

it depends continuously on t. We consider now Φ = (φt, t) : F−1(D2
ε × (−δ, δ))→ D̃2

ε × (−δ, δ).
Then Φ is a homeomorphism, it is an unfolding of the identity and Ψ ◦ F ◦ Φ−1 = f × id. �

Corollary 6.4. Any µ-constant unfolding F of a finitely determined map germ f : (R2, 0) →
(R2, 0) is topologically trivial.

Proof. Any µ-constant unfolding F is excellent. This is known to be true in the complex case
by the results of Gaffney [4]. Since F is analytic we are able to consider its complexification F̂
and we have that µ(∆(f̂t)) = µ(∆(ft)) is constant. Then, F̂ is excellent, and as a consequence,
F is also excellent. On the other hand, the µ-constant condition in the family of plane curves
∆(F ) implies its topological triviality by the results of [7]. By theorem 6.3, F is topologically
trivial. �

It is well known that in the complex case, any family of plane curves is topologically trivial
if and only if the Milnor number is constant in the family. Hence, the converse of corollary 6.4
is also true in the complex case. In the real case, this is not true in general, as shown in the
following example.

Example 6.5. Consider the family ft(x, y) = (x, x4y + y5 + t2y3). We have f−1
t (0) = {0},

Jf = x4 + 5y4 + 3t2y2 = 0 and S(ft) = {0}, for any t ∈ R. Thus, the unfolding F = (ft, t) is
excellent. Moreover, ∆(ft) = {0} for any t ∈ R, and hence F is topologically trivial by theorem
6.3.

On the other hand, the discriminant ∆(f̂t) of the complexification f̂t is given by equation:

108t10v2 + 16t8u12 − 900t6u4v2 − 128t4u16 + 2000t2u8v2 + 256u20 + 3125v4 = 0.

We have that µ(∆(ft)) = 11 for t 6= 0, but µ(∆(f0)) = 57.

7. The number of cusps of an unfolding

In this last section, we follow the arguments of the proof of theorem 6.3 to give a formula for
the parity of the number of cusps of an unfolding F : (R2 × R, 0) → (R2 × R, 0) of a finitely
determined map germ f . Here, we do not assume that F is excellent, but we only assume
the following condition (∗): there is a representative F : U → V × I, where U, V, I are open
neighbourhoods of the origin in R2 × R,R2,R respectively, such that ft : Ut → V is proper and
its restriction to f−1

t (V \ {0}) is stable.
Given an unfolding satisfying this condition (∗), we introduce the following notation:

(1) c(f+
t ) (respectively c(f−t )) is the number of cusps of ft on f−1

t (V \ {0}) for t > 0
(respectively t < 0).

(2) r(f+
t ) (respectively r(f−t )) is the number of points of f−1

t (0) for t > 0 (respectively
t < 0).

(3) #S(f+
t ) (respectively S(f−t )) is the number of branches of S(ft) at f−1

t (0) for t > 0
(respectively t < 0).

(4) #S(f0) is the number of branches of S(f0) at 0.
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If the neighbourhoods U, V, I are small enough, then these numbers are well defined. We also
denote the multiplicity of a map germ f : (R2, 0)→ (R2, 0) by

m(f) = dimR
E2

〈f1, f2〉
.

We have the following congruences, which can be also deduced from the arguments of [5,
Proof of Theorem 1.12]

Proposition 7.1. Let F : (R2 × R, 0) → (R2 × R, 0) be a 1-parameter unfolding of a finitely
determined map germ f : (R2, 0)→ (R2, 0) satisfying condition (∗). Then,

c(f±t ) ≡ 1− r(f±t ) + #S(f0) + #S(f±t ) mod 2.

Moreover, if m(ft) is constant for each t ∈ R we have that

c(f±t ) ≡ #S(f0) + #S(f±t ) mod 2.

Г

C η,εη,ε C2 2~

Figure 8.

Proof. Let ε0 > 0 be a Milnor-Fukuda radius for f and take 0 < ε ≤ ε0. There is δ > 0 such
that if t ∈ (−δ, δ), then ε is a convenient radius for the multigerm ft : (R2, Zt)→ (R2, 0), where
f−1
t (0) = Zt.
We fix 0 < t < δ, the case −δ < t < 0 being analogous. Take 0 < η < ε, where η ≤ η0, a

Milnor Fukuda radius for ft. We denote:

γ0 =ft|S̃1
ε

: S̃1
ε → S1

ε ,

γ1 =ft|S̃1
η

: S̃1
η → S1

η ,

Γ =ft|C̃2
η,ε

: C̃2
η,ε → C2

η,ε.

We have that γ0 is topologically equivalent to the link of the map germ f , γ1 is the link of the
multigerm ft and Γ is a cobordism between γ0, γ1 (see figure 8). Since Γ is a stable map between
compact oriented connected surfaces with boundary, we can apply a result due to Fukuda -
Ishikawa [2]:

c(Γ) ≡ χ(C̃2
η,ε) + deg(Γ|∂C̃2

η,ε
)χ(C2

η,ε) +
1

2
#(S(Γ|∂C̃2

η,ε
)) mod 2,
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where c(Γ) is the number of cusps of Γ. We have c(Γ) = c(f+
t ), χ(C̃2

η,ε) = 1− r(f+
t ), χ(C2

η,ε) = 0
and

1

2
#(S(Γ|∂C̃2

η,ε
)) = #S(f0) + #S(f+

t ).

Thus, we arrive to
c(f+

t ) ≡ 1− r(f+
t ) + #S(f0) + #S(f±t ) mod 2.

If m(ft) is constant, we have that {f−1
t (0)} = {0}, r(f+

t ) = 1 and hence,

c(f+
t ) ≡ #S(f0) + #S(f+

t ) mod 2.

�
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A CONJECTURE ON THE ŁOJASIEWICZ EXPONENT

SZYMON BRZOSTOWSKI, TADEUSZ KRASIŃSKI AND GRZEGORZ OLEKSIK

Abstract. In this paper, we present a conjecture connecting the Łojasiewicz exponent of
an isolated nondegenerate singularity with some geometrical characteristics of the Newton
diagram associated with this singularity. We prove the conjecture for a class of surface singu-
larities.

1. Introduction

Let f = f(z1, . . . , zn) ∈ C{z1, . . . , zn} be a convergent power series defining an isolated
singularity at the origin 0 ∈ Cn. The Łojasiewicz exponent £0(f) of f is by definition the
smallest θ > 0 such that there exist a neighbourhood U of 0 ∈ Cn and a constant c > 0 such
that

|∇f(z)| ≥ c |z|θ for all z ∈ U,

where ∇f = (f ′z1 , . . . , f
′
zn). It is an important discrete invariant of isolated singularities: it is a

rational number [L-JT], it is a biholomorphic invariant, £0(f) + 1 is equal to the maximal polar
invariant of f [T], it is attained on analytic paths centered at 0 [L-JT], [£0(f)] + 1 is C0-degree
of sufficiency of f [ChL, T]. In spite of its importance £0(f) is not well known (in contrast to the
Milnor number) even among experts in singularity theory. An interesting mathematical problem
is to give formulas for £0(f) (in terms of another invariants of f) or an algorithm to compute it.
Almost all is known on £0(f) for the plane curve singularities (n = 2) (see [CK1, CK2, K, GKP]).
For n ≥ 3 there are only estimations of £0(f) [P1, P2]. A standard technique in singularity
theory is the method of Newton diagrams, developed by the Moscow School (Kouchnirenko,
Varchenko, Khovansky and others). In the paper we propose a conjecture that the Łojasiewicz
exponent of a nondegenerate singularity could be read off from its Newton diagram. It is true
in the case n = 2 (Lenarcik [L]). For general n only estimations of £0(f) in terms of Newton
diagrams (see [A, B, BE, F, O1, O2]) are known. On the other hand a counter-example to it
would disprove the Teissier conjecture that £0(f) is a topological invariant of f.

For n = 2 Lenarcik computes £0(f) from the Newton diagram of f by removing from it some
exceptional segments. The main difficulty with the extension of his method to n dimensions is
to define exceptional faces appropriately. The third-named author proposed a definition in [O2]
which we claim to be the right one. Using this definition we prove our conjecture for surface
(n = 3) nondegenerate singularities that have only one unexceptional face. We also give a
formula for the Łojasiewicz exponent of semi-weighted homogeneous surface singularities.
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Key words and phrases. Łojasiewicz exponent, isolated singularity, semi-weighted homogeneous singularity,

Newton diagram.
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2. Preliminaries

Let us recall that if (w1, . . . , wn) is a sequence of n rational positive numbers (called weights)
then a polynomial f ∈ C[z1, . . . , zn] is called weighted homogeneous of type (w1, . . . , wn) if it is
a linear combination of monomials zα1

1 . . . zαn
n with α1/w1 + . . .+ αn/wn = 1.

A nonzero holomorphic function f : (Cn, 0) −→ (C, 0) defined in some open neighbourhood
of 0 ∈ Cn is a singularity if f(0) = 0 and ∇f(0) = 0. A singularity f is an isolated singularity if
it has an isolated critical point at the origin i.e. ∇f(z) 6= 0 for z 6= 0 near 0. Let

∑
ν∈Nn aνz

ν

be the Taylor expansion of f at 0. We define Γ+(f) := conv{ν + Rn+ : aν 6= 0} ⊂ Rn and call it
the Newton diagram of f . Let u ∈ Rn+ \ {0}. Put l(u,Γ+(f)) := inf{< u, v >: v ∈ Γ+(f)} and
∆(u,Γ+(f)) := {v ∈ Γ+(f) :< u, v >= l(u,Γ+(f))}. We say that S ⊂ Rn is a face of Γ+(f), if
S = ∆(u,Γ+(f)) for some u ∈ Rn+ \ {0}. The vector u is called a primitive vector of S. It is easy
to see that S is a closed and convex set and S ⊂ Fr(Γ+(f)), where Fr(A) denotes the boundary of
A. One can prove that a face S ⊂ Γ+(f) is compact if and only if all coordinates of its primitive
vector u are positive. We call the family of all compact faces of Γ+(f) the Newton boundary
of f and denote it by Γ(f). We denote by Γk(f) the set of all compact k-dimensional faces
of Γ(f), k = 0, . . . , n − 1. For every compact face S ∈ Γ(f) we define weighted homogeneous
polynomial fS :=

∑
ν∈S aνz

ν . A singularity f is nondegenerate on the face S ∈ Γ(f) if the
system of equations (fS)′z1 = . . . = (fS)′zn = 0 has no solution in (C∗)n, where C∗ = C \ {0}.
A singularity f is nondegenerate in the Kouchnirenko sense (shortly nondegenerate) if it is
nondegenerate on each face of Γ(f). A singularity f is semi-weighted homogeneous if there exists
a face S of Γ(f) such that fS is an isolated singularity.

Let i ∈ {1, . . . , n}, n ≥ 2. We say that S ∈ Γn−1(f) ⊂ Rn is an exceptional face for f with
respect to the axis OXi if one of its vertices is at distance 1 to the axis OXi and the remaining
vertices define (n−2)-dimensional face which lies in one of the coordinate hyperplanes including
the axis OXi.

Example 2.1. Let f(z1, z2, z3) = z1z
4
3+z2

2z
6
3+z4

2z3+z6
1 . It is easy to check that Γ2(f) = {S1, S2},

where S1 = conv{(0, 4, 1), (0, 2, 6), (1, 0, 4)} is an exceptional face for f with respect to OX3 and
S2 = conv{(0, 4, 1), (1, 0, 4), (6, 0, 0)} is not an exceptional face. Let us notice that fS2

is an
isolated singularity, so f is a semi-weighted homogeneous singularity.

A face S ∈ Γn−1(f) is an exceptional face for f if there exists i ∈ {1, . . . , n} such that S is
an exceptional face for f with respect to the axis OXi. Denote by Ef the set of all exceptional
faces for f. We call a face S ∈ Γn−1(f) unexceptional for f if S 6∈ Ef .

A singularity f is convenient (resp. nearly convenient) if its Newton diagram has nonempty
intersection with every coordinate axis (resp. its distance to every coordinate axis doesn’t exceed
1).

For every (n− 1)-dimensional compact face S ∈ Γ(f) we shall denote by x1(S), . . . , xn(S) the
coordinates of intersection of the hyperplane determined by the face S with the coordinate axes
OX1, . . . , OXn. We put m(S) := max{x1(S), x2(S), . . . , xn(S)}. It is easy to see that

(1) xi(S) =
l(u,Γ+(f))

ui
, i = 1, . . . , n,

where u is a primitive vector of S.

3. Main results

An interesting problem concerning the Łojasiewicz exponent is to compute £0(f) for nonde-
generate isolated singularities f in terms of the Newton diagram Γ+(f). In this paper we propose
the following conjecture.
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Conjecture. Let f : (Cn, 0) −→ (C, 0) be an isolated nondegenerate singularity. If Γn−1(f) \
Ef 6= ∅, then

(2) £0(f) = max
S∈Γn−1(f)\Ef

m(S)− 1.

There are some results that confirm our conjecture:

• Lenarcik [L] improved a bound for £0(f) obtained by Lichtin [Lt] and proved formula
(2) for n = 2.

• The third-named author proved in [O2] the inequality

(3) £0(f) ≤ max
S∈Γn−1(f)\Ef

m(S)− 1

for n = 3.
• For weighted homogeneous singularities the Conjecture is true [KOP].
• Fukui [F] proved a weaker bound for £0(f) for any n ≥ 2. His result was improved in

[O1, O2]. Abderrahmane [A] gave another result of this type.
The main result of this note is the proof of the Conjecture in the case of nondegenerate surface

singularities with one unexceptional face.

Theorem 3.1. Let f :
(
C3, 0

)
−→ (C, 0) be an isolated nondegenerate singularity such that

#(Γ2(f) \ Ef ) = 1. Then
£0(f) = m(S)− 1,

where S is the unique unexceptional face for f .

Example 3.2. The isolated singularity in Example 2.1 satisfies the assumptions of the above
theorem. We easily check that £0(f) = m(S2)− 1 = 5.

The proof of Theorem 3.1 is based on the following formula for the Łojasiewicz exponent of
a semi-weighted homogeneous singularity.

Theorem 3.3. Let f :
(
C3, 0

)
−→ (C, 0) be a semi-weighted homogeneous singularity. Then

£0(f) = £0(fS),

where S is a face of Γ(f) such that fS is an isolated singularity.

To calculate £0(fS) one can use the main result of [KOP].

Remark 3.4. Theorem 3.3 is also true for n = 2 (one can prove it using Cor. 4 in [KOP]). It
is an open question if £0(fS) = £0(f) for n > 3.

4. Proofs of the main results

First we prove an auxiliary inequality (see Cor. 4.8 in [BE] for another proof) for any dimen-
sion.

Proposition 4.1. Let f : (Cn, 0) −→ (C, 0) be a semi-weighted homogeneous singularity and let
S ∈ Γ(f) be a face such that fS is an isolated singularity. Then

(4) £0(fS) ≤ £0(f).

Proof. Let v = (v1, . . . , vn) be a primitive vector of S such that vi ∈ N+. We expand f in the
form

f = f [d] + f [d+1] + . . . , f [d] 6= 0,
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where f [i] are weighted homogeneous polynomials of type (v1, . . . , vn), degv f
[i] = i, i = d, d +

1, . . . . Of course f [d] = fS . Take the following family of singularities

ft := f(z1t
v1 , . . . , znt

vn)/td, t ∈ C \ {0}

and f0 := f [d]. Notice that

ft = f [d] + tf [d+1] + t2f [d+2] + . . . , t ∈ C.

The family (ft) has the following properties:
• (ft) is a holomorphic family with respect to t,
• ft are semi-weighted homogeneous singularities,
• µ0(ft) = µ0(f [d]) for t ∈ C ([AGV], Thm. in Section 12.2), where µ0(f) is the Milnor

number of a singularity f,
• f0 = fS .

By the semicontinuity of the Łojasiewicz exponent in holomorphic µ-constant families of isolated
singularities [T, P3] we obtain

£0(f0) ≤ £0(ft)

for t sufficiently close to 0. On the other hand £0(ft) = £0(f) for t 6= 0, because

ft = α · (f ◦ L),

where α ∈ C \ {0} and L is a linear change of coordinates in Cn. Hence for any sufficiently small
t 6= 0 we have

£0(fS) = £0(f0) ≤ £0(ft) = £0(f).

�

Now, we are ready to prove Theorem 3.3.
Proof of Theorem 3.3. Let L ⊂ R3 : α1/w1 + α2/w2 + α3/w3 = 1 be a supporting

plane to Γ+(f) along the face S (if S is 2-dimensional then L and w = (w1, w2, w3) are uniquely
determined). Since supp(fS) ⊂ L, fS is a weighted homogeneous polynomial of type (w1, w2, w3).
Write f = fS + f ′, where all monomials appearing in the Taylor expansion of f ′ lie above the
plane L. Now, by ([KOP], Thm. 3) we get

(5) £0(fS) = min
( 3

max
i=1

wi − 1,

3∏
i=1

(wi − 1)
)
.

Using ([P2], Prop. 2.2) we obtain £0(f) ≤ max3
i=1 wi − 1. By ([P1], Thm. 1), ([AGV], Thm. in

Section 12.2) and the Milnor-Orlik formula [MO] we get £0(f) ≤ µ0(f) = µ0(fS) =
∏3
i=1(wi−1).

Consequently

(6) £0(f) ≤ min
( 3

max
i=1

wi − 1,

3∏
i=1

(wi − 1)
)

On the other hand by Proposition 4.1 we get

(7) £0(fS) ≤ £0(f)

By (5), (6), (7) we obtain the assertion of the theorem. �

To prove Theorem 3.1 we give some lemmas and properties.

Property 4.2. Every isolated singularity f : (Cn, 0) −→ (C, 0) is nearly convenient.
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Proof. It suffices to show that for every i = 1, 2, . . . , n there exists j ∈ {1, 2, . . . , n} and k ≥ 1
such that monomial zjzki appears in the Taylor expansion of f with a non-zero coefficient.
Indeed, suppose to the contrary that for some i ∈ {1, 2, . . . , n} no monomial zjzki appears in
the expansion of f for every j ∈ {1, 2, . . . , n} and k ≥ 1. Then one can easily check that
f ′zj (0, . . . , 0, zi, 0, . . . , 0) ≡ 0, j = 1, . . . , n, which is impossible since ∇f has an isolated zero at
0. �

For a series φ ∈ C{t}, φ 6= 0, by infoφ (resp. incoφ) we mean the initial form of φ (resp. the
non-zero coefficient of infoφ).

Lemma 4.3. Let f : (Cn, 0) −→ (C, 0) , n ≥ 3, be a singularity and ∇f ◦ φ = 0 for some
φ = (φ1, . . . , φn) ∈ C{t}n, φ(0) = 0, φ1, . . . , φk 6= 0, φk+1 = . . . = φn = 0, k ≥ 2, and
f(z1, . . . , zk, 0, . . . , 0) 6≡ 0. Then there exists S ∈ Γ(f) on which f is degenerate.

Proof. We can represent f in the form

f(z1, . . . , zn) = g(z1, . . . , zk) + zk+1hk+1(z1, . . . , zn) + . . .+ znhn(z1, . . . , zn)

By the assumption we get g 6= 0, g(0) = 0, ∇g(φ1, . . . , φk) = 0. By [O2, Cor. 2.4] there exists
S ∈ Γ(g), such that (ordφi)

k
i=1 is a primitive vector of S and

(8) ∇gS(infoφ1, . . . , infoφk) = 0.

By [O2, Property 2.10] we get S ∈ Γ(f). Of course fS = gS . Therefore we have

(fS)′zi(infoφ1(t), . . . , infoφk(t), t, . . . , t) ≡ 0, i = k + 1, . . . , n

and by (8) we get

(fS)′zi(infoφ1(t), . . . , infoφk(t), t, . . . , t) ≡ 0, i = 1, . . . , k.

Hence
(fS)′zi(incoφ1, . . . , incoφk, 1, . . . , 1) = 0, i = 1, . . . , n,

thus f is degenerate on S. �

Proposition 4.4. Let f :
(
C3, 0

)
−→ (C, 0) be a nondegenerate nearly convenient singularity

such that Γ+(f) ∩OXiXj 6= ∅ for i 6= j. Then f is an isolated singularity.

Proof. Suppose to the contrary that f is not an isolated singularity. Then there exists a non-zero
parametization φ such that ∇f ◦ φ = 0. It is not possible for φ to have two coordinates equal to
zero, because if for example φ = (0, 0, φ3), φ3 6= 0, then by Property 4.2 we get that monomial
ziz

k
3 appears in the Taylor expansion of f with a non-zero coefficient for some i ∈ {1, 2, 3} and

k ≥ 1. Then one can check that info f ′zi(0, 0, φ3(t)) = (infoφ3(t))k 6= 0. Hence f ′zi(0, 0, φ3) 6= 0,
which contradicts the hypothesis ∇f ◦φ = 0. Therefore we may assume that φ = (φ1, φ2, φ3) and
φi 6= 0, φj 6= 0 for some i 6= j. Without loss of generality we may assume that φ1 6= 0, φ2 6= 0.
Then by Lemma 4.3 we have that f is degenerate on some face S ∈ Γ(f), which contradicts the
assumption on f. �

Lemma 4.5. Let f :
(
C3, 0

)
−→ (C, 0) be a singularity. Suppose there exists an unexceptional

face S for f such that fS is an isolated singularity. Put wi := xi(S) for i = 1, 2, 3. Then

(9) m(S)− 1 = min
( 3

max
i=1

wi − 1,

3∏
i=1

(wi − 1)
)
.
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Proof. Since fS is an isolated singularity, therefore ord fS ≥ 2 and hence xi(S) > 1, i = 1, 2, 3.
We consider two cases.

If wi ≥ 2, i = 1, 2, 3, then
3∏
i=1

(wi − 1) ≥ 3
max
i=1

wi − 1 =
3

max
i=1

xi(S)− 1 = m(S)− 1,

which gives (9).
If wi < 2 for some i ∈ {1, 2, 3}, say i = 1, then 1 < x1(S) < 2 and by Property 4.2

there exists a monomial z1z2 or z1z3, say z1z2, appearing in the Taylor expansion of f with
a non-zero coefficient. Then (1, 1, 0) lies on the plane α1/w1 + α2/w2 + α3/w3 = 1. Hence
(w1 − 1)(w2 − 1) = 1 and thus

∏3
i=1(wi − 1) = w3 − 1. Since S is an unexceptional face, there

exists a point (1, 0, k) ∈ supp(fS), k ≥ 1. Therefore x3(S) ≥ x2(S) and obviously x2(S) > 2.
Hence m(S) = x3(S) = w3. �

Proof of Theorem 3.1. Using the Lemma about the choice of an unexceptional face
(Lemma 3.1 in [O2]) one can check that fS is nearly convenient and Γ+(fS) ∩ OXiXj 6= ∅ for
i 6= j. Then by Proposition 4.4 we get that fS has an isolated singularity. Therefore by Theorem
3.3 and by Theorem 3 in [KOP] we get

£0(f) = £0(fS) = min
( 3

max
i=1

wi − 1,

3∏
i=1

(wi − 1)
)
,

where wi = xi(S), i = 1, 2, 3. Since S is an unexceptional face, by Lemma 4.5 we have

m(S)− 1 = min
( 3

max
i=1

wi − 1,

3∏
i=1

(wi − 1)
)
.

Summing up we get
£0(f) = m(S)− 1.

�
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PROPAGATIONS FROM A SPACE CURVE IN THREE SPACE WITH
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Abstract. Generic singularities of rays emanating from a space curve in R3 in all directions
with the rate determined by an indicatrix (independent of the point in R3) defined by a surface
are classified. Similarly rays emanating from surface defined by an indicatrix given by a curve
are also considered. Some applications to control theory are indicated.

1. Introduction

In this paper we solve two problems on the classification of local geometrical singularities that
are related to control theory. We use some techniques from the singularity theory of caustics and
wave fronts to study singularities of exponential mappings in a class of control problems which
correspond to special integrable Hamiltonian systems with straight lines as extremals.

The first problem concerns a control system on a three-dimensional affine space with points
q ∈ R3. We identify the tangent space TqR3 with R3 itself. At each point q we choose an
indicatrix Iq of admissible velocities q̇ = ∂q

∂µ of motion which we assume is independent of the
point q itself. Assume that this set is parametrised locally by a regular mapping (x, y) 7→ r2(x, y)
whose image is a surface M . We shall now write M in place of Iq.

An admissible motion is a smooth curve γ(µ) ∈ R3, parametrised by a segment of the (affine)
time axis µ, such that the velocity at each point γ̇ belongs to the set of admissible velocities M .

Let qb(µ) be the trajectory of an admissible motion of an initial point b ∈ N , issuing at µ = 0
from an initial set N , where N is a space curve which is a submanifold in R3.

For a fixed value µ = µ0 let Cb be the Banach manifold of all admissible trajectories defined
on the segment [0, µ0] from an initial point b ∈ N .

Consider the endpoint mapping Eb : Cb → R3 which associates the endpoint qb(µ0) to a
trajectory qb(µ).

A corollary of the Pontryagin maximum principle, see [1, 9], states that critical values of E
for all µ0 trace extremal trajectories. In our case these are projections to R3 of solutions of the
associated Hamiltonian canonical equations on the cotangent bundle

q̇ =
∂H∗(p, q)

∂p
, ṗ = −∂H∗(p, q)

∂q
.

Here the Hamiltonian function H∗(p, q) on the cotangent bundle T ∗R3 is the restriction (mul-
tivalued in general) to the subset {(p, q) | ∃(x, y) : ∂H(p,q,x,y)

∂x = ∂H(p,q,x,y)
∂y = 0} of the function

H = 〈p, r2(x, y)〉, provided that the initial conditions (p0, q0) satisfy the relation 〈p0, v〉 = 0
for each vector v tangent to N at b. The angle brackets 〈−,−〉 denote the standard pairing of
vectors R3 and covectors p of the dual space (R3)∧.
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In our case extremals are straight lines (parametrised by µ ∈ R) b + µv, b ∈ N, v ∈ M , such
that there is a covector p0, which annihilates both tangent spaces TbN and TvM . Points on
these lines with fixed µ form a wave front Eµ of the Legendre variety Lµ, which is the image of
the Legendre submanifold L0 of the initial conditions under the Hamiltonian flow.

The envelope B(N,M) of these extremals is the union of singular points of sets of critical
values of Eb for all b and µ0.

Rephrasing the above in physical terms, consider an initial space curve in three space which
emits rays from every point, and such that the speed of a ray at any point is completely deter-
mined by its direction. The boundary of the set of attainability of the rays after a given time µ
will be the wave front Eµ. The caustics or focal sets correspond to the singularities of this set
of attainability.

In this first problem as described above we consider an initial space curve with a velocity
indicatrix defined by a surface. The classification where the indicatrix was also a space curve
(independent of the point in R3) was given in [8]. The case of an initial surface and a velocity
indicatrix described by a surface was studied in [3]. For completeness we also consider in the
present paper a second problem interchanging the surface and the curve, i.e. the indicatrix is
defined by a space curve and the initial manifold is a surface.

At present this second problem seems to have fewer applications than the first despite the
fact that away from the initial surface the classification coincides with that of the first problem.

In the first problem the dimension of the indicatrix M is one less than the dimension of
the ambient space R3, so the wave fronts Eµ form a family of equidistants in Finsler geometry.
However as the dimension of the indicatrix in the second problem is not one less than the ambient
space the wave fronts do not form a family of equidistants in Finsler geometry.

In this paper we classify the possible generic singularities of the envelopes B(M,N) and of
the family of wave fronts in both problems. We also classify the generic singularities near the
initial surface itself in the second problem.

The method of classification of the singularities is similar to that of a related problem in [7].
In that paper the wave fronts were taken to be the closure of an affine ratio of pairs of points, one
from a curve and the other from a surface that share parallel tangent planes. Here we consider
in the first problem the surface, and then in the second problem the curve, to be at infinity. The
computations were largely omitted from [7] and since in the present context they are slightly
easier to write down we take this opportunity to include more details.

1.1. Main definitions and results. Let M be a smooth surface and let N be a smooth space
curve both embedded in affine three space.

Consider a pair a, b of points a ∈M and b ∈ N such that the plane tangent to the surface M
at a is parallel to some plane tangent to N at b. The pair a, b is called a parallel pair and the
straight line through a, b is called a chord. The envelope of the family of all chords is called the
Minkowski set of M and N . In this paper we shall classify its generic singularities.

The chord l(a, b) joining the parallel pair is defined by

l(a, b) = {q ∈ R3 | q = µa+ (1− µ)b, µ ∈ R}.(1)

The following definitions are valid for the propagating from the space curve case but similar
definitions, by replacing µ with 1 − µ = λ hold in the propagating from the surface case. The
points which correspond to parallel tangent plane is the furthest point of the wave front from
the curve. The wave front Eµ is the boundary of where the rays have reached at time µ. In
the previous papers [3, 4, 7] barycentric coordinates were introduced on to the chords. Here
however, we omit λ and just use the coordinate µ where µ = 0 corresponds to the point on the
curve N and µ =∞ corresponds to the point on the surface M .
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A germ of the affine µ-equidistant Eµ of the pair (M,N) is the set of points q ∈ R3 such that
q = µa + b for given µ ∈ R and for all parallel pairs (a, b) close to (a0, b0). Note that E0 is the
germ of N at b0.

The space R4
e = R × R3 with coordinate µ ∈ R (affine time), on the first factor is called the

extended affine space. Denote by
ρ : (µ, q) 7→ µ the projection of R4

e to the first factor and by π : (µ, q) 7→ q the projection to
the second factor.

The affine extended wave frontW (M,N) of the pairM,N is the union of all affine equidistants
each embedded into its own slice of the extended affine space:

W (M,N) = {(µ,Eµ)} ⊂ R4
e.

The bifurcation set B(M,N) of a family of affine equidistants (or of the family of chords)
of the pair (M,N) is the image under π of the locus of the critical points of the restriction
πr = π|W (M,N). A point is critical if πr at this point fails to be a regular projection of a smooth
submanifold. In general B(M,N) consists of two components: the caustic Σ is the projection
of the singular locus of the extended wave front W (M,N) and the criminant 4 is the (closure
of the) image under πr of the set of regular points of W (M,N) which are the critical points of
the projection π restricted to the regular part of W (M,N). The caustic consists of the singular
points of the momentary equidistants Eµ while the criminant is the envelope of the family of
regular parts of the momentary equidistants. Besides being swept out by the momentary equidis-
tants, the affine extended wave front is swept out by the liftings to R3+1

e of chords. Each of them
has a regular projection to the configuration space R3. Hence the bifurcation set B(M,N) is
essentially the envelope of the family of chords.

