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POTENTIALLY DU BOIS SPACES

PATRICK GRAF AND SÁNDOR J KOVÁCS

Abstract. We investigate properties of potentially Du Bois singularities, that is, those that

occur on the underlying space of a Du Bois pair. We show that a normal variety X with
potentially Du Bois singularities and Cartier canonical divisor KX is necessarily log canonical,

and hence Du Bois. As an immediate corollary, we obtain the Lipman-Zariski conjecture for
varieties with potentially Du Bois singularities.

We also show that for a normal surface singularity, the notions of Du Bois and potentially

Du Bois singularities coincide. In contrast, we give an example showing that in dimension at
least three, a normal potentially Du Bois singularity x ∈ X need not be Du Bois even if one

assumes the canonical divisor KX to be Q-Cartier.

1. Introduction

Hodge theory of complex projective manifolds has proven to be an extremely useful tool in
many different and perhaps a priori unexpected situations. For instance the simple consequence
of the degeneration of the Hodge-to-de Rham spectral sequence that the natural map

(1.1) Hi(Xan,C)→ Hi(Xan,OXan)

is surjective has many applications. It was discovered early on that this surjectivity continues to
hold for normal crossing singularities and even some more complicated singularities. Steenbrink
identified the class of singularities that has this property naturally and named them Du Bois
singularities [Ste83]. It turns out that (1.1) along with the requirement that general hyper-
plane sections of Du Bois singularities should also be Du Bois essentially characterize Du Bois
singularities [Kov12].

Unfortunately, the rigorous definition of Du Bois singularities is complicated. It relies on
a generalization of the de Rham complex, the Deligne-Du Bois complex (see [Kol13, 6.4]), an
object in the derived category of coherent sheaves on X. However, once the technical difficulties
are settled the theory is very powerful.

One possible way to tame Du Bois singularities is to consider this notion a weakening of the
notion of rational singularities. In fact, Steenbrink conjectured immediately after introducing
the notion that rational singularities are Du Bois and this was confirmed in [Kov99].

Originally, Du Bois singularities were introduced to study degenerations of variations of Hodge
structures, but Kollár noticed that there is a strong connection between them and the singulari-
ties of the minimal model program. In particular, he conjectured that log canonical singularities

2010 Mathematics Subject Classification. 14B05, 32S05.
Key words and phrases. Singularities of the minimal model program, Du Bois pairs, differential forms, Lipman-

Zariski conjecture.
The first named author was partially supported by the DFG-Forschergruppe 790 “Classification of Algebraic

Surfaces and Compact Complex Manifolds”.

The second named author was supported in part by NSF Grant DMS-1301888, a Simons Fellowship (#304043),
and the Craig McKibben and Sarah Merner Endowed Professorship in Mathematics at the University of Wash-

ington. This work was partially completed while he enjoyed the hospitality of the Institute for Advanced Study
(Princeton) supported by The Wolfensohn Fund.

http://dx.doi.org/10.5427/jsing.2014.8i


118 PATRICK GRAF AND SÁNDOR J KOVÁCS

are Du Bois. This was recently confirmed in [KK10]. For the definition of the singularities of
the minimal model program, such as log canonical and klt, please see [KM98, 2.34] or [Kol13,
2.8].

The evolution of the minimal model program taught us that singularities should be studied
in pairs, that is, instead of considering a single space X one should consider a pair consisting of
a variety and a subvariety. This has also proved to be a powerful generalization.

The notion of Du Bois singularities was recently generalized for pairs (X,Σ) consisting of a
complex variety X and a closed subscheme Σ ⊂ X [Kov11]. For a relatively detailed treatment
the reader should peruse [Kol13, Chapter 6].

Recently Du Bois singularities and Du Bois pairs have provided useful tools in many situ-
ations. For instance, they form a natural class of singularities where Kodaira type vanishing
theorems hold [Ste85, KSS10, Kov11, Kov13b, Pat13]. Other recent applications include ex-
tension theorems [GKKP11], positivity theorems [Sch12], categorical resolutions [Lun12], log
canonical compactifications [HX13], semi-positivity [FFS13], and injectivity theorems [Fuj13].
Besides applications in the minimal model program, Du Bois singularities play an important
role in moduli theory as well [KK10, Kov13b].

The introduction of Du Bois pairs was motivated by the success of studying singularities of
pairs in the minimal model program. If a pair (X,∆) is log canonical (resp. klt) and ∆ is Q-
Cartier, then X is also log canonical (resp. klt). An analogous statement is not straightforward
for Du Bois pairs. The fact that (X,Σ) is a Du Bois pair does not clearly imply that then X
itself is Du Bois. In fact, one of the advantages of Du Bois pairs is that they provide a possibility
to extend the power of Hodge theoretic techniques to a larger class of varieties. In other words,
it is natural to ask and potentially helpful to know the answer to the following question.

Question 1.2. Given a complex variety X, when does there exist a subvariety Σ ( X such that
(X,Σ) is a Du Bois pair?

To make it easier to discuss these singularities, we introduce the following definition:

Definition 1.3. Let X be a complex variety and x ∈ X a closed point. We say that X is
potentially Du Bois at x if there exists a Zariski-open set U ⊆ X containing x and a subvariety
ΣU ⊆ U not containing any irreducible components of U such that (U,ΣU ) is a Du Bois pair
(see Section 1.D for the definition of Du Bois pairs). X is called potentially Du Bois if it is
potentially Du Bois at x for every closed point x ∈ X.

The main result of this paper gives some answers to Question 1.2.

Theorem 1.4. Let X be a normal complex variety. Then:

(1.4.1) If X has potentially Du Bois singularities, then it is Du Bois in codimension two,
i.e. the non-Du Bois locus of X has codimension at least three.

(1.4.2) Let (X,Σ) be a Du Bois pair and ∆ ⊂ X a reduced effective divisor such that supp ∆ ⊆ Σ
and KX + ∆ is Cartier. Then (X,∆) is log canonical and hence X is Du Bois. In
particular, if X has potentially Du Bois singularities and KX is Cartier, then it is log
canonical and Du Bois.

(1.4.3) There exists a three-dimensional normal variety X with isolated singularities and Q-
Cartier canonical divisor such that X has potentially Du Bois singularities, but it is
not Du Bois. In particular, the bound on the codimension in (1.4.1) is sharp.

We have the following immediate corollary of Theorem 1.4.2.

Corollary 1.5 (Lipman-Zariski conjecture for potentially Du Bois singularities). Let X be a
complex variety with potentially Du Bois singularities. If the tangent sheaf

TX := HomOX
(Ω1

X ,OX)
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is locally free, then X is smooth.

