VARIETIES OF COMPLEXES AND FOLIATIONS

FERNANDO CUKIERMAN

Dedicated to Xavier Gómez-Mont on his 60th Birthday.

Abstract. Let $\mathcal{F}(r,d)$ denote the moduli space of algebraic foliations of codimension one and degree d in complex projective space of dimension r. We show that $\mathcal{F}(r,d)$ may be represented as a certain linear section of a variety of complexes. From this fact we obtain information on the irreducible components of $\mathcal{F}(r,d)$.

1. Basics on varieties of complexes.

1.1. Let K be a field and let V_0, \ldots, V_n be vector spaces over K of finite dimensions $d_i = \dim_K(V_i)$.

Consider sequences of linear functions

$$V_0 \xrightarrow{f_1} V_1 \xrightarrow{f_2} \ldots \xrightarrow{f_n} V_n,$$

also written

$$f = (f_1, \ldots, f_n) \in V = \prod_{i=1}^n \text{Hom}_K(V_{i-1}, V_i).$$

The variety of differential complexes is defined as

$$\mathcal{C} = \mathcal{C}(V_0, \ldots, V_n) = \{ f = (f_1, \ldots, f_n) \in V/ f_{i+1} \circ f_i = 0, \ i = 1, \ldots, n - 1 \},$$

It is an affine variety in V, given as an intersection of quadrics. We intend to study the geometry of this variety (see also e.g., [3], [6]).

1.2. Since the defining equations $f_{i+1} \circ f_i = 0$ are bilinear, we may also consider, when it is convenient, the projective variety of complexes

$$PC \subset \prod_{i=1}^n \mathbb{P}\text{Hom}_K(V_{i-1}, V_i),$$

as a subvariety of a product of projective spaces.

Denoting $V = \bigoplus_{i=0}^n V_i$, each complex $f \in \mathcal{C}$ may be thought as a degree-one homomorphism of graded vector spaces $f : V \to V$ with $f^2 = 0$.

1991 Mathematics Subject Classification. 14M99, 14N99, 37F75.

Key words and phrases. Distribution, foliation, differential complex.

We thank the anonymous referee for suggestions that helped to improve the exposition.
1.3. For each \(f \in C \) and \(i = 0, \ldots, n \) define
\[
B_i = f_i(V_{i-1}) \subset Z_i = \ker (f_{i+1}) \subset V_i,
\]
and
\[
H_i = Z_i/B_i.
\]
(we understand by convention that \(B_0 = 0 \)).

From the exact sequences
\[
0 \to B_i \to Z_i \to H_i \to 0,
\]
\[
0 \to Z_i \to V_i \to B_{i+1} \to 0,
\]
we obtain for the dimensions
\[
b_i = \dim_K(B_i), \quad z_i = \dim_K(Z_i), \quad h_i = \dim_K(H_i),
\]
the relations
\[
d_i = b_{i+1} + z_i = b_{i+1} + b_i + h_i,
\]
where \(i = 0, \ldots, n \) and \(b_0 = b_{n+1} = 0 \). Therefore,

Proposition 1. a) The \(h_i \) and the \(b_i \) determine each other by the formulas:
\[
h_i = d_i - (b_{i+1} + b_i),
\]
\[
b_{j+1} = \chi_j(d) - \chi_j(h),
\]
where for a sequence \(e = (e_0, \ldots, e_n) \) and \(0 \leq j \leq n \) we denote
\[
\chi_j(e) = (-1)^j \sum_{i=0}^{j} (-1)^i e_i = e_j - e_{j-1} + e_{j-2} + \cdots + (-1)^j e_0,
\]
the \(j \)-th Euler characteristic of \(e \).

b) The inequalities \(b_{i+1} + b_i \leq d_i \) are satisfied for all \(i \).

Proof. We write down the \(b_j \) in terms of the \(h_i \): from
\[
\sum_{i=0}^{j} (-1)^i d_i = \sum_{i=0}^{j} (-1)^i (b_{i+1} + b_i + h_i),
\]
we obtain
\[
b_{j+1} = (-1)^j (\sum_{i=0}^{j} (-1)^i d_i - \sum_{i=0}^{j} (-1)^i h_i),
\]
as claimed. \(\square \)

Notice in particular that since \(b_{n+1} = 0 \), we have the usual relation
\[
\sum_{i=0}^{n} (-1)^i d_i = \sum_{i=0}^{n} (-1)^i h_i.
\]
1.4. Now we consider the subvarieties of C obtained by imposing rank conditions on the f_i.