In the generic setting the distinguished chords split into three distinct sub-cases: In the first
(transversal) case the base points a0 ∈ M and b0 ∈ N are distinct and the chord through them
is transversal to both M and N . In the second (tangential) case the base points a0 ∈ M and
b0 ∈ N are distinct but the tangent line to N lies in the tangent plane to M . A subcase of the
tangential case called the supertangential case occurs when the line tangent to the curve N at b
contains the point a, i.e. the chord and the tangent line are the same.

Definition 1.1. Two germs of families F1 and F2 in parameters µ, q are called space-time
contact equivalent if there exists a nonzero function φ(z, µ, q) and diffeomorphism θ̂ : (z, µ, q) 7→
(Z(z, µ, q), P (µ, q), Q(q)) such that F1 = φF2 ◦ θ̂.

Notice that the diffeomorphism θ̂ : (µ, q) 7→ (P (µ, q), Q(q)) of the total parameter space R3+1

maps the extended wave front of the first family to the extended wave front of the second family
and the diffeomorphism θ̂ : q 7→ Q(q) of the q-parameter space R3 maps the bifurcation set of
the first family to the bifurcation set of the second family.

Definition 1.2. Two germs of families F1 and F2 are called time-space contact equivalent if there
exists a nonzero function φ(z, µ, q) and diffeomorphism θ̃ : (z, µ, q) 7→ (Z(z, µ, q), P (µ), Q(µ, q))

such that F1 = φF2 ◦ θ̃.

The diffeomorphism θ̃ : (µ, q) 7→ (P (µ), Q(µ, q)) preserves the fibration of the µ, q space
into fibres parallel to the q space. If two families are time-space contact equivalent then their
respective families of momentary wave fronts are diffeomorphic.
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The main results are as follows: The first theorem which concerns the wave fronts follows
immediately from the results of [7].

Theorem 1.3. The families of wave fronts and their bifurcations in the propagating from the
curve and in the propagating from the surface cases are diffeomorphic to those in the affine ratio
case [7]. In fact the generating functions are time-space contact equivalent.

The following theorems all concern the projection π and are related to the caustics. The
theorems are the complete classification of generic singularities in the various settings. The list
is the same as in [7]. Unlike theorem 1.3 they do not follow immediately from the previous
papers and require separate calculation.

Theorem 1.4. In the propagating from the curve transversal case outside M and N the germ
at any point of the envelope of the family of chords for generic M and N is diffeomorphic to
one of the standard caustics of Ak type with k = 2, 3 or 4 (regular surface, cuspidal edge or
swallowtail).

Theorem 1.5. In the propagating from the curve tangential case the germ at any point outside
M and N of the envelope of the family of chords for generic N and M is diffeomorphic to one
of the standard caustics of the boundary singularities of the types B2, B3, B4, C3, C4 or F4.
If moreover the tangent line to the curve coincides with the chord (supertangential case) then
generically only B2 and C3 occur.

Theorem 1.6. In the propagating from the surface transversal case outside M and N the germ
at any point of the envelope of the family of chords for generic M and N is diffeomorphic to
one of the standard caustics of Ak type with k = 2, 3 or 4 (regular surface, cuspidal edge or
swallowtail).

Theorem 1.7. In the propagating from the surface transversal case the envelope of the family of
chords transversally intersects the surface M when λ = 0 generically at either its smooth points
or at points of a cuspidal ridge.

Theorem 1.8. In the propagating from the surface tangential setting the germ at any point
outside M and N of the envelope of the family of chords for generic N and M is diffeomorphic
to one of the standard caustics of the boundary singularities of the types B2, B3, B4, C3, C4

or F4. If moreover the tangent line to the curve coincides with the chord (supertangential case)
then generically only B2 and C3 occur.

1.2. Generating families. Now consider the following generating family F1 in the propagating
from the curve case. The family has variables n ∈ (R3)∧ \ {0}, t and (x, y), and parameters
(µ, q) ∈ R× R3;

F1(n, t, x, y, µ, q) = 〈r1(t) + µr2(x, y)− q, n〉(2)

where r1(t) is the embedding with the image N , and r2(x, y) is the embedding with image M .
In the propagating from the surface case we use the generating family

F2(n, t, x, y, λ, q) = 〈λr1(t) + r2(x, y)− q, n〉(3)

with the same variables as F1 but parameters (λ, q) ∈ R× R3.
In the paper [7] the affine ratio case was studied and the generic bifurcations of the wave

fronts were classified. There the generating family used was

F̃(n, t, x, y, µ, q) = 〈(1− µ)r1(t) + µr2(x, y)− q, n〉.(4)
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We now show that the two family germs F̃ and F1 are time-space equivalent (see theorem
1.3) and hence the classification of their generic wave fronts and their bifurcations are in fact
the same.

Proof of theorem 1.3.
Assuming that µ 6= 1 we can divide the family (4) by (1− µ) to give

F̂(n, t, x, y, µ, q) = 〈r1(t) +
µ

1− µ
r2(x, y)− q

1− µ
, n〉.

This is time-space contact equivalent to

F̂1 = 〈r1(t) + µ̃r2(x, y)− q̃, n〉

with µ̃ = µ
1−µ and q̃ = − q

1−µ . �
If µ = 1 then this is equivalent to the present case at infinity and so does not appear in this

“non-projective" setting. Similar considerations show that the family F̃ is time-space contact
equivalent to the family F2.

2. Propagating from the curve in the transversal setting

In the transversal setting up to an appropriate affine transformation of R3 we can always
assume that in some coordinate system (x, y, z) the base parallel pair a0, b0 coincides with the
pair of points (0, 0,−1), (0, 0, 0), the tangent plane to the surface M at a0 is parallel to the
(x, y)-coordinate plane and the tangent line to the curve N at b0 coincides with the x-axis.

In these coordinates the surfaceM in the neighbourhood of a0 is the graphM = {(x, y, z)|z =
f(x, y) − 1) of the function f with vanishing 1-jet. Let f(x, y) =

∑
i+j≥2 fijx

iyj be the Taylor
decomposition of the germ of f at the origin. Define the curve N to be the set {(t, α(t), β(t))}
with the functions α(t) = α2t

2 + α3t
3 + ... and β(t) = β2t

2 + β3t
3 + ... starting with at least

quadratic terms in t.

Proposition 2.1. The germ of the family F1 at a point corresponding to a point on the base
chord is stably-equivalent to the product of the family germ Φ(t, µ, q) = β(t) + µ[f(x̂, ŷ)− 1]− q3

at the subset Ŝ0 = {t = 0, q1 = q2 = 0} with a nonzero factor. Here we use the substitution
x̂ = q1−t

µ , ŷ = q2−α(t)
µ .

Proof. Writing the family F1 in the coordinate form we get

F1 = An1 +Bn2 + Cn3

where
A = t+ µx− q1

B = α(t) + µy − q2

and
C = β(t) + µ[f(x, y)− 1]− q3

For µ 6= 0 the functions A and B are regular and we can choose A,B as the coordinate
functions instead of x and y. In particular we can write x = A+q1−t

µ and y = B+q2−α(t)
µ .

So in the new coordinates we have F1 = An1 +Bn2 +C(A,B, t, µ, q)n3. The function C does
not depend on n1 and n2 and the Hadamard lemma implies C(A,B, t, µ, q) = C(0, 0, µ, t, q) +
Aϕ1 +Bϕ2, where ϕ1 and ϕ2 are smooth functions in A,B, t, µ and q which vanish at the origin.

Now the function F1 takes the form F1 = A(n1 +ϕ1n3)+B(n2 +ϕ2n3)+C(0, 0, t, µ, q) where
the first two terms represent a non degenerate quadratic form in the independent variables
A, (n1 + ϕ1n3), B and (n2 + ϕ2n3) in the vicinity of the point on the base chord.
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Therefore, the function F1 is stably-equivalent to the function Φ = C(0, 0, t, µ, q) being the
restriction of the function C to the subspace A = B = 0. So to study the envelope of chords and
the families of wave fronts we can study the family germ

Φ(t, µ, q) = β(t) + µ

[
f

(
q1 − t
µ

,
q2 − α(t)

µ

)
− 1

]
− q3 �.

For the family germ Φ at the point m0 = (0, µ0, 0, 0, q3 = −µ0), on the base chord l(a0, b0)
denote by g(t) = Φ(t, µ0, 0, 0, q3) at t the respective organising centre function.

To determine the singularity type of the generating family germ Φ at the point m0 and the re-
spective versality conditions denote by Φk(µ, q) the coefficients at tk in the Taylor decomposition
of Φ with respect to t at the origin.

Φ = Φ0 + Φ1t+ Φ2t
2 + Φ3t

3 + Φ4t
4 + Φ5t

5 + ...

The first few formulas where terms of second order or greater in q1 and q2 are denoted by
dots are as follows:

Φ0 = −µ− q3

Φ1 =
1

µ
(−2f20q1 + f11q2) + ...

Φ2 = β2 +
1

µ
(f20 + α2f11q1 − 2α2f02q2) +

1

µ2
(3f30q1 + f21q2) + ...

Φ3 = β3 +
1

µ
(α2f11 − α3f11q1 − 2α3f02q2) +

1

µ2
(−f30 + 2α2f21q1 + 2α2f12q2)

+
1

µ3
(−4f40q1 − f31q2) + ...

Setting in these formulas q1 = q2 = 0 we get the expressions of the Taylor coefficients of the
organising centre gk = Φk|q1=q2=0 at a chord point m0.

2.1. Normal forms of the Minkowski set. The following proposition together with explicit
calculations from the normal forms prove theorem 1.4.

Proposition 2.2. For a generic pair of M and N at any point q of a base chord (a0, b0) except
the point b0 itself (µ = 0) the germ of the respective generating family Φ is space-time contact
equivalent to one of the standard versal deformations in parameters (µ, q) ∈ R × R3 of the
function germs at the origin in the variable t of the type Ak for k = 1, . . . , 4 as follows:

A1 : Φ = t2 + µ; A2 : Φ = t3 + q1t+ µ;

A3 : Φ = t4 + q2t
2 + q1t+ µ; A4 : Φ = t5 + q3t

3 + q2t
2 + q1t+ µ.

2.2. Recognition of transversal singularities. If β2 is nonzero, that is the base tangent
plane is not the osculating plane to the curve N then we always get a unique A2 singularity
at the point µc = − f20β2

. If however β2 = 0 then no caustic point occurs on the chord unless
additionally f20 = 0 in which case the whole chord is of type A2 and therefore belongs to the
caustic. These are isolated chords and the situation when these occur at f20 = β2 = 0 is called
the flattening case.

If the condition β3 =
f30β

2
2

f2
20

+ α2f11β2

f20
holds then the caustic point at µc will be of the type

A3. If in addition to the condition for an A3 singularity the condition β4 =
f40β

3
2

f20

3

+ α2f21β2
2

f202 +
α3f11β2

f20
+ α2

2f02β2

f20
also holds, together with g5 being nonzero, then the caustic point at µc will

be of the type A4. The singularities of this type occur at isolated points due to genericity.



PROPAGATIONS FROM A SPACE CURVE IN THREE SPACE WITH INDICATRIX A SURFACE 137

In the flattening case f20 = β2 = 0, in addition to the whole chord being of type A2, there

also exist two points where A3 singularities occur at µ =
−f11α2±

√
f2
11α

2
2+4β3f30

2β3
.

Proof of proposition 2.2
The proof of the proposition uses the property that ∂Φ

∂λ 6= 0 which holds in the transversal
case. The stability with respect to space-time contact equivalence of the germ Φ with this
property coincides with its stability with respect to standard contact equivalence. Therefore to
show stability with respect to space-time contact equivalence we proceed by proving that each
singularity in turn is generically versal with respect to standard contact equivalence, (see [2]).

Let Φ : R×R×R3 7→ R be an unfolding of a function g(t), t ∈ R with parameters µ, q ∈ R×R3

and let g(t) have an Ak singularity at the origin.
Denote by δij the coefficients of the k-jet of Φ at the origin where

δi1 =
∂i+1Φ

∂ti∂q3
, δi2 =

∂i+1Φ

∂ti∂µ
, δi3 =

∂i+1Φ

∂ti∂q1
and δi4 =

∂i+1Φ

∂ti∂q2
.

The jet matrix for the family of functions Φ shall be denoted M4 and let Mk with k ≤ 4 be
the matrix consisting of the first k rows of M4. We only consider k ≤ 4 due to genericity.

The matrix M4 = (δij) up to a factor of the rows for µ nonzero is given by

M4 =


−1 −1 0 0
0 0 −2f20 −f11

0 δ32 δ33 δ34

0 δ42 δ43 δ44


where

δ32 = −f20, δ33 = −α2f11µ+ 3f30, δ34 = −2α2f02µ+ f21,

δ42 = −α2f11µ+ 2f30, δ43 = −α3f11µ
2 + 2α2f21µ− 4f40, δ44 = −2α3f02µ

2 + 2α2f12µ− f31.

Then function Φ is right-versal if and only if the matrix Mk has rank k. Notice that the
conditions g1 = 0, ..., gk = 0 define a Whitney stratification in the jet space of the embeddings.
In fact each of these conditions outside λ being zero defines a regular hyper-surface in the space
of germs and moreover those hyper-surfaces are mutually transversal since each equation gi = 0
involves only one variable βi and can be solved for it in terms of coefficients fjl and αs.

Versality of an A1 singularity
The proof is immediate because the matrix

M1 =
(
−1 1 0 0

)
always has the maximal rank of 1. �

Versality of an A2 singularity
The versality of the A2 singularities is determined by whether the matrix M2 has maximal rank
2 where

M2 =

(
−1 1 0 0
0 0 −2f20 −f11

)
.

The matrixM2 has non-maximal rank only if both f11 and f20 vanish. If f20 vanishes and β2 6= 0
then recall the caustic occurs at µ = 0 on the curve itself. If f20 = β2 = 0 then the whole chord
belongs to the caustic. In this case the vanishing of β2, f20 and f11 is non-generic. Therefore,
away from the curve and surface, A2 singular points at µc are versal. �
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Versality of an A3 singularity
If f20 6= 0 then clearly the minor consisting of the first three columns of M3 as nonzero determi-
nant. In the flattening case f20 = β2 = 0 the derivative matrix M3 takes the form

M3 =

 −1 1 0 0
0 0 0 f11

0 0 −µα2f11 + 3f30 −2µα2f02 + f21


and recall that the A3 singularities occur at µ =

−α2f11±
√
α2

2f
2
11−4β3f30

2β3
. For this value of µ the

determinant of both of the minors of M3 vanishes if either f11 = 0 or β3 = − 4f11
2α2

2

9f30
. Neither

of these conditions holds generically,so generically A3 singularities are versal.
Versality of an A4 singularity.
An A4 singularity occurs on the base chord at the point m0 when g2 = g3 = 0 and

g4 = β4 +
1

µ
(α3f11 + α2

2f02)− 1

µ2
α2f21 +

1

µ3
f40 = 0,

but g5 6= 0. Notice also that A4 cannot happen in the flattening case due to genericity.
The versality of A4 singularities holds if the determinant

det(M4) = 2f20[δ32δ44 − δ34δ42]− f11[δ32δ43 − δ33δ42]

is nonzero. Since generically A4 singularities cannot occur in the flattening case we assume that
β2 and f20 are nonzero. The condition that the determinant is zero can be solved for f31 as a
function of the other terms.

The codimension of the stratum which corresponds to an A4 singularity together with the
vanishing of det(M4) is greater than 3 so A4 singularities are generically versal. This completes
the proof of proposition 2.2. Explicit calculations from the normal forms completes the proof of
theorem 1.4. �

2.3. Propagating from the space curve in the tangential setting. In the tangential case
we use the same family as was used in the transversal case

F1(n, t, x, y, µ, q) = 〈r1(t) + µr2(x, y)− q, n〉.

Here we assume that the base chord lies in the plane tangent to M at a0 (tangential setting).
If the base chord and the tangent line to the curve N at b0 are not collinear then in some
coordinate system (x, y, z) the base points a0, b0 coincide with the points (0, 1, 0), (0, 0, 0), the
curve N at the origin is tangent to the x-axis and the tangent plane to the surface M coincides
with the (x, y)-coordinate plane. Now the surface M is defined by the embedding

r2 : U → R3, r2(x, y) = (x, y + 1, f(x, y)), (x, y) ∈ U ⊂ R2

where the function f(x, y) has zero 1-jet, and the curve N is defined by the embedding

r1 : V → R3, r1 : t 7→ (t, α(t), β(t)), t ∈ V ⊂ R

of some neighbourhood V of the origin in R where α(t) and β(t) start with second order terms.
After an appropriate stabilisation the initial generating family germ F1 at the point µ =

µ0, t = 0, q = 0 reduces to the form

Φ(t, ε, q) = β(t) + (µ0 − ε)f
(
q1 − t
µ0 − ε

,
q̃2 − α(t)− ε

µ0 − ε

)
− q3(5)

where ε = µ0 − µ varies in the vicinity of the origin and q̃2 = q2 − µ0.
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Consider the organising centre g(t, ε) = Φ|q1=q̃2=q3=0 of the family and decompose it as
g(t, ε) =

∑
i+j≥2 aijt

iεj where the first few terms are:

a20 = β2 +
1

µ0
f20, a11 = − 1

µ0
f11, a02 =

1

µ0
f02,

a30 = β3 +
1

µ0
α2f11 −

1

µ2
0

f30,

a21 = − 2

µ0
α2f02 +

1

µ2
0

(f20 + f21),

The space-time contact equivalence of the families of type Φ corresponds to fibred contact
equivalence of the respective organising centres g(t, ε) : diffeomorphisms of the form (t, ε) →
(t̂(t, ε), ε̂(ε)) and multiplications by nonzero functions act on g.

The well-known Arnold-Goryunov low dimensional fibred contact classification (which co-
incides with simple boundary classes) provides all generic space-time contact stable families
depending on three parameters (here k = 2, 3 or 4):

Bk : ±t2 + εk + qk−2ε
k−2 + ...+ q3,

C2 ≈ B2,

C3 : t3 + tε+ q1ε+ q3,(6)
C3 : t4 + tε+ q2t

2 + q1ε+ q3,

F4 : t3 + ε2 + q2tε+ q1t+ q3.

The proof of theorem 1.5 consists of checking the versality and genericity conditions for germs
of the family Φ.

Singularities of the type Bk occur a20 6= 0. When the quadratic form of g(t, ε) is non-
degenerate then the singularity of type B2 occurs. If the quadratic form is degenerate, that is
4a20a02 − a2

11 = 0, the singularity is of type B3. This occurs when µ0 =
f2
11−4f20f02

4β2f02
so every

chord in the tangential setting has a singularity of type B3 (which may occur on the curve or at
infinity). The B3 singularity can become more degenerate at isolated points to form the B4 type.
This condition can be solved for β3 as a function of the other terms. Any further degenerations
are excluded due to genericity.

The C3 singularity occurs when a20 = 0 and both a20 6= 0 and a11 6= 0. This happens at a
single point on the chord when µ0 = − f20β2

. This can become more degenerate if a30 = 0 and
a40 6= 0 to form the singularity of type C4. The singularity of type F4 belongs to the intersection
of the closures of the B3 and C3 singularities and occurs when µ0 = − f20β2

and f11 = 0. Similar
considerations using slightly different embeddings show that in the supertangential case, away
from the curve and surface, only singularities of type B2 and C3 occur generically.

3. Propagating from the surface in the transversal setting

We now turn our attention to the case where our initial starting manifold is a surface and
the indicatrix of admissible velocities at each point defined by a space curve. Recall that in this
case we use the generating function

F2(n, t, x, y, λ, q) = 〈λr1(t) + r2(x, y)− q, n〉

where as before r1(t) is the embedding with the image of the space curve N , and r2(x, y) is the
embedding with image the surface M . In this case we choose affine coordinates so that near a
distinguished chord the surface is at the origin and the tangent plane is the (x, y)-coordinate
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plane, and the space curve contains the point (0, 0, 1) and has tangent vector in the direction of
the x-axis.
Proposition 3.1. The family germ F2 at a point corresponding to a point on the base chord is
stably-equivalent to the product of the family germ Φ(t, µ, q) = λ(β(t) + 1) + [f(x̂, ŷ)]− q3 at the
subset Ŝ0 = {t = x = y = 0, q1 = q2 = 0} with a nonzero factor. Here we use the substitution
x̂ = q1 − λt, ŷ = q2 − λα(t).

Proof. Writing the family F2 in the coordinate form we get

F = An1 +Bn2 + Cn3

where

A = λt+ x− q1

B = λα(t) + y − q2

C = λ(β(t) + 1) + f(x, y)− q3

As in the previous case we make an appropriate substitution, this time x = q1 − λt and
y = q2−λα(t), and use the Hadamard lemma to show that this is stably equivalent to the family

Φ(t, λ, q) = λβ(t) + λ+ [f (q1 − λt, q2 − λα(t))]− q3.

Expanding the function Φ as a Taylor decomposition with respect to t at the origin where
Φ = Σ∞n=0Φkt

k, up to linear terms in q1 and q2, has the first few coefficients:

Φ0 = λ− q3

Φ1 = −λ(2f20q1 + f11q2)

Φ2 = λ(β2 − f11α2q1 − 2f02α2q2 + λf20 + 3λf30q1 + f21λq2)

Setting in these formulas q1 = q2 = 0 we get the expressions of the Taylor coefficients of the
organising centre gk = Φk|q1 = q2 = 0 at a chord point m0.

As with the propagating from the space curve case away from the initial starting manifold
an A2 singularity occurs on the chord at λc = −β2

f20
. This becomes more degenerate as an A3

singularity if additionally β3 = β2
2f30
f202 + β2f11α2

f20
and type A4 if also β4 = −λ3f40 + λ2α2f21 −

λα3f11 − λα2
2f02. Notice that these conditions for the singularity to be more degenerate are

the same as those in the propagating from the space curve case. In the flattening case when
f20 = β2 = 0 the whole chord belongs to the caustic and is type A2 everywhere except two points

λ =
α2f11±

√
α2

2f112+4β3f30
2f30

where singularities of type A3 occur.
Consider the derivative matrix given by

M4 =


−1 1 0 0
0 0 −2f20 −f11

0 δ32 δ33 δ34

0 δ42 δ43 δ44


where

δ32 = 2λf20 + β2, δ33 = 3λ2f30 − λα2f11, δ34λ
2f21 − 2λα2f02,

δ42 = −3λ2f30 + 2λα2f11 + β3, δ43 = −4λ3f40 + 2λ2α2f21 − λα3f11,

δ44 = −λ3f31 + 2λ2α2f12 − 2λα3f02.

We can use the same arguments as we used in the propagating from the space curve case to show
that all the generic Ak singularities are versal.
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3.1. Propagating from the surface in the tangential setting. Assume that the base chord
is in the tangential setting, that is it lies in the plane tangent to M at a0 but it is not collinear
with the tangent line to the curve N at b0. In some coordinate system the surface contains the
origin at a0 and the tangent plane at this point is the (x, y)-coordinate plane, the curve passes
through the point (0, 1, 0) at b0 and the tangent line has the same direction as the x-axis. Using
appropriate embeddings r1(t) and r2(x, y) the generating F2 can be expanded as a vector to give

F2 = (x+ λt− q1)n1 + (y + λ(α(t) + 1)− q2)n2 + ((f(x, y) + λβ(t)− q3)n3.

Proposition 3.2. Using the substitution x = q1 − λt, y = q2 − λ(α(t) + 1) the family F2 at the
point λ = λ0, t = 0, q = 0 is stably equivalent to the family

Φ(t, ε, q) = (λ0 + ε)β(t) + f(q1 − (λ0 + ε)t, q̃2 − λ0α(t)− εα(t)− ε).(7)

where λ = (λ0 + ε) varies in the vicinity of the origin and q2 = q̃2 + λ0.

Consider the organising centre g(t, ε) = Φ|q1=q̃2=q3=0 of the family and decompose it as
g(t, ε) =

∑
i+j≥2 aijt

iεj where the first few terms are

a20 = f20λ
2
0 + λ0β2, a11 = f11λ0, a02 = f02,

a30 = λ0β3 + f11λ
2
0α2 − f30λ

3
0,

a21 = β2 + 2f02λ0α2 − f21λ
2
0 + 2f20λ0,

a12 = f11 − f12λ0, a03 = −f03.

The list of generic singularities coincides with the list (6).
The whole of each chord in the tangential setting is of type at B2 except for at most two

points which can be more degenerate. Generically each chord will consist of a B3 singularity
and a C3 singularity. At isolated chords one of these can be more degenerate to form either B4

or C4. Also at isolated chords the B3 and C3 singularities can occur at the same point to give
an F4 singularity.

When the quadratic form is degenerate, that is 4a20a02 − a2
11 = 0, a singularity of type B3

occurs. This happens at λ = 4f02β2

f2
11−4f02f20

. For isolated chords one of these can be more degenerate
giving the singularity of type B4.

This condition can be solved for f03 as a function of the other terms.
Singularities of type C3 occur at λ = − β2

f20
. This can be more degenerate to form a C4

singularity if β3 =
β2
2f30
f2
20

+ β2f11α2

f20
. An F4 singularity will result if both the conditions for a C3

and a B3 singularity occur, namely if λ = − β2

f20
and f11 = 0. Further degenerations are excluded

due to genericity.
Checking the versality and genericity conditions for germs of the family Φ completes the proof

of Theorem 1.8.
Similar considerations using different embeddings show that in the supertangential case, away

from the curve and surface, generically only singularities of type B2 and C3 occur. �

3.2. Propagating from the surface in the transversal case in the vicinity of the sur-
face. Up until now we have assumed that λ is nonzero and have classified the singularities away
from the surface and space curve. In this section we study the generic caustic near the surface
itself, that is when λ is close to zero. We use the standard generating family in the propagating
from the surface case F2 and proposition 3.1 implies the generating family is stably equivalent
to



142 GRAHAM M. REEVE, VLADIMIR M. ZAKALYUKIN

Φ(t, λ, q) = λ(β(t) + 1) + f(q1 − λt, q2 − λα(t))− q3.

This can be written as

Φ = λ

(
f − f0

λ
+ β + 1

)
+ f0 − q3

where f0 = f |q1=q2=0 and f−f0
λ is smooth. Introduce the new parameter q̃3 = −q3 + f0 which

vanishes on the surface, yielding

Φ = λ

(
f − f0

λ
+ β + 1

)
+ q̃3.

Denote by Φ0,Φ1, ... the terms of the power series decomposition in λ of the contents of the
brackets. With terms of order greater than 4 in t or greater than 1 in q1 and q2 denoted by dots
the generating function Φ is written

F = q̃3 + λ
(
Φ0 + ...+ λ(Φ1 + ...) + λ2(Φ2 + ...) + ...

)
(8)

where
Φ0 = 1 + β(t) + (−2f02α(t)− f11t) q2 + (−2f20t− f11α(t)) q1

and
Φ1 = f11tα(t) + f20t

2 + f02α(t)
2
+(

2f12tα(t) + f21t
2 + 3f03α(t)

2
)
q2 +

(
2f21tα(t) + f12α(t)2 + 3f30t

2
)
q1.

Proposition 3.3. The family germ F can be written in the form F = λ+ q̃3H(t, q1, q2, q̃3) where
the lower degree terms with respect to q̃3 of function H are: H = 1

Φ0
+ Φ1q̃3

Φ3
0

+ ...

Lemma 3.4. Assume H(t, q1, q2, q̃3) is R+-versal with respect to q1 and q2 only; then the family
germ F = λ + q̃3H is space-time stable with respect to deformations inside the space W =

λ+ q̃3H̃(t, q1, q2, q̃3) such that ∂W
∂q̃3
6= 0.

Proposition 3.5. For generic curve and surface germs in the transversal setting the function
H(t, λ, q) is versal for standard R+-equivalence with respect to q1 and q2 only.

The first few terms of the Taylor decomposition of H with respect to t at the origin, namely
H = Σk=0Hk(t, q)tk, up to first order terms in qi, are as follows.

H0 = 1,

H1 = 2f20q1 + f11q2,

H2 = −β2 + f11α2q1 + 2f02α2q2 + f20q̃3,

H3 = −β3 + (−4β2f20 + f11α3) q1 + (−2β2f11 + 2f02α3) q2 + f11α2q̃3,

Setting in these formulas q1 = q2 = q̃3 = 0 we get the following expressions of the Taylor
coefficients of the organising centre hk = Hk|q1=q2=q̃3=0:

h0 = 1, h1 = 0, h2 = −β2, h3 = −β3, h4 = β2
2 − β4

The function H has a singularity of type A2 if β2 = 0 and β3 6= 0. If β2 = β3 = 0 and β4 6= 0
then the function H has a singularity of type A3. More degenerate singularities are excluded
due to genericity.
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In order for H to be R+-versal with respect to q1 and q2 only at an Ak singularity for k = 2, 3
we need the first k − 1 rows of the jet matrix

Mk−1 =

 ∂2H
∂q1∂t

∂2H
∂q2∂t

∂3H
∂q1∂t2

∂3H
∂q2∂t2


to have maximal rank k − 1.

Versality of A2 singularities on the surface M
An A2 singularity occurs if β2 = 0 and β3 6= 0. Recall that this is the necessary and sufficient
condition that the tangent plane to the curve is the osculating plane with 3 point contact. The
A2 singularities are versal if the matrix

M1 =
(

2f20 f11

)
has rank 1.

Clearly the vanishing of β2, f20 and f11 provide a set of non-generic conditions so A2 singu-
larities in the vicinity of the surface are versal.
Versality of A3 singularities on the surface M
An A3 singularity occurs if β2 = 0, β3 = 0 and β4 6= 0. This is the condition that the tangent
plane to curve is the osculating plane and has 4 point contact (at a torsion zero). The A3

singularities are versal if the matrix

M2 =

(
2f20 f11

α2f11 2α2f02

)
has rank 2. The condition det(M2) = 0 together with the necessary conditions β2 = β3 = 0
singularity provide a non-generic condition so A3 singularities are versal.

Since the generic singularities of the function H are R+-versal, lemma 3.4 implies that the
generic singularities of the function F are space-time stable inside the space W .