For normal singularities, Theorem 1.4.1 and 1.4.2 give a complete answer to Question 1.2 if
either KX is Cartier or the dimension of X is two. Theorem 1.4.3 can also be interpreted as a
positive result: it says that in higher dimensions, we stand a chance of finding a suitable Σ ⊂ X
making (X,Σ) into a Du Bois pair, even if KX is Q-Cartier.

Let us now put Theorem 1.4 in a broader philosophical perspective. It is well known that for
singularities in the minimal model program, decreasing the boundary divisor by a Q-Cartier divi-
sor improves the singularities of the pair. In particular, as mentioned above, if KX is Q-Cartier,
then (X,∆) being klt, dlt, lc, etc. implies that X satisfies the same condition. Theorem 1.4.3
tells us that this principle does not hold for Du Bois singularities. It is relatively easy to give
an example of a non-normal singularity which is potentially Du Bois, but not Du Bois [KS13,
Ex. 2.10]. It is a little more complicated to give a normal example of the same behavior [KS13,
Ex. 2.14]. Then it is much harder to give an example with a Q-Cartier canonical divisor. Our
example in 1.4.3 does exactly that.

Another distinction between singularities of the minimal model program and Du Bois singu-
larities is that the former depend on the behavior of mKX , a multiple of the canonical divisor for
a sufficiently divisible m ∈ N, while rational and Du Bois singularities depend on the behavior of
the canonical divisor itself. This distinction manifests itself in the fact that rational singularities
whose canonical divisor is Cartier are canonical, but a rational singularity with only a Q-Cartier
canonical divisor does not need to be even log canonical. Theorem 1.4.2 and 1.4.3 demonstrate
that this phenomenon also happens for Du Bois singularities.

Remark 1.6. Our example in (1.4.3) has a Q-Cartier canonical divisor of index 4. One might ask
whether there also exist examples of index 2 or 3. We conjecture that this is the case, however
it is not clear whether our construction can be adapted to yield such examples.

1.A. Outline of proofs. For Theorem 1.4.1, in the surface case we prove the statement directly
and then we conclude the general case using the deformation invariance of Du Bois singularities
[KS12]. For Theorem 1.4.2, we apply the vanishing theorem of [Kov13b, 5.3] together with the
techniques from [GKKP11, Section 17] in order to obtain an extension theorem for reflexive
differentials, Theorem 4.1, from which the claim immediately follows.

Theorem 1.4.3 has the most involved proof and actually the bulk of this paper is devoted to
the construction of the example whose existence is claimed there. The basic idea is to take a cone
over a smooth projective surface T . So we first need a criterion for a cone (or a pair of cones)
to be Du Bois. It turns out that such a criterion can be phrased in terms of the cohomology of
certain line bundles on T . It is well-known that a cone over T can have a Q-Cartier canonical
divisor only if KT is either anti-ample, torsion, or ample. Furthermore, in the first two cases,
the cone is automatically Du Bois, even log canonical. Hence our example T must necessarily
be canonically polarized.

In order to construct T , first we find a ruled surface S having the required cohomological
properties. Then T is defined to be the general member of a suitable linear system in the
product S × B, where B is a curve of genus 2. The tricky part is to show that T is smooth
although it lives in a linear system with a non-empty base locus.

1.B. Acknowledgements. We would like to thank Clemens Jörder, Stefan Kebekus, and Karl
Schwede for interesting discussions on the subject of this paper. Furthermore we would like to
thank the anonymous referee for providing suggestions that made the paper more accessible.

1.C. Notation, definitions, and conventions. Throughout this paper, we work over the field
of complex numbers C.
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A reduced pair (X,Σ) consists of X a reduced scheme of finite type over C and a reduced
closed subscheme Σ ⊂ X. Neither X nor Σ is assumed to be pure dimensional or normal.

Let (X,Σ) be a reduced pair and x ∈ X a point. We say that (X,Σ) is snc at x if there exists
a Zariski-open neighbourhood U ⊆ X of x such that U is smooth and Σ ∩ U is either empty, or
a divisor with simple normal crossings. The pair (X,Σ) is called an snc pair or simply snc if it
is snc at every point of X.

Given a reduced pair (X,Σ), (X,Σ)reg will denote the maximal open subset of X where (X,Σ)
is snc, and (X,Σ)sing its complement, with the induced reduced subscheme structure.

A reduced pair (X,Σ) is called normal if X is normal and projective if X is projective.
If (X,Σ) is a normal reduced pair, then by definition X is smooth in codimension 1. Further-

more, since Σ is reduced, near a general point of Σ, both X and D are smooth. In particular in
this case, codimX(X,Σ)sing ≥ 2, or in other words (X,Σ) is snc in codimension 1.

Let (X,Σ) be a normal reduced pair. A log resolution of (X,Σ) is a proper birational morphism

π : X̃ → X such that X̃ is smooth, both the pre-image π−1(Σ) of Σ and the exceptional set

E = Exc(π) are of pure codimension 1 in X̃, and (X̃, D̃+E) is an snc pair where D̃ = π−1(Σ)red

is the reduced divisor supported on π−1(Σ).
Let D,D1, D2 be divisors on a normal variety. Then D1 ∨ D2 denotes the smallest divisor

that contains both D1 and D2 and D1 ∧D2 denotes the largest divisor that is contained in both
D1 and D2. Finally, we will use the shorthand hi(X,D) to denote dimCH

i(X,OX(D)).

1.D. Du Bois singularities and Du Bois pairs. The Deligne-Du Bois complex [DB81] associ-
ated to a complex variety X is a filtered complex Ω

q
X , unique up to quasi-isomorphism, which for

a smooth X is isomorphic to the de Rham complex considered with the stupid filtration. Many
of the usual cohomological properties of the de Rham complex that hold for smooth varieties
remain true for arbitrary varieties if one replaces the de Rham complex with the Deligne-Du Bois
complex. In particular, if X is proper, then there is a Frölicher-type spectral sequence converg-
ing to singular cohomology and degenerating at E1. We say that X has Du Bois singularities
if the zeroth graded piece of Ω

q
X is quasi-isomorphic to OX . It follows that if X is proper and

has Du Bois singularities, then the natural map Hi(Xan,C) → Hi(Xan,OXan) is surjective. In
fact, this property is close to characterizing Du Bois singularities, cf. [Kov12]. Note however
that Du Bois varieties in general are not necessarily normal and hence may have singularities in
codimension 1. For example normal crossing singularities are Du Bois.