Definition 2. For each $r = (r_1, \ldots, r_n) \in \mathbb{N}^n$ define

$$C_r = \{ f = (f_1, \ldots, f_n) \in C/ \, \text{rank}(f_i) = r_i, \ i = 1, \ldots, n \}.$$

These are locally closed subvarieties of C.

Proposition 3. a) $C_r \neq \emptyset$ if and only if $r_{i+1} + r_i \leq d_i$ for $0 \leq i \leq n$ (we use the convention $r_0 = r_{n+1} = 0$)

b) In the conditions of a), C_r is smooth and irreducible, of dimension

$$\dim(C_r) = \sum_{i=0}^{n} (d_i - r_i)(r_{i+1} + r_i) = \sum_{i=0}^{n} (d_i - r_i)(d_i - h_i) = \frac{1}{2} \sum_{i=0}^{n} (d_i^2 - h_i^2).$$

Proof. a) One implication follows from Proposition 1. Conversely, in the given conditions, we need to define a complex with rank$(f_i) = r_i$ for all i. Suppose we constructed

$$V_0 \xrightarrow{f_1} V_1 \xrightarrow{f_2} \ldots \xrightarrow{f_{n-1}} V_{n-1}. $$

We need to define $f_n : V_{n-1} \rightarrow V_n$ such that $f_n \circ f_{n-1} = 0$ and rank$(f_n) = r_n$, that is, a map $V_{n-1}/B_{n-1} \rightarrow V_n$ of rank r_n. Such a map exists since $\dim(V_{n-1}/B_{n-1}) = d_{n-1} - r_{n-1} \geq r_n$.

b) Consider the projection (forgetting f_n)

$$\pi : C(0, \ldots, V_n) \rightarrow C(0, \ldots, V_{n-1}),$$

where $r = (r_1, \ldots, r_n)$ and $\bar{r} = (r_1, \ldots, r_{n-1})$. Any fiber $\pi^{-1}(f_1, \ldots, f_{n-1})$ is isomorphic to the subvariety in $\text{Hom}(V_{n-1}/B_{n-1}, V_n)$ of maps of rank r_n; therefore, it is smooth and irreducible of dimension $r_n(d_{n-1} - r_{n-1} + d_n - r_n)$ (see [1]). The assertion follows by induction on n. The various expressions for $\dim(C_r)$ follow by direct calculations.

Another proof of a): Given r such that $r_{i+1} + r_i \leq d_i$, put $h_i = d_i - (r_{i+1} + r_i) \geq 0$ and $z_i = d_i - r_{i+1} = h_i + r_i$. Choose linear subspaces $B_i \subset Z_i \subset V_i$ with $\dim(B_i) = r_i$ and $\dim(Z_i) = z_i$. Since $\dim(V_{i-1}/Z_{i-1}) = \dim(B_i)$, choose an isomorphism $\sigma_i : V_{i-1}/Z_{i-1} \rightarrow B_i$ for each i. Composing with the natural projection $V_{i-1} \rightarrow V_{i-1}/Z_{i-1}$ we obtain linear maps $V_{i-1} \rightarrow B_i$ with kernel Z_{i-1} and rank r_i, as wanted.

Remark 4. In terms of dimension of homology, the condition in Proposition 3 a) translates as follows. Given $h = (h_0, \ldots, h_n) \in \mathbb{N}^{n+1}$, there exists a complex with dimension of homology equal to h if and only if $\chi_i(h) \leq \chi_i(d)$ for $i = 1, \ldots, n-1$ and $\chi_n(h) = \chi_n(d)$.

Remark 5. The group $G = \prod_{i=0}^{n} GL(V_i, K)$ acts on $V = \prod_{i=1}^{n} \text{Hom}_K(V_{i-1}, V_i)$ via

$$(g_0, g_1, \ldots, g_n) \cdot (f_1, f_2, \ldots, f_n) = (g_0f_1g_1^{-1}, g_1f_2g_2^{-1}, \ldots, g_{n-1}f_ng_n^{-1}).$$

This action clearly preserves the variety of complexes. It follows from the proof above that the action on each C_r is transitive. Hence, the non-empty C_r are the orbits of G acting on $C(0, \ldots, V_n)$.