At A2 type points on the surface the caustic is smooth and transversally intersects the surface
M . The respective generating family germ is space-time equivalent to the normal form:

F = λ+ q̃3(t3 + q1t+ 1)

At A3 type points on the surface the caustic has a cuspidal edge that transversally intersects
the surface M . The respective generating family germ is space-time equivalent to the normal
form:

F = λ+ q̃3(t4 + q1t
2 + q2t+ 1). �

3.3. Propagating from the surface in the Tangential Case in the vicinity of the sur-
face. In this case the caustic is space-time contact equivalent to one of the following normal
forms (see [6]):

B̂2 : q̃3 + λ(t2 + q1); B̂3 : q̃3 + λ(t2 ± λ2 + λq1 + q2);

Ĉ3 : q̃3 + λ(t3 + λt+ λ+ q1t+ q2).

The caustic at a B̂2 singularity consists only of the surface M and the criminant is a smooth
surface with first order tangency with the surface M . At a B̂3 singularity the criminant is
diffeomorphic to a semi-cubic cylinder and has second order tangency with the surface M at a0

(see figure 1). At a Ĉ3 singularity the criminant is diffeomorphic to a folded Whitney umbrella
and the caustic is a smooth surface. The cuspidal edge of the folded Whitney umbrella has first
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Figure 1. The envelope B(M,N) at
a B̂3 singularity near the surface M
(plane in figure). Here the caustic is
empty and the criminant ∆ is a cusp-
idal edge with second order tangency
with the surface at a0.

Figure 2. The caustic and the crimi-
nant shown together at a Ĉ3 singular-
ity. Here the criminant ∆ is a folded
Whitney umbrella and the caustic Σ is
a smooth surface. The cuspidal edge
of ∆ has third order tangency with Σ.

Figure 3. The criminant and the sur-
face M (plane in figure) are shown to-
gether at a Ĉ3 singularity. Here the
criminant and M have ordinary tan-
gency along a cusp.

Figure 4. The envelope B(M,N) at
a Ĉ3 singularity near the surface M
(plane in figure). Here the criminant
∆ is a folded Whitney umbrella and
the caustic Σ is a smooth surface.

order tangency with the surface M at a0 and third order tangency with the caustic (see figure
2). Two additional views are shown in figures 3 and 4.

References

[1] A.A. Agrachev, Methods of control theory in non-holonomic geometry, Proc. Int. Congr. Math., Zürich,
1994, Birkhäuser, Basel,(1995), 12 -19.

[2] J.W. Bruce and P.J. Giblin, Curves and Singularities second edition, Cambridge University Press (1992).
[3] P.J. Giblin and V.M. Zakalyukin, Singularities of centre symmetry sets , London Math Soc. 90 (3), (2005),

132-166.
[4] P.J. Giblin and V.M. Zakalyukin, Recognition of centre symmetry set singularities, Geom. Dedicata 130,

(2007), 43-58. DOI: 10.1007/s10711-007-9204-2

http://dx.doi.org/10.1007/s10711-007-9204-2


PROPAGATIONS FROM A SPACE CURVE IN THREE SPACE WITH INDICATRIX A SURFACE 145

[5] P.J. Giblin, J.P. Warder and V.M. Zakalyukin, Bifurcations of affine equidistants, Proc. Steklov Inst. Math.,
269, (2009), 78-96.

[6] G.M. Reeve, Singularities of systems of chords in affine space, PhD thesis, University of Liverpool, (2012).
[7] G.M. Reeve and V.M. Zakalyukin, Singularities of the Minkowski set and affine equidistants for a Curve

and a Surface, Topology and its Applications, 159 (2), (2012), 555-561. DOI: 10.1016/j.topol.2011.09.031
[8] L.P. Stunzhas, Local singularities of chord sets, Mat. Zametki 83 (2), (2008), 286-304.
[9] V.M. Zakalyukin Singularities of caustics in generic translation-invariant control problems, Journal of Math-

ematical Sciences, 126 (4), (2005), 1354-1360

http://dx.doi.org/10.1016/j.topol.2011.09.031


Journal of Singularities
Volume 6 (2012), 146-157
DOI: 10.5427/jsing.2012.6l

Singularities in Geometry
and Appl., Będlewo, 2011

SINGULARITIES OF ABEL–JACOBI MAPS AND GEOMETRY OF
DISSOLVING VORTICES

NUNO M. ROMÃO

Abstract. Gauged vortices are configurations of fields for certain gauge theories in fibre
bundles over a surface Σ. Their moduli spaces support natural L2-metrics, which are Kähler,
and whose geodesic flow approximates vortex scattering at low speed. This paper focuses on
vortices in line bundles, for which the moduli spaces are modeled on the spaces Σ(k) of effective
divisors on Σ with a fixed degree k; we describe the behaviour of the underlying L2-metrics
in a “dissolving limit” where the L2-geometry simplifies. In such limit, the metrics degenerate
precisely at the singular locus of the Abel–Jacobi map AJ of Σ at degree k, and their geometry
can be understood in terms of the variety Wk = AJ(Σ(k)) inside the Jacobian of Σ. Some
intuition about the behaviour of the geodesic flow close to a singularity is provided through
the study of the simplest example (resolution of a double point on a surface), corresponding
to two dissolving vortices moving on a hyperelliptic curve of genus three.

1. Introduction

The vortex equations originate in the Ginzburg–Landau theory of superconductivity [4] and
describe static, stable solutions of certain (2+1)-dimensional gauge theories [13, 9, 33, 23]. In the
simplest example, the equations relate a connection da on a principal U(1)-bundle over a smooth
surface with Kähler structure (Σ, jΣ, ωΣ), which we will assume to be compact, and a section φ of
an associated line bundle L → Σ. As part of the geometric setup, one fixes a Hermitian structure
on this line bundle, which equips each fibre LP ∼= C with a symplectic structure preserved by
the U(1)-action. This action is Hamiltonian, and a moment map µ : L → u(1)∗ ∼= R is specified
globally as

(1.1) µ(w) =
1

2
(〈w,w〉 − τ), for w ∈ LP , P ∈ Σ

where τ ∈ R is a constant (which remains arbitrary a priori). In this setup, the vortex equations
read

∂̄aφ = 0 ,(1.2)
Fa + (µ ◦ φ)ωΣ = 0 .(1.3)

The first equation expresses that the section φ : Σ → L is holomorphic, i.e. annihilated by the
operator ∂̄a : Ω0(Σ,L) → Ω1(Σ,L) defined from the unitary connection da and the complex
structure on Σ [8], while the second equation relates the curvature Fa = da of the connection to
the moment map evaluated on the values of the section and the area form ωΣ.

By integrating (1.3) over Σ, one finds that the squared L2-norm ||φ||2L2 :=
∫

Σ
〈φ, φ〉ωΣ satisfies

(1.4) ||φ||2L2 = τV − 4πk
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where V :=
∫

Σ
ωΣ is the total area of the surface and k = 1

2π

∫
Σ
Fa is the first Chern class

(or degree) of the line bundle. Sometimes, k is referred to as the vortex number. Since the
squared L2-norm is nonnegative, (1.4) implies that a necesssary condition for solutions of the
vortex equations to exist is τ ≥ 4πk

V . A theorem of Bradlow [6] (see also [10]) asserts that, if
we take τ > 4πk

V , one can find for any effective divisor D of degree k on Σ a unique solution of
the equations up to gauge equivalence which satisfies (φ) = D; this is what is called a k-vortex.
The moduli spaceMk of k-vortices is therefore the symmetric product Σ(k) = Σk/Sk, a smooth
complex manifold with complex dimension k.

The divisor of zeroes (φ) is the most basic object one can assign to a k-vortex and it gives the
precise location of k individual vortex cores, but these objects should be thought of as extending
over Σ and interacting with each other. Interesting information about vortex interactions is
encoded in a natural metric on the moduli space, which is induced from the trivial L2-metric
on the space of all fields (da, φ) by an infinite-dimensional analogue of symplectic reduction.
The induced metric is nontrivial and also Kähler with respect to the complex structure on Σ(k)

induced from jΣ. We use the term ‘L2-geometry’ to refer to this family of Kähler structures on
eachMk, which is parametrised by τ ∈ ] 4πk

V ,∞[.
To be more precise, the L2-metrics are defined at each k-vortex solution (da, φ) by

(1.5) ||(ȧ, φ̇)||2(da,φ),L2 =

∫
Σ

(
1

2
ȧ ∧ ?ȧ+ 〈φ̇, φ̇〉ωΣ

)
where ȧ ∈ Ω1(Σ) and φ̇ ∈ Γ(Σ,L) are fields representing tangent vectors in T(da,φ)Mk (they
satisfy the linearisation of the vortex equations about (da, φ) and are L2-orthogonal to the orbit
of the gauge group through this point), and ? is the Hodge star of the Kähler metric on Σ.
Integrals over Σ such as (1.5) would seem hopeless to compute directly, but it turns out that
they localise onto the support of the divisor (φ) associated to the vortex [30, 29]. This feature
has been invaluable to understand the L2-metrics and their physical content. Even though an
explicit calculation of the metrics seems to be beyond reach as yet, some results have been
obtained in certain regimes, adding to our intuition about the geometry underlying the vortex
equations. For example, formulas for the symplectic volume of the moduli spacesMk have been
established by Manton and Nasir [21] exploring localisation:

(1.6) Vol(Mk) = (2π)2k

min{k,g}∑
n=0

g!

n!(k − n)!(g − n)!

(
τV

4π
− k
)k−n

.

The L2-metrics encode precious information about infinite-dimensional dynamical models that
incorporate solitons. For instance, their geodesic flow is of direct physical interest, since it gives a
good approximation to the slow dynamics in the Abelian Higgs model in 2+1 dimensions [23, 31].

One regime in which the L2-geometry becomes somewhat tractable is what we call the dis-
solving limit, which corresponds to taking

(1.7) τ → 4πk

V

for Σ compact. This was considered in [32] and [3] when Σ has genus g = 0; and for genus
g ≥ 1 first by Nasir [26], and then by Manton and Romão [22]. In the following, we shall give an
account of the results in [22] — we will add little to the presentation in the original paper, and
shall focus on the k > 1 (multivortex) case, which brings in some interesting issues that relate
to the theory of singularities.
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2. Vortices in the dissolving limit

We would like to understand the geometry of the moduli space of vortices in the dissolving
limit (1.7), which will turn out to be a simplification of the full L2-geometry. It is instructive
to look first at the space of solutions of the equations when one sets τ = 4πk

V . Then equation
(1.4) implies that φ = 0, so the first vortex equation (1.2) is trivially satisfied: the zero section
is always holomorphic. Note that the action of ? on Ω1(Σ) depends on jΣ alone, so when φ→ 0
we expect that the L2-metric, defined by the expression (1.5), will only depend on the conformal
class of the metric given on Σ. In the following, we shall make this observation more precise.

The second vortex equation (1.3) simplifies to

(2.1) Fa = da =
τ

2
ωΣ ,

which says that the curvature of the connection da is a constant multiple of the area form ωΣ.
Notice that the constant of proportionality τ

2 = 2πk
V is determined by the topology and the

normalisation V . This is still a crude approximation to the degeneration of the moduli space of
k-vortices that we are interested in; we introduce the following terminology:

Definition 2.1. A dissolved k-vortex is a solution da to equation (2.1) in a line bundle of degree
k.

Dissolved vortices correspond to “constant curvature” or “projectively flat” connections with
respect to the 2-form ωΣ, and they are parametrised by the dual to the Jacobian variety of Σ, a
complex g-torus if Σ has genus g. Recall that the Jacobian is defined by [11]

(2.2) Jac(Σ) = H0(Σ,KΣ)∗/H1(Σ,Z).

Here, KΣ denotes the (canonical) sheaf of holomorphic 1-forms, and the inclusion H1(Σ,Z) ↪→
H0(Σ,KΣ)∗ is provided by integration over 1-cycles: λ 7→

∮
λ
. If we are given a solution da (in a

unitary trivialisation, da = d− ia for a real 1-form a) of equation (2.1), for example constructed
out of local symplectic potentials of ωΣ obtained from Kähler potentials, we can write any other
solution modulo gauge transformations as da+α where α is a global harmonic 1-form (in other
words, through twisting by a flat line bundle with connection dα); α satisfies

(2.3) dα = 0 and d ? α = 0.

The first equation in (2.3) follows from (2.1), while the second equation provides a section from
the space of gauge orbits.

Different dissolved vortices have the same curvature 2-form but different holonomies around
1-cycles in Σ. In fact, one should identify dissolved vortices if they have the same holonomies,
and this corresponds to quotienting the real 2g-dimensional vector space of harmonic 1-forms α
by the lattice of rank 2g defined by the relations

(2.4)
∮
λ

α ∈ 2πZ, ∀λ ∈ H1(Σ,Z),

thus we end up with the dual torus to Jac(Σ), as claimed. For some purposes, it is useful to
think of a harmonic 1-form as the real part of a holomorphic 1-form on Σ, and so there is also a
complex structure involved (more explicitly, ? plays the role of complex structure at each point
of the torus). Thus we are really dealing with the geometry of Abelian varieties [11].

Now the dual space H0(Σ,KΣ)∗ has a canonical inner product, namely the polarisation of
the Jacobian [11]. One can think of it as the flat Kähler metric associated to the natural
complex structure induced by jΣ, together with the symplectic form obtained by extending the
intersection pairing on H1(Σ,Z) to real coefficients (note that H1(Σ,Z) ⊗Z R = H0(Σ,KΣ)∗,
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cf. (2.2)); of course, this structure is invariant under translations. We shall denote by ΩJ the
(1, 1)-form of this Kähler metric on Jac(Σ). The map

(2.5) ω 7→ 1

2π

∫
α ∧ ω

provides an isomorphism relating infinitesimal flat connections α and elements of the dual space
H0(Σ,KΣ)∗, and therefore a pull-back of the polarisation to a Kähler structure on the dual torus
to Jac(Σ), yielding a metric at each point

(2.6) (α, β) 7→
∫

Σ

α ∧ ?β.

It is not hard to see that this induced metric coincides with the natural L2-geometry on the
space of dissolved vortices (see Section 3 of [22] for the explicit argument). This geometry on
the dual Jacobian is independent of the first Chern class k, the vortex number of the dissolved
vortex.

To understand the L2-geometry of k-vortices in the dissolving limit (1.7), a more insightful
notion is the following.

Definition 2.2. A dissolving k-vortex is a unitary connection da on a line bundle of degree k
whose induced holomorphic structure ∂̄a has nontrivial kernel.

In other words, for a dissolving vortex one requires the existence of a nonzero holomorphic section
for the induced holomorphic structure. So to a dissolving vortex one can always associate a
dissolved vortex, but not conversely, and we should be able to think of it as a limit (da, 0) of a
sequence of k-vortices as τ → 4πk

V .
Recall that the Jacobian variety Jac(Σ) plays another important role, namely that of clas-

sifying holomorphic line bundles over Σ of a given degree [11]. Holomorphic line bundles are
determined by divisor classes (i.e. divisors on Σ modulo linear equivalence, where two divi-
sors of the same degree are identified if their difference is the divisor of zeroes and poles of a
global meromorphic function on Σ). The relation between divisors on Σ and Jac(Σ) is achieved
via the Abel–Jacobi map, which depends on the choice of a basepoint P0 ∈ Σ: to a divisor
D = D+ −D−, where D+ =

∑
i Pi and D− =

∑
j Qj are effective divisors, AJ(D) is defined by

a linear functional on holomorphic 1-forms via the Abelian integrals

AJ(D) : ω 7→
∑
i

∫ Pi

P0

ω −
∑
j

∫ Qj

P0

ω.

The value determined by this quantity in the Jacobian variety does not depend on the choice
of paths connecting each Pi or Qj to P0 since the ambiguity lies on the image of H1(Σ,Z) in
H0(Σ,KΣ)∗. Moreover, a different choice of basepoint P0 simply leads to a translation in the
Jacobian. We will be interested in the restriction of the Abel–Jacobi maps AJk to the spaces of
effective divisors of degree k > 0, which are the symmetric products Σ(k) and can be identified
with moduli spaces of k-vortices.

Note that the maps AJk are holomorphic. Their images

(2.7) Wk := AJk(Σ(k)) ⊂ Jac(Σ)

are complex subvarieties of dimension min{k, g}, and they can be regarded as the spaces of
dissolving k-vortices. It is a classical theorem of Abel [11] that the map

AJ1 : Σ(1) = Σ −→ Jac(Σ)
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is an embedding. So the flat Kähler structure associated to the polarisation of the Jacobian
variety, discussed above, induces a Kähler structure AJ∗1ΩJ on Σ. In [22], the following result is
proven:

Theorem 2.3. In the dissolving limit (1.7), the L2-metric on M1 converges to a natural
Bergman metric on Σ, regarded as the moduli space of one dissolving vortex. It coincides with
the Kähler metric obtained by pulling back the polarisation of the Jacobian via the Abel–Jacobi
embedding AJ1 : Σ ↪→ Jac(Σ).

The idea of the proof is to relate Hecke modifications performing shifts of the line bundle as-
sociated to a dissolving 1-vortex to complex gauge transformations; such a shift can also be
described by addition of harmonic 1-forms at the level of the connections associated to the holo-
morphic structures, and their length for an infinitesimal shift describes the L2-metric, which can
be computed in holomorphic coordinates. For our purposes, a Bergman metric [18, 14] on a
compact Riemann surface of genus g ≥ 1 is a Riemannian structure of the form

(2.8) ds2 =

g∑
j=1

ωjω̄j ,

which is associated to any basis {ω1, . . . , ωg} of H0(Σ,KΣ) ∼= Cg; see Appendix A in [22]. Note
that (2.8) is constant on U(g)-orbits of the space of bases. The particular Bergman metric in our
result is the one coming from an orthogonal basis with respect to the metric on 1-forms given
by (2.6), up to the global factor of (2π)2.

3. Geometry of dissolving multivortices

Important details about the complex geometry of the Riemann surface Σ are captured by
the dissolving limit of the L2-geometry of the moduli spaces of vortices. We have argued that
the limit Kähler structure should depend only on the intrinsic complex structure of Σ, and it
would be interesting to understand how this dependence is reflected qualitatively in its curvature
properties and the geodesic flow, for example. In the k = 1 case, the Bergman metric onM1 = Σ
in Theorem 2.3 is known to have nonpositive Gauß curvature [19]. This follows from general facts:
the image of a holomorphic embedding Σ ↪→ Jac(Σ) of a complex curve in a Kähler manifold
must be a minimal surface, so its principal curvatures at each point must be symmetric. If g > 1,
it turns out that the curvature vanishes at most at a finite number of points, which are precisely
the Weierstraß points [11] of Σ if X is hyperelliptic (otherwise the curvature never vanishes) [19].
For Kähler structures of dissolving multivortices, one should be able to obtain results in this
spirit, but the geometry in higher dimensions will be richer.

In what follows, we shall explore the dissolving limit (1.7) for multivortices, assuming that
the two inequalities

(3.1) 1 < k < g

hold. We have already stated that the image (2.7) of the moduli space of vortices Mk = Σ(k)

under the Abel–Jacobi map (well defined once a base point P0 ∈ Σ is chosen, and holomorphic)
is a complex subvariety of the Jacobian. However, as we will make more precise in a moment, for
large enough k this map is no longer an embedding, in contrast to the k = 1 case, and then the
images Wk in (2.7) are singular subvarieties. Among these objects, perhaps the most familiar
one is Wg−1, which is a translation of the Θ-divisor [11] in Jac(Σ) and has singularities if g > 3
(see Example 3.2 below for a discussion of the g = 3 case).

Whenever the Abel–Jacobi map has singular points, the (1, 1)-form AJ∗kΩJ obtained as pull-
back of the polarisation of the Jacobian is degenerate, i.e. its rank drops down. Then one is left



SINGULARITIES OF ABEL–JACOBI MAPS AND GEOMETRY OF DISSOLVING VORTICES 151

with a degenerating Kähler metric on Σ(k), for which the existence and uniqueness of geodesics
associated to any point and direction may not hold. (The corresponding (1, 1)-form is still closed,
as it is the pull-back of the closed 2-form ΩJ). We argue in Section 7 of [22], following essentially
the same steps of the proof of Theorem 2.3, that AJ∗kΩJ describes once again the dissolving limit
of the L2-geometry on the moduli space of k-vortices.

In the multivortex case, over the sets of regular points of each AJk one thus obtains Käh-
ler metrics that can be regarded as higher-dimensional generalisations of the Bergman metric
described above. Effective divisors on the subset where the metrics are regular represent line
bundles that do not admit independent holomorphic sections (with different divisors of zeroes).
In contrast, in the language of algebraic geometry [1], the induced metric of dissolving vortices
is degenerate over special effective divisors, which run or move in nontrivial linear systems. The
directions of degeneracy on Σ(k) are precisely those along the complete linear system associ-
ated with a special divisor D. The sets of special divisors D, sitting on exceptional fibres of
the Abel–Jacobi map, are complex projective spaces whose dimension ` can be related to sheaf
cohomology via the Riemann–Roch theorem [11]:

` = dimC P(H0(Σ,O(D)))(3.2)
= dimCH

1(Σ,O(D)) + degD − g + 1− 1(3.3)
= dimCH

1(Σ,O(D)) + k − g .(3.4)

The divisor D is special precisely when the following strict inequality holds:

(3.5) dimCH
1(Σ,O(D)) = dimCH

0(Σ,O(KΣ −D))∗ > g − k .
The relations among the geometry of linear systems on Σ, exceptional fibres of the Abel–

Jacobi map, and singularities of the subvarieties Wk ⊂ Jac(Σ) are summarised in the beautiful
Riemann–Kempf theorem, which essentially says that a point w ∈ Wk is a singularity of multi-
plicity

(
g−k+`
`

)
, its tangent cone being the union of images of the tangent spaces TDΣ(k) by the

differential of the Abel–Jacobi map, where the effective divisor D runs over the complete linear
system associated with (i.e. is the fibre over) w. The subvarieties Wk ⊂ Jac(Σ) are locally given
by determinantal equations, and their structure is an important topic in the modern algebraic
geometry of curves [1].

In particular, the answer to the natural question of whether Wk(Σ) ⊂ Jac(Σ) will happen to
be singular or not (i.e. whether special divisors exist) depends on k, the genus g of Σ and the
complex structure on Σ, and it is part of a rich subject that goes under the name of Brill–Noether
theory [1]. A sufficient condition for existence of singularities is given by in following result:

Theorem 3.1. If the inequality k ≥ g
2 + 1 is satisfied, then Wk is a singular algebraic variety,

irrespective of the complex structure of Σ.

The first proof of this statement was presented by Meis [24] and used complex analysis on
Teichmüller spaces, resorting to certain specific models of Riemann surfaces in separate cases
of odd and even genus. Subsequently, a number of more conceptual and algebraic proofs were
given, some of them generalising Meis’s result to linear systems of higher dimension. Kleiman
and Laksov constructed a very clean proof [16] that should appeal most to singularity theorists.
It makes crucial use of Porteous’ formula [27] for the Thom polynomial giving the class of the
scheme parametrising special divisors inside the Chow ring of Σ(k), under weaker assumptions [15]
than the transversality conditions assumed in the original paper [27].

To illustrate more concretely the behaviour of the Abel–Jacobi map for k > 1 and the structure
of its image Wk as a complex k-fold inside the Jacobian, we briefly describe examples of the
possible behaviours at low vortex number k. Typically, the qualitative behaviour at a given
genus depends crucially on the complex structure of Σ, e.g. on whether Σ is hyperelliptic, and
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on what kind of linear systems the geometry of Σ allows. Needless to say, the situations at higher
k and g will be considerably more complicated than these examples. For more information, the
reader is referred to the textbooks [1, 25].

Example 3.2. For k = 2, the lowest-genus case where (3.1) is satisfied is g = 3. Note that these
values of k and g do not obey the inequality in Theorem 3.1. In this situation there are two
subcases. If Σ is a nonhyperelliptic curve (the generic situation), the image W2 ⊂ Jac(Σ) of the
Abel–Jacobi map is smooth, and just a copy of the moduli spaceM2 = Σ(2) inside the Jacobian.
In fact, this is the only case with k > 1 where the 2-form AJ∗2ΩJ is globally nondegenerate on a
Θ-divisor, and the dissolving limit metric is regular everywhere. If g = 3 but Σ is hyperelliptic,
then W2 already has a singularity. W2 is the singular complex surface got from the smooth
surface Σ(2) by blowing down a copy of CP1 to a point, which is a double point in W2 [28]. The
exceptional CP1 fibre that is blown down is the pencil of degree two divisors that are orbits of
the hyperelliptic involution (a g1

2); the space of orbits is the quotient of Σ by the hyperelliptic
involution, which is a CP1 that embeds in Σ(2) holomorphically with noncontractible image.
This exceptional fibre has an analogue for any moduli space of 2-vortices on a hyperelliptic
curve Σ [5].

Example 3.3. If k = 3, the simplest situation requires g = 4. Since 3 ≥ 4
2 + 1, Theorem 3.1

guarantees thatW3 will always contain singularities. In fact, there are three subcases to consider.
If Σ is not hyperelliptic, one can show that it can be obtained as an intersection of a quadric Q
and a cubic C in CP3. The first subcase is when Q is smooth, hence biholomorphic to CP1×CP1.
Then C meets each projective line of the form {P1} × CP1 or CP1 × {P2} in Q at three points,
so Σ = Q ∩ C projects to either of the two CP1 factors of Q as a 3-cover. The pre-images of
points in CP1 by the two projections form effective divisors of degree 3 moving in two pencils (i.e.
parametrised by two projective lines), and describe two copies F1, F2 of CP1 inside Σ(3), which
are g1

3 ’s on Σ . These are the exceptional fibres of the Abel–Jacobi map. The image W3 can be
obtained by blowing down these rational curves F1, F2 to two points, which are ordinary double
points of the 3-fold. The second subcase is when Σ is not hyperelliptic, hence Σ = Q ∩ C as
before, but now Q is singular (a quadric cone); then Q can be described as a family of projective
lines parametrised by a CP1 and all meeting at the singular point. Each line in the family again
meets C at three points, and so Σ inherits one pencil of degree 3 effective divisors (a g1

3), which
is the only exceptional fibre of the Abel–Jacobi map. The image W3 in this case is again got by
blowing down this CP1 fibre, and this results in a double point in the 3-fold which has higher
multiplicity. The third and last subcase occurs when Σ is hyperelliptic. The exceptional fibres
here form a complex surface inside Σ(3), namely, the locus of effective divisors on Σ consisting
of adding any point of Σ to the CP1 of hyperelliptic orbits described in the previous example;
this can be described as a family of pencils (i.e. g1

3 ’s) parametrised by Σ. Then W3 is obtained
from Σ(3) by blowing down this surface to a curve isomorphic to Σ.

4. Dissolving multivortices near a singularity

One peculiar aspect of the geometry of multivortices is the degeneration of the underlying
Kähler structures at the singularities of the Abel–Jacobi map, as described above, and this will
be our focus in the present section. To understand the behaviour of the geodesic flow in a
neighbourhood of a singularity, we shall analyse in detail the simplest situation, which occurs in
the scattering of two dissolving vortices on a hyperelliptic Riemann surface of genus three.

We start by recalling that the image W2 of the Abel–Jacobi map for degree two effective
divisors

(4.1) AJ2 : Σ(2) −→ Jac(Σ)
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on a hyperelliptic curve Σ with g = 3 has a double point, whose blow-up is the exceptional
fibre in Σ(2), which is a projective line (see Example 3.2). This fact essentially goes back to
Klein [17]; see e.g. [7] for a modern perspective. Since we are only interested in the leading local
behaviour near this critical locus, we will not need to use theta-functions, and will instead take
the standard algebraic model

(4.2) t23 = t1t2

for the double point, using local coordinates ti : U → C centred at the singularity; so (4.2) gives
a local equation for the image of W2 ∩ U ⊂ Jac(Σ) under the coordinate system, which we may
regard as a hypersurface W ′2 in an open neighbourhood U ′ of the origin of C3. Now we blow
up (0, 0, 0) ∈ U ′, to obtain a 3-fold Ũ ′ together with a holomorphic map π : Ũ ′ → U ′ which
has π−1(0, 0, 0) = P(T(0,0,0)U

′) ∼= CP2 but is one-to-one everywhere else. For the benefit of the
reader, we recall how this is constructed [2].

The manifold Ũ ′ can be regarded as the subset of U ′ ×CP2 defined by the incidence relation

(4.3) tivj = tjvi for all i, j ∈ {1, 2, 3}

where vj are homogeneous coordinates on the projectivisation CP2 of the tangent space at the
origin, and the map π is simply the projection prU ′ onto the first factor. In the open set of
U ′ × CP2 where v3 6= 0, for example, Ũ ′ is described by the system of equations

(4.4) t1 =
v1

v3
t3, t2 =

v2

v3
t3

which has constant rank 2, and this determines a 3-dimensional submanifold. Since the incidence
relation (4.3) is trivially satisfied for (t1, t2, t3) = (0, 0, 0), we get indeed the whole of the CP2

factor as exceptional fibre.
Imposing the equation (4.2), we obtain a surface W̃ ′2 ∩ Ũ ′ which is smooth; the singularity

is replaced by the conic v2
3 = v1v2 in the exceptional fibre CP2, which is itself a projective line

CP1, and the restriction

(4.5) π|
W̃ ′

2∩Ũ ′ : W̃ ′2 ∩ Ũ ′ →W ′2 ∩ U ′

provides a local resolution of the double point on the surface. To find the resolution map
explicitly, we should use a system of two local coordinates where a dense subset of the exceptional
fibre is visible; for example, an affine coordinate on the CP1 factor, say q = v3

v1
, together with

one of the coordinates on the first factor, say p = t1. In these coordinates, the projection is
given by

(4.6) (p, q) 7→ (t1, t2, t3) = (p, pq2, pq) ∈ U ′ .

Working on such local patches, it is not hard to see that the projection of W̃ ′2 ∩ Ũ ′ onto the
second factor of Ũ ′ × CP2 can be understood as a restriction of the standard projection

(4.7) T∗CP1 −→ CP1

to a neighbourhood of the (image of the) zero section, which gives a very concrete picture of the
resolution. The exceptional fibre of AJ2 is identified with the zero section, parametrised by q,
and our complex coordinate p parametrises the cotangent fibres.