We briefly explain the construction of the (zeroth graded piece of the) Deligne-Du Bois com-
plex. Given a singular variety X, first we resolve its singularities by a log resolution π. However
this is not enough, we also need to resolve the singularities of the singular locus of X and those
of the exceptional set of π, and then we need to resolve the exceptional sets of these resolu-
tions, and so on. To do this properly one ends up with a diagram of morphisms in the shape
of a (dimX + 1)-dimensional hypercube, or more precisely a “cubical hyperresolution” of X cf.
[Car85, GNPP88, PS08]. Similarly to the way we associate a simple complex to a double com-
plex, taking disjoint unions of certain objects in this diagram yields a “semi-simplicial variety
X q with a morphism ε q : X q → X”. On every component of X q , we may consider an injective
resolution of the structure sheaf, and we may put all these resolutions together into a double
complex using the pull-back and push-forward maps between the components of X q . Now by
applying ε q ∗ to this double complex and forming the associated simple complex, we obtain the
derived push-forward Rε q ∗OX q . This is exactly the zeroth graded piece of the Deligne-Du Bois
complex. For a more detailed, yet still down-to-earth introduction see [Ste85, §2], for a rigorous
treatment see [DB81, GNPP88] or the more recent [PS08, §7.3].

Du Bois pairs were introduced in [Kov11]. Their definition is as involved as the definition of
Du Bois singularities, so we will not repeat it here. The essential ingredient is the following:
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For any reduced pair (X,Σ) there exists an object in the filtered derived category of X, called
the Deligne-Du Bois complex of (X,Σ) that relates the Deligne-Du Bois complex of X and that
of Σ. If (X,Σ) is an snc pair, then the Deligne-Du Bois complex of (X,Σ) is quasi-isomorphic
to Ω

q
X(log Σ)(−Σ). A reduced pair (X,Σ) is a Du Bois pair if the associated zeroth graded

quotient of the Deligne-Du Bois complex of (X,Σ) is quasi-isomorphic to the ideal sheaf of Σ in
OX . For more on Du Bois pairs see [Kov11] and [Kol13, §6].

As we already defined in Definition 1.3, a variety X is said to have potentially Du Bois
singularities if there exists a cover of X by Zariski-open subsets Ui ⊂ X such that for any i,
there exists a subvariety Σi ⊂ Ui not containing any irreducible component of Ui and making
(Ui,Σi) into a Du Bois pair.

2. Two Du Bois criteria

In this section, we give two necessary and sufficient criteria for pairs of a certain kind to be
Du Bois. The first criterion is concerned with varieties with only isolated non-Du Bois points,
while the second one, a corollary of the first, deals with cones over Du Bois pairs (X,Σ). The
latter criterion is likely known to experts in some form at least in the case Σ = ∅. In that case
a similar statement was proved in [Ma13, Thm. 4.4].

Theorem 2.1 (A Du Bois criterion for isolated non-Du Bois locus). Let (X,Σ) be a normal
reduced pair with a closed point x ∈ X such that (X \ {x},Σ \ {x}) is a Du Bois pair. Let
f : Y → X be a proper birational morphism from a normal variety Y that is an isomorphism
over X \ {x}. Let E denote the (not necessarily divisorial) exceptional locus of f , and set
Γ = E ∪ f−1(Σ). Assume that (Y,Γ) is a Du Bois pair. Then (X,Σ) is a Du Bois pair if and
only if

(2.1.1) Rif∗OY (−Γ) = 0

for all i ≥ 1.

2.A. Cones over pairs. First we recall some basic facts about cones, and we fix the notation
used in Theorem 2.5. We will follow the conventions and notation of [Kol13, §3.1].

Notation 2.2 (Affine cones). Let X be a projective scheme and L ∈ PicX an ample line bundle
on X. The affine cone over X with respect to L is

Ca(X,L ) = SpecR(X,L ),

where

R(X,L ) =
⊕
n≥0

H0(X,L n)

is the section ring of L . If there is no ambiguity about the choice of L , we will write CX for
Ca(X,L ). If X is connected, the vertex P ∈ CX is defined to be the closed point corresponding
to the maximal ideal ⊕

n≥1

H0(X,L n) ⊂ R(X,L ).

Remark 2.3. See [Kol13, §3.1] for generalities on cones. Note that this construction works even if
L is not very ample. If X is normal and L is very ample, then Ca(X,L ) is the normalization of
the classical affine cone over the embedding of X via L . In particular, Ca(X,L ) is isomorphic
to the classical affine cone if and only if the embedding given by L is projectively normal. Notice
further that Ca(X,L ) is normal whenever X is normal, even if L is not very ample.
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Notation 2.4 (Pairs of cones). Let X be a normal projective variety, Σ ⊂ X a reduced subscheme,
and L ∈ PicX an ample line bundle on X. There is a natural map ι : Ca(Σ,L |Σ)→ Ca(X,L ),
which is a closed embedding away from the vertex P ∈ CX. We will also denote Ca(X,L ) by
CX, the image of ι by CΣ, and the pair of cones consisting of CX and CΣ by Ca(X,Σ,L ), or
for simplicity by (CX,CΣ).

Theorem 2.5 (A Du Bois criterion for cones). Let (X,Σ) be a normal projective Du Bois pair
and L an ample line bundle on X. Then the pair of cones Ca(X,Σ,L ) is a Du Bois pair if
and only if

(2.6) Hi(X,L n(−Σ)) = 0

for all i, n ≥ 1.

2.B. Proof of Theorem 2.1. First assume that Σ = ∅. In this case, Γ = E. Consider the
following commutative diagram of distinguished triangles:

Ω0
X,{x}

α

��

// Ω0
X

//

��

Ω0
{x}

��

+1 //

Rf∗Ω
0
Y,E

// Rf∗Ω
0
Y

// Rf∗Ω
0
E

+1 // ,

where the solid arrows are the obvious natural maps and α is the induced map that keeps the
diagram commutative cf. [Kov11, Prop. 3.11]. Next consider the distinguished triangle from
[DB81, Prop. 4.11]:

Ω0
X

// Ω0
{x} ⊕Rf∗Ω

0
Y

// Rf∗Ω
0
E

+1 // ,

and observe that combined with [KK10, (2.1.4)] this implies that α is an isomorphism and hence
there exists the following distinguished triangle:

Rf∗Ω
0
Y,E

// Ω0
X

// Ω0
{x}

+1 // .

Since (Y,E) is a Du Bois pair by assumption, Ω0
Y,E ' OY (−E) and since X is normal (for

this seminormal would be enough), it follows by [Sai00, Prop. 5.2] (cf. [Sch09, 5.6], [KS11, 7.6])
that h0(Ω0

X) ' OX and hence we have the following long exact sequence:

0→ f∗OY (−E)→ OX → O{x} → R1f∗OY (−E)→ h1(Ω0
X)→ h1(Ω0

{x})︸ ︷︷ ︸
= 0

→ . . .