Definition 6. For $r, s \in \mathbb{N}^n$ we write $s \leq r$ if $s_i \leq r_i$ for $i = 1, \ldots, n$.
Corollary 7. If $C_r \neq \emptyset$ and $s \leq r$ then $C_s \neq \emptyset$. Also, $\dim(C_s) > 0$ if $s \neq 0$.

Proof. The first assertion follows from Proposition 3 a), and the second from Proposition 3 b).

Proposition 8. With the notation above,

$$\mathcal{C}_r = \bigcup_{s \leq r} C_s = \{ f \in \mathcal{C} / \text{rank}(f_i) \leq r_i, \; i = 1, \ldots, n \}.$$

Proof. Denote $X_r = \bigcup_{s \leq r} C_s$. Since the second equality is clear, X_r is closed. It follows that $\mathcal{C}_r \subset X_r$. To prove the equality, since $\mathcal{C}_r \subset X_r$ is open, it would be enough to show that X_r is irreducible. For this, consider $L = (L_1, \ldots, L_n)$ where $L_i \in \text{Grass}(r_i, V_i)$ and denote

$$X_L = \{ f = (f_1, \ldots, f_n) \in \mathcal{C} / \text{im}(f_i) \subset L_i \subset \ker(f_{i+1}), \; i = 1, \ldots, n \}.$$

Consider

$$\tilde{X}_r = \{(L, f) / f \in X_L \} \subset G \times \mathcal{C},$$

where $G = \prod_{i=0}^n \text{Grass}(r_i, V_i)$. The first projection $p_1 : \tilde{X}_r \to G$ has fibers

$$p_1^{-1}(L) = X_L \cong \text{Hom}(V_0, L_1) \times \text{Hom}(V_1/L_1, L_2) \times \cdots \times \text{Hom}(V_{n-1}/L_{n-1}, V_n),$$

which are vector spaces of constant dimension $\sum_{i=0}^n (d_i - r_i)r_{i+1}$. It follows that \tilde{X}_r is irreducible, and hence $X_r = p_2(\tilde{X}_r)$ is also irreducible, as wanted.

Remark 9. In the proof above we find again the formula

$$\dim(X_r) = \dim(X_L) + \dim(G) = \sum_{i=0}^n (d_i - r_i)r_i + \sum_{i=0}^n (d_i - r_i)r_{i+1}.$$

Remark 10. The fact that $p_1 : \tilde{X}_r \to G$ is a vector bundle implies that \tilde{X}_r is smooth. On the other hand, since $p_2 : \tilde{X}_r \to X_r$ is birational (an isomorphism over the open set \mathcal{C}_r), it is a resolution of singularities.

The following two corollaries are immediate consequences of Proposition 8.

Corollary 11. $C_s \subset \mathcal{C}_r$ if and only if $s \leq r$.

Corollary 12. $\mathcal{C}_r \cap \mathcal{C}_s = \mathcal{C}_t$ where $t_i = \min(r_i, s_i)$ for all $i = 1, \ldots, n$.

Definition 13. For $d = (d_0, \ldots, d_n) \in \mathbb{N}^{n+1}$ let

$$R = R(d) = \{ (r_1, \ldots, r_n) \in \mathbb{N}^n / r_1 \leq d_0, \; r_{i+1} + r_i \leq d_i \; (1 \leq i \leq n-1), \; r_n \leq d_n \}.$$

We consider \mathbb{N}^n ordered via $r \leq s$ if $r_i \leq s_i$ for all i; the finite set R has the induced order. Notice that R is finite since it is contained in the box $\{ (r_1, \ldots, r_n) \in \mathbb{N}^n / 0 \leq r_i \leq d_i, \; i = 1, \ldots, n \}$.