We want to understand the effect of pulling back a Kähler metric on U ′ to the blow-up
Ũ ′, and in particular the behaviour of the geodesic flow near the exceptional fibre where the
metric becomes degenerate. The Kähler metric we consider is the standard euclidean metric
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on U ′, g0 = |dt1|2 + |dt2|2 + |dt3|2, as the qualitative behaviour of the flow will not depend on
anisotropy factors. Pulling back to Ũ ′ we obtain

g̃ = π∗g0 = (1 + |q|2 + |q|4)dp dp̄+ |p|2(1 + 4|q|2)dq dq̄

+p̄q(1 + 2|q|2)dp dq̄ + pq̄(1 + 2|q|2)dq dp̄ .(4.8)

As expected, this tensor defines a Kähler metric in the complement of the complex line with
equation p = 0, but its rank (over R) drops from 4 to 2 on this line, which corresponds to an affine
piece of the exceptional CP1 fibre of the Abel–Jacobi map. To understand the geodesic flow, we
should first compute the Christoffel symbols. For a Kähler metric this calculation simplifies, and
moreover Christoffel symbols mixing holomorphic and anti-holomorphic directions automatically
vanish [2]. We find:

Γ̃qpq = Γ̃qqp =
1

p
, Γ̃ppq = Γ̃pqp = Γ̃qpp = Γ̃ppp = 0 ,(4.9)

Γ̃pqq = − 2pq̄2

1 + 4|q|2 + |q|4
, Γ̃qqq =

2q̄(2 + |q|2)

1 + 4|q|2 + |q|4
.(4.10)

These lead to the following geodesic equations:

(4.11) p̈− 2pq̄2q̇2

1 + 4|q|2 + |q|4
= 0 ,

(4.12) q̈ +
2ṗq̇

p
+

2q̄(2 + |q|2)q̇2

1 + 4|q|2 + |q|4
= 0 ,

where the derivatives are with respect to a parameter s, say.
An obvious integral of motion is the kinetic energy of the geodesic flow (up to a constant

factor),

(4.13) (1 + |q|2 + |q|4)|ṗ|2 + |p|2(1 + 4|q|2)|q̇|2 + (1 + 2|q|2)(p̄qṗ ˙̄q + pq̄ ˙̄pq̇) ,

and there are further integrals of motion arising from the invariance of g̃ under phase rota-
tions of p and of q. The conservation of the kinetic energy already implies that the motion
on the exceptional fibre CP1 (parametrised by the coordinate q) is suppressed in its tangent
directions: as p → 0, all the kinetic energy must be transferred to motion along the transverse
directions parametrised by the complex coordinate p. In particular, any geodesic intersecting
the exceptional fibre must do so at isolated points of the fibre.

To demonstrate that there are indeed geodesics crossing the exceptional fibre, we note that
the geodesic equations above are satisfied by the rays of the tangent cone to W ′2, i.e. paths of
the form s 7→ (p, q) = (c1s, c2) for constants c1 ∈ C∗ and c2 ∈ C. These correspond to lifts
of real straight lines on U ′ towards the singularity, which hit a point on the exceptional fibre
corresponding to the complex tangent direction their velocity represents, and then continue along
the same real direction. Since the exceptional fibre is reached in finite time, the metric on the
complement of the exceptional fibre in W̃2 is not complete.

In fact, such straight ray geodesics are the only geodesics reaching the exceptional fibre CP1.
To see this, note first that, as long as ṗ is not constant, (4.11) implies that q̇ cannot be zero.
Dividing equation (4.12) by q̇ (assumed to be nonzero) and extracting the real part of the
resulting equation, we obtain a new differential equation,

(4.14)
q̈

q̇
+

¨̄q
˙̄q

+
2ṗ

p
+

2 ˙̄p

p̄
+

2(2 + |q|2)(q̄q̇ + q ˙̄q)

1 + 4|q|2 + |q|4
= 0,
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which can be integrated to conclude that

(4.15) (1 + 4|q|2 + |q|4)|p|4|q̇|2

is another integral of motion. Thus for p to reach zero, q̇ would have to blow up, which cannot
happen. Initial conditions that try to reach the exceptional fibre with initial velocities having
nontrivial tangent component along the CP1 will be forced to flow rapidly around this 2-sphere
as they approach it transversely.

In terms of vortex motion, the effect of the singularity is that motion along the special linear
system is suppressed. So whenever two vortices reach points on the surface that are related by
the hyperelliptic involution, they will be unable to move to neighbouring pairs of points that are
also related by the involution. In particular, in the dissolving limit it will be impossible to make
vortices collide head-on onto a Weierstraß point of the surface: these are precisely the branch
points of the two-fold holomorphic branched cover σ : Σ → CP1, and geodesics through them
are tangentially preserved by the hyperelliptic involution near the branch point. More precisely,
we know from the discussion above that the only geodesics through the CP1 with equation p = 0
must cross with q̇ = 0, whereas we have:

Proposition 4.1. A frontal collision of two vortices at a fixed point W ∈ Σ of the hyperelliptic
involution occurs at right angles and with q̇ 6= 0.

Proof. Let z ∈ OΣ,W denote a local parameter in Σ at the point W , a generator of the maximal
ideal nΣ,W in the local ring [20]. We have been using q to denote any coordinate on the excep-
tional fibre CP1 of the Abel–Jacobi map, and now we shall also assume without loss of generality
that its image in the local ring OCP1,σ(W ) is a local parameter. Since the map σ has ramification
index two at W , one has σ∗q = uz2 for some unit u ∈ O×Σ,W .

We denote by ∆ the natural embedding via the diagonal inclusion

∆ : Σ ↪→ Σ× Σ
π̃−→ Σ(2) = Σ2/S2.

Note that z induces local parameters z1, z2 in Σ2 at (W,W ) in the obvious way, and from them
one obtains a system of local parameters s1, s2 on Σ(2) at ∆(W ) via the fundamental theorem on
symmetric functions, i.e. the map of local rings induced by π̃ relates π̃∗(s1) = z1 + z2, π̃

∗(s2) =
z1z2. The image ∆(Σ) is described by the equation s2

1 − 4s2 = 0 locally at ∆(W ) in Σ(2), and
we can compute

T∗∆(W )∆(Σ) = nΣ(2),∆(W )/(n
2
Σ(2),∆(W ) + (s2

1 − 4s2))

= (s1, s2)/(s2
1, s

2
2, s1s2, s

2
1 − 4s2)

= (s1)/(s2
1).

Let ι : CP1 ↪→ Σ(2) denote the inclusion of the g1
2 . It induces a surjective map of local rings

ι∗ : OΣ(2),∆(W ) → OCP1,σ(W ). Since the intersection of the images ∆(Σ) and ι(CP1) is transverse
at ∆(W ) ∈ Σ(2) , the calculation above implies that ι∗s2 must be a local parameter; so there is
also a unit v ∈ O×CP1,σ(W )

with ι∗s2 = vq. Hence we obtain in OΣ,W

(4.16) z2 = ũ (ι ◦ σ)∗s2

with ũ = u σ∗v ∈ O×Σ,W .
A collision of two vortices at W ∈ Σ can be described by a parametrisation t 7→ (z1(t), z2(t))

with t ∈ (−ε, ε), ε > 0 and z1(0) = z2(0) = 0; the collision is frontal if moreover ż1(0) =
−ż2(0), which implies ṡ1(0) = 0. Then necessarily ṡ2(0) 6= 0. From equation (4.16) we obtain
infinitesimally close positions of the vortices by taking square roots, which justifies the assertion
on the scattering at right angles. (We note in passing that scattering at right angles is a
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well-known feature of the frontal scattering of vortices for regular L2-metrics on their moduli
spaces [12].) Finally, we obtain in the local ring at σ(W ) (or the pull-back to Σ(2))

q̇(0) = v̇(0)s2(0) + v(0)ṡ2(0) = v(0)ṡ2(0) 6= 0.

�

References

[1] E. Arbarello, M. Cornalba, P.A. Griffiths and J. Harris: Geometry of Algebraic Curves, vol. 1,
Springer, 1985

[2] W. Ballmann: Lectures on Kähler Manifolds, European Mathematical Society, 2006
[3] J.M. Baptista and N.S. Manton: The dynamics of vortices on S2 near the Bradlow limit. J. Math. Phys.

44 (2003) 3495–3508 DOI: 10.1063/1.1584526
[4] E.B. Bogomolny: The stability of classical solutions. Sov. J. Nucl. Phys. 24 (1976) 449–454
[5] M. Bökstedt and N.M. Romão: On the curvature of vortex moduli spaces. arXiv:1010.1488
[6] S.B. Bradlow: Vortices in holomorphic line bundles over closed Kähler manifolds. Commun. Math. Phys.

135 (1990) 1–17 DOI: 10.1007/BF02097654
[7] V.M. Buchstaber, V.Z. Enolskii and D.V. Leykin: Kleinian functions, hyperelliptic Jacobians and

applications. Rev. Math. Math. Phys. 10 (1997) 1–125
[8] S. Donaldson and P. Kronheimer: The Geometry of Four-Manifolds, Clarendon Press, 1990
[9] G. Dunne: Self-Dual Chern–Simons Theories, Springer, 1995 DOI: 10.1007/978-3-540-44777-1

[10] Ó. García-Prada: A direct existence proof for the vortex equations over a compact Riemann surface. Bull.
London Math. Soc. 26 (1994) 88–96 DOI: 10.1112/blms/26.1.88

[11] P. Griffiths and J. Harris: Principles of Algebraic Geometry, Wiley, 1978
[12] N.J. Hitchin: The geometry and topology of moduli spaces; in: M. Francaviglia and F. Gher-

ardelli (Eds.): Global Geometry and Mathematical Physics (Montecatini Terme 1988), Springer, 1990
DOI: 10.1007/BFb0085064

[13] A. Jaffe and C. Taubes: Vortices and Monopoles, Birkhäuser, 1980
[14] J. Jost: Compact Riemann Surfaces, 3rd edition, Springer, 2006 DOI: 10.1007/978-3-540-33067-7
[15] G. Kempf and D. Laksov: The determinantal formula of Schubert calculus, Acta. Math. 132 (1973)

153–162 DOI: 10.1007/BF02392111
[16] S.L. Kleiman and D. Laksov: Another proof of the existence of special divisors, Acta Math. 132 (1974)

163–176 DOI: 10.1007/BF02392112
[17] F. Klein: Über elliptische Sigmafunktionen, Math. Ann. 27 (1886) 341–464
[18] Sh. Kobayashi: Geometry of bounded domains, Trans. Math. Am. Soc. 92 (1959) 267–290 DOI:

10.1090/S0002-9947-1959-0112162-5
[19] J. Lewittes: Differentials and matrices on Riemann surfaces, Trans. Am. Math. Soc. 139 (1969) 311–318
[20] S. Łojasiewicz: Introduction to Complex Analytic Geometry, Birkhäuser, 1991
[21] N.S. Manton and S.M. Nasir: Volume of vortex moduli spaces, Commun. Math. Phys. 199 (1999) 591–604

DOI: 10.1007/s002200050513
[22] N.S. Manton and N.M. Romão: Vortices and Jacobian varieties, J. Geom. Phys. 61 (2011) 1135–1155

DOI: 10.1016/j.geomphys.2011.02.017
[23] N. Manton and P. Sutcliffe: Topological Solitons, Cambridge University Press, 2004 DOI:

10.1017/CBO9780511617034
[24] T. Meis: Die minimale Blätterzahl der Konkretisierungen einer kompakten Riemannschen Fläche, Schr.

Math. Inst. Univ. Münster 16 (1960) 1–61
[25] D. Mumford: The Red Book of Varieties and Schemes, 2nd edition, Springer, 2004
[26] S.M. Nasir: Vortices and flat connections, Phys. Lett. B 419 (1990) 253–257 DOI: 10.1016/S0370-

2693(97)01465-2
[27] I.R. Porteous: Simple singularities of maps; in: C.T.C. Wall (Ed.): Proceedings of Liverpool Singularities

Symposium I (Liverpool 1969/70), Springer, 1971
[28] M. Reid: Chapters on Algebraic Surfaces; in: J. Kollár (Ed.): Complex Algebraic Geometry (Park City

UT 1993), American Mathematical Society, 1997; alg-geom/9602006
[29] T.M. Samols: Vortex scattering, Commun. Math. Phys. 145 (1992) 149–179 DOI: 10.1007/BF02099284
[30] I.A.B. Strachan: Low-velocity scattering of vortices in a modified Abelian Higgs model. J. Math. Phys.

33 (1992) 102–110 DOI: 10.1063/1.529949
[31] D. Stuart: Dynamics of Abelian Higgs vortices in the near Bogomolny regime, Commun. Math. Phys. 159

(1994) 51–91 DOI: 10.1007/BF02100485

http://dx.doi.org/10.1063/1.1584526
http://dx.doi.org/10.1007/BF02097654
http://dx.doi.org/10.1007/978-3-540-44777-1
http://dx.doi.org/10.1112/blms/26.1.88
http://dx.doi.org/10.1007/BFb0085064
http://dx.doi.org/10.1007/978-3-540-33067-7
http://dx.doi.org/10.1007/BF02392111
http://dx.doi.org/10.1007/BF02392112
http://dx.doi.org/10.1090/S0002-9947-1959-0112162-5
http://dx.doi.org/10.1090/S0002-9947-1959-0112162-5
http://dx.doi.org/10.1007/s002200050513
http://dx.doi.org/10.1016/j.geomphys.2011.02.017
http://dx.doi.org/10.1017/CBO9780511617034
http://dx.doi.org/10.1017/CBO9780511617034
http://dx.doi.org/10.1016/S0370-2693(97)01465-2
http://dx.doi.org/10.1016/S0370-2693(97)01465-2
http://dx.doi.org/10.1007/BF02099284
http://dx.doi.org/10.1063/1.529949
http://dx.doi.org/10.1007/BF02100485


SINGULARITIES OF ABEL–JACOBI MAPS AND GEOMETRY OF DISSOLVING VORTICES 157

[32] D.M.A. Stuart: Periodic solutions of the abelian Higgs model and rigid rotation of vortices, Geom. Funct.
Anal. 9 (1999) 568–595 DOI: 10.1007/s000390050096

[33] Y.-S. Yang: Solitons in Field Theory and Nonlinear Analysis, Springer, 2001

Departament d’Àlgebra i Geometria, Universitat de Barcelona, Gran Via de les Corts Cata-
lanes 585, 08007 Barcelona, Spain

Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
E-mail address: nromao@imf.au.dk

http://dx.doi.org/10.1007/s000390050096


Journal of Singularities
Volume 6 (2012), 158-178
DOI: 10.5427/jsing.2012.6m

Singularities in Geometry
and Appl., Będlewo, 2011

SYMPLECTIC W8 AND W9 SINGULARITIES

ŻANETA TRȨBSKA

Abstract. We use the method of algebraic restrictions to classify symplectic W8 and W9

singularities. We use discrete symplectic invariants to distinguish symplectic singularities of
the curves. We also give the geometric description of symplectic classes.

1. Introduction

In this paper we examine the singularities which are in the list of the simple 1-dimensional
isolated complete intersection singularities in the space of dimension greater than 2, obtained by
Giusti ([G], [AVG]). Isolated complete intersection singularities (ICIS) were intensively studied
by many authors (e. g. see [L]), because of their interesting geometric, topological and algebraic
properties. Here using the method of algebraic restrictions we obtain the complete symplectic
classification of the singularities of type W8 and W9. We calculate discrete symplectic invariants
for symplectic orbits of the curves and we give their geometric description. It allows us to explore
the specific singular nature of these classical singularities that only appears in the presence of
the symplectic structure.

We study the symplectic classification of singular curves under the following equivalence:

Definition 1.1. Let N1, N2 be two germs of subsets of the symplectic space (R2n, ω). N1, N2 are
symplectically equivalent if there exists a symplectomorphism-germ Φ : (R2n, ω)→ (R2n, ω)
such that Φ(N1) = N2.

We recall that ω is a symplectic form if ω is a smooth nondegenerate closed 2-form, and
Φ : R2n → R2n is a symplectomorphism if Φ is a diffeomorphism and Φ∗ω = ω.

Symplectic classification of curves was first studied by V. I. Arnold. In [A1] and [A2] the author
studied singular curves in symplectic and contact spaces and introduced the local symplectic and
contact algebra. In [A2] V. I. Arnold discovered new symplectic invariants of singular curves.
He proved that the A2k singularity of a planar curve (the orbit with respect to standard A-
equivalence of parameterized curves) split into exactly 2k+1 symplectic singularities (orbits with
respect to symplectic equivalence of parameterized curves). He distinguished different symplectic
singularities by different orders of tangency of the parameterized curve to the nearest smooth
Lagrangian submanifold. Arnold posed a problem of expressing these invariants in terms of the
local algebra’s interaction with the symplectic structure and he proposed calling this interaction
’the local symplectic algebra’.

In [IJ1] G. Ishikawa and S. Janeczko classified symplectic singularities of curves in the 2-
dimensional symplectic space. All simple curves in this classification are quasi-homogeneous.

We recall that a subset N of Rm is quasi-homogeneous if there exist a coordinate system
(x1, · · · , xm) on Rm and positive numbers w1, · · · , wm (called weights) such that for any point

2000 Mathematics Subject Classification. Primary 53D05. Secondary 14H20, 58K50, 58A10.
Key words and phrases. symplectic manifold, curves, local symplectic algebra, algebraic restrictions, relative

Darboux theorem, singularities.
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(y1, · · · , ym) ∈ Rm and any t > 0 if (y1, · · · , ym) belongs to N then the point (tw1y1, · · · , twmym)
belongs to N .

The generalization of results in [IJ1] to volume-preserving classification of singular varieties
and maps in arbitrary dimensions was obtained in [DR]. A symplectic form on a 2-dimensional
manifold is a special case of a volume form on a smooth manifold.

In [K] P. A. Kolgushkin classified the stably simple symplectic singularities of parameterized
curves (in the C-analytic category). Symplectic singularity is stably simple if it is simple and if it
remains simple if the ambient symplectic space is symplectically embedded (i.e. as a symplectic
submanifold) into a larger symplectic space.

In [Z] was developed the local contact algebra. The main results were based on the notion of
the algebraic restriction of a contact structure to a subset N of a contact manifold.

In [DJZ2] new symplectic invariants of singular quasi-homogeneous subsets of a symplectic
space were explained by the algebraic restrictions of the symplectic form to these subsets.

The algebraic restriction is an equivalence class of the following relation on the space of
differential k-forms:

Differential k-forms ω1 and ω2 have the same algebraic restriction to a subset N if ω1−ω2 =
α+ dβ, where α is a k-form vanishing on N and β is a (k − 1)-form vanishing on N .

The generalization of the Darboux-Givental theorem ([AG]) to germs of arbitrary subsets of
the symplectic space was obtained in [DJZ2]. This result reduces the problem of symplectic
classification of germs of quasi-homogeneous subsets to the problem of classification of algebraic
restrictions of symplectic forms to these subsets. For non-quasi-homogeneous subsets there is one
more cohomological invariant except the algebraic restriction ([DJZ2], [DJZ1]). The dimension
of the space of algebraic restrictions of closed 2-forms to a 1-dimensional quasi-homogeneous
isolated complete intersection singularity C is equal to the multiplicity of C ([DJZ2]). In [D] it
was proved that the space of algebraic restrictions of closed 2-forms to a 1-dimensional (singular)
analytic variety is finite-dimensional. In [DJZ2] the method of algebraic restrictions was applied
to various classification problems in a symplectic space. In particular the complete symplectic
classification of classical A-D-E singularities of planar curves and S5 singularity were obtained.
Most of different symplectic singularity classes were distinguished by new discrete symplectic
invariants: the index of isotropy and the symplectic multiplicity.

In [DT1] following ideas from [A1] and [D] new discrete symplectic invariants - the Lagrangian
tangency orders were introduced and used to distinguish symplectic singularities of simple planar
curves of type A-D-E, symplectic T7 and T8 singularities.

In [DT2] was obtained the complete symplectic classification of the isolated complete inter-
section singularities Sµ for µ > 5.

In this paper we obtain the detailed symplectic classification of W8 and W9 singularities. The
paper is organized as follows. In Section 2 we recall discrete symplectic invariants (the symplectic
multiplicity, the index of isotropy and the Lagrangian tangency orders). Symplectic classification
ofW8 andW9 singularity is presented in Sections 3 and 4 respectively. The symplectic sub-orbits
of this singularities are listed in Theorems 3.1 and 4.1. Discrete symplectic invariants for the
symplectic classes are calculated in Theorems 3.2 and 4.2. The geometric descriptions of the
symplectic orbits is presented in Theorems 3.5 and 4.4. In Section 5 we recall the method of
algebraic restrictions and use it to classify symplectic singularities.

2. Discrete symplectic invariants.

We can use discrete symplectic invariants to characterize symplectic singularity classes.
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The first invariant is the symplectic multiplicity ([DJZ2]) introduced in [IJ1] as a symplectic
defect of a curve.

Let N be a germ of a subset of (R2n, ω).

Definition 2.1. The symplectic multiplicity µsym(N) ofN is the codimension of a symplectic
orbit of N in an orbit of N with respect to the action of the group of local diffeomorphisms.

The second invariant is the index of isotropy [DJZ2].

Definition 2.2. The index of isotropy ind(N) of N is the maximal order of vanishing of the
2-forms ω|TM over all smooth submanifolds M containing N .

This invariant has geometrical interpretation. An equivalent definition is as follows: the index
of isotropy of N is the maximal order of tangency between non-singular submanifolds containing
N and non-singular isotropic submanifolds of the same dimension. The index of isotropy is equal
to 0 if N is not contained in any non-singular submanifold which is tangent to some isotropic
submanifold of the same dimension. If N is contained in a non-singular Lagrangian submanifold
then the index of isotropy is ∞.

The symplectic multiplicity and the index of isotropy can be expressed in terms of algebraic
restrictions (Propositions 5.6 and 5.7 in Section 5).

There is one more discrete symplectic invariant, introduced in [D] (following ideas from [A2])
which is defined specifically for a parameterized curve. This is the maximal tangency order of a
curve f : R → M to a smooth Lagrangian submanifold. If H1 = ... = Hn = 0 define a smooth
submanifold L in the symplectic space then the tangency order of a curve f : R → M to L is
the minimum of the orders of vanishing at 0 of functions H1 ◦ f, · · · , Hn ◦ f . We denote the
tangency order of f to L by t(f, L).

Definition 2.3. The Lagrangian tangency order Lt(f) of a curve f is the maximum of
t(f, L) over all smooth Lagrangian submanifolds L of the symplectic space.

The Lagrangian tangency order of a quasi-homogeneous curve in a symplectic space can also
be expressed in terms of the algebraic restrictions (Proposition 5.8 in Section 5).

In [DT1] the above invariant was generalized for germs of curves and multi-germs of curves
which may be parameterized analytically since the Lagrangian tangency order is the same for
every ’good’ analytic parametrization of a curve.

Consider a multi-germ (fi)i∈{1,··· ,r} of analytically parameterized curves fi. We have r-tuples
(t(f1, L), · · · , t(fr, L)) for any smooth submanifold L in the symplectic space.

Definition 2.4. For any I ⊆ {1, · · · , r} we define the tangency order of the multi-germ
(fi)i∈I to L:

t[(fi)i∈ I , L] = min
i∈ I

t(fi, L).

Definition 2.5. The Lagrangian tangency order Lt((fi)i∈ I) of a multi-germ (fi)i∈I
is the maximum of t[(fi)i∈ I , L] over all smooth Lagrangian submanifolds L of the symplectic
space.

3. Symplectic W8-singularities

Denote by (W8) the class of varieties in a fixed symplectic space (R2n, ω) which are diffeo-
morphic to

(3.1) W8 = {x ∈ R2n≥4 : x2
1 + x3

3 = x2
2 + x1x3 = x≥4 = 0}.
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This is the simple 1-dimensional isolated complete intersection singularity W8 ([G], [AVG]1).
Here N is quasi-homogeneous with weights w(x1) = 6, w(x2) = 5, w(x3) = 4.

We used the method of algebraic restrictions to obtain the complete classification of symplectic
singularities of (W8) presented in the following theorem.

Theorem 3.1. Any submanifold of the symplectic space (R2n,
∑n
i=1 dpi ∧ dqi) where n ≥ 3

(respectively, n = 2) which is diffeomorphic to W8 is symplectically equivalent to one and only
one of the normal forms W i

8, i = 0, 1, · · · , 8 (respectively, i = 0, 1, 2a, 2b) listed below. The
parameters c, c1, c2 of the normal forms are moduli:
W 0

8 : p21 + p2q1 = 0, p22 + q31 = 0, q2 = c1q1 + c2p1, p≥3 = q≥3 = 0;

W 1
8 : q21 + p1q2 = 0, p21 + q32 = 0, p2 = c1p1 + c2q1q2, p≥3 = q≥3 = 0, c1 6= 0;

W 2a
8 : p22 ± p1q1 = 0, p21 + q31 = 0, q2 = c1

2
q21 + c2

3
q31 , p≥3 = q≥3 = 0;

W 2b
8 : q21 + p1q2 = 0, p21 + q32 = 0, p2 = c1q1q2 + c2

2
q21 , p≥3 = q≥3 = 0;

W 3
8 : p22 + p1p3 = 0, p21 + p33 = 0, q1 = q2 = 0, q3 = −p2p3 − c1

2
p22 − c2p1p2, p>3 = q>3 = 0;

W 4
8 : p22 + p1p3 = 0, p21 + p33 = 0, q1 = q2 = 0, q3 = ∓ 1

2
p22 − c1p1p2 − c2p2p23, p>3 = q>3 = 0;

W 5
8 : p22 + p1p3 = 0, p21 + p33 = 0, q1 = q2 = 0, q3 = −p1p2 − cp2p23, p>3 = q>3 = 0;

W 6
8 : p22 + p1p3 = 0, p21 + p33 = 0, q1 = q2 = 0, q3 = −p2p23 − c

3
p32, p>3 = q>3 = 0;

W 7
8 : p22 + p1p3 = 0, p21 + p33 = 0, q1 = q2 = 0, q3 = − 1

3
p32, p>3 = q>3 = 0;

W 8
8 : p22 + p1p3 = 0, p21 + p33 = 0, p>3 = q>0 = 0.

In Section 3.1 we use the symplectic invariants (in particular the Lagrangian tangency order)
to distinguish the symplectic singularity classes. In Section 3.2 we propose a geometric descrip-
tion of these singularities that confirms the classification. Some of the proofs are presented in
Section 5.

3.1. Distinguishing symplectic classes of W8 by the Lagrangian tangency order and
the index of isotropy. A curve N ∈ (W8) can be described as a parametrical curve C(t). Its
parametrization is given in the second column of Table 1. To characterize the symplectic classes
we use the following invariants:

• LN = Lt(N) = max
L

(t(C(t), L));
• ind - the index of isotropy of N .

Here L is a smooth Lagrangian submanifold of the symplectic space.

Theorem 3.2. A stratified submanifold N ∈ (W8) of a symplectic space (R2n, ω0) with the
canonical coordinates (p1, q1, · · · , pn, qn) is symplectically equivalent to one and only one of the
curves presented in the second column of Table 1. The parameters c, c1, c2 are moduli. The
index of isotropy and the Lagrangian tangency order of the curve N are presented in the third
and fourth column of Table 1.

Remark 3.3. The invariants can be calculated by knowing the algebraic restrictions for the
symplectic classes. We use Proposition 5.7 to calculate the index of isotropy. The Lagrangian
tangency order we can calculate using Proposition 5.8 or by applying directly the definition of
the Lagrangian tangency order and finding a Lagrangian submanifold the nearest to the curve
C(t).

1 There is a mistake in the description of W8 singularity in [AVG]. We find there
W8 = {x ∈ R2n≥4 : x21+x

3
2 = x22+x1x3 = x≥4 = 0} which is not an isolated complete intersection singularity.
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class parametrization of N ind LN

(W8)0 2n ≥ 4 (t5,−t4, t6,−c1t4 + c2t
5, 0, · · · ) 0 5

(W8)1 2n ≥ 4 (t6, t5, c1t
6 − c2t9,−t4, 0, · · · ) 0 6

(W8)2a 2n ≥ 4 (±t6,−t4, t5, c1
2
t8 − c2

3
t12, 0, · · · ) 0 6

(W8)2b 2n ≥ 4 (t6, t5,−c1t9 + c2
2
t10,−t4, , 0, · · · ) 0 6

(W8)3 2n ≥ 6 (t6, 0, t5, 0,−t4, t9 − c1
2
t10 − c2t11, 0, · · · ) 1 9

(W8)4 2n ≥ 6 (t6, 0, t5, 0,−t4,∓t10 − c1t11 − c2t13, 0, · · · ) 1 10

(W8)5 2n ≥ 6 (t6, 0, t5, 0,−t4,−t11 − ct13, 0, · · · ) 1 11

(W8)6 2n ≥ 6 (t6, 0, t5, 0,−t4,−t13 − c
3
t15, 0, · · · ) 2 13

(W8)7 2n ≥ 6 (t6, 0, t5, 0,−t4,−t15, 0, · · · ) 2 15

(W8)8 2n ≥ 6 (t6, 0, t5, 0,−t4, 0, 0, · · · ) ∞ ∞
Table 1. The symplectic invariants for symplectic classes of W8 singularity.

Remark 3.4. The comparison of invariants presented in Table 1 shows that the Lagrangian
tangency order distinguishes more symplectic classes than the index of isotropy. Symplectic
classes (W8)2a and (W8)2b can not be distinguished by any of the invariants but we can distinguish
them by geometric conditions.

3.2. Geometric conditions for the classes (W8)i. We can characterize the symplectic classes
(W8)i by geometric conditions independent of any local coordinate system. Let N ∈ (W8).
Denote by W the tangent space at 0 to some (and then any) non-singular 3-manifold containing
N . We can define the following subspaces of this space: ` – the tangent line at 0 to the curve
N , V – the 2-space tangent at 0 to the curve N . For N = W8 =(3.1) it is easy to calculate

(3.2) W =span(∂/∂x1, ∂/∂x2, ∂/∂x3), `=span(∂/∂x3), V =span(∂/∂x2, ∂/∂x3).

The classes (W8)i satisfy special conditions in terms of the restriction ω|W , where ω is the
symplectic form.

Theorem 3.5. If a stratified submanifold N ∈ (W8) of a symplectic space (R2n, ω) belongs to
the class (W8)i then the couple (N,ω) satisfies the corresponding conditions in the last column
of Table 2.

Sketch of the proof of Theorem 3.5. We have to show that the conditions in the row of (W8)i

are satisfied for any N ∈ (W8)i.
Each of the conditions in the last column of Table 2 is invariant with respect to the action of
the group of diffeomorphisms in the space of pairs (N,ω). Because each of these conditions
depends only on the algebraic restriction [ω]N we can take the simplest 2-forms ωi representing
the normal forms [W8]i for algebraic restrictions: ω0, ω1, ω2,a, ω2,b, ω3, ω4, ω5, ω6, ω7, ω8

and we can check that the pair (W8, ω = ωi) satisfies the condition in the last column of Table
2.