Since OX → O{x} is surjective, we conclude that Rif∗OY (−E) ' hi(Ω0
X) for i ≥ 1 and hence in

this case X (or equivalently (X,Σ)) is Du Bois if and only if

(2.7) Rif∗OY (−E) = 0 for i ≥ 1
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We will now turn to the case Σ 6= ∅. In particular, since the statement is local, we may assume
that x ∈ Σ. Again by [DB81, Prop. 4.11], we have a diagram of distinguished triangles:

Ω0
X,Σ

γ //

��

Rf∗Ω
0
Y,Γ

��
Ω0
X

//

��

Ω0
{x} ⊕Rf∗Ω

0
Y

//

��

Rf∗Ω
0
E

+1 //

Ω0
Σ

//

+1
��

Ω0
{x} ⊕Rf∗Ω

0
Γ

//

+1
��

Rf∗Ω
0
E

+1 // .

It follows from [Kov13a, (B.1.1)] that γ is an isomorphism. Since we assumed (Y,Γ) to be a
Du Bois pair, we obtain an isomorphism

Ω0
X,Σ ' Rf∗OY (−Γ).

So (X,Σ) is a Du Bois pair if and only if

f∗OY (−Γ) ' IΣ⊂X andRif∗OY (−Γ) = 0 for i ≥ 1.

Observe that there exists a short exact sequence:

0 // IΣ⊂X //

��

OX //

' since X
is normal

��

OΣ� _
since Σ

is reduced
and Σ = f(Γ)
��

// 0

0 // f∗OY (−Γ) // f∗OY // f∗OΓ
// R1f∗OY (−Γ) // . . .

It follows that the image of f∗OY in f∗OΓ is exactly OΣ and hence f∗OY (−Γ) ' IΣ⊂X always
holds. So we obtain that (X,Σ) is a Du Bois pair if and only if

(2.8) Rif∗OY (−Γ) = 0 for i ≥ 1.

Notice that if Σ = ∅, then Γ = E so the conditions (2.7) and (2.8) are actually the same
whether Σ = ∅ or Σ 6= ∅. This proves Theorem 2.1.

2.C. Proof of Theorem 2.5. Let f : Y = SpecX
⊕

m≥0 Lm → CX be a weighted blowup of

the vertex P ∈ CX, with exceptional divisor E ⊂ Y (cf. [Kol13, p.98]). Then Y is the total space
of the dual bundle L −1 and hence the natural map π : Y → X is a smooth affine morphism.
Let Z := π−1(Σ) and Γ := Z ∪ E.

Lemma 2.9. (Y,Γ) is a Du Bois pair.

Proof. Since (X,Σ) is a Du Bois pair, it follows from [Kol13, 6.19] that (Y,Z) is a Du Bois pair
and from [Kol13, 6.17] that (Γ, Z) is a Du Bois pair. Hence, the second and third rows of the
following diagram form distinguished triangles.

IΓ⊂Y //

��

Ω0
Y,Γ

��
IZ⊂Y //

��

Ω0
Y

��

// Ω0
Z

+1 //

id��
IZ⊂Γ

//

+1
��

Ω0
Γ

+1
��

// Ω0
Z

+1 //
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The first column is an obvious short exact sequence of ideals and the second is a distinguished
triangle by definition. Therefore, [Kov13a, (B.1.1)] implies that Ω0

Y,Γ ' IΓ⊂Y , so indeed (Y,Γ)
is Du Bois. �

Proof of Theorem 2.5 continued. By Lemma 2.9 and Theorem 2.1, (CX,CΣ) is a Du Bois pair
if and only if Rif∗OY (−Γ) = 0 for all i ≥ 1, so we need to prove that this vanishing is equivalent
to (2.6).

First notice that Rif∗OY (−Γ) is a skyscraper sheaf supported on P ∈ CX, with stalk

(2.10) Hi(Y,OY (−Γ)) ' Hi(X,π∗OY (−Γ)),

where the isomorphism follows because π is an affine morphism. In the remainder of the proof
we will demonstrate that

(2.11) π∗OY (−Γ) '
⊕
n≥1

L n(−Σ)

which, combined with (2.10), implies the desired statement.
Recall that Γ = Z ∪ E and π is affine and consider the following diagram of short exact

sequences:

(2.12) 0

��

0

��

0

��
0 // π∗OY (−Γ) //

��

π∗OY (−Z) //

��

π∗OE(−Z|E) //

��

0

0 // π∗OY (−E) //

��

π∗OY //

��

π∗OE //

��

0

0 // π∗OZ(−E|Z) //

��

π∗OZ //

��

π∗OZ∩E //

��

0

0 0 0

By construction

π∗OY '
⊕
n≥0

L n, and π∗OZ '
⊕
n≥0

L n|Σ,

so

(2.13) π∗OY (−Z) '
⊕
n≥0

L n(−Σ).

It is easy to see that π induces isomorphisms E ' X and Z ∩ E ' Σ, and hence

π∗OE ' OX and π∗OZ∩E ' OΣ,

which implies that

(2.14) π∗OE(−Z|E) ' OX(−Σ) ' L 0(−Σ).

Finally (2.12), (2.13), and (2.14) together imply (2.11) and hence Theorem 2.5 follows. �
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3. Proof of Theorem (1.4.1)

Proposition 3.1. Let (X,Σ) be a Du Bois pair, where X is a normal surface. Then X is
Du Bois.

Proof. We may assume that X has a single isolated singularity x ∈ X, that Σ is a divisor and
that x ∈ Σ. Let π : Y → X be a log resolution of (X,Σ), with exceptional set E ⊂ Y , and let
Γ ⊂ Y be the preimage of Σ. Notice that Γ = E + T , where T := π−1

∗ Σ is the strict transform
of Σ.

By Theorem 2.1 applied to (X, ∅), we have that X is Du Bois if and only if

(3.1.1) R1π∗OY (−E) = 0,

while (X,Σ) is a Du Bois pair if and only if

(3.1.2) R1π∗OY (−Γ) = 0.

So it suffices to show that (3.1.2) implies (3.1.1). To this end, consider the short exact sequence

0→ OY (−Γ)→ OY (−E)→ OT (−E)→ 0

and apply π∗. The associated long exact sequence gives the following:

· · · → R1π∗OY (−Γ)→ R1π∗OY (−E)→ R1π∗OT (−E)→ . . . .

However, R1π∗OT (−E) = 0 because π|T is a finite morphism, and then (3.1.2) implies the
desired statement. �

Proof of Theorem (1.4.1). After shrinking X, we may assume that X is affine and that there
is a subvariety Σ ⊂ X such that (X,Σ) is a Du Bois pair. Let H ⊂ X be the intersection of
n − 2 general hyperplanes in X, where n is the dimension of X. Then (H,Σ|H) is a Du Bois
pair by repeated application of Lemma 4.4. By Proposition 3.1, it follows that H is Du Bois.
A repeated application of [KS12, Thm. 4.1] now shows that X is Du Bois near H. So the non-
Du Bois locus of X does not intersect a general complete intersection surface in X. It follows
that the non-Du Bois locus has codimension at least three. �

4. Proof of Theorem (1.4.2)

Theorem (1.4.2) is an immediate consequence of the following theorem, which for log canonical
pairs was proved in [GKKP11, Theorem 16.1].