Proposition 14. With the notation above, the irreducible components of the variety of complexes $\mathcal{C} = \mathcal{C}(V_0, \ldots, V_n)$ are the \mathcal{C}_r with $r \in R(d_0, \ldots, d_n)$ a maximal element.
Proof. From the previous Propositions, we have the equalities
\[C = \bigcup_{r \in R} C_r = \bigcup_{r \in R} \overline{C}_r = \bigcup_{r \in R^+} \overline{C}_r, \]
where \(R^+ \) denotes the set of maximal elements of \(R \). The result follows because we know that each \(\overline{C}_r \) is irreducible and there are no inclusion relations among the \(\overline{C}_r \) for \(r \in R^+ \) (see Corollary 11). \(\square \)

1.5. Morphisms of complexes. Tangent space of the variety of complexes. Now we would like to compute the dimension of the tangent space of a variety of complexes at each point. With the notation of 1.1 we consider complexes \(f \in \mathcal{C}(V_0, \ldots, V_n) \) and \(f' \in \mathcal{C}(V'_0, \ldots, V'_n) \) (the vector spaces \(V_i \) and \(V'_i \) are not necessarily the same, but the length \(n \) we may assume is the same). We denote
\[\text{Hom}_\mathcal{C}(f, f'), \]
the set of morphisms of complexes from \(f \) to \(f' \), that is, collections of linear maps \(g_i : V_i \to V'_i \) for \(i = 0, \ldots, n \), such that \(g_i \circ f_i = f'_i \circ g_{i-1} \) for \(i = 1, \ldots, n \). It is a vector subspace of \(\prod_{i=0}^{n} \text{Hom}_R(V_i, V'_i) \), and we would like to calculate its dimension.

For this particular purpose and for its independent interest, we recall the following from [2] (§2 – 5. Complexes scindés):

For \(f \in \mathcal{C}(V_0, \ldots, V_n) \), denote as in 1.1
\[B_i(f) = f_i(V_{i-1}) \subset Z_i(f) = \ker (f_{i+1}) \subset V_i. \]
Since we are working with vector spaces, we may choose linear subspaces \(\bar{B}_i \) and \(\bar{H}_i \) of \(V_i \) such that
\[V_i = Z_i(f) \oplus \bar{B}_i \quad \text{and} \quad Z_i(f) = B_i(f) \oplus \bar{H}_i. \]
Then \(V_i = B_i(f) \oplus \bar{H}_i \oplus \bar{B}_i \) and clearly \(f_{i+1} \) takes \(\bar{B}_i \) isomorphically onto \(B_{i+1}(f) \). Notice also that
\[\dim(\bar{B}_i) = \dim(B_{i+1}(f)) = \text{rank}(f_{i+1}) = r_{i+1}(f), \]
and
\[\dim(\bar{H}_i) = \dim(Z_i(f)/B_i(f)) = h_i(f). \]

Next, define the following complexes:
\(\bar{H}(i) \) the complex of length zero consisting of the vector space \(\bar{H}_i \) in degree \(i \), the vector space zero in degrees \(\neq i \), and all differentials equal to zero.
\(\bar{B}(i) \) the complex of length one consisting of the vector space \(\bar{B}_{i-1} \) in degree \(i - 1 \), the vector space \(B_i(f) \) in degree \(i \), with the map \(f_i : \bar{B}_{i-1} \to B_i(f) \), and zeroes everywhere else.

Proposition 15. With the notation just introduced, \(\bar{H}(i) \) and \(\bar{B}(i) \) are subcomplexes of \(f \) and we have a direct sum decomposition of complexes:
\[f = \bigoplus_{0 \leq i \leq n} \bar{H}(i) \oplus \bigoplus_{0 \leq i \leq n} \bar{B}(i). \]

Proof. Clear from the discussion above; see also [2], loc. cit. \(\square \)

Now we are ready for the calculation of \(\dim_K \text{Hom}_\mathcal{C}(f, f') \).
Proposition 16. With the previous notation, we have:

\[\dim_K \text{Hom}_C(f, f') = \sum_i h_i h'_i + h_i r'_i + r_i h'_{i-1} + r_i r'_{i-1} \]

\[= \sum_i h_i (h'_i + r'_i) + r_i d'_{i-1} \]

Proof. We may decompose \(f \) and \(f' \) as in Proposition 15:

\[\text{Hom}_C(f, f') = \text{Hom}_C(\oplus_i \tilde{H}(i) \oplus \oplus_i \tilde{B}(i), \oplus_i \tilde{H}(i)' \oplus \oplus_i \tilde{B}(i)') \]

\[= \oplus_{i,j} \text{Hom}_C(\tilde{H}(i), \tilde{H}(j)') \oplus \oplus_{i,j} \text{Hom}_C(\tilde{H}(i), \tilde{B}(j)') \]

\[\oplus_{i,j} \text{Hom}_C(\tilde{B}(i), \tilde{H}(j)') \oplus \oplus_{i,j} \text{Hom}_C(\tilde{B}(i), \tilde{B}(j)') \]