We note that in the case N = W8 = (3.1) one has the description (3.2) of the subspaces W, `
and V . By simple calculation and observation of the Lagrangian tangency order we obtain that
the conditions corresponding to the classes (W8)i are satisfied. �
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class normal form geometric conditions
(W8)0 [W8]0 : [θ1 + c1θ2 + c2θ3]W8 ω|V 6= 0

(W8)1 [W8]1 : [c1θ2 + θ3 + c2θ4]W8 , c1 6= 0 ω|V = 0 and kerω 6= `

(W8)2a [W8]2a : [±θ2 + c1θ4 + c2θ7]W8 ω|V = 0 and kerω 6= `

(W8)2b [W8]2b : [θ3 + c1θ4 + c2θ5]W8 ω|V = 0 and kerω = `

ω|W = 0

(W8)3 [W8]3 : [θ4 + c1θ5 + c2θ6]W8 LN = 9

(W8)4 [W8]4 : [±θ5 + c1θ6 + c2θ7]W8 LN = 10

(W8)5 [W8]5 : [θ6 + cθ7]W8 LN = 11

(W8)6 [W8]6 : [θ7 + cθ8]W8 LN = 13

(W8)7 [W8]7 : [θ8]W8 LN = 15

(W8)8 [W8]8 : [0]W8 N is contained in a smooth
Lagrangian submanifold

Table 2. Geometric interpretation of singularity classes of W8. (W is the tangent
space to a non-singular 3-dimensional manifold in (R2n≥4, ω) containing N ∈ (W8).
The forms θ1, . . . , θ8 are described in Theorem 5.10 on the page 168.)

4. Symplectic W9-singularities

Denote by (W9) the class of varieties in a fixed symplectic space (R2n, ω) which are diffeo-
morphic to

(4.1) W9 = {x ∈ R2n≥4 : x2
1 + x2x

2
3 = x2

2 + x1x3 = x≥4 = 0}.
This is the simple 1-dimensional isolated complete intersection singularityW9 ([G], [AVG]). Here
N is quasi-homogeneous with weights w(x1)=5, w(x2)=4, w(x3)=3.

We present the complete classification of the symplectic singularities of (W9) which was ob-
tained using the method of algebraic restrictions.

Theorem 4.1. Any submanifold of the symplectic space (R2n,
∑n
i=1 dpi ∧ dqi) where n ≥ 3

(respectively, n = 2) which is diffeomorphic to W9 is symplectically equivalent to one and only
one of the normal forms W i

9, i = 0, 1, · · · , 9 (respectively, i = 0, 1, 2) listed below. The parameters
c, c1, c2 of the normal forms are moduli:
W 0

9 : p21 + p2q
2
2 = 0, p22 + p1q2 = 0, q1 = c1q2 + c2p2, p≥3 = q≥3 = 0;

W 1
9 : p21 + p2q

2
1 = 0, p22 ± p1q1 = 0, q2 = −c1p1 + c2

2
q21 , p≥3 = q≥3 = 0;

W 2
9 : p21 + q1p

2
2 = 0, q21 + p1p2 = 0, q2 = c1q1p2 − c2p1p2, p≥3 = q≥3 = 0;

W 3
9 : p21 + p2p

2
3 = 0, p22 + p1p3 = 0, q3 = ∓p2p3 − c1p1p3 − c2p1p2, q1 = q2 = p>3 = q>3 = 0;

W 4
9 : p21 + p2p

2
3 = 0, p22 + p1p3 = 0, q3 = −p1p3 − c1p1p2 − c2p2p23, q1 = q2 = p>3 = q>3 = 0;

W 5
9 : p21 + p2p

2
3 = 0, p22 + p1p3 = 0, q3 = ∓p1p2 − c1p2p23 − c2p1p23, q1 = q2 = p>3 = q>3 = 0;

W 6
9 : p21 + p2p

2
3 = 0, p22 + p1p3 = 0, q1 = q2 = 0, q3 = −p2p23 − cp1p23, p>3 = q>3 = 0;

W 7
9 : p21 + p2p

2
3 = 0, p22 + p1p3 = 0, q1 = q2 = 0, q3 = ∓p1p23 − cp2p33, p>3 = q>3 = 0;

W 8
9 : p21 + p2p

2
3 = 0, p22 + p1p3 = 0, q1 = q2 = 0, q3 = ∓p2p33, p>3 = q>3 = 0;

W 9
9 : p21 + p2p

2
3 = 0, p22 + p1p3 = 0, p>3 = q>0 = 0.

In Section 4.1 we use the Lagrangian tangency orders to distinguish the symplectic classes.
In Section 4.2 we propose a geometric description of the symplectic singularities. Some of the
proofs are presented in Section 5.
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4.1. Distinguishing symplectic classes of W9 by Lagrangian tangency orders. The
Lagrangian tangency orders were used to distinguish the symplectic classes of (W9). A curve
N ∈ (W9) may be described as a union of two parametrical branches: C1 and C2. The curve
C1 is nonsingular and the curve C2 is singular. Their parametrization in the coordinate system
(p1, q1, p2, q2, · · · , pn, qn) is presented in the second column of Table 3. To characterize the
symplectic classes of this singularity we use the following two invariants:

• LN = Lt(C1, C2) = max
L

(min{t(C1, L), t(C2, L)}),
• L2 = Lt(C2) = max

L
t(C2, L).

Here L is a smooth Lagrangian submanifold of the symplectic space.

Theorem 4.2. A stratified submanifold N ∈ (W9) of the symplectic space (R2n, ω0) with the
canonical coordinates (p1, q1, · · · , pn, qn) is symplectically equivalent to one and only one of the
curves presented in the second column of Table 3. The parameters c, c1, c2 are moduli. The
Lagrangian tangency orders are presented in the third and fourth columns of the table.

class parametrization of branches LN L2

(W9)0 C1 : (0, c1t, 0, t, 0, 0, · · · ), C2 : (t5,−c1t3 − c2t4,−t4,−t3, 0, · · · ) 4 4

(W9)1 C1 : (0,±t, 0, c2
2
t2, 0, · · · ), C2 : (t5,∓t3,−t4,−c1t5 + c2

2
t6, 0, · · · ) 5 5

(W9)2 C1 : (0, 0, t, 0, 0, · · · ), C2 : (t5,−t4,−t3,−c1t7 + c2t8, 0, · · · ) 5 5

(W9)3 C1 : (0, 0, 0, 0, t, 0, · · · ), C2 : (t5, 0,−t4, 0, t3,∓t7 + c1t8 + c2t9, 0, · · · ) 7 7

(W9)4 C1 : (0, 0, 0, 0, t, 0, · · · ), C2 : (t5, 0,−t4, 0, t3, t8 + c1t9 + c2t10, 0, · · · ) 8 8

(W9)5 C1 : (0, 0, 0, 0, t, 0, · · · ), C2 : (t5, 0,−t4, 0, t3,±t9 + c1t10 − c2t11, 0, · · · ) 9 ∞

(W9)6 C1 : (0, 0, 0, 0, t, 0, · · · ), C2 : (t5, 0,−t4, 0, t3, t10 − ct11, 0, · · · ) 10 ∞

(W9)7 C1 : (0, 0, 0, 0, t, 0, · · · ), C2 : (t5, 0,−t4, 0, t3,∓t11 − ct13, 0, · · · ) 11 ∞

(W9)8 C1 : (0, 0, 0, 0, t, 0, · · · ), C2 : (t5, 0,−t4, 0, t3,∓t13, 0, · · · ) 13 ∞

(W9)9 C1 : (0, 0, 0, 0, t, 0, · · · ), C2 : (t5, 0,−t4, 0, t3, 0, 0, · · · ) ∞ ∞

Table 3. The Lagrangian tangency orders for symplectic classes of W9 singularity.

Remark 4.3. The invariants can be calculated by knowing the parametrization of branches C1

and C2. We apply directly the definition of the Lagrangian tangency order finding a Lagrangian
submanifold the nearest to the branches.

4.2. Geometric conditions for the classes (W9)i.
Let N ∈ (W9). Denote by W the tangent space at 0 to some (and then any) non-singular

3-manifold containing N . We can define the following subspaces of this space:
` – the tangent line at 0 to both branches of N ,
V – 2-space tangent at 0 to the singular branch of N .
The classes (W9)i satisfy special conditions in terms of the restriction ω|W , where ω is the

symplectic form.

Theorem 4.4. A stratified submanifold N ∈ (W9) of the symplectic space (R2n, ω) belongs to
the class (W9)i if and only if the couple (N,ω) satisfies the corresponding conditions in the last
column of Table 4.
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class normal form geometric conditions

(W9)0 [W9]0 : [θ1 + c1θ2 + c2θ3]W9 ω|V 6= 0 (2-space tangent toN is not isotropic)

(W9)1 [W9]1 : [±θ2 +c1θ3 +c2θ4]W9 ω|V = 0 and kerω 6= `

(W9)2 [W9]2 : [θ3 + c1θ4 + c2θ5]W9 ω|V = 0 and kerω = `

ω|W = 0

(W9)3 [W9]3 : [±θ4 +c1θ5 +c2θ6]W9 LN = 7

(W9)4 [W9]4 : [θ5 + c1θ6 + c2θ7]W9 LN = 8

(W9)5 [W9]5 : [±θ6 +c1θ7 +c2θ8]W9 LN = 9

(W9)6 [W9]6 : [θ7 + cθ8]W9 LN = 10

(W9)7 [W9]7 : [±θ8 + cθ9]W9 LN = 11

(W9)8 [W9]8 : [±θ9]W9 LN = 13

(W9)9 [W9]9 : [0]W9 N is contained in a smooth Lagrangian sub-
manifold

Table 4. Geometric characterization of symplectic classes of W9 singularity. (The
forms θ1, . . . , θ9 are described in Theorem 5.23 on the page 173.)

Sketch of the proof of Theorem 4.4. The conditions on the pair (ω,N) in the last column of
Table 4 are disjoint. It suffices to prove that these conditions in the row of (W9)i, are satisfied
for any N ∈ (W9)i.

We can take the simplest 2-forms ωi representing the normal forms [W9]i for algebraic restric-
tions and we can check that the pair (W9, ω = ωi) satisfies the condition in the last column of
Table 4.
We note that in the case N = W9 = (4.1) one has
` = span(∂/∂x3), V = span(∂/∂x2, ∂/∂x3, W = span(∂/∂x1, ∂/∂x2, ∂/∂x3).
By simple calculation and observation of the Lagrangian tangency orders we obtain that the
conditions corresponding to the classes (W9)i are satisfied. �

5. Proofs

5.1. The method of algebraic restrictions. In this section we present basic facts on the
method of algebraic restrictions, which is a very powerful tool for the symplectic classification.
The details of the method and proofs of all results of this section can be found in [DJZ2].

Given a germ of a non-singular manifold M denote by Λp(M) the space of all germs at 0 of
differential p-forms on M . Given a subset N ⊂M introduce the following subspaces of Λp(M):

ΛpN (M) = {ω ∈ Λp(M) : ω(x) = 0 for any x ∈ N};

Ap0(N,M) = {α+ dβ : α ∈ ΛpN (M), β ∈ Λp−1
N (M).}

Definition 5.1. Let N be the germ of a subset of M and let ω ∈ Λp(M). The algebraic
restriction of ω to N is the equivalence class of ω in Λp(M), where the equivalence is as
follows: ω is equivalent to ω̃ if ω − ω̃ ∈ Ap0(N,M).
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Notation. The algebraic restriction of the germ of a p-form ω on M to the germ of a subset
N ⊂ M will be denoted by [ω]N . By writing [ω]N = 0 (or saying that ω has zero algebraic
restriction to N) we mean that [ω]N = [0]N , i.e. ω ∈ Ap0(N,M).

Definition 5.2. Two algebraic restrictions [ω]N and [ω̃]Ñ are called diffeomorphic if there
exists the germ of a diffeomorphism Φ : M̃ →M such that Φ(Ñ) = N and Φ∗([ω]N ) = [ω̃]Ñ .

The method of algebraic restrictions applied to singular quasi-homogeneous subsets is based
on the following theorem.

Theorem 5.3 (Theorem A in [DJZ2]). Let N be the germ of a quasi-homogeneous subset of
R2n. Let ω0, ω1 be germs of symplectic forms on R2n with the same algebraic restriction to N .
There exists a local diffeomorphism Φ such that Φ(x) = x for any x ∈ N and Φ∗ω1 = ω0.

Two germs of quasi-homogeneous subsets N1, N2 of a fixed symplectic space (R2n, ω) are sym-
plectically equivalent if and only if the algebraic restrictions of the symplectic form ω to N1 and
N2 are diffeomorphic.

Theorem 5.3 reduces the problem of symplectic classification of germs of singular quasi-
homogeneous subsets to the problem of diffeomorphic classification of algebraic restrictions of
the germ of the symplectic form to the germs of singular quasi-homogeneous subsets.

The geometric meaning of the zero algebraic restriction is explained by the following theorem.

Theorem 5.4 (Theorem B in [DJZ2]). The germ of a quasi-homogeneous set N of a symplectic
space (R2n, ω) is contained in a non-singular Lagrangian submanifold if and only if the symplectic
form ω has zero algebraic restriction to N .

In the remainder of this paper we use the following notations:
•
[
Λ2(R2n)

]
N
: the vector space consisting of the algebraic restrictions of germs of all 2-forms

on R2n to the germ of a subset N ⊂ R2n;
•
[
Z2(R2n)

]
N
: the subspace of

[
Λ2(R2n)

]
N

consisting of the algebraic restrictions of germs of
all closed 2-forms on R2n to N ;
•
[
Symp(R2n)

]
N
: the open set in

[
Z2(R2n)

]
N

consisting of the algebraic restrictions of germs
of all symplectic 2-forms on R2n to N .

To obtain a classification of the algebraic restrictions we use the following proposition.

Proposition 5.5. Let a1, · · · , ap be a quasi-homogeneous basis of quasi-degrees δ1 ≤ · · · ≤ δs <
δs+1 ≤ · · · ≤ δp of the space of algebraic restrictions of closed 2-forms to quasi-homogeneous
subset N . Let a =

∑p
j=s cjaj, where cj ∈ R for j = s, · · · , p and cs 6= 0.

If there exists a tangent quasi-homogeneous vector field X over N such that LXas = rak for
k > s and r 6= 0 then a is diffeomorphic to

∑k−1
j=s cjaj +

∑p
j=k+1 bjaj, for some bj ∈ R, j =

k + 1, · · · , p.

Proposition 5.5 is a modification of Theorem 6.13 formulated and proved in [D]. It was
formulated for algebraic restrictions to a parameterized curve but we can generalize this theorem
for any quasi-homogeneous subset N . The proofs of the cited theorem and Proposition 5.5 are
based on the Moser homotopy method.

For calculating discrete invariants we use the following propositions.
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Proposition 5.6 ([DJZ2]). The symplectic multiplicity of the germ of a quasi-homogeneous
subset N in a symplectic space is equal to the codimension of the orbit of the algebraic restriction
[ω]N with respect to the group of local diffeomorphisms preserving N in the space of algebraic
restrictions of closed 2-forms to N .

Proposition 5.7 ([DJZ2]). The index of isotropy of the germ of a quasi-homogeneous subset
N in a symplectic space (R2n, ω) is equal to the maximal order of vanishing of closed 2-forms
representing the algebraic restriction [ω]N .

Proposition 5.8 ([D]). Let f be the germ of a quasi-homogeneous curve such that the algebraic
restriction of a symplectic form to it can be represented by a closed 2-form vanishing at 0. Then
the Lagrangian tangency order of the germ of a quasi-homogeneous curve f is the maximum of
the order of vanishing on f over all 1-forms α such that [ω]f = [dα]f

5.2. Proofs for W8 singularity.

5.2.1. Algebraic restrictions to W8 and their classification. One has the following relations for
(W8)-singularities:

(5.1) [d(x2
2 + x1x3)]W8

= [2x2dx2 + x1dx3 + x3dx1]W8
= 0,

(5.2) [d(x2
1 + x3

3)]W8
= [2x1dx1 + 3x2

3dx3]W8
= 0.

Multiplying these relations by suitable 1-forms we obtain the relations in Table 5.

δ relations proof

14 [x2dx2 ∧ dx3]N = − 1
2
[x3dx1 ∧ dx3]N (5.1)∧ dx3

15 [x1dx2 ∧ dx3]N = [x3dx1 ∧ dx2]N (5.1)∧ dx2
16 [x2dx1 ∧ dx2]N = − 1

2
[x1dx1 ∧ dx3]N = 0 (5.2)∧ dx3 and (5.1)∧ dx1

17 [x23dx2 ∧ dx3]N = 2
3
[x1dx1 ∧ dx2]N (5.2)∧ dx2

18 [x23dx1 ∧ dx3]N = 2[x2x3dx2 ∧ dx3]N = 0 (5.2)∧ dx1 and (5.1)∧x3dx3
19 [x22dx2 ∧ dx3]N = − 1

2
[x2x3dx1 ∧ dx3]N (5.1)∧x2dx3

[x22dx2 ∧ dx3]N = −[x1x3dx2 ∧ dx3]N =

= −[x23dx1 ∧ dx2]N
(5.1)∧x3dx2
and [x22 + x1x3]N = 0

20 [α]N = 0 for all 2-forms α of quasi-degree 20 relations for δ ∈ {14, 15, 16}
and [x22 + x1x3]N = 0

21 [α]N = 0 for all 2-forms α of quasi-degree 21 relations for δ ∈ {15, 16, 17}
and [x21+x

3
3]N = [x22+x1x3]N = 0

22 [α]N = 0 for all 2-forms α of quasi-degree 22 relations for δ ∈ {16, 17, 18}
and [x21+x

3
3]N = [x22+x1x3]N = 0

23 [α]N = 0 for all 2-forms α of quasi-degree 23 relations for δ ∈ {17, 18, 19}
and [x21 + x33]N = 0

24 [α]N = 0 for all 2-forms α of quasi-degree 24 relations for δ ∈ {18, 19, 20}
and [x21 + x33]N = 0

25 [α]N = 0 for all 2-forms α of quasi-degree 25 relations for δ ∈ {19, 20, 21}
δ>25 [α]N = 0 for all 2-forms α of quasi-degree δ>25 relations for δ > 19

Table 5. Relations towards calculating [Λ2(R2n)]N for N = W8.

Using the method of algebraic restrictions and Table 5 we obtain the following proposition.
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Proposition 5.9. The space [Λ2(R2n)]W8
is a 9-dimensional vector space spanned by the alge-

braic restrictions to W8 of the 2-forms:
θ1 = dx2 ∧ dx3, θ2 = dx1 ∧ dx3, θ3 = dx1 ∧ dx2, θ4 = x3dx2 ∧ dx3, θ5 = x2dx2 ∧ dx3,
σ1 = x1dx2 ∧ dx3, σ2 = x2dx1 ∧ dx3, θ7 = x23dx2 ∧ dx3, θ8 = x22dx2 ∧ dx3.

Proposition 5.9 and results of Section 5.1 imply the following description of the space [Z2(R2n)]W8

and the manifold [Symp(R2n)]W8 .

Theorem 5.10. The space [Z2(R2n)]W8
is an 8-dimensional vector space spanned by the alge-

braic restrictions to W8 of the quasi-homogeneous 2-forms θi of degree δi:
θ1 = dx2 ∧ dx3, δ1 = 9,

θ2 = dx1 ∧ dx3, δ2 = 10,

θ3 = dx1 ∧ dx2, δ3 = 11,

θ4 = x3dx2 ∧ dx3, δ4 = 13,

θ5 = x2dx2 ∧ dx3, δ5 = 14,

θ6 = σ1 + σ2 = x1dx2 ∧ dx3 + x2dx1 ∧ dx3, δ6 = 15,

θ7 = x23dx2 ∧ dx3, δ7 = 17,

θ8 = x22dx2 ∧ dx3, δ8 = 19.

If n ≥ 3 then [Symp(R2n)]W8
= [Z2(R2n)]W8

. The manifold [Symp(R4)]W8
is an open part of

the 8-space [Z2(R4)]W8
consisting of algebraic restrictions of the form [c1θ1 + · · ·+ c8θ8]W8

such
that (c1, c2, c3) 6= (0, 0, 0).

Theorem 5.11.
(i) Any algebraic restriction in [Z2(R2n)]W8 can be brought by a symmetry of W8 to one of the
normal forms [W8]i given in the second column of Table 6.
(ii) The codimension in [Z2(R2n)]W8

of the singularity class corresponding to the normal form
[W8]i is equal to i, the symplectic multiplicity and the index of isotropy are given in the fourth
and fifth columns of Table 6.
(iii) The singularity classes corresponding to the normal forms are disjoint.
(iv) The parameters c, c1, c2 of the normal forms [W8]i are moduli.

In the first column of Table 6 we denote by (W8)i a subclass of (W8) consisting of N ∈ (W8) such
that the algebraic restriction [ω]N is diffeomorphic to some algebraic restriction of the normal
form [W8]i, where i is the codimension of the class. Classes (W8)2a and (W8)2b have the same
codimension equal to 2 but they can be distinguished geometrically (see Table 2).

The proof of Theorem 5.11 is presented in Section 5.2.3.

5.2.2. Symplectic normal forms. Let us transfer the normal forms [W8]i to symplectic normal
forms. Fix a family ωi of symplectic forms on R2n realizing the family [W8]i of algebraic restric-
tions. We can fix, for example,
ω0 = θ1 + c1θ2 + c2θ3 + dx1 ∧ dx4 + dx5 ∧ dx6 + · · ·+ dx2n−1 ∧ dx2n;

ω1 = c1θ2 + θ3 + c2θ4 + dx3 ∧ dx4 + dx5 ∧ dx6 + · · ·+ dx2n−1 ∧ dx2n, c1 6= 0;

ω2,a = ±θ2 + c1θ4 + c2θ7 + dx2 ∧ dx4 + dx5 ∧ dx6 + · · ·+ dx2n−1 ∧ dx2n;

ω2,b = θ3 + c1θ4 + c2θ5 + dx3 ∧ dx4 + dx5 ∧ dx6 + · · ·+ dx2n−1 ∧ dx2n;
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symplectic class normal forms for algebraic restrictions cod µsym ind

(W8)0 (2n ≥ 4) [W8]0 : [θ1 + c1θ2 + c2θ3]W8 , 0 2 0

(W8)1 (2n ≥ 4) [W8]1 : [c1θ2 + θ3 + c2θ4]W8 , c1 6= 0 1 3 0

(W8)2,a (2n ≥ 4) [W8]2,a : [±θ2 + c1θ4 + c2θ7]W8 , 2 4 0

(W8)2,b (2n ≥ 4) [W8]2,b : [θ3 + c1θ4 + c2θ5]W8 , 2 4 0

(W8)3 (2n ≥ 6) [W8]3 : [θ4 + c1θ5 + c2θ6]W8 3 5 1

(W8)4 (2n ≥ 6) [W8]4 : [±θ5 + c1θ6 + c2θ7]W8 4 6 1

(W8)5 (2n ≥ 6) [W8]5 : [θ6 + cθ7]W8 5 6 1

(W8)6 (2n ≥ 6) [W8]6 : [θ7 + cθ8]W8 6 7 2

(W8)7 (2n ≥ 6) [W8]7 : [θ8]W8 7 7 2

(W8)8 (2n ≥ 6) [W8]8 : [0]W8 8 8 ∞
Table 6. Classification of symplectic W8 singularities.
cod – codimension of the classes; µsym– symplectic multiplicity;
ind – the index of isotropy.

ω3 = θ4 + c1θ5 + c2θ6 + dx1 ∧ dx4 + dx2 ∧ dx5 + dx3 ∧ dx6 + dx7 ∧ dx8 + · · ·+ dx2n−1 ∧ dx2n;

ω4 = ±θ5 + c1θ6 + c2θ7 + dx1 ∧ dx4 + dx2 ∧ dx5 + dx3 ∧ dx6 + dx7 ∧ dx8 + · · ·+ dx2n−1 ∧ dx2n;

ω5 = θ6 + cθ7 + dx1 ∧ dx4 + dx2 ∧ dx5 + dx3 ∧ dx6 + dx7 ∧ dx8 + · · ·+ dx2n−1 ∧ dx2n;

ω6 = θ7 + cθ8 + dx1 ∧ dx4 + dx2 ∧ dx5 + dx3 ∧ dx6 + dx7 ∧ dx8 + · · ·+ dx2n−1 ∧ dx2n;

ω7 = θ8 + dx1 ∧ dx4 + dx2 ∧ dx5 + dx3 ∧ dx6 + dx7 ∧ dx8 + · · ·+ dx2n−1 ∧ dx2n;

ω8 = dx1 ∧ dx4 + dx2 ∧ dx5 + dx3 ∧ dx6 + dx7 ∧ dx8 + · · ·+ dx2n−1 ∧ dx2n.

Let ω0 =
∑m
i=1 dpi∧dqi, where (p1, q1, · · · , pn, qn) is the coordinate system on R2n, n ≥ 3 (resp.

n = 2). Fix, for i = 0, 1, · · · , 8 (resp. for i = 0, 1, 2) a family Φi of local diffeomorphisms which
bring the family of symplectic forms ωi to the symplectic form ω0: (Φi)∗ωi = ω0. Consider the
families W i

8 = (Φi)−1(W8). Any stratified submanifold of the symplectic space (R2n, ω0) which
is diffeomorphic to W8 is symplectically equivalent to one and only one of the normal forms
W i

8, i = 0, 1, · · · , 8 (resp. i = 0, 1, 2) presented in Theorem 3.1. By Theorem 5.11 we obtain that
parameters c, c1, c2 of the normal forms are moduli.

5.2.3. Proof of Theorem 5.11. In our proof we use vector fields tangent to N ∈W8. Any vector
fields tangent to N ∈ W8 can be described as V = g1E + g2H where E is the Euler vector field
and H is a Hamiltonian vector field and g1, g2 are functions. It was shown in [DT1] (Prop. 6.13)
that the action of a Hamiltonian vector field on the algebraic restriction of a closed 2-form to
any 1-dimensional complete intersection is trivial.

The germ of a vector field tangent to W8 of non trivial action on algebraic restrictions of closed
2-forms to W8 may be described as a linear combination of germs of vector fields: X0 =E, X1 =
x3E, X2 = x2E, X3 = x1E, X4 = x2

3E, X5 = x2x3E, X6 = x2
2E, X7 = x1x3E, where E is the

Euler vector field

(5.3) E = 6x1
∂

∂x1
+ 5x2

∂

∂x2
+ 4x3

∂

∂x3
.

Proposition 5.12. The infinitesimal action of germs of quasi-homogeneous vector fields tangent
to N ∈ (W8) on the basis of the vector space of algebraic restrictions of closed 2-forms to N is
presented in Table 7.
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LXi [θj ] [θ1] [θ2] [θ3] [θ4] [θ5] [θ6] [θ7] [θ8]

X0 =E 9[θ1] 10[θ2] 11[θ3] 13[θ4] 14[θ5] 15[θ6] 17[θ7] 19[θ8]

X1 =x3E 13[θ4] −28[θ5] 5[θ6] 17[θ7] [0] −57[θ8] [0] [0]

X2 =x2E 14[θ5] 10[θ6] [0] [0] 19[θ8] [0] [0] [0]

X3 =x1E 5[θ6] [0] 51
2

[θ7] −19[θ8] [0] [0] [0] [0]

X4 =x23E 17[θ7] [0] −19[θ8] [0] [0] [0] [0] [0]

X5 =x2x3E [0] −38[θ8] [0] [0] [0] [0] [0] [0]

X6 =x22E 19[θ8] [0] [0] [0] [0] [0] [0] [0]

X7 =x1x3E −19[θ8] [0] [0] [0] [0] [0] [0] [0]

Table 7. Infinitesimal actions on algebraic restrictions of closed 2-forms to W8. (E
is defined as in (5.3.))

Let A = [c1θ1 + c2θ2 + c3θ3 + c4θ4 + c5θ5 + c6θ6 + c7θ7 + c8θ8]W8 be the algebraic restriction
of a symplectic form ω.

The first statement of Theorem 5.11 follows from the following lemmas.

Lemma 5.13. If c1 6= 0 then the algebraic restriction A = [
∑8
k=1 ckθk]W8 can be reduced by a

symmetry of W8 to an algebraic restriction [θ1 + c̃2θ2 + c̃3θ3]W8
.

Proof. Using the data of Table 7, we can see that for any algebraic restriction [θk]W8
, where k∈

{4, 5, . . . , 8} we can find a vector field Vk tangent toW8 such that LVk
[θ1]W8 =[θk]W8 . We deduce

from Proposition 5.5 that the algebraic restriction A is diffeomorphic to [c1θ1 + c2θ2 + c3θ3]W8 .
By the condition c1 6= 0, we have a diffeomorphism Ψ ∈ Symm(W8) of the form

(5.4) Ψ : (x1, x2, x3) 7→ (c
− 6

9
1 x1, c

− 5
9

1 x2, c
− 4

9
1 x3)

and finally we obtain

Ψ∗([c1θ1 + c2θ2 + c3θ3]W8) = [θ1 + c2c
− 10

9
1 θ2 + c3c

− 11
9

1 θ3]W8 = [θ1 + c̃2θ2 + c̃3θ3]W8 .

�

Lemma 5.14. If c1 = 0 and c2 · c3 6= 0 then the algebraic restriction A can be reduced by a
symmetry of W8 to an algebraic restriction [c̃2θ2 + θ3 + c̃4θ4]W8 .

Proof of Lemma 5.14. We use the homotopy method to prove that A is diffeomorphic to [c̃2θ2 +

θ3 + c̃4θ4]W8
.

Let Bt = [c2θ2 + c4θ3 + c4θ4 + (1 − t)c5θ5 + (1 − t)c6θ6 + (1 − t)c7θ7 + (1 − t)c8θ8]W8 for
t ∈ [0; 1]. Then B0 = A and B1 = [c2θ2 + c3θ3 + c4θ4]W8

. We prove that there exists a family
Φt ∈ Symm(W8), t ∈ [0; 1] such that

(5.5) Φ∗tBt = B0, Φ0 = id.