Theorem 4.1 (Extension theorem for p-forms on Du Bois pairs). Let (X,Σ) be a Du Bois

pair, where X is normal. If π : X̃ → X is a log resolution of (X,Σ) with exceptional divisor
E = Exc(π), then the sheaves

π∗Ω
p

X̃
(log D̂), 0 ≤ p ≤ n,

are reflexive, where D̂ = (π−1(Σ)∨E)red, the reduced divisor with support π−1(Σ)∪suppE ⊂ X̃.

Proof of Theorem (1.4.2). We will use the notation from Theorem 4.1 above. Write

Σ = Σdiv ∪ Σnon-div

as the union of closed sets such that Σdiv is a divisor and codimX Σnon-div ≥ 2. Let

Z = π(E) ∪ Σnon-div

and U = X \ Z. It follows that
(
π∗ωX̃(D̂)

)
|U '

(
ωX(Σdiv)

)
|U , and applying Theorem 4.1 in

the case p = dimX we obtain that π∗ωX̃(D̂) is reflexive. Since X is normal, codimX Z ≥ 2, and

hence π∗ωX̃(D̂) ' ωX(Σdiv).
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Now, by assumption supp ∆ ⊂ Σ and KX + ∆ is Cartier. Therefore

ωX(∆) ⊆ ωX(Σdiv) ' π∗ωX̃(D̂).

In other words there exists a non-zero morphism ωX(∆)→ π∗ωX̃(D̂) which is an isomorphism on
a non-empty open subset of X. By adjointness this implies the existence of a non-zero morphism

π∗ωX(∆) → ωX̃(D̂) which is an isomorphism on a non-empty open subset of X̃. Since ωX(∆)

is a line bundle, this means that π∗ωX(∆)→ ωX̃(D̂) is actually injective, which means that all
the discrepancies of the pair (X,∆) are at least −1, that is, (X,∆) is log canonical. �

4.A. Steenbrink-type vanishing results. Next we turn to the proof of Theorem 4.1. In fact,
the argument used to prove [GKKP11, Thm. 16.1] works in this case essentially unchanged,
provided the ingredients of that proof are adapted to the present situation.

The proof of Theorem 4.1 relies on Steenbrink-type vanishing results which, again, were
already proved in [GKKP11, Sec. 14] for log canonical pairs. Here we need the following more
general statement:

Theorem 4.2 ([Kov13b, 5.3], cf. [GKKP11, Theorem 14.1]). Let (X,Σ) be a Du Bois pair and

assume that dimX ≥ 2. Further let π : X̃ → X be a log resolution of (X,Σ) with exceptional

divisor E = Exc(π) and let D̂ = (π−1(Σ) ∨ E)red. Then we have

Rn−1π∗
(
Ωp
X̃

(log D̂)⊗ OX̃(−D̂)
)

= 0

for all 0 ≤ p ≤ n. �

Corollary 4.3 (cf. [GKKP11, Corollary 14.2]). Let (X,Σ) be a Du Bois pair and assume that

dimX ≥ 2. Further let π : X̃ → X be a log resolution of (X,Σ) with exceptional divisor

E = Exc(π), D̂ = (π−1(Σ) ∨ E)red, and x ∈ X a point with reduced fibre Fx = π−1(x)red. Then

H1
Fx

(
X̃,Ωp

X̃
(log D̂)

)
= 0 for all 0 ≤ p ≤ n.

Proof. This follows from Theorem 4.2 by applying duality for cohomology with support [GKK10,
Theorem A.1]. �

4.B. Proof of Theorem 4.1. We will need the following technical lemma.

Lemma 4.4 (Bertini theorem for Du Bois pairs). Let (X,Σ) be a Du Bois pair, H ∈ |L| a
general member of a basepoint-free linear system, and ΣH := supp(Σ ∩ H). Then (H,ΣH) is
also a Du Bois pair.

Proof. This is proved in [Kov11, 3.18] (cf. [Kol13, 6.5.6]). �

Proof of Theorem 4.1. We mainly follow the proof given in [GKKP11, Section 17] with some
adjustements. Here we explain the main ideas of that proof with the necessary changes. The
reader is referred to [GKKP11] for technical details.

The proof works by proving the extension statement one-by-one over the irreducible compo-

nents E0 of the exceptional locus E of a log resolution π : X̃ → X of X. The argument follows
a double induction on the dimension of X and the codimension of the image π(E0) ⊂ X. There
are two main techniques used in the proof. The first one is extending sections from an open set
to an ambient set by using vanishing of the local cohomology group that connects the two. This
is exactly what is provided by Theorem 4.2 and Corollary 4.3 which replace [GKKP11, Corollary
14.2] in the original proof. The other main tool is cutting by hyperplane sections and in order
for that to be effective we need a Bertini type statement. This is provided by Lemma 4.4.

Following the proof in [GKKP11, Section 17] the first issue we need to deal with is that here
Σ is not assumed to be a divisor. This is however not a real problem. In the original proof Σ
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only needs to be a divisor so the notion of being log canonical make sense. It is never used that
Σ is a divisor in any other way, so the arguments still make sense if one replaces the words “log
canonical” with “Du Bois pair”.

For the start of the induction, that is dimX = 2, we use Corollary 4.3. As mentioned above,
the point of this step as well as the heart of the entire proof is that we are able to extend sections
from an open set to an ambient set if we have a vanishing of the local cohomology group that
connects the two.

Similarly, the setup and the simplifications performed in the inductive step work fine until
we need to use the vanishing of the appropriate local cohomology groups. There we need to
substitute Corollary 4.3 for [GKKP11, Corollary 14.2] in the original argument. The same needs
to be done with all further occurrences of that corollary.

We also need to replace the Bertini type statement of [GKKP11, Lemma 2.23] with Lemma 4.4
throughout the proof. In particular, the use of [GKKP11, Claim 17.15] needs to be modified so
as to read “If t ∈ T is a general point, then (Xt,Σt) is a Du Bois pair”.

The rest of the proof goes through without any change. �

5. Preparation for the proof of Theorem (1.4.3)

5.A. Split ruled surfaces. We recall some basic facts about surfaces that arise as the projec-
tivization of a split rank two vector bundle over a curve. Let us start by fixing notation.

Notation 5.1. Let C be a smooth projective curve, and let A be a divisor on C. Form the ruled
surface

π : S = PC(OC ⊕ OC(−A))→ C,

and let OS(1) denote the associated relatively ample line bundle. Let E ⊂ S be the section of
π corresponding to the surjection OC ⊕ OC(−A) � OC(−A), and let E∞ ⊂ S be the section
corresponding to the projection onto the first summand OC ⊕ OC(−A) � OC .