Let Vt be a vector field defined by dΦt

dt = Vt(Φt). Then, by differentiating (5.5) we obtain

(5.6) LVt
Bt = [c5θ5 + c6θ6 + c7θ7 + c8θ8]W8

.
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We are looking for Vt in the form Vt =
∑5
k=1 bk(t)Xk where the bk(t) for k = 1, . . . , 5 are smooth

functions bk : [0; 1]→ R. Then, by Proposition 5.12, equation (5.6) has the form

(5.7)


−28c2 0 0 0 0

5c3 10c2 0 0 0

17c4 0 51
2 c3 0 0

−57c6(1− t) 19c5(1− t) −19c4 −19c3 −38c2





b1

b2

b3

b4

b5


=


c5

c6

c7

c8

 .

If c2 ·c3 6= 0 we can solve (5.7) and Φt may be obtained as a flow of the vector field Vt. The family
Φt preserves W8, because Vt is tangent to W8 and Φ∗tBt = A. Using the homotopy arguments,
we have that A is diffeomorphic to B1 = [c2θ2 + c3θ3 + c4θ4]W8

. By the condition c3 6= 0, we
have a diffeomorphism Ψ ∈ Symm(W8) of the form

(5.8) Ψ : (x1, x2, x3) 7→ (c
− 6

11
3 x1, c

− 5
11

3 x2, c
− 4

11
3 x3),

and we obtain

Ψ∗(B1) = [c2c
− 10

11
3 θ2 + θ3 + c4c

− 13
11

3 θ3]W8
= [c̃2θ2 + θ3 + c̃4θ4]W8

.

�

Lemma 5.15. If c1 = c3 = 0 and c2 6= 0 then the algebraic restriction A can be reduced by a
symmetry of W8 to an algebraic restriction [±θ2 + c̃4θ4 + c̃7θ7]W8

.

Proof. We can see from Table 7 that for any algebraic restriction [θk]W8 , where k ∈ {5, 6, 8}
there exists a vector field Vk tangent to W8 such that LVk

[θ2]W8
= [θk]W8

. Using Proposition
5.5 we obtain that A is diffeomorphic to [c2θ2 + c4θ4 + ĉ7θ7]W8

for some ĉ7 ∈ R.
By the condition c2 6= 0 we can use a diffeomorphism Ψ ∈ Symm(W8) of the form

(5.9) Ψ : (x1, x2, x3) 7→ (|c2|−
6
10x1, |c2|−

5
10x2, |c2|−

4
10x3)

and we obtain

Ψ∗([c2θ2 + c4θ4 + ĉ7θ7]W8
)=[

c2
|c2|

θ2 + c4|c2|−
13
10 θ4 + ĉ7|c2|−

17
10 θ7]W8

=[±θ2 + c̃4θ4 + c̃7θ7]W8
.

The algebraic restrictions [θ2 + c̃4θ4 + c̃7θ7]W8 and [−θ2 + b̃4θ4 + b̃7θ7]W8 are not diffeomorphic.
Any diffeomorphism Φ = (Φ1, . . . ,Φ2n) of (R2n, 0) preserving W8 has to preserve a curve C(t) =

(t6, t5,−t4, 0, . . . , 0) which means that
Φ1(t6, t5,−t4, 0, . . . , 0) = (ψ(t))6,
Φ2(t6, t5,−t4, 0, . . . , 0) = (ψ(t))5,
Φ3(t6, t5,−t4, 0, . . . , 0) = −(ψ(t))4,
Φk(t6, t5,−t4, 0, . . . , 0) = 0 for k > 3,

where ψ(t) = a1t+ a2t
2 + a3t

3 + . . . is a diffeomorphism of (R, 0).
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Hence Φ has a linear part

(5.10)

Φ1 : A6x1 + A14x4 + · · · + A1,2nx2n

Φ2 : A2,1x1 + A5x2 + A24x4 + · · · + A2,2nx2n

Φ3 : A3,1x1 + A3,2x2 + A4x3 + A34x4 + · · · + A3,2nx2n

Φ4 : A44x4 + · · · + A4,2nx2n

...
...

...
...

...
Φ2n : A2n,4x4 + · · · + A2n,2nx2n,

where A,Ai,j ∈ R.
If we assume that Φ∗([θ2 + c̃4θ4 + c̃7θ7]W8) = [−θ2 + b̃4θ4 + b̃7θ7]W8 , then
A10dx1 ∧ dx3|0 = −dx1 ∧ dx3|0, which is a contradiction. �

Lemma 5.16. If c1 = c2 = 0 and c3 6= 0 then the algebraic restriction A can be reduced by a
symmetry of W8 to an algebraic restriction [θ3 + c̃4θ4 + c̃5θ5]W8

.

Lemma 5.17. If c1 = c2 = c3 = 0 and c4 6= 0 then the algebraic restriction A can be reduced
by a symmetry of W8 to an algebraic restriction [θ4 + c̃5θ5 + c̃6θ6]W8

.

Lemma 5.18. If c1 = 0, . . . , c4 = 0 and c5 6= 0, then the algebraic restriction A can be reduced
by a symmetry of W8 to an algebraic restriction [±θ5 + c̃6θ6 + c̃7θ7]W8

.

Lemma 5.19. If c1 = 0, . . . , c5 = 0 and c6 6= 0 then the algebraic restriction A can be reduced
by a symmetry of W8 to an algebraic restriction [θ6 + c̃7θ7]W8 .

Lemma 5.20. If c1 = 0, . . . , c6 = 0 and c7 6= 0 then the algebraic restriction A can be reduced
by a symmetry of W8 to an algebraic restriction [θ7 + c̃8θ8]W8 .

Lemma 5.21. If c1 = 0, . . . , c7 = 0 and c8 6= 0 then the algebraic restriction A can be reduced
by a symmetry of W8 to an algebraic restriction [θ8]W8 .

The proofs of Lemmas 5.16 – 5.21 are similar to the proofs of Lemmas 5.13 – 5.15 and are
based on Table 7.

Statement (ii) of Theorem 5.11 follows from the conditions in the proof of part (i) (the codi-
mension) and from Theorem 5.4 and Proposition 5.6 (the symplectic multiplicity) and Proposi-
tion 5.7 (the index of isotropy).

To prove statement (iii) of Theorem 5.11 we have to show that singularity classes correspond-
ing to normal forms are disjoint. The singularity classes that can be distinguished by geometric
conditions obviously are disjoint. From Theorem 3.5 we see that only classes (W8)1 and (W8)2,a

can not be distinguished by the geometric conditions but their symplectic multiplicities are
distinct , hence the classes are disjoint.

To prove statement (iv) of Theorem 5.11 we have to show that the parameters c, c1, c2 are
moduli in the normal forms. The proofs are very similar in all cases. We consider as an example
the normal form with two parameters [θ1 +c1θ2 +c2θ3]W8

. From Table 7 we see that the tangent
space to the orbit of [θ1 + c1θ2 + c2θ3]W8

at [θ1 + c1θ2 + c2θ3]W8
is spanned by the linearly

independent algebraic restrictions [9θ1 + 10c1θ2 + 11c2θ3]W8 , [θ4]W8 , [θ5]W8 , [θ6]W8 , [θ7]W8 and
[θ8]W8 . Hence, the algebraic restrictions [θ2]W8 and [θ3]W8 do not belong to it. Therefore, the
parameters c1 and c2 are independent moduli in the normal form [θ1 + c1θ2 + c2θ3]W8

.

5.3. Proofs for W9 singularity.
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5.3.1. Algebraic restrictions to W9 and their classification.
One has the following relations for (W9)-singularities

(5.11) [d(x2
1 + x2x

2
3)]W9 = [2x1dx1 + 2x2x3dx3 + x2

3dx2]W9 = 0,

(5.12) [d(x2
2 + x1x3)]W9

= [2x2dx2 + x3dx1 + x1dx3]W9
= 0.

Multiplying these relations by suitable 1-forms we obtain the relations in Table 8.

δ relations proof

11 [x3dx1 ∧ dx3]N = −2[x2dx2 ∧ dx3]N (5.12)∧ dx3
12 [x1dx2 ∧ dx3]N = [x3dx1 ∧ dx2]N (5.12)∧ dx2
13 [x23dx2 ∧ dx3]N = −2[x1dx1 ∧ dx3]N = 4[x2dx1 ∧ dx1]N (5.11)∧dx3 and (5.12)∧dx1
14 [x23dx1∧ dx3]N = −2[x1dx1∧ dx2]N =−2[x2x3dx2∧ dx3]N (5.11)∧dx2, (5.12)∧x3dx3
15 [α]N = 0 for all 2-forms α of quasi-degree 15 relations for δ ∈ {11, 12}

and (5.11)∧dx1
and [x22 + x1x3]N = 0

16 [x33dx2∧ dx3]N =−2[x1x3dx1∧ dx3]N = 4[x2x3dx1∧ dx2]N relations for δ = 13

[x1x3dx1∧ dx3]N =−2[x1x2dx2∧ dx3]N =−[x22dx1∧ dx3]N relations for δ ∈ {11, 12}
and [x22 + x1x3]N = 0

17 [α]N = 0 for all 2-forms α of quasi-degree 17 relations for δ ∈ {12, 13, 14}
and [x21 + x2x23]N = 0

i [x22 + x1x3]N = 0

18 [α]N = 0 for all 2-forms α of quasi-degree 18 relations for δ ∈ {13, 14, 15}
and [x21 + x2x23]N = 0

19 [α]N = 0 for all 2-forms α of quasi-degree 19 relations for δ ∈ {14, 15, 16}
and [x21 + x2x23]N = 0

20 [α]N = 0 for all 2-forms α of quasi-degree 20 relations for δ ∈ {15, 16, 17}
21 [α]N = 0 for all 2-forms α of quasi-degree 21 relations for δ ∈ {16, 17, 18}
>21 [α]N = 0 for all 2-forms α of quasi-degree δ > 21 relations for δ > 16

Table 8. Relations towards calculating [Λ2(R2n)]N for N = W9.

Using the method of algebraic restrictions and Table 8 we obtain the following proposition:

Proposition 5.22. The space [Λ2(R2n)]W9
is a 10-dimensional vector space spanned by the

algebraic restrictions to W9 of the 2-forms
θ1 = dx2 ∧ dx3, θ2 = dx1 ∧ dx3, θ3 = dx1 ∧ dx2,

θ4 = x3dx2 ∧ dx3, θ5 = x3dx1 ∧ dx3, σ1 = x1dx2 ∧ dx3, σ2 = x2dx1 ∧ dx3,

θ7 = x2
3dx2 ∧ dx3, θ8 = x2

3dx1 ∧ dx3, θ9 = x3
3dx2 ∧ dx3.

Proposition 5.22 and results of Section 5.1 imply the following description of the space
[Z2(R2n)]W9 and the manifold [Symp(R2n)]W9 .

Theorem 5.23. The space [Z2(R2n)]W9
is a 9-dimensional vector space spanned by the algebraic

restrictions to W9 of the quasi-homogeneous 2-forms θi of degree δi
θ1 = dx2 ∧ dx3, δ1 = 7,

θ2 = dx1 ∧ dx3, δ2 = 8,

θ3 = dx1 ∧ dx2, δ3 = 9,
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θ4 = x3dx2 ∧ dx3, δ4 = 10,

θ5 = x3dx1 ∧ dx3, δ5 = 11,

θ6 = σ1 + σ2 = x1dx2 ∧ dx3 + x2dx1 ∧ dx3, δ6 = 12,

θ7 = x23dx2 ∧ dx3, δ7 = 13,

θ8 = x23dx1 ∧ dx3, δ8 = 14,

θ9 = x33dx2 ∧ dx3, δ8 = 16,

If n ≥ 3 then [Symp(R2n)]W9
= [Z2(R2n)]W9

. The manifold [Symp(R4)]W9
is an open part of

the 9-space [Z2(R4)]W9 consisting of algebraic restrictions of the form [c1θ1 + · · ·+ c9θ9]W9 such
that (c1, c2, c3) 6= (0, 0, 0).

Theorem 5.24.

(i) Any algebraic restriction in [Z2(R2n)]W9
can be brought by a symmetry of W9 to one of the

normal forms [W9]i given in the second column of Table 9.

(ii) The codimension in [Z2(R2n)]W9 of the singularity class corresponding to the normal form
[W9]i is equal to i, the symplectic multiplicity and the index of isotropy are given in the fourth
and fifth columns of Table 9.

(iii) The singularity classes corresponding to the normal forms are disjoint.

(iv) The parameters c, c1, c2 of the normal forms [W9]i are moduli.

symplectic class normal forms for algebraic restrictions cod µsym ind

(W9)0 (2n ≥ 4) [W9]0 : [θ1 + c1θ2 + c2θ3]W9 , 0 2 0

(W9)1 (2n ≥ 4) [W9]1 : [±θ2 + c1θ3 + c2θ4]W9 1 3 0

(W9)2 (2n ≥ 4) [W9]2 : [θ3 + c1θ4 + c2θ5]W9 , 2 4 0

(W9)3 (2n ≥ 6) [W9]3 : [±θ4 + c1θ5 + c2θ6]W9 , 3 5 1

(W9)4 (2n ≥ 6) [W9]4 : [θ5 + c1θ6 + c2θ7]W9 4 6 1

(W9)5 (2n ≥ 6) [W9]5 : [±θ6 + c1θ7 + c2θ8]W9 5 7 1

(W9)6 (2n ≥ 6) [W9]6 : [θ7 + cθ8]W9 6 7 2

(W9)7 (2n ≥ 6) [W9]7 : [±θ8 + cθ9]W9 7 8 2

(W9)8 (2n ≥ 6) [W9]8 : [±θ9]W9 8 8 3

(W9)9 (2n ≥ 6) [W9]9 : [0]W9 9 9 ∞
Table 9. Classification of symplectic W9 singularities.
(cod – codimension of the classes; µsym– the symplectic multiplicity;
ind – the index of isotropy.)

In the first column of Table 9 by (W9)i we denote a subclass of (W9) consisting of N ∈ (W9) such
that the algebraic restriction [ω]N is diffeomorphic to some algebraic restriction of the normal
form [W9]i.

The proof of Theorem 5.24 is presented in Section 5.3.3.
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5.3.2. Symplectic normal forms.

Let us transfer the normal forms [W9]i to symplectic normal forms. Fix a family ωi of
symplectic forms on R2n realizing the family [W9]i of algebraic restrictions. We can fix, for
example
ω0 = θ1 + c1θ2 + c2θ3 + dx1 ∧ dx4 + dx5 ∧ dx6 + · · ·+ dx2n−1 ∧ dx2n;

ω1 = ±θ2 + c1θ3 + c2θ4 + dx2 ∧ dx4 + dx5 ∧ dx6 + · · ·+ dx2n−1 ∧ dx2n;

ω2 = θ3 + c1θ4 + c2θ5 + dx3 ∧ dx4 + dx5 ∧ dx6 + · · ·+ dx2n−1 ∧ dx2n;

ω3 = ±θ4 + c1θ5 + c2θ6 + dx1 ∧ dx4 + dx2 ∧ dx5 + dx3 ∧ dx6 + dx7 ∧ dx8 + · · ·+ dx2n−1 ∧ dx2n;

ω4 = θ5 + c1θ6 + c2θ7 + dx1 ∧ dx4 + dx2 ∧ dx5 + dx3 ∧ dx6 + dx7 ∧ dx8 + · · ·+ dx2n−1 ∧ dx2n;

ω5 = ±θ6 + c1θ7 + c2θ8 + dx1 ∧ dx4 + dx2 ∧ dx5 + dx3 ∧ dx6 + dx7 ∧ dx8 + · · ·+ dx2n−1 ∧ dx2n;

ω6 = θ7 + cθ8 + dx1 ∧ dx4 + dx2 ∧ dx5 + dx3 ∧ dx6 + dx7 ∧ dx8 + · · ·+ dx2n−1 ∧ dx2n;

ω7 = ±θ8 + cθ9 + dx1 ∧ dx4 + dx2 ∧ dx5 + dx3 ∧ dx6 + dx7 ∧ dx8 + · · ·+ dx2n−1 ∧ dx2n;

ω8 = ±θ9 + dx1 ∧ dx4 + dx2 ∧ dx5 + dx3 ∧ dx6 + dx7 ∧ dx8 + · · ·+ dx2n−1 ∧ dx2n;

ω9 = dx1 ∧ dx4 + dx2 ∧ dx5 + dx3 ∧ dx6 + dx7 ∧ dx8 + · · ·+ dx2n−1 ∧ dx2n.

Let ω0 =
∑m
i=1 dpi∧dqi, where (p1, q1, · · · , pn, qn) is the coordinate system on R2n, n ≥ 3 (resp.

n = 2). Fix, for i = 0, 1, · · · , 9 (resp. for i = 0, 1, 2) a family Φi of local diffeomorphisms which
bring the family of symplectic forms ωi to the symplectic form ω0: (Φi)∗ωi = ω0. Consider the
families W i

9 = (Φi)−1(W8). Any stratified submanifold of the symplectic space (R2n, ω0) which
is diffeomorphic to W9 is symplectically equivalent to one and only one of the normal forms
W i

9, i = 0, 1, · · · , 9 (resp. i = 0, 1, 2) presented in Theorem 4.1. By Theorem 5.24 we obtain that
parameters c, c1, c2 of the normal forms are moduli.

5.3.3. Proof of Theorem 5.24.

In our proof we use vector fields tangent to N ∈W9.
The germ of a vector field tangent to W8 of non trivial action on algebraic restrictions of closed
2-forms to W9 may be described as a linear combination of germs of the following vector fields:
X0 = E, X1 = x3E, X2 = x2E, X3 = x1E, X4 = x2

3E,X5 = x2x3E, X6 = x2
2E, X7 = x1x3E,

X8 = x1x2E, X9 = x3
3E,

where E is the Euler vector field

(5.13) E = 5x1
∂

∂x1
+ 4x2

∂

∂x2
+ 3x3

∂

∂x3
.

Proposition 5.25. The infinitesimal action of germs of quasi-homogeneous vector fields tangent
to N ∈ (W9) on the basis of the vector space of algebraic restrictions of closed 2-forms to N is
presented in Table 10.
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LXi [θj ] [θ1] [θ2] [θ3] [θ4] [θ5] [θ6] [θ7] [θ8] [θ9]

X0 =E 7[θ1] 8[θ2] 9[θ3] 10[θ4] 11[θ5] 12[θ6] 13[θ7] 14[θ8] 16[θ9]

X1 =x3E 10[θ4] 11[θ5] 4[θ6] 13[θ7] 14[θ8] [0] 16[θ9] [0] [0]

X2 =x2E − 11
2

[θ5] 8[θ6] 13
4

[θ7] −7[θ8] [0] 12[θ9] [0] [0] [0]

X3 =x1E 4[θ6] − 13
2

[θ7] −7[θ8] [0] −8[θ9] [0] [0] [0] [0]

X4 =x23E 13[θ7] 14[θ8] [0] 16[θ9] [0] [0] [0] [0] [0]

X5 =x2x3E −7[θ8] [0] 4[θ9] [0] [0] [0] [0] [0] [0]

X6 =x22E [0] 8[θ9] [0] [0] [0] [0] [0] [0] [0]

X7 =x1x3E [0] −8[θ9] [0] [0] [0] [0] [0] [0] [0]

X8 =x1x2E 4[θ9] [0] [0] [0] [0] [0] [0] [0] [0]

X9 =x33E 16[θ9] [0] [0] [0] [0] [0] [0] [0] [0]

Table 10. Infinitesimal actions on algebraic restrictions of closed 2-forms toW9. (E
is defined as in (5.13).)

Let A = [
∑9
k=1 θk]W9

be the algebraic restriction of a symplectic form ω.

The first statement of Theorem 5.24 follows from the following lemmas.

Lemma 5.26. If c1 6= 0 then the algebraic restriction A = [
∑9
k=1 ckθk]W9

can be reduced by a
symmetry of W9 to an algebraic restriction [θ1 + c̃2θ2 + c̃3θ3]W9

.

Lemma 5.27. If c1 =0 and c2 6=0 then the algebraic restriction A can be reduced by a symmetry
of W9 to an algebraic restriction [±θ2 + c̃3θ3 + c̃4θ4]W9 .

Lemma 5.28. If c1 = c2 = 0 and c3 6= 0 then the algebraic restriction A can be reduced by a
symmetry of W9 to an algebraic restriction [θ3 + c̃4θ4 + c̃5θ5]W9

.

Lemma 5.29. If c1 = c2 = c3 =0 and c4 6=0 then the algebraic restriction A can be reduced by
a symmetry of W9 to an algebraic restriction [±θ4 + c̃5θ5 + c̃6θ6]W9

.

Lemma 5.30. If c1 = . . . = c4 = 0 and c5 6= 0 then the algebraic restriction A can be reduced
by a symmetry of W9 to an algebraic restriction [θ5 + c̃6θ6 + c̃7θ7]W9 .

Lemma 5.31. If c1 = . . . = c5 = 0 and c6 6= 0 then the algebraic restriction A can be reduced
by a symmetry of W9 to an algebraic restriction [±θ6 + c̃7θ7 + c̃8θ8]W9

.

Lemma 5.32. If c1 = . . . = c6 = 0 and c7 6= 0 then the algebraic restriction A can be reduced
by a symmetry of W9 to an algebraic restriction [θ7 + c̃8θ8]W9

.

Lemma 5.33. If c1 = . . . = c7 = 0 and c8 6= 0 then the algebraic restriction A can be reduced
by a symmetry of W9 to an algebraic restriction [±θ8 + c̃9θ9]W9 .

Lemma 5.34. If c1 = . . . = c8 = 0 and c9 6= 0 then the algebraic restriction A can be reduced
by a symmetry of W9 to an algebraic restriction [±θ9]W9

.

The proofs of Lemmas 5.26 – 5.34 are similar to the proofs of the lemmas for theW8 singularity.
As an example we give the proof of Lemma 5.27.
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Proof of Lemma 5.27. We see from Table 10 that for any algebraic restriction [θk]W9
, where

k ∈ {5, 6, 7, 8, 9}, there exists a vector field Vk tangent to W9 such that LVk
[θ2]W9

= [θk]W9
.

Using Proposition 5.5, we obtain that A is diffeomorphic to [c2θ2 + c3θ3 + c4θ4]W9 .
By the condition c2 6= 0, we have a diffeomorphism Ψ ∈ Symm(W9) of the form

(5.14) Ψ : (x1, x2, x3) 7→ (|c2|−
5
8x1, |c2|−

4
8x2, |c2|−

3
8x3)

and we obtain

Ψ∗([c2θ2 + c3θ3 + c4θ4]W9
)=[

c2
|c2|

θ2 + c3|c2|−
9
8 θ3 + c4|c2|−

10
8 θ4]W9

=[±θ2 + c̃3θ3 + c̃4θ4]W9
.

The algebraic restrictions [θ2 + c̃3θ3 + c̃4θ4]W9
and [−θ2 + b̃3θ3 + b̃4θ4]W9

are not diffeomorphic.
Any diffeomorphism Φ = (Φ1, . . . ,Φ2n) of (R2n, 0) preservingW9 has to preserve a curve C2(t) =

(t5,−t4,−t3, 0, . . . , 0). Hence, Φ has a linear part

(5.15)

Φ1 : A5x1 + A14x4 + · · · + A1,2nx2n

Φ2 : A2,1x1 + A4x2 + A24x4 + · · · + A2,2nx2n

Φ3 : A3,1x1 + A3,2x2 + A3x3 + A34x4 + · · · + A3,2nx2n

Φ4 : A44x4 + · · · + A4,2nx2n

...
...

...
...

...
Φ2n : A2n,4x4 + · · · + A2n,2nx2n

where A,Ai,j ∈ R.
If we assume that Φ∗([θ2 + c̃3θ3 + c̃4θ4]W9

) = [−θ2 + b̃3θ3 + b̃4θ4]W9
, then

A8dx1 ∧ dx3|0 = −dx1 ∧ dx3|0, which is a contradiction. �

Statement (ii) of Theorem 5.24 follows from the conditions in the proof of part (i) (the codi-
mension) and from Theorem 5.4 and Proposition 5.6 (the symplectic multiplicity) and Proposi-
tion 5.7 (the index of isotropy).

Statement (iii) of Theorem 5.24 follows from Theorem 4.4. The singularity classes correspond-
ing to normal forms are disjoint because they can be distinguished by the geometric conditions.

To prove statement (iv) of Theorem 5.24 we have to show that the parameters c, c1, c2 are
moduli in the normal forms. The proofs are very similar in all cases. We consider as an example
the normal form with two parameters [θ1 +c1θ2 +c2θ3]W9 . From Table 10 we see that the tangent
space to the orbit of [θ1 + c1θ2 + c2θ3]W9

at [θ1 + c1θ2 + c2θ3]W9
is spanned by the linearly

independent algebraic restrictions [7θ1 + 8c1θ2 + 9c2θ3]W9
, [θ4]W9

, [θ5]W9
, [θ6]W9

, [θ7]W9
, [θ8]W9

and [θ9]W9
. Hence, the algebraic restrictions [θ2]W9

and [θ3]W9
do not belong to it. Therefore,

the parameters c1 and c2 are independent moduli in the normal form [θ1 + c1θ2 + c2θ3]W9 .
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ON BI-LIPSCHITZ STABILITY OF FAMILIES OF FUNCTIONS

GUILLAUME VALETTE

Abstract. We focus on the Lipschitz stability of families of functions. We introduce a sta-
bility notion, called fiberwise bi-Lipschitz equivalence, which preserves the metric structure
of the level surfaces of functions and show that it does not admit continuous moduli in the
framework of semialgebraic geometry. We trivialize semialgebraic families of Lipschitz func-
tions by constructing triangulations of their generic fibers which contain information about
the metric structure of the sets.

0. Introduction

We study the metric stability of semialgebraic families of functions. In [S1], M. Shiota showed
that a semialgebraic family of continuous functions ft : Rn → R, t ∈ Rp, is generically topo-
logically trivial. It means that we can find a partition of Rp and two semialgebraic families of
homeomorphisms φt and ht such that φ−1t ◦ ft ◦ht is constant with respect to t on every element
of this partition (see also [C, S2]). The fibers ft are then said topologically equivalent. The main
result of this paper is a partial Lipschitz counterpart of this theorem (Theorem 6.4).

The study of metric stability of analytic sets was initiated by T. Mostowski in his fundamental
paper [M]. It was then developed, mainly by A. Parusiński [P1, P2], L. Birbrair [B], and the
author of the present paper [V1, V2, V3]. The description of the metric structure of singular-
ities provides a more accurate information than the description of their topology, valuable for
applications [V5, V4]. The Lipschitz category can be considered as an intermediate category
in between the C1 category, too restricted to investigate singularities (C1 equivalence admits
continuous moduli), and the C0 category, which often provides too vague information on the
singularity.

The notion of semialgebraic bi-Lipschitz triviality of functions (Definition 6.1) is defined in
the same way as the notion of topological triviality above, except that φt and ht are required to
be bi-Lipschitz. If many results about the topology have their counterpart in the framework of
Lipschitz geometry [M, P1, P2, V1], it is however known that bi-Lipschitz equivalence of functions
admits continuous moduli, in the sense that semialgebraic families of functions are not always
generically bi-Lipschitz trivial. A counterexample was found by J.-P. Henry and A. Parusiński
[H-P] (example 6.3 below). It was however shown in [RV] that bi-Lipschitz K-equivalence does
not admit continuous moduli.

We show in this paper that a slightly weaker equivalence notion than bi-Lipschitz equivalence
does not admit continuous moduli for semialgebraic families of Lipschitz functions. This notion
is stronger than C0 equivalence since it preserves the metric structure of the level surfaces of
the functions. Studying the stability of families of functions amounts to investigate triviality
of foliations since the levels of the functions provide a singular foliation. In our equivalence
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relation, called fiberwise bi-Lipschitz triviality (see Definition 6.1), the homeomorphism is bi-
Lipschitz on every level surface of the function, with the same Lipschitz constant. The Lipschitz
condition may only fail for two points of two different fibers. The trivialization has however to
vary continuously when we pass from one level of the function to one another.

Topological triviality of families of functions is proved in [BCR, C] by triangulating the generic
fibers of semialgebraic families of functions. Triangulating and trivializing are thus two very
related problems. In [V1], the author introduces the notion of Lipschitz triangulation. These are
triangulations which provide information not only on the topology of the considered object but
also on its metric structure. The metric type of a singularity is thus enclosed in finitely many
combinatoric data in the sense that two singularities having the same Lipschitz triangulation
are bi-Lipschitz homeomorphic. This is very convenient to describe the metric properties of
semialgebraic sets or to prove finiteness properties regarding the metric structure of semialgebraic
singularities [V2, V3]. Henry and Parusiński’s example nevertheless shows that it is impossible
to construct a triangulation of a semialgebraic function which would be a Lipschitz triangulation
in sense of [V1] (since this would entail that bi-Lipschitz triviality of families of functions holds
for generic parameters).

We prove generic fiberwise bi-Lipschitz triviality (Theorem 6.4) by showing that we can tri-
angulate the generic fiber of a semialgebraic family of Lipschitz functions (Theorem 2.4). The
triangulation that we construct satisfies a condition similar to the one required in the definition
of the Lipschitz triangulations introduced in [V1], but just on points lying in the same fiber.

Our triviality theorem is thus, as in [C], derived from a triangulation theorem. Doing so, we
have to work in an arbitrary real closed field (rather than in R), since the generic fiber of the
considered family lies in an extension of R. We wish to emphasize here that even the study of
semialgebraic functions of Rp×Rn requires, if one wants to use this kind of technique, to deal with
an arbitrary real closed field. This kind of technique is classical and, although not completely
elementary, has the significant advantage to get rid of the parameters during the best part of the
proof. It is also worthy of notice that in this way we get two theorems (one showing triangulability
and a second establishing triviality), both of their own interest. Noteworthy, these two theorems
provide semialgebraic homeomorphisms. Semialgebraic mappings have nice properties. For
instance, M. Shiota and Yoccoi established in [SY] a version of the Hauptvermutung for these
mappings (see also [S2]). Semialgebraic bi-Lipschitz mappings have also nice differentiability
properties used by the author of the present paper in [V4, V5] so as to study differential forms.
Content of the paper. In the first section we recall the known results on C0 stability. This is
useful so as to emphasize the close interplay between triangulations and trivializations. Indeed,
the proof of the main theorem (Theorem 6.4) will make use of the same argument as the one used
in the proof of Theorem 1.6. In section 2, we recall the notion of Lipschitz triangulation and state
our triangulation theorem for functions (Theorem 2.4). The next sections are devoted to the
proof of this theorem. Section 3 recalls some required results of [V1] and proves a parameterized
version of the main tool used there, constructing “families of regular systems of hypersurfaces”
for one parameter families of semialgebraic sets. Section 5 proves Theorem 2.4. The last section
introduces the notion of fiberwise bi-Lipschitz triviality and yields it for semialgebraic families
of Lipschitz functions, for generic parameters.