As π induces an isomorphism from E and from E∞ onto C, we will identify divisors on E, on
E∞, and on C with their images and pre-images via π. Notice that E is contained in the linear
system |OS(1)|, and that OS(E)|E ' OE(−A).

Proposition 5.2 (Divisors on a ruled surface). Let M be a divisor on C. For any n ≥ 1, the
projection formula yields an isomorphism

ϕ :

n⊕
k=0

H0(C,OC(M − kA))→ H0(S,OS(π∗M + nE)).

For some integer k, 0 ≤ k ≤ n, let 0 6= s ∈ H0(C,OC(M − kA)) be a nonzero section, with
divisor D. Then the divisor of ϕ(s) ∈ H0(S,OS(π∗M + nE)) is

π∗D + (n− k)E + kE∞.

Proof. We prove this proposition in three steps.
Step 1: M = 0, n = 1. In this case, the claim follows immediately from Lemma 5.3 below.
Step 2: M = 0, n arbitrary. Since we have

π∗OS(n) = Symn
(
OC ⊕ OC(−A)

)
=

n⊕
k=0

OC(−kA),

this case follows from Step 1.
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Step 3: M and n arbitrary. The isomorphism in the projection formula is given by

OC(M)⊗ π∗OS(n) // π∗
(
π∗OC(M)⊗ OS(n)

)
s⊗ t � // π∗ s⊗ t.

So this general case follows from Step 2. �

Lemma 5.3 (Hyperplanes in projective space). Let V be a finite-dimensional complex vector
space, and let P(V ) be the space of one-dimensional quotients of V . We have a canonical iso-
morphism

ϕ : V → H0(P(V ),OP(V )(1)).

For any 0 6= v ∈ V , the divisor of the section ϕ(v) consists of the (reduced) hyperplane

{p : V � L | p(v) = 0} ⊂ P(V ).

Proof. True by definition. �

5.B. Non-free linear systems. We will need a criterion for the general member of a linear
system to be smooth, even though that linear system has basepoints. First we need to define a
notation:

Notation 5.4. Let X1, X2 be two normal varieties and D1, D2 divisors on X1 and X2 respectively.
We will use the notation (D1, D2) to denote the “exterior tensor product” divisor pr∗1 D1+pr∗2 D2

on X1 ×X2, where pr1,pr2 are the natural projections to X1 and X2.

Proposition 5.5 (Linear systems on a product). Let S be a smooth projective surface, and B a
smooth projective curve. Let |D1|, |D2| be linear systems on S and on B, respectively. Assume
that the scheme-theoretic base locus of |D1| consists of a single reduced closed point q ∈ S, while
|D2| is basepoint-free. Then a general element T ∈ |(D1, D2)|, T ⊂ S ×B, is smooth.

The proof relies on the following easy lemma.

Lemma 5.6 (Image of a smooth divisor). Let C ⊂ X be a smooth curve in a smooth threefold.

Let π : X̃ → X be the blowup of X along C, and Fp = π−1(p) the fibre over p ∈ C ⊂ X. If

D ⊂ X̃ is a smooth divisor such that D ·Fp = 1 and Fp 6⊂ D for all p ∈ C, then DX := π(D) ⊂ X
is also smooth.

Proof. The assumption on the intersection between D and Fp implies that π|D : D → DX is an
isomorphism. �

Proof of Proposition 5.5. Let π′ : S̃ → S be the blowup of S at q, with exceptional divisor E,

and set π = π′× id : S̃×B → S×B. Then we have a decomposition into movable and fixed part

|π∗(D1, D2)| = |M0|+ (E ×B),

where |M0| is basepoint-free and one may choose a general element M ∈ |M0|, such that
T = π(M). We will apply Lemma 5.6 to conclude that T is smooth.

By Bertini’s theorem [Har77, Ch. III, Cor. 10.9], M is smooth. Furthermore,

M · Fp = −(E ×B) · Fp = −E2 = 1.

Finally, consider the divisor M |E×B . By Bertini again, it is also smooth. Hence, if it contained
a fibre Fp, it would have to be a finite union of such fibres and then its image under π would be
finite. But we clearly have

π(M |E×B) = {q} ×B,
leading to a contradiction. This shows that the assumptions of Lemma 5.6 are satisfied and
hence the proof of Proposition 5.5 is complete. �
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5.C. Further ancillary results. We need two more lemmas, one of them about connectedness
properties of big and nef divisors and the other one about certain divisors on curves of genus 2.

Lemma 5.7 (Connectedness of big and nef divisors). Let X be a smooth projective variety of
dimension ≥ 2 and D ⊂ X the support of an effective big and nef divisor. Then D is connected.

Proof. Let D′ be an effective big and nef divisor with suppD′ = D. By Kawamata-Viehweg
vanishing, H1(X,OX(−D′)) = 0. Hence from the ideal sheaf sequence of D′ ⊂ X we obtain
a surjection H0(X,OX) � H0(D,OD′), which implies that H0(D,OD′) = C, and therefore D
must be connected. �

Lemma 5.8 (Theta characteristics). Let B be a smooth projective curve of genus g = 2. Then
there exists on B a divisor Θ of degree 1 with the following properties:

(5.8.1) 2Θ ∼ KB is a canonical divisor,

(5.8.2) h0(B,Θ) = h1(B,Θ) = 0,

(5.8.3) h0(B,nΘ) 6= 0 and h1(B,nΘ) = 0 for n ≥ 3, and

(5.8.4) the linear system |nΘ| is basepoint-free for n ≥ 3.

Proof. The canonical linear system |KB | defines a two-to-one cover B → P1, which, by the
Hurwitz formula, is ramified at exactly 6 points R1, . . . , R6. The Ri are the only points with
the property that 2Ri ∼ KB . On the other hand, we have, up to linear equivalence, 22g = 16
divisors Θ satisfying 2Θ ∼ KB . So there exist, up to linear equivalence, 10 divisors Θ such that
h0(B,Θ) = 0 and 2Θ ∼ KB , and we choose one of them. This implies (5.8.1).

By choice h0(B,Θ) = 0, so (5.8.2) follows from Riemann-Roch on B.
By Serre duality and (5.8.1) it follows that h1(B,nΘ) = h0(B, (2− n)Θ) = 0 for n ≥ 3, and

then by Riemann-Roch

(5.8.1) h0(B,nΘ) = n− 1,

so (5.8.3) follows.
Again, by Serre duality and (5.8.1) it follows that for any P ∈ B,

h1(B,nΘ− P ) = h0(B, (2− n)Θ + P ).

This is clearly 0 for n ≥ 4, but also for n = 3 since Θ 6∼ P by choice. Then, again, by
Riemann-Roch

(5.8.2) h0(B,nΘ− P ) = n− 2,

so combining (5.8.1) and (5.8.2) we have that

h0(B,nΘ− P ) < h0(B,nΘ)

for any point P ∈ B and n ≥ 3. This proves (5.8.4). �

6. Proof of Theorem (1.4.3)

Theorem (1.4.3) follows from the following more precise result.

Theorem 6.1 (Non-Du Bois potentially Du Bois variety with Q-Cartier KX). There is a 3-
dimensional Du Bois pair (X,Σ) such that X is normal and has an isolated singularity such that
4KX is Cartier and Σ ⊂ X is a Weil divisor, but X is not Du Bois.

The construction of X can be outlined as follows. First we consider a ruled surface S and a
section E ⊂ S with suitable cohomological properties according to Theorem 2.5. From S, we
obtain a similar example F ⊂ T , where additionally T is of general type. The pair (X,Σ) is
then defined to be a cone over (T, F ).



130 PATRICK GRAF AND SÁNDOR J KOVÁCS

Proposition 6.2 (Ruled surface example). There is a smooth projective surface S, a smooth
curve E ⊂ S, and an ample divisor L on S, such that:

(6.2.1) For all i, n ≥ 1, it holds that hi(S, 4nL− E) = 0.

(6.2.2) We have h1(S, 4L) 6= 0.

(6.2.3) The divisor 5L−KS is big and nef. The scheme-theoretic base locus of the linear system
|5L−KS | consists of a single reduced point b, which does not lie on E.

(6.2.4) For n ≥ 2, we have h2(S,KS + (4n− 5)L− E) = 0.

Proposition 6.3 (Canonically polarized example). There is a smooth projective surface T , a
smooth (not necessarily irreducible) curve F ⊂ T , and an ample divisor M on T , such that the
following hold.

(6.3.1) For all i, n ≥ 1, it holds that hi(T, nM − F ) = 0.

(6.3.2) We have h1(T,M) 6= 0.

(6.3.3) The surface T is canonically polarized. More precisely, 4KT ∼ 5M .

6.A. Proof of Proposition 6.2. Since this proof is somewhat lengthy, it is divided into 7 steps.

Step 1: A hyperelliptic curve. Let C be a hyperelliptic curve of genus g = 7. By [Har77, Ch. IV,
Prop. 5.3], there exists on C a unique g1

2 , that is, a linear system of dimension 1 and degree
2. The linear system g1

2 defines a two-to-one cover f : C → P1, ramified at exactly 16 points
R1, . . . , R16.

Let H ∼ 2g1
2 , and let A = R1 be one of the ramification points of f . Note that 2A ∼ g1

2 , and
that

(6.4) 4(H −A) ∼ 6g1
2 ∼ KC

is a canonical divisor on C by [Har77, Ch. IV, Prop. 5.3].
We need to calculate f∗OC . Since a torsion-free sheaf on a smooth curve is locally free, and

since the injection OP1 ↪→ f∗OC is split by the trace map, we must have f∗OC = OP1 ⊕ OP1(n)
for some integer n. To calculate n, observe that

H1(C, f∗OP1(6)) = H1(P1, f∗f
∗OP1(6)) = H1(P1,OP1(6)⊕ OP1(n+ 6))

by the Leray spectral sequence and the projection formula. Using (6.4), we see that the left-hand
side is one-dimensional. So n+ 6 = −2, and

(6.5) f∗OC = OP1 ⊕ OP1(−8).

Step 2: Construction and properties of S. Let π : S = PC(OC ⊕ OC(−A)) → C and let OS(1)
denote the associated relatively ample line bundle. Take E ⊂ S to be the section of π cor-
responding to the surjection OC ⊕ OC(−A) � OC(−A), and take E∞ ⊂ S to be the section
corresponding to the projection onto the first summand OC ⊕ OC(−A) � OC . We will identify
divisors on E, on E∞, and on C. Notice that E is contained in the linear system |OS(1)|, that
π∗OS(E) ' OC ⊕ OC(−A), and that OS(E)|E = OE(−A). See also Notation 5.1.

Step 3: Definition and ampleness of L. Let L = π∗H+E. We use the Nakai-Moishezon criterion
to show that L is ample. Let D ⊂ S be an irreducible curve. If D = E or D is a fibre of π, then
L ·D = 3 or 1, respectively, hence we may assume that neither is the case. Then π∗H ·D > 0
and E ·D ≥ 0, so L ·D > 0 again. Finally observe that L2 = 7 > 0. So L is ample.
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Step 4: Proof of (6.2.1). Let i, n ≥ 1. Since 4nL − E = π∗(4nH) + (4n − 1)E, this divisor
intersects the fibres of π non-negatively, so R1π∗OS(4nL− E) = 0 and we obtain

Hi(S,OS(4nL− E)) ' Hi(C, π∗OS(4nL− E)).

This already proves (6.2.1) if i ≥ 2, hence we may assume that i = 1. Using the identification
OS(E) ' OS(1) we have

π∗OS(4nL− E) = OC(4nH)⊗ π∗OS(4n− 1) =

4n−1⊕
k=0

OC(4nH − kA).

For n, k in the relevant range, the degree of 4nH − kA is at least

16n− (4n− 1) = 12n+ 1 ≥ 13 > degKC = 12.

So we have h1(C, 4nH − kA) = 0 by Serre duality. This proves (6.2.1).

Step 5: Proof of (6.2.2). Consider the short exact sequence

0→ OS(4L− E)→ OS(4L)→ OE(4L|E)→ 0

and its associated long exact sequence. In view of (6.2.1), we obtain an isomorphism

H1(S,OS(4L)) ' H1(E,OE(4L|E)).

On the other hand 4L|E ∼ 4(H −A) ∼ KE by (6.4). Since h1(E,KE) = 1, (6.2.2) follows.

Step 6: Proof of (6.2.3). We have

5L−KS = π∗(5H) + 5E − (−2E + π∗(KC −A))

= π∗(5H +A−KC) + 7E

∼ π∗(4g1
2 +R1) + 7E.

By the projection formula, we obtain an isomorphism

H0(S,OS(5L−KS)) =

7⊕
k=0

H0(C,OC(4g1
2 + (1− k)R1)).

In order to prove the claim about the base locus, we will repeatedly apply Proposition 5.2 to
produce sufficiently many divisors in |5L−KS |.