Notations 0.1. We write Q+ for the positive rational numbers. Let R be a real closed field.
Given A ⊂ Rn we denote by int(A) the interior of A, cl(A) the closure of A, and by δ(A) the
topological boundary of A, cl(A) \ int(A). We shall write |.| for the Euclidean norm and B(λ, r)
for the ball of radius r centered at λ (for all the considered metric spaces Rn, Sn, . . . ).

We denote by e1, . . . , en the canonical basis ofRn and byGkn the Grassmanian of k-dimensional
vector spaces of Rn. We set Gn := ∪n−1k=1Gkn. We denote by τ(A) the closure in the Grassmanian
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of the set of all the tangent spaces to Areg, where Areg stands for the set constituted by the
points near which the set A is a C1 manifold (of dimension dimA or smaller).

We shall denote by d(·, ·) the Euclidean distance in Rn. Given x ∈ Rn and P ⊂ Rn, we write
d(x, P ) for the distance to the subset P (defined by infy∈P d(x, y)). Given a subset C of Gn we
also set d(x,C) := infP∈C d(x, P ).

A Lipschitz function is a function f : A→ R satisfying for some L ∈ R and all x and x′ in
A

|f(x)− f(x′)| ≤ L|x− x′|.
The function may be said L-Lipschitz is one wants to specify the constant. It is said Q-
Lipschitz if it is L-Lipschitz with L ∈ Q.

Given a couple of functions ξ1 and ξ2 on A, we write ξ1 ∼K ξ2 if there exist C in K such that
ξ1 ≤ Cξ2 and ξ2 ≤ Cξ1 (here K ⊂ R). We denote by [ξ1, ξ2] the set {(x, y) ∈ A × R : ξ1(x) ≤
y ≤ ξ2(x)}.

1. Topological stability

1.1. Triangulations of functions. Let R be a real closed field.
Simplicial complexes will be finite and may have open simplices (and hence will not always

be compact). An open simplex is a simplex from which the proper faces have been taken off.
We will denote by R̃n the real spectrum of the polynomial ring R[X1, . . . , Xn] (see [BCR, C]).

Given α ∈ R̃n we shall write k(α) for the corresponding extension of R.

Definition 1.1. Let X be a semialgebraic set. A triangulation of X is the data of a finite
simplicial complex K, and a semialgebraic homeomorphism h : |K| → X.

Let f : X → R be a semialgebraic function. A triangulation of f is the data of a trian-
gulation h of X together with a homeomorphism ϕ : R → R such that ϕ−1 ◦ f ◦ h is piecewise
linear.

Theorem 1.2. [S1] Every continuous bounded semialgebraic function admits a C0-triangulation.
The vertices of the simplicial complex may be assumed to have coordinates in Q.

Remark 1.3. If we do not require that the vertices lie in Qn then the map ϕ (see definition
1.1) may be required to be the identity.

1.2. Topological triviality of semialgebraic families of functions.

Definition 1.4. A semialgebraic family of sets of Rp×Rn is a semialgebraic subset of Rp×Rn,
the first p variables being considered as parameters. Let X be a semialgebraic family of sets of
Rp ×Rn. A semialgebraic family of functions is a semialgebraic mapping f : X → Rp ×R,
of type X 3 (t, x) 7→ (t, ft(x)), the first p variables being considered as parameters.

For a parameter t in Rp, we call the function ft the fiber at t of this family. Given α ∈ R̃p,
we denote by fα the generic fiber at α (see [BCR, C]).

Given a semialgebraic family of functions, it is a natural problem to compare the fibers ft
with each other.

Definition 1.5. We say that a semialgebraic family f : X → Rp × R is semialgebraically
C0 trivial along W ⊂ Rp if there exist two semialgebraic families of homeomorphisms h :
W ×Rn →W ×Rn and φ : W ×R→W ×R such that for any t ∈W :

ht(Xt0) = Xt, φt ◦ ft ◦ ht = ft0 , t0 ∈W.

The fibers ft are then said to be semialgebraically C0 equivalent.
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Semialgebraic families of functions are generically semialgebraically topologically trivial:

Theorem 1.6. (Shiota) Let f : X → Rp×R be a semialgebraic family of continuous functions.
There exist a semialgebraic partition V1, . . . , Vm of Rp such that for every i, f is semialgebraically
topologically trivial along Vi.

Proof. We first check that we can assume, without loss of generality, that ft is bounded on X.
Indeed, the function u(y) := y

1+|y| is a homeomorphism from R onto (−1; 1). If we prove the

result for f̂ := u ◦ f , we are done. Let us assume that ft is bounded for any t without changing
notations.

Let α ∈ R̃p. By Theorem 2.3, there exist semialgebraic homeomorphisms h : |K| → Xα and
ϕ : k(α) → k(α), with K finite simplicial complex, such that ϕ−1 ◦ fα ◦ h is a piecewise linear
function on every simplex. The simplicial complex K may be assumed to have vertices in Qn.
As a matter of fact, |K| is indeed the generic fiber of a constant family U ×|K|, with U ∈ α (see
[BCR, C] for more details).

The homeomorphisms h and ϕ respectively give rise to families of semialgebraic homeomor-
phisms:

θ : U × |K| → U ×X,
and γ : U ×R→ U ×R.

As γ−1α ◦ fα ◦ θα is piecewise linear, γ−1t ◦ ft ◦ θt is constant with respect to t. If we set
Ht := θtθ

−1
t0 and φt(x) := γtγ

−1
t0 , we have φ−1t ◦ ft ◦Ht = ft0 . This shows that f is trivial along

U . By compactness of R̃p, we have the desired finite covering. �

2. Lipschitz triangulations

2.1. Lipschitz triangulation of semialgebraic sets. We recall in this section the results
proved in [V1]. We will adapt these techniques to families of functions.

Given a point q ∈ Rn, we write q1, . . . , qn for the coordinates of q in the canonical basis and
πi : Rn → Ri for the canonical projection.

Definition 2.1. Let σ ⊂ Rn be an open simplex. A tame system of coordinates of σ is a
homeomorphism (onto its image) (ψ1, . . . , ψn) : σ → Rn of the following form:

(2.1) ψi(q) =
qi − θi(πi−1(q))

θi(πi−1(q))− θ′i(πi−1(q))
,

(and 0 whenever θi ◦ πi−1(q) = θ′i ◦ πi−1(q)) where θi and θ′i are piecewise linear functions on
Ri−1. A standard simplicial function on σ is a function given by finitely many iterations of
sums, powers (possibly negative), and products of distances to faces.

Standard simplicial functions will sometimes be defined on σ×σ since they will be functions of
two variables q and q′, being given by finite iterations of sums, products, and powers of functions
of type q 7→ d(q, τ) and q′ 7→ d(q′, τ) with τ face of σ.

Definition 2.2. A Lipschitz triangulation of Rn is the data of a finite simplicial complex K
together with a semialgebraic homeomorphism h : |K| → Rn, such that for every σ ∈ K there
exist ϕσ,1 , . . . , ϕσ,n , standard simplicial functions over σ × σ satisfying for any q and q′ in σ:

(2.2) |h(q)− h(q′)| ∼
R

n∑
i=1

ϕσ,i(q; q
′) · |qi,σ − q′i,σ|,

where (q1,σ, . . . , qn,σ) is a tame system of coordinates of Rn. Let A1, . . . , Ak be subsets of Rn.
A Lipschitz triangulation of A1, . . . , Ak is a Lipschitz triangulation of Rn such that each
h−1(Ai) is a union of open simplices.
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With this definition two semialgebraic subsets admitting the same simplicial complex as semi-
algebraic triangulation, with ∼

R
functions ϕσ and same tame systems of coordinates are semi-

algebraically bi-Lipschitz homeomorphic. As a matter of fact, simultaneous Lipschitz triangula-
tions of the fibers of a family provide bi-Lipschitz trivializations.

Theorem 2.3. [V1] Every finite collection of semialgebraic sets admits a Lipschitz triangulation.

2.2. Lipschitz triangulations of functions. The theorem below gives a version of Theorem
2.3 for functions. Unfortunately, it is not possible to construct a triangulation of a function which
would be a Lipschitz triangulation (see example 6.3). We prove something somewhat weaker: we
show that we can triangulate every semialgebraic bounded Lipschitz function in such a way that
(2.2) holds for couples of points of the same fiber (with a constant independent of the fiber).

Theorem 2.4. Let f : X → R be a semialgebraic bounded Lipschitz function, X ⊂ Rn. There
exists a triangulation (K,φ, ψ) of f , with K ⊂ Rn+1, such that on every open simplex σ of K,
we can find standard simplicial functions ϕσ,1, . . . , ϕσ,n+1 with:

(2.3) |ψ(q)− ψ(q′)| ∼
R

n+1∑
i=1

ϕσ,i(q; q
′) · |qi,σ − q′i,σ|,

on the set
{(q, q′) ∈ σ × σ : f(ψ(q)) = f(ψ(q′))},

where (q1,σ, . . . , qn+1,σ) is a tame system of coordinates of σ. Moreover, the vertices of the
simplicial complex K lie in Qn+1 and φ is bi-Lipschitz.

Furthermore, given finitely many semialgebraic subsets A1, ..., Ak of X, we may choose the
triangulation in such a way that each Ai is a union of images of open simplices of K.

This theorem will be proved in section 5.

3. Regular lines

We recall that, given a subset C of Gn, we have set d(x,C) := infP∈C d(x, P ), where d stands
for the Euclidian distance of Rn (see Notation 0.1).

Definition 3.1. Let A be a semialgebraic set of Rn. An element λ of Sn−1 is said to be regular
for the set A if there is α ∈ Q+ such that:

d(λ; τ(A)) ≥ α.
We say that λ ∈ Sn−1 is regular for a semialgebraic family X of R × Rn if there exists

α ∈ Q+ such that for any parameter t ∈ R:
d(λ; τ(Xt)) ≥ α.

A subset C ⊂ Sn−1 is regular for a set (resp. family) X if all the elements of cl(C) are regular
for the set (resp. family) X.

Remark 3.2. Of course, if a line is regular for a family then it is regular for all the fibers of
this family. But it is indeed much stronger since, when a line is regular for a family, the angle
between this line and the tangent spaces to the fibers is bounded below away from zero by a
constant α independent of t.

Proposition 3.3. [V1] Let A be a semialgebraic subset of Rn of empty interior. There exists a
semialgebraic Q-bi-Lipschitz homeomorphism h : Rn → Rn such that h(A) has a regular vector.

We will need a parameterized version of this proposition. More precisely, we shall establish
the following proposition.
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Proposition 3.4. Let A be a semialgebraic family of R×Rn such that At has empty interior for
every t ∈ R. There exists a continuous semialgebraic family of mappings h : R×Rn → R×Rn
and C ∈ Q such that:

(1) ht C-bi-Lipschitz for any t.
(2) en is regular for the family h(A).

We will prove Proposition 3.4 by generalizing to families the techniques introduced in [V1]
for subsets of Rn.

3.1. Some preliminary lemmas. We need to recall some results which were already used in
[V1].

Lemma 3.5. [K] Given ν ∈ N, there exists a strictly positive constant σ ∈ Q+ such that for any
P1, . . . , Pν in Gn there exists P ∈ Sn−1 such that for any i we have:

d(P ;Pi) ≥ σ.

The second lemma we need was proved by the author of the present paper in [V1].

Lemma 3.6. There exists {λ1, . . . , λN} ⊂ Sn−1 such that for any semialgebraic sets A1, . . . , Am
of Rn, there exists a cell decomposition (Ci)i∈I of Rn adapted to all the Ak’s and such that for
each open cell Ci, we may find λj(i), 1 ≤ j(i) ≤ N , regular for δCi.

Given λ ∈ Sn−1, we denote by πλ the projection along the line generated by λ onto the
vector space Nλ, normal to this line. Given q ∈ Rn, we write qλ for the Euclidean inner product
< q, λ >.

The third result we shall recall is the preparation theorem, so called because it can be con-
sidered as a Weierstrass preparation theorem for semialgebraic functions.

Theorem 3.7. (Preparation Theorem) [vDS, LR, V1, P3] Let ξ : Rn+1 → R be a semialgebraic
function. Then there exists a finite semialgebraic partition (Vi)i∈I of Rn+1 such that for any Vi
there exist semialgebraic continuous functions a, θ : πen+1(Vi) → R, and r ∈ Q such that for
q = (x; qn+1) ∈ Vi:
(3.4) ξ(q) ∼Q (qn+1 − θ(x))r a(x).

Definition 3.8. The subset A ⊂ Rn is the graph for λ ∈ Sn−1 of the function ξ : E → R,
where E ⊂ Nλ, if

A = {q ∈ π−1λ (E) : qλ = ξ(πλ(q))}.
If A is the graph for λ of the function ξ : Nλ → R, we denote by

E(A, λ) := {q ∈ Rn : qλ ≤ ξ(πλ(q))}.
If A is a family of R×Rn such that At is the graph for λ of the function ξt : Nλ → R for every

t, then E(At, λ), t ∈ R, is a semialgebraic family of sets of R × Rn. Indeed, since Sn−1 ⊂ Sn,
E(A, λ) is also well defined, and is the semialgebraic family of sets whose fiber at t is E(At, λ).

When dealing with families of R × Rn, we will also write πλ for the (constant) family of
mappings πλ : R×Rn → R×Rn given by πλ,t(x) := πλ(x) for (t, x) ∈ R×Rn.

The next proposition is a consequence of the preparation theorem that will be of service for
us.

Proposition 3.9. [V1] Let ξ : Rn → R be a nonnegative semialgebraic function. There exists a
finite semialgebraic partition of Rn such that over each element of this partition, the function ξ
is ∼R to a product of powers of distances to semialgebraic subsets of Rn.
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Proposition 3.10. [V1] Let B be a connected subset of Sn−1, λ0 ∈ B, and let ξ : Nλ0
→ R be

a continuous semialgebraic function. Let H be the graph of ξ for λ0. Suppose that B is regular
for H. Then, for any λ ∈ B the set H is the graph of a function ξλ : Nλ → R. Moreover the
set E(H;λ) is independent of λ ∈ B.

We now formulate some elementary observations that we shall need and which are taken from
[V1].
Observations. Let λ ∈ Sn−1 and r ∈ Q+.

(1) If A is a union of graphs for λ of some Q−Lipschitz functions then there exists r ∈ Q+

such that B(λ; r) is regular for A. Also, if B(λ; r) ⊆ Sn−1 is regular for the semialgebraic
set A ⊆ Rn, then A is the union of the graphs for λ of some Q−Lipschitz functions.
Moreover, if A is the graph for λ of a Lipschitz function ξ : Nλ → R then ξ is C-Lipschitz
with C ≤ 1

d(λ;τ(A)) .
(2) Every semialgebraic C−Lipschitz function ξ defined over a subset A of Rn may be

extended to a semialgebraic C−Lipschitz function ξ̂ defined over the whole of Rn.
(3) If A is the union of the graphs for λ of some semialgebraic functions θ1, . . . , θk over Nλ

we may find an ordered family of semialgebraic functions ξ1 ≤ · · · ≤ ξk such that A is
the union of the graphs of these functions for λ.

(4) Given a family of Lipschitz functions f1,t . . . , fk,t, t ∈ R, defined over R×Rn−1, we can
find some Lipschitz families of functions ξ1,t ≤ · · · ≤ ξl,t, t ∈ R, and a cell decomposition
D of R × Rn−1 such that for every cell D ∈ D, the functions |qn − fi,t(x)| (where
q = (t, x; qn)) are comparable with each other (for relation ≤) and comparable with the
functions fi,t ◦ πen on the cell [ξi|Dt ; ξi+1|Dt ].

3.2. Regular systems of hypersurfaces. We now adapt the techniques of [V1] to families in
order to prove Theorem 3.4.

The main tool of the proof of Proposition 3.3 is the notion of regular systems of hypersurfaces.
We shall generalize it to one parameter families, introducing the notion of families of regular
systems of hypersurfaces.

Definition 3.11. A family of regular systems of hypersurfaces of R × Rn is a family
H = (Hk;λk)1≤k≤b with b ∈ N, of semialgebraic families Hk of R × Rn together with elements
of λk ∈ Sn−1 such that the following properties hold for each k < b:

(i) For every t ∈ R, the setsHk,t andHk+1,t are the respective graphs for λk of two functions
ξk,t and ξ′k,t such that ξk,t ≤ ξ′k,t.

(ii) The functions ξk,t and ξ′k,t are C-Lipschitz with C ∈ Q (independent of t) and vary
continuously with respect to t.

(iii) For every t we have:

E(Hk+1,t;λk) = E(Hk+1,t;λk+1)

Let A be a semialgebraic family of R × Rn. We say that the family H is compatible with
A, if A ⊂

⋃b
k=1Hk. An extension of H is a family of regular systems of hypersurfaces H ′

compatible with the set
⋃b
k=1Hk.

Observe thatHk is by definition the graph of the function (x, t) 7→ ξk,t(x) for λk ∈ Sn−1 ⊂ Sn.
Hence, E(Hk,t;λk) is the fiber at t of the semialgebraic family E(Hk;λk).

Given a positive integer k < b, we set:

Gk(H) := E(Hk+1;λk) \ int(E(Hk;λk)).
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We shall write Λk(H) for the connected component of

{λ ∈ Sn−1 : λ is regular for the family Hk ∪Hk+1}

which contains λk. Note that by Proposition 3.10, the family Gk(H) may be defined using any
λ ∈ Λk(H).

We will say that another family of regular systems H ′ coincides with H outside Gk(H) if
for each j either H ′j ⊂ Gk(H) or there exists j′ such that H ′j = Hj′ .

Remark 3.12. It is always possible to assume that the Gk(H)’s are of nonempty interior.
Indeed if int(Gk(H)) = ∅ then Hk = Hk+1 and in this case we may remove (Hk;λk) from the
sequence.

Given λ ∈ Sn, we define π̃λ : Sn \ {±λ} → Sn ∩Nλ by π̃λ(u) := πλ(u)
|πλ(u)| .

Remark 3.13. Suppose B ⊂ Sn−2 to be regular for a subset A ⊂ Rn−1. Then, for any a ∈ Q+

the set
π̃−1en (B) ∩ {λ ∈ Sn−1 : d(λ; {±en}) ≥ a}

is regular for π−1en (A). Furthermore, if A is the graph of a Q−Lipschitz function for λ ∈ B, and
if B is connected, then π−1en (A) is the graph of a Q−Lipschitz function for any λ′ in

π̃−1en (B) ∩ {λ′ ∈ Sn−1/d(λ′; {±en}) ≥ a},

for any a ∈ Q+ (by Proposition 3.10). Moreover, in this case the following holds:

E(π−1en (A);λ′) = π−1en (E(A;λ)).

3.3. Some preliminary Lemmas. We want to prove that every semialgebraic one-parameter
family A ⊂ R × Rn with dimAt < n for every t ∈ R, admits a family of regular systems
compatible with it (Proposition 3.19). For this purpose, we prove some lemmas.

The following lemma says that we will be able to assume that the interiors of the Gk(H)’s
are connected.

Lemma 3.14. Let H be a family of regular systems of hypersurfaces. There exists an extension
Ĥ of H such that all the sets int(Gk(Ĥ)) are connected.

Proof. Let 1 ≤ m ≤ b − 1. Suppose that int(Gm(H)) is not connected. Let A1, . . . , Aν be the
connected components of int(Gm(H)). Set A′i = πλm(Ai). For t ∈ R, the fiber Ai,t is of the
form:

{q ∈ A′i,t ⊕ λm ·R / ξm,t(πλm(q)) < qλm < ξ′m,t(πλm(q))}.
Clearly ξm,t = ξ′m,t on the boundary of A′i,t. We thus may define some Lipschitz functions ηi,
1 ≤ i ≤ ν−1, as follows. We set over A′j,t, ηi,t := ξ′m,t, when 1 ≤ j ≤ i, and ηi,t := ξm,t whenever
i < j. Extend the function ηi,t by setting ηi,t := ξm,t = ξ′m,t on Nλm \ πλm(int(Gm(H))).

Therefore, we have that η1,t ≤ · · · ≤ η(ν−1),t. Now, it suffices to

• let Ĥk := Hk and λ̂k := λk if k ≤ m
• let Ĥk,t be the graph of ηk−m,t for λm (for every t ∈ R) and λ̂k := λm for m+ 1 ≤ k ≤
m+ ν − 1

• let Ĥk := Hk−ν+1 and λ̂k := λk−ν+1 if m+ ν ≤ k ≤ b+ ν − 1.

This is clearly a family of regular systems of hypersurfaces. Note that the int(Gk(Ĥ)), m ≤ k <
m+ ν, are the connected components of int(Gm(H)). �
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Given a family of regular systems of hypersurfaces (of R × Rn) H, it will be convenient to
extend the notations in the following way. Set for any t ∈ R: H0,t := {−∞} andHb+1,t := {+∞}.
By convention, all the elements of Sn−1 will be regular for these two families. We will also
consider that these two families of sets as the respective graphs of two functions which take −∞
and +∞ as constant values (for any λ). Define also λ0 := λ1, λb+1 := λb, as well as E(H0;λ0) :=
∅, G0(H) := E(H1;λ1), Gb(H) := R×Rn \ int(E(Hb;λb)), as well as E(Hb+1, λb+1) = R×Rn.
Remark that now R×Rn =

⋃b
k=0Gk(H).

Lemma 3.15. Let H = (Hk;λk)1≤k≤b be a family of regular systems of hypersurfaces and let
j ∈ {0, . . . , b}. Let X be a semialgebraic family of subsets of Gj(H) such that λj is regular for
X. Then H can be extended to a family of regular systems of hypersurfaces H ′ compatible with
X, which coincides with H outside Gj(H).

Proof. By property (i) of Definition 3.11, for every t, the sets Hj,t and Hj+1,t are the respective
graphs for λj of two functions ξj,t and ξ′j,t. By Observations (1) and (2), the sets Xt, t ∈ R, may
be included in a finite number of graphs for λj of functions, say θ1,t, . . . , θν,t, continuous with
respect to t and C-Lipschitz, with C ∈ Q independent of t. Furthermore, by Observation (3),
these families of functions can be assumed to be ordered and satisfy ξj,t ≤ θi,t ≤ ξ′j,t, for every
t. Now,

• let H ′k := Hk and λ′k := λk whenever 1 ≤ k ≤ j,
• let H ′k,t be the graph of θk−j,t for λj and λ′k := λj for j < k ≤ j + ν, t ∈ R,
• let H ′k := Hk−ν and λ′k := λk−ν , whenever j + 1 + ν ≤ k ≤ b+ ν.

Properties (i), (ii) and (iii) clearly hold by construction. �

Lemma 3.16. Let U1, . . . , Um be semialgebraic families covering R × Rn. There exist finitely
many semialgebraic families V1, . . . , Vp covering R×Rn such that:

(1) For every i ≤ p, there are j and j′ such that Vi ⊂ Uj ∪ Uj′ .
(2) For every i ≤ p and t ∈ R, the fiber (δVi)t has empty interior in Rn (see Notations 0.1

for δ).

Proof. Let f : R × Rn → R be the projection onto the x1-axis. Consider a C0 triangulation
h : |K| → R×Rn of f such that the families U1, . . . , Um are unions of images of simplices (up to
a homeomorphism we may assume that the domain of f is bounded). Let σ ∈ K be of dimension
(n+ 1). The set δh(σ) is the union of the images of the faces of σ of dimension < n+ 1. Thus,
δh(σ)t is of dimension n if and only if a face τ of σ of dimension n lies in the fiber σt. In this
case there must be another simplex l(σ) of which τ is also a face. The face τ is clearly always
unique.

If the fiber (δh(σ))t is of dimension less than n for any t then set l(σ) := σ. Let Vσ :=
cl(h(σ) ∪ h(l(σ))). The family Vσ, σ ∈ K, has the required properties. �

Lemma 3.17. Let A ⊂ R×Rn be a semialgebraic family of sets with int(At) = ∅ for any t ∈ R.
There exists an integer ν such that for any ε > 0 we can find a finite semialgebraic partition
(Ai)i∈I of R×Rn−1 such that for every i the set

∪t∈R τ(π−1en (Ai,t) ∩At)
is included in ν balls of radius ε (in Gn).

Proof. We can cover the Grassmanian by finitely many balls of radius ε. This gives rise to a
covering U1, . . . , Uk of A (via the Gaussian mappings At,reg 3 x 7→ TxAt,reg). Consider a cell
decomposition of R×Rn compatible with U1, . . . , Uk. The images of the cells under the canonical
projection onto R×Rn−1 constitute a covering having the desired property. �
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Remark 3.18. The integer ν is indeed bounded by the maximal number of connected compo-
nents of the fibers of the restriction of πen to A.

3.4. Existence of regular families. We are ready to associate a family of regular systems of
hypersurfaces to every semialgebraic family of nowhere dense sets.

Theorem 3.19. Given a semialgebraic family of sets A of R × Rn such that every fiber At is
of empty interior, there exists a family of regular systems of hypersurfaces of R×Rn compatible
with A.

Proof. Actually, we are going to prove by induction on n that there exists a family of regular
systems of hypersurfaces of R × Rn compatible with a given semialgebraic family A of R × Rn
(whose fibers have positive codimension) such that all the λk’s can be chosen in a given ball
B(λ; η) in Sn−1, for η ∈ Q+.

For n = 1 the result is clear. So, we assume that it is true for (n−1). Let A be a semialgebraic
family of R×Rn such that At has empty interior for every t and consider a ball B(λ; η) ⊂ Sn−1,
η ∈ Q+. We split the induction step into several steps.

Step 1. There exists a family of regular systems of hypersurfaces H = (Hk;λk)1≤k≤b with λk ∈
B(λ; η2 ) and such that for every k the family Gk(H)∩A has a regular vector P ∈ Sn−1\B(±λ, η2 ).

Take e ∈ Sn−1 such that ±e /∈ B(λ; η) (we may assume η small).
By Lemma 3.17, for any σ ∈ Q+, there exists a finite semialgebraic partition (Ai)i∈I of R×Ne

such that, for each i ∈ I, the set
⋃
t∈R τ(π−1e (cl(Ai,t))∩At) is included in the union of ν balls in

Gn of radius σ
2 . Consider such a partition for the σ given by Lemma 3.5. By Lemma 3.16, we

may assume that (δAi)t has empty interior for every t. Changing η, we may assume that η ≤ σ
4 .

Choose η′ ∈ Q+ such that we have in Sn−2:

(3.5) B(π̃e(λ); η′) ⊂ π̃e(B(λ;
η

2
)),

Apply the induction hypothesis (identify R × Ne with R × Rn−1) to the families δAi to get
a family of regular systems of R × Rn−1, H = (Hk;λk)k≤b, such that all the λk’s belong to
B(π̃e(λ); η′).

By lemma 3.14, up to a refinement, we may assume that each int(Gk(H)) is connected. We
may also assume it to be of nonempty interior (see remark 3.12).

We claim that for each j and k, either int(Gk(H)) is disjoint from Aj or int(Gk(H)) ⊂ Aj . To
see this, observe that, as H is compatible with the δAj ’s, all the sets Aj ∩ int(Gk(H)) are open
and of empty (topological) boundary in int(Gk(H)). Hence, if nonempty, these are connected
components of int(Gk(H)). But, as int(Gk(H)) is connected, this entails that Aj ∩ int(Gk(H))

is either the empty set or int(Gk(H)) itself, as claimed.
We turn to define the family of regular systems H claimed in step 1. For 1 ≤ k ≤ b, let:

Hk := π−1e (Hk).

Since λk ∈ B(π̃e(λ); η′), by (3.5), we have λk ∈ π̃e(B(λ; η2 )). Choose some λk ∈ π̃−1e (λk) ∩
B(λ; η2 ).

As λk ∈ B(λ; η2 ) and neither e nor −e belongs to B(λ; η) we have:

d(λk;±e) ≥ η

2
, ∀ k ≤ b.

So, by Remark 3.13 (identify again R × Ne with R × Rn−1), the set Hk,t is the graph of a
semialgebraic Lipschitz function. Moreover, as H satisfies (i − iii), again by Remark 3.13,
conditions (i− iii) are clearly fulfilled by H := (Hk;λk)k≤b.
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By Lemma 3.5 and our choice of σ, for all m, the family A ∩ int(Gm(H)) is the union of
finitely many semialgebraic families having a common regular element P ∈ Sn−1 (since we have
seen that each int(Gm(H)) is included in Aj for some j). Moving slightly P , we may assume
that d(P,±λ) ≥ η (we have assumed η ≤ σ

4 ).
This completes the first step.

The flaw of the first step is that the regular vector that we get for Gm(H) ∩ A might not be
in Λm(H). If it belongs to this set, Lemma 3.15 is enough to conclude. The next step provides
another system Ĥ. We will then have to find (in Step 3) a common refinement of H and Ĥ,
obtained at step 1 and 2 respectively.

Step 2. Fix m ≤ b. There exists a family of regular systems of hypersurfaces Ĥ such that for
every k, λ̂k belongs to Λm(H) and is regular for Gm(H) ∩Gk(Ĥ) ∩A.

Note that as λm is regular for the semialgebraic family of sets Hm∪Hm+1, there exists r ∈ Q+

such that B(λm; r) is regular for Hm ∪ Hm+1. Taking r smaller if necessary, we may assume
that r ≤ η

2 .
Let r′ ∈ Q+ be such that we have in Sn−2:

(3.6) B(π̃P (λm); r′) ⊂ π̃P (B(λm;
r

2
)).

To complete the proof of step 2 we need a lemma.

Lemma 3.20. Let l in Sn−1, r ∈ Q+ and µ ∈ N. Let C be a subset of Gn and P ∈ Sn−1 such
that:

(3.7) d(P ;C) ≥ σ,

with σ ∈ Q+. There exists α ∈ Q+ such that for any P1, . . . , Pµ in C and any y ∈ π̃P (B(l; r2 ))

there exists λ̂ ∈ B(l; r) ∩ π̃−1P (y) such that:

d( λ̂;∪µi=1Pi) ≥ α.

The proof of this lemma is postponed. We first see why it is enough to carry out the proof
of step 2. Let µ be the maximal number of points of a finite fiber of the restriction of πP to
A∩Gm(H). Applying this lemma with this integer µ, with C = ∪t∈R τ(At∩Gm(H)) and l = λm,
we get a positive constant α.

Applying Lemma 3.17 to Gm(H)∩A (identify πP with πen) provides a finite covering (A′i)i∈I′

of R×NP such that for any i ∈ I ′ and any t:

τ(π−1P (A′i,t) ∩Gm(H)t ∩At) ⊂
µ⋃
j=1

B(Pj ;
α

2
),

for some P1, . . . , Pµ (depending on i ∈ I ′) in τ(A ∩ Gm(H)). By Lemma 3.16, we may assume
that (δA′i)t has empty interior for every t and i.

By Lemma 3.20, for any i ∈ I ′ and any y ∈ π̃P (B(λm; r2 )), there exists λ̂ ∈ B(λm; r)∩ π̃−1P (y)
such that for any t ∈ R:

(3.8) d
(
λ̂ ; τ(π−1P (A′i,t) ∩Gm(H)t ∩At)

)
≥ α

2
.

Apply the induction hypothesis to get a family of regular systems of hypersurfaces H ′′ of R×NP
(identify NP with Rn−1) compatible with the δA′i’s. Do it in such a way that all the associated
lines λ′′k are elements of B(π̃P (λm); r′) (where r′ is given by (3.6)).



190 GUILLAUME VALETTE

Define now:

(3.9) Ĥk,t := π−1P (H ′′k,t).

The compatibility with the sets δA′i implies that every int(Gk(H ′′)) is included in A′i for some
i (by the same argument that the one we used in Step 1 for Gk(H) and the partition (Ai)i∈I).

As a matter of fact, according to (3.8) for y = λ′′k , we know that for every integer k ≤ b′′ there
exists λ̂k ∈ B(λm; r) ∩ π̃−1P (λ′′k) such that for any t ∈ R:

(3.10) d
(
λ̂k ; τ(π−1P (Gk(H ′′)t) ∩Gm(H)t ∩At)

)
≥ α.

Let us check that Ĥ := (Ĥk; λ̂k)k≤b̂ (where b̂ := b′′) is the desired family of regular systems
of hypersurfaces. For this purpose, observe that, since neither P nor −P belongs to B(λ; η), we
have for each k (recall that r ≤ η

2 ):

d(λ̂k;±P ) ≥ r

2
.

By construction and Remark 3.13, as λ̂k ∈ π̃−1P (λ′′k), this implies that the family Ĥ fulfills the
three conditions of definition 3.11.

Furthermore, as B(λm; r) ⊂ B(λ; η) (since r ≤ η
2 and λm ∈ B(λ, η2 )), all the λ̂k’s belong to

B(λ; η). Note also that as B(λm; r) is regular for Hm ∪Hm+1, the vector λ̂k belongs to Λm(H).
This completes the proof of the second step.

The inconvenient of Step 2 is that the provided vector is regular for the family A∩Gm(H)∩
Gk(Ĥ) (instead of A ∩Gk(Ĥ)). If Ĥ were an extension of the family H constructed in Step 1,
this would be no problem since in this case we would have Gk(Ĥ) ⊂ Gm(H) (or int(Gk(Ĥ)) ∩
int(Gm(H)) = ∅). Thus, we will have to find a common extension H̃ of H and Ĥ given by steps
1 and 2 respectively. This is what is carried out in the third step.

Step 3. There exists an extension H̃ = (H̃k, λ̃k)k≤b̃ of H which coincides with H outside Gm(H)

and such that λ̃k is regular for the family A ∩Gk(H̃) ∩Gm(H) for all k.

Let k ≤ b̂ be an integer. Since λ̂k ∈ Λm(H), by Proposition 3.10, the sets Hm and Hm+1

are respectively the graphs for λ̂k of two functions µk and µ′k. Moreover, the set Ĥk is also the
graph for λ̂k of a function ξ̂k. Define:

ηk := min(max(µk; ξ̂k);µ′k)

in order to get a function whose graph is included in Gm(H). Now we define the desired regular
family (H̃k; λ̃k)1≤k≤b̃ as follows.

• Let H̃k := Hk and λ̃k := λk if k < m.
• Let H̃m := Hm and λ̃m := λ̂1.
• Let H̃k be the graph of ηk−m for λ̂k−m, and let λ̃k := λ̂k−m, wheneverm+1 ≤ k ≤ m+ b̂.
• And finally let H̃k := Hk−b̂ and λ̃k := λk−b̂ if m+ b̂+ 1 ≤ k ≤ b+ b̂.

We shall check that the properties (i− iii) hold for the family H̃ in every case.
For k < m− 1, or k ≥ m+ b̂+ 1, the result is clear since the family H̃ is indeed the family H.
For k = m − 1, properties (i − iii) follow from (i − iii) for H and Proposition 3.10 since we

have assumed λ̂1 ∈ Λm(H).
It remains to check (i− iii) for H̃k+m, with 0 < k ≤ b̂. Let us check (i) in this case.



ON BI-LIPSCHITZ STABILITY OF FAMILIES OF FUNCTIONS 191

By (i) for Ĥ, the set Ĥk+1 is the graph for λ̂k of a function ξ̂′k such that ξ̂k ≤ ξ̂′k. Define now:

η′k = min(max(µk; ξ̂′k);µ′k).

Claim. The graph of η′k for λ̂k is that of ηk+1 for λ̂k+1.
To see this, note that the graph of η′k (resp. ηk) matches with Ĥk+1 over E(Hm+1; λ̂k) \

E(Hm; λ̂k) (resp. λ̂k+1). But, by Proposition 3.10, the sets E(Hm; l) and E(Hm+1; l) do not
depend on l ∈ Λm(H). As λ̂k and λ̂k+1 both belong to Λm(H), this already shows that the two
graphs involved in the above claim match over int(Gm(H)).

The graph of η′k (resp. ηk+1) for λ̂k (resp. λ̂k+1) is also constituted by the points of Hm \
int(E(Ĥk+1, λ̂k)) (resp. λ̂k+1) on the one hand and by the points of Hm+1 ∩E(Ĥk+1, λ̂k) (resp.
λ̂k+1) on the other hand. By (iii) for Ĥ, the claim ensues.

This claim proves that H̃m+k+1 is the graph of η′k for λ̂k. Therefore, to check (i− iii), we just
have to prove that ηk ≤ η′k. But, as ξ̂k ≤ ξ̂′k, this immediately comes down from the respective
definitions of η′k and ηk. This establishes (i) and (ii) (for H̃k+m, k ≤ b̂).

Let us check property (iii) for H̃k+m, k ≤ b̂. If k = b̂ it is a consequence of Proposition 3.10
since we have assumed that λ̂k belongs to Λm(H).

Let k be such that 0 ≤ k ≤ b̂− 1. First note that by (iii) for Ĥ we have:

E(Ĥk+1; λ̂k) = E(Ĥk+1; λ̂k+1).

But, E(H̃k+m+1; λ̂k) (resp. λ̂k+1) coincides with E(Ĥk+1; λ̂k) (resp. λ̂k+1) over int(Gm(H)).
It is also constituted by the points of E(Hm, λ̂k) (resp. λ̂k+1) and the points of E(Hm+1, λ̂k) ∩
E(Ĥk+1; λ̂k) (resp. λ̂k+1). As λ̂k+1 and λ̂k both belong to Λm(H), this establishes (iii).

To complete the proof of Step 3, it remains to make sure that for every k ≤ b̂ the line λ̃k+m
is regular for Gk+m(H̃) ∩Gm(H) ∩A. By construction we have λ̃m = λ̂1, λ̃k+m = λ̂k and:

(3.11) Gk+m(H̃) ⊂ Gk(Ĥ) ∩Gm(H),

for each 0 ≤ k ≤ b̂.
As for any k the vector λ̂k is regular for A∩Gk(Ĥ)∩Gm(H), this implies that for each k ≤ b̂,

the vector λ̃k+m is regular for Gk+m(H̃) ∩A. This completes the third step.

Finally, let us show why Step 3 is enough to conclude. By Lemma 3.15 (applied to H̃ of Step
3), we may extend H̃ to a family compatible with the set

Gm(H) ∩ ∪b̃k=0Gk(H̃) ∩A = Gm(H) ∩A.

Since all the extensions coincide with H outside Gm(H), we may carry out the construction
on all the Gm(H)’s successively. This provides the desired family. �

It remains to prove Lemma 3.20. The lemma below describes a property of π̃P that we need
for this purpose.

Lemma 3.21. Let λ and P in Sn−1, T ∈ Gn and x ∈ T ∩ π̃−1P (λ). Let v be a unit vector tangent
at x to the curve π̃−1P (λ). Then:

d(P ;T ) ≤ d(v;Sn−1 ∩ T ).

Proof. Let w be the vector of Sn−1 ∩ T which realizes d(v;Sn−1 ∩ T ). Remark that the vectors
x, P , and v are in the same two dimensional vector space. Moreover (x; v) is an orthonormal
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basis of this plane. Let P = αx+ βv with α2 + β2 = 1. Then, as x and w both belong to T we
have

d(P ;T ) ≤ |P − (αx+ βw)| = |β| · |v − w| ≤ d(v;Sn−1 ∩ T ).

�

Proof of Lemma 3.20. We will work up to a (“projective“) coordinate system of Sn−1 defined as
follows. Let U+

i (resp. U−i ) denote

{x ∈ Sn−1/xi ≥ ε}

(resp. xi ≤ −ε) with ε ∈ Q+ small enough. Define then: hi : Ui → Rn−1 by hi(x1; . . . ;xn) =

(x1

xi
; . . . ; x̂ixi ; . . . ;

xn
xi

). Note that hi is a Q-bi-Lipschitz homeomorphism.
Through such a chart, the set Sn−1 ∩NP is a vector subspace and π̃P becomes an orthogonal

projection along a line, say Q. By Lemma 3.21, hypothesis (3.7) implies that there exists u ∈ Q+

such that:
d(Q;T ) ≥ u,

for any T ∈ C ⊂ Gn−1.
It is then an easy exercise of elementary geometry to derive from this that for any x ∈ Q and

any P1, . . . , Pµ in C:

(3.12) d
(
x;∪µi=1Pi ∩Q

)
≤ 1

u
· d
(
x ;∪µi=1Pi

)
.

For any y ∈ π̃P (B(l; r2 )) the length of the line segment π̃−1P (y) ∩ B(l; r) is bounded below away
from zero by a strictly positive rational number α0.

Let α be the rational number α0u
4µ . Then, using (3.12) one can easily see that if the conclusion

of the lemma failed for some y ∈ π̃P (B(l; r2 )), we could cover the segment π̃−1P (y) ∩B(l; r) by µ
segments of length less than α0

2µ . This contradicts the fact that the length of this segment is not
less than α0. �

3.5. Proof of Proposition 3.4.

Proof. By Proposition 3.19 there exists a family of regular systems of hypersurfaces H =
(Hk;λk)1≤k≤b compatible with A. We shall define h over E(Hk;λk), by induction on k, in
such a way that h(E(Hk;λk)) = E(Fk; en) (so that h(Hk) = Fk) where Fk is the graph of a
function ηk : R×Rn−1 → R for en.

For k = 1 choose an orthonormal basis of Nλ1 and set h(q) := (xλ1 ; qλ1) where xλ1 are the
coordinates of πλ1(q) in this basis. Let k ≥ 1. By (i) of Definition 3.11, the sets Hk and Hk+1

are the graphs for λk of two functions ξk and ξ′k. For q ∈ E(Hk+1;λk) \ E(Hk;λk) define h(q)
as the element:

h(πλk(q) + ξk(πλk(q)) · en) + (qλk − ξk(πλk(q)))en.

Thanks to the property (iii) of Definition 3.11 we have E(Hk+1;λk+1) = E(Hk+1;λk), and
hence h is actually defined over E(Hk+1;λk+1). Since ξk,t is C-Lipschitz with C ∈ Q, ht is a
family of bi-Lipschitz homeomorphisms. Note also that the image is E(Fk+1; en) where Fk+1 is
the graph (for en) of the family of Lipschitz functions on R×Rn−1:

ηk+1(x) := ηk(x) + (ξ′k − ξk) ◦ πλk ◦ h−1(x; ηk(x)).

This gives h over E(Hb;λb). To extend h to the whole of R × Rn do it similarly as in the case
k = 1. �
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4. On families of semialgebraic functions

Let k(0+) be the extension of R corresponding to the ultrafilter 0+, constituted by all the
semialgebraic sets of R containing a right-hand-side neighborhood of the origin (see [BCR]).
The field k(0+) is the real closure of the fraction field of the ring R[Y ] endowed with the order
relation that makes the indeterminate Y smaller than any element of R. We shall denote by
Y (0+) the indeterminate regarded in k(0+).

Lemma 4.1. For any u ∈ k(0+) there is a rational number ν such that:

u ∼R Y (0+)ν .

Proof. There exists a semialgebraic function ξ : (0, ε)→ R such that ξ(Y (0+)) = u (see [BCR]).
By the preparation theorem, there exist a and b in R and ν ∈ Q such that:

ξ(x) ∼Q b · (x− a)ν .

Thus, ξ(Y (0+)) ∼R Y (0+)ν if a = 0 and ξ ∼R 1 otherwise. �

Proposition 4.2. Let ξ : k(0+)n → k(0+) be a nonnegative semialgebraic function. There exists
a cell decomposition of k(0+)n such that over every cell:

(4.13) ξ(x) ∼R Y (0+)r · d(x,W1)r1 · · · d(x,Wk)rk

where the Wi’s are semialgebraic subsets of k(0+)n and r as well as the ri’s are rational numbers.

Proof. We prove it by induction on n. The case n = 0 follows from Lemma 4.1.
Assume that the lemma is true for (n− 1) and apply the preparation theorem to the function

ξ. Let n ≥ 1 and let λ1, . . . , λN be the elements of Sn−1 given by Lemma 3.6. Applying the
preparation theorem (Theorem 3.7) to ξ◦Ai, where Ai is an orthogonal linear mapping of k(0+)n

sending the vector en onto λi for i ∈ {1, . . . , N}, and taking a common refinement of the images
under the A−1i of all the obtained partitions we get a semialgebraic partition (Vj)j∈J of k(0+)n.
Therefore, over each Vj and for each i we can find continuous functions a, θ : πλi(Vj) → k(0+)
and r ∈ Q such that:

(4.14) ξ(q) ∼Q (qλi − θ(xλi))r a(xλi),

for q = xλi + qλiλi ∈ πλi(Vj)⊕ k(0+) · λi.
Apply Proposition 3.6 to the family constituted by all the sets of the partition (Vj)j∈J and

the zero locus of ξ. This gives rise to a partition (V ′j )j∈J′ such that each V ′j which is open is of
the form

{q ∈ πλi(V ′j ) ⊕ k(0+) · λi : ξ1(πλi(q)) < qλi < ξ2(πλi(q))},
for some i ∈ {1, . . . , N}, where ξν : πλi(V

′
j ) → k(0+), ν = 1, 2, are Q−Lipschitz functions, and

such that the function ξ is of the form (4.14) on V ′j for each vector λi.
Thanks to the induction hypothesis (identify Nλi with k(0+)n−1) it is sufficient to prove the

result for the function |qλi − θ(πλi(q))|.
Fix j ∈ J ′. Due to the compatibility of the partition with the zero locus of ξ, we have, for

every x, either θ(x) ≤ ξ1(x) or θ(x) ≥ ξ2(x). Up to a subpartition we may assume that only one
case occurs over V ′j , for instance θ ≤ ξ1. Writing

qλi − θ(πλi(q)) = (qλi − ξ1(πλi(q)) + (ξ1(πλi(q))− θ(πλi(q))),
we see that (up to a refinement we may assume that these functions are comparable) |qλi −
θ(πλi(q))| is ∼Q either to |qλi−ξ1(πλi(q))| or to |ξ1(πλi(q))−θ(πλi(q))|. For the former function,
since ξ1 is Lipschitz, |qλi − ξ1(xλi)| is ∼Q to the distance to the graph of ξ1 for λi. For the latter
one, this is a consequence of the induction hypothesis. For the V ′j ’s having positive codimension,
one may deduce the result from the induction hypothesis. �
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5. Proof of Theorem 2.4

Proof. We first check that we can assume, without loss of generality, that the mapping f : X → R
is the projection on the first coordinate. Indeed, if we replace X with

X̂ := {(y, x) ∈ R×X : y = f(x)},

and prove the result for f̂ : X̂ → R, defined by f̂(y, x) := y, we are done.
We shall establish a stronger result, proving by induction on n the following facts:
(Pn). Let f : [−M,M ] × Rn → R, M > 0, be defined by f(y, x) := y. Let A1, . . . , Ak

be semialgebraic subfamilies of [−M,M ] × Rn and let η1, . . . , ηl be semialgebraic families of
nonnegative functions on [−M,M ]×Rn. There is a triangulation (K,φ, ψ) of f such that:

(1) (2.3) holds.
(2) The Ai’s are union of images (by ψ) of simplices.
(3) The functions ηi ◦ ψ are ∼R to standard simplicial functions.
For n = 0 the result is clear. Assume that it is true for some n ≥ 0 and let us check it for

(n+ 1). We denote by π : R×Rn+1 → R×Rn the canonical projection.
We claim that there is a cell decomposition of R × Rn+1 such that for every cell C, we can

find some semialgebraic families W1, . . . ,Wc of R × Rn+1 as well as, for each i, some rational
numbers r, r1, . . . , rc, and y0 ∈ R, such that for (y, x) ∈ C ⊂ [−M,M ]×Rn+1:

(5.15) ηi,y(x) ∼R |y − y0|rd(x,W1,y)r1 · · · d(x,Wc,y)rc ,

where the constants of this equivalence are independent of y (below all the constants will be
independent of the parameter y).

Let α ∈ ˜[−M ;M ] and denote by k(α) the corresponding extension of R. If α has a specializa-
tion then, by Proposition 4.2, we can find U ∈ α such that (5.15) holds true for the restriction
of the ηi’s to U ×Rn+1. If α has no specialization then every element of k(α) is bounded by an
element of R. Hence, in this case (5.15) follows from Proposition 3.9 (applied to ηi,α). In any
case we thus find an element U ∈ α along which the desired equivalence may be established.
By compactness of the real spectrum, we may extract a finite covering of [−M,M ]. Taking a
common refinement of all the corresponding cell decompositions, we get a cell decomposition E
having the required property (5.15). We may assume that this cell decomposition is compatible
the Ai’s.

By Proposition 3.4, up to a family of bi-Lipschitz maps (that we will identify with the identity),
we may assume that all the cells of this cell decomposition which are graphs (i.e. which are not
bands) as well as the (topological) boundaries of theWj,y’s (see (5.15)) are included in the union
of a finite number of graphs of families of Lipschitz functions θ1,y ≤ · · · ≤ θµ,y (continuous with
respect to y).

Applying Observation (4) to the θi’s and to the functions (y, x) 7→ d(x;π(δWi,y)), we see that
there exist a cell decomposition D of R × Rn and finitely many families of Lipschitz functions
ξ1,y ≤ · · · ≤ ξm,y whose graphs contain the graphs for the θi,y’s, such that for every D ∈ D, all
the functions |qn+1 − θν,y(π(q))| are comparable (for ≤) with each other and comparable with
the functions d(x;π(δWi,y ∩ Γθν,y )) on the set [ξi,y|Dy ; ξi+1,y|Dy ].

Consider a semialgebraic cell decomposition of R×Rn+1 adapted to the graphs of the families
of functions ξi, the cells of D and E , as well as the sets Wj . Let X1, . . . , Xs be the images of the
cells under π. Refining this partition, we may assume that the functions d(x;π(δWi,y ∩ Γθν ,y))
are comparable with respect to each other on the cells. Apply the induction hypothesis to
get a triangulation (K,φ, ψ) of f (restricted to [−M,M ] × Rn) such that the Xi’s are unions
of images of open simplices. Moreover, by (3) of the induction hypothesis, we may do it in
such a way that over each simplex, each function |ξj − θi| ◦ ψ as well as all the functions



ON BI-LIPSCHITZ STABILITY OF FAMILIES OF FUNCTIONS 195

(y, x) 7→ d(ψy(x);π(δWj,y ∩ Γθi,y )), and ηk,y(ψy(x), ξi,y(ψy(x))), are ∼ to standard simplicial
functions.

Let ζ1 ≤ · · · ≤ ζm be piecewise linear functions over |K| such that ζi ≡ ζi+1 on the set
{ξi ◦ ψ = ξi+1 ◦ ψ} (this set is a subcomplex of K). Let also ζ0 := ζ1 − 1 and ζm+1 := ζm + 1.
Let

N = {(y, x, qn+1) ∈ R×Rn ×R : ζ0,y(x) ≤ qn+1 ≤ ζm+1,y(x)}.
We obtain a polyhedral decomposition of N by taking the respective inverse images by π|N of

the simplices of K of dimension n on the one hand, and by taking all the images of the simplices
of |K| by the mappings x→ (x; ζi(x)) on the other hand. After a barycentric subdivision of this
polyhedra we get a simplicial complex L.

Let K̃ be the union of the open simplices σ included in

{(y, x, qn+1) ∈ |K| ×R : ζ0,y(x) < qn+1 < ζm+1,y(x)}.

Define now for y ∈ R over K̃y the desired family of homeomorphisms ψ̃y in the following way:

ψ̃y(x; t ζi,y(x) + (1− t)ζi+1,y(x)) = (ψy(x); t ξi,y(ψy(x)) + (1− t)ξi+1,y(ψy(x)))

for 1 ≤ i ≤ m− 1, x ∈ Rn and t ∈ [0; 1]. Define also:

ψ̃y(x; t ζ0,y(x) + (1− t) ζ1,y(x)) = (ψy(x); ξ1(ψy(x))− t

1− t
)

and
ψ̃y(x; t ζm+1,y(x) + (1− t) ζm,y(x)) = (ψy(x); ξm,y(ψy(x)) +

t

1− t
)

for t ∈ [0; 1). This defines a family of homeomorphisms ψ̃ : |K̃| → [−M,M ]×Rn+1.
We shall check that over each simplex σ the mapping ψ̃ fulfills (2.3). Let σ ⊂ [ζi, ζi+1] be a

simplex of K̃, q and q′ two points of σy, y ∈ R fixed. The points q and q′ may be expressed
q = (x; tζi(x) + (1 − t)ζi+1(x)) and q′ = (x′; t′ζi(x

′) + (1 − t′)ζi+1(x′)) for some 0 ≤ i ≤ m and
some (t; t′) in [0; 1]2. Then define

q′′ := (x; t′ζi(x) + (1− t′)ζi+1(x)).

We begin with the case where 1 ≤ i ≤ m − 1. Let p = ψ̃y(q), p′ = ψ̃y(q′) and p′′ = ψ̃y(q′′).
We may consider x, x′, p, p′ and p′′ as functions of q and q′. As ξi,y and ξi+1,y are Lipschitz
functions we have over σ × σ:

(5.16) |p− p′| ∼ |p− p′′|+ |ψy(x)− ψy(x′)|.

Let σ′ be the simplex of K containing π(σ). Thanks to the induction hypothesis, we may find
some functions ϕσ′,1, . . . , ϕσ′,n and a tame system of coordinates (x1,σ′ ; . . . ;xn,σ′) such that for
any x and x′ in σ′y:

(5.17) |ψy(x)− ψy(x′)| ∼
n∑
l=1

ϕσ′,l(x;x′)|xl,σ′ − x′l,σ′ |.

The result is therefore clear if ζi = ζi+1 on σ′. Otherwise, as π(q) = π(q′′), by construction we
have:

|pn+1 − p′′n+1| ∼ |qn+1 − q′′n+1 | ·
ξi+1,y(ψy(x))− ξi,y(ψy(x))

ζi+1,y(x)− ζi,y(x)
.

Recall that we have constructed the triangulation (K,φ, ψ) in such a way that for every i,
(ξi+1 − ξi) ◦ ψ is ∼ to a standard simplicial function of K, say ωi. The composite ωi ◦ π gives a
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standard simplicial function of K̃. The functions ζi and ζi+1 define a tame coordinate on Rn+1

that we will denote by qn+1,σ. By the preceding estimation, we have:

(5.18) |p− p′′| ∼ |qn+1,σ − q′n+1,σ | · ϕσ,n+1(q; q′)

for a standard simplicial function ϕσ,n+1 (which here actually depends only on q).
Define for j < n+ 1:

ϕσ,j(q; q
′) = ϕσ′,j(π(q);π(q′)).

Then by (5.18), (5.17) and (5.16) we get the desired equivalence (in the case 1 ≤ i ≤ m− 1).
The case i = 0 and m are dealt in an analogous way (see [V1] for details). This proves that

ψ̃y satisfies (2.3). By construction, the Aj ’s are images of open simplices.
It remains to check that the functions ηj ◦ ψ̃ are ∼ to standard simplicial functions over any

simplex σ. Let σ ∈ K̃; if the set ψ̃(σ) is included in the graph of ξi for some i, the result follows
by induction. So, assume that it sits in ]ξi; ξi+1[, for some 1 ≤ i ≤ m − 1. By construction, on
ψ̃(σ), the ηj,y’s are ∼R to a product of powers of distances to the Wj,y’s (see (5.15)).

Therefore, it suffices to show the result for the functions q 7→ d(ψ̃y(q);Wj,y). As (ψ̃; K̃) is
also a triangulation of the sets Wj , for each j, either ψ̃(σ)y is included in Wj,y or the distance
to Wj,y is ∼ to the distance to its boundary. In the former case the result is obvious since the
function q 7→ d(ψ̃y(q);Wj,y) is zero over σ. By construction, the boundary δWj is included in
the union of the Γθν,y ’s.

Moreover, we have for any ν ∈ {1, . . . , µ}:

(5.19) d(q; δWi,y ∩ Γθν,y ) ∼ |qn+1 − θν,y(x)|+ d(x;π(δWi,y ∩ Γθν,y ))

where q = (x; qn+1) in ψ̃y(σy) ⊂ Rn ×R.
As both terms of the right-hand-side are positive, the sum is ∼ to the max of these two

terms that is to say is ∼ to one of them since they are comparable over ψ̃(σ). Note that
clearly d(q; δWi,y) = min

1≤ν≤µ
d(q; δWi,y ∩ Γθν,y ). But as by construction the functions gν,y :=

d(π(q);π(δWi,y ∩ Γθν,y )) are comparable with each other and comparable with all the functions
|qn+1− θν,y(x)|, the function d(q; δWi,y) is equivalent over ψ̃y(σy) to one of the functions gν,y or
to some function |qn+1 − θν,y(x)|.

Recall that we have required the triangulation (ψ;K) to be such that

(y, x) 7→ d(ψy(x);π(δWj,y ∩ Γθν,y ))

is ∼ to a standard simplicial function ofK. Hence, by (5.19), it suffices to prove that the function
(y, q) 7→ |ψn+1,y(q)− θν,y(π(ψy(q)))| is ∼ over σ to a standard simplicial function of K̃. Assume
that σ ⊂ [ζi; ζi+1]. We may write for p = (y, x, pn+1) ∈ σ ⊂ R×Rn ×R:

|pn+1 − θν ◦ ψ| = pn+1 − ξi ◦ ψ + (ξi ◦ ψ − θν ◦ ψ)

if θν ≤ ξi on π(ψ̃(σ)), and

|pn+1 − θν ◦ ψ| = ξi+1 ◦ ψ − pn+1 + (θν ◦ ψ − ξi+1 ◦ ψ)

if θν ≥ ξi+1 (with the convention ξ0 = −∞, ξm+1 = ∞). By (5.18), we have over σ for
q = ψ̃−1(p) = (y, z, qn+1):

pn+1 − ξi,y(ψy(x)) ∼ |qn+1 − ζi,y(z)| . ϕσ,n+1(q; q′).

The function |qn+1−ζi,y(x)| is∼ to a standard simplicial function. As all the |ξi,y◦ψy−θν,y◦ψy|
have been assumed to be equivalent to standard simplicial functions, the theorem is proved. �
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6. bi-Lipschitz triviality of families of functions

Definition 6.1. We say that a semialgebraic family of functions f : X → Rp × R is fiberwise
semialgebraically bi-Lipschitz trivial along W ⊂ Rp if there exist two families of semial-
gebraic homeomorphisms h : W × Rn → W × Rn and φ : W × R → W × R, such that for any
t ∈W :

(1) ht(Xt0) = Xt and φ−1t ◦ ft ◦ ht = ft0 , t0 ∈W.
(2) φt is bi-Lipschitz.
(3) There is a constant Ct ∈ R such that the restriction of ht to every fiber f−1t (y) is

Ct-bi-Lipschitz.
In the case where ht is bi-Lipschitz (i.e. not only the restriction to the fibers but ht itself),

we say that it is semialgebraically bi-Lipschitz trivial along W .

Remark 6.2. It is worthy of notice that, in the definition of fiberwise bi-Lipschitz triviality, the
mapping ht is not only assumed to be C-bi-Lipschitz on every fiber: it is a homeomorphism.

The flaw of bi-Lipschitz triviality of functions is that it admits continuous moduli: the Lips-
chitz counterpart of Theorem 1.6 is not true, even for families as simple as two variable polyno-
mials. The counterexample is due to A. Parusiński and J.-P. Henry.

Example 6.3. In [H-P] J-P. Henry and A. Parusiński gave the following example: ft(x, y) :=
x3 +y6 +3t2xy4. They proved by exhibiting some metric invariants for functions that there is no
interval W of R along which this family is semialgebraically bi-Lipschitz trivial. As bi-Lipschitz
triviality can be derived from triangulability (see proofs of Theorems 1.6 and 6.4), this example
shows that in Theorem 2.4 we could not require (2.3) to hold for all couples (q, q′) (not necessarily
in the same fiber).

Nevertheless, fiberwise bi-Lipschitz triviality does not admit continuous moduli. This is the
main theorem of this article.

Theorem 6.4. Given a semialgebraic family of Lipschitz functions f : X → Rp×R there exists
a semialgebraic partition V1, . . . , Vm of Rp such that for every i, f is fiberwise semialgebraically
bi-Lipschitz trivial along Vi.

Proof. We apply exactly the same argument as in the proof of Theorem 1.6, replacing Theorem
1.2 with Theorem 2.4. As in the proof of the latter theorem, possibly replacing ft with u ◦ ft
where u(y) := y

1+|y| , we may assume that f is bounded (if φ : R → R is bi-Lipschitz and
φ([−1, 1]) = [−1, 1] then u−1 ◦ φ ◦ u is bi-Lipschitz). By (2.3), the homeomorphisms ht (at the
end of the proof of Theorem 1.6) are Ct-bi-Lipschitz on the fibers f−1t (y) with Ct independent
of y. �

Remark 6.5. In the above theorem, we could also require the homeomorphism ht (see Definition
6.1) to satisfy

d(ht(x), f−1t (0)) ∼ d(x, f−1t0 (0)).
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