First, since |4g1
2 +R1| has no basepoint outside R1, taking k = 0 we see that the base locus of

|5L−KS | is contained in π−1(R1)∪E. On the other hand, since |4g1
2−6R1| = |g1

2 | is basepoint-
free, taking k = 7 shows that the base locus in question is contained in E∞. Hence the only
basepoint of |5L−KS | can be at the intersection π−1(R1) ∩ E∞ = {b}. In particular, 5L−KS

is nef. Calculating that (5L−KS)2 = 77 > 0, shows that 5L−KS is also big.
In order to see that Bs |5L − KS | is reduced, we will exhibit two members of |5L − KS |

smooth at b, with different tangent directions. To this end, note that |4g1
2 | is basepoint-free, so

taking k = 1 gives us a member of |5L−KS | which is smooth at b, with tangent space equal to
TbE∞ ⊂ TbS. But we have already seen that k = 0 gives a member of |5L −KS | smooth at b,
with tangent space equal to Tb(π

−1(R1)) ⊂ TbS.
It remains to show that b really is a basepoint of |5L−KS |. Because (5L−KS)|E∞ ∼ 4g1

2 +R1,
it is enough to show that R1 is a basepoint of |4g1

2 + R1|. Note that h0(C, 4g1
2) = 5 and

h0(C, 5g1
2) = 6 by the projection formula and (6.5). Since |5g1

2 | is basepoint-free, we have
h0(C, 4g1

2 +R1) = h0(C, 5g1
2 −R1) = 5. So h0(C, 4g1

2) = h0(C, 4g1
2 +R1). This shows the claim

and finishes the proof of (6.2.3).
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Step 7: Proof of (6.2.4). Let n ≥ 2. By Serre duality,

h2(S,KS + (4n− 5)L− E) = h0(S,−(4n− 5)L+ E).

The right-hand side vanishes since −(4n − 5)L + E intersects a fiber of π negatively. This
proves (6.2.4) and also finishes the proof of Proposition 6.2.

6.B. Proof of Proposition 6.3. Again, we divide the proof into 5 steps.

Step 1: Construction of T . Let S, E, and L be as in Proposition 6.2, and let B and Θ be as in
Lemma 5.8. Consider the product X = S ×B with projections pr1 and pr2. We will utilize the
notation from (5.4). Let T ⊂ X be a general element of the linear system |(5L−KS , 3Θ)|. Let
F be the divisor (pr∗1 E)|T , and let M = (4L, 4Θ)|T . Clearly M is ample.

Step 2: T is smooth. We have Bs |5L−KS | = {b} scheme-theoretically, and Bs |3Θ| = ∅. So by
Proposition 5.5, T is smooth. Also note that T is connected by Lemma 5.7.

Since b 6∈ E, the restricted linear system |(5L − KS , 3Θ)|pr−1
1 (E) is basepoint-free. Hence

F ⊂ T is a smooth curve.

Step 3: Proof of (6.3.1). Consider the ideal sheaf sequence of T ⊂ X,

0→ OX(KS − 5L,−3Θ)→ OX → OT → 0,

and twist it by (4nL− E, 4nΘ), yielding

(6.6) 0→ OX(KS + (4n− 5)L− E, (4n− 3)Θ)→ OX(4nL− E, 4nΘ)→ OT (nM − F )→ 0.

When calculating the cohomology groups of an exterior tensor product using the Künneth for-
mula, we will always drop any summands where at least one factor vanishes simply for dimension
reasons. Concerning the sheaf in the middle, we have

hi(OX(4nL− E, 4nΘ)) = hi−1(S, 4nL− E) · h1(B, 4nΘ)︸ ︷︷ ︸
= 0, (5.8.3)

+hi(S, 4nL− E)︸ ︷︷ ︸
= 0, (6.2.1)

·h0(B, 4nΘ)

for all i ≥ 1, and for the sheaf on the left-hand side,

hi(OX(KS + (4n− 5)L− E, (4n− 3)Θ)) =

= hi−1(S,KS + (4n− 5)L− E) · h1(B, (4n− 3)Θ)︸ ︷︷ ︸
= 0, (5.8.2/3)

+

+ hi(S,KS + (4n− 5)L− E)︸ ︷︷ ︸
= 0 if n ≥ 2, (6.2.4)

·h0(B, (4n− 3)Θ)︸ ︷︷ ︸
= 0 if n = 1, (5.8.2)

for i ≥ 2. So taking cohomology of (6.6) proves (6.3.1).

Step 4: Proof of (6.3.2). Twist the ideal sheaf sequence of T ⊂ X by (4L, 4Θ), which gives

(6.7) 0→ OX(KS − L,Θ)→ OX(4L, 4Θ)→ OT (M)→ 0.

We have

h1(OX(KS − L,Θ)) = h0(S,KS − L) · h1(B,Θ)︸ ︷︷ ︸
= 0, (5.8.2)

+ h1(S,KS − L) · h0(B,Θ).︸ ︷︷ ︸
= 0, (5.8.2)

Furthermore,
h1(OX(4L, 4Θ)) ≥ h1(S, 4L)︸ ︷︷ ︸

6= 0, (6.2.2)

· h0(B, 4Θ),︸ ︷︷ ︸
6= 0, (5.8.3)

so taking cohomology of (6.7) gives h1(T,M) 6= 0, proving (6.3.2).
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Step 5: Proof of (6.3.3). Since 3Θ = 5Θ−KB , by the adjunction formula we have

KT = (KX + T )|T = (5L, 5Θ)|T .
Claim (6.3.3) follows immediately. This finishes the proof of Proposition 6.3.

6.C. Proof of Theorem 6.1. Let T , F , and M be as in Proposition 6.3. By Theorem 2.5,
(X,Σ) = Ca(T, F,OT (M)) is a Du Bois pair, but (X, ∅) = Ca(T, ∅,OT (M)) is not. This means
that X is not Du Bois. By [Kol13, Prop. 3.14], 4KX is a Cartier divisor and this is the smallest
multiple of KX which is Cartier. It is clear by construction that X is normal, of dimension
three, and has an isolated singularity.

7. Proof of Corollary 1.5

Let X be a variety satisfying the assumption of the Lipman-Zariski conjecture. By [Lip65,
Thm. 3], X is normal. Corollary 1.5 now follows immediately from Theorem 4.1 and [GK14,
Thm. 1.2].

Alternatively, we may also argue as follows: If X is potentially Du Bois and satisfies the as-
sumption of the Lipman-Zariski conjecture, thenX is log canonical by Theorem 1.4.2. By [Dru14,
Thm. 1.1], X is smooth.
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[KK10] J. Kollár and S. J. Kovács: Log canonical singularities are Du Bois, J. Amer. Math. Soc. 23
(2010), 791–813. DOI: 10.1090/S0894-0347-10-00663-6

[KM98] J. Kollár and S. Mori: Birational geometry of algebraic varieties, Cambridge Tracts in Mathemat-
ics, vol. 134, Cambridge University Press, Cambridge, 1998.
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[KS13] S. J. Kovács and K. E. Schwede: Inversion of adjunction for rational and Du Bois pairs, November
2013. arXiv:1311.7193
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