It is easy to check the following:

\[\text{Hom}_C(\tilde{H}(i), \tilde{H}(j)') = 0 \text{ for } i \neq j \]

\[\text{Hom}_C(\tilde{H}(i), \tilde{H}(i)') = \text{Hom}_K(\tilde{H}_i, \tilde{H}_i') \]

\[\text{Hom}_C(\tilde{H}(i), \tilde{B}(j)') = 0 \text{ for } i \neq j \]

\[\text{Hom}_C(\tilde{H}(i), \tilde{B}(i)') = \text{Hom}_K(\tilde{H}_i, \tilde{B}_i') \]

(the case \(j = i + 1 \) requires special attention)

\[\text{Hom}_C(\tilde{B}(i), \tilde{H}(j)') = 0 \text{ for } i - 1 \neq j \]

\[\text{Hom}_C(\tilde{B}(i), \tilde{H}(i - 1)') = \text{Hom}_K(\tilde{B}_{i-1}, \tilde{H}'_{i-1}) \cong \text{Hom}_K(\tilde{B}_i(f), \tilde{H}'_{i-1}) \]

(the case \(j = i \) requires special attention)

\[\text{Hom}_C(\tilde{B}(i), \tilde{B}(i)') \cong \text{Hom}_K(\tilde{B}_i(f), \tilde{B}'_i(f)) \]

\[\text{Hom}_C(\tilde{B}(i), \tilde{B}(i - 1)') = \text{Hom}_K(\tilde{B}_{i-1}, \tilde{B}'_{i-1}) \cong \text{Hom}_K(\tilde{B}_i(f), \tilde{B}'_{i-1}) \]

\[\text{Hom}_C(\tilde{B}(i), \tilde{B}(j)') = 0 \text{ otherwise} \]

Taking dimensions we obtain the stated formula. \(\square \)

Now we deduce the dimension of the tangent space to a variety of complexes at any point.

Proposition 17. For \(f \in C = C(V_0, \ldots, V_n) \) we have a canonical isomorphism

\[TC(f) = \text{Hom}_C(f, f(1)), \]

where \(TC(f) \) is the Zariski tangent space to \(C \) at the point \(f \), and \(f(1) \) denotes de shifted complex \(f(1)_i = (-1)^i f_{i+1}, \quad i = -1, 0, \ldots, n. \)

Proof. Since \(C \) is an algebraic subvariety of the vector space \(V = \prod_{i=1}^n \text{Hom}_K(V_{i-1}, V_i) \), an element of \(TC(f) \) is a \(g = (g_1, \ldots, g_n) \in V \) such that \(f + \epsilon g \) satisfies the equations defining \(C \) (i.e., a \(K[\epsilon] \)-valued point of \(C \)), that is,

\[(f + \epsilon g)_{i+1} \circ (f + \epsilon g)_i = 0, \quad i = 1, \ldots, n - 1 \quad (\text{modulo } \epsilon^2), \]
which is equivalent to
\[f_{i+1} \circ g_i + g_{i+1} \circ f_i = 0, \quad i = 1, \ldots, n - 1, \]
and this means precisely that \(g \in \text{Hom}_C(f, f(1)). \)

Corollary 18. For \(f \in C = C(V_0, \ldots, V_n), \)
\[
\dim_K TC(f) = \sum_i h_i (h_{i+1} + r_{i+1}) + r_i d_i
\]
\[
= \sum_i (d_i - r_i - r_{i+1})(d_{i+1} - r_{i+2}) + r_i d_i
\]

Proof. From Proposition 17 we know that \(\dim_K TC(f) = \dim_K \text{Hom}_C(f, f(1)). \) Next we apply Proposition 16 with \(f' = f(1), \) that is, replacing \(d'_i = d_{i+1}, \ r'_i = r_{i+1}, \ h'_i = h_{i+1}, \) to obtain the result. \qed

1.6. Varieties of exact complexes. Now we apply the previous results to the case of exact complexes.

Let us fix \((d_0, \ldots, d_n) \in \mathbb{N}^n \) so that
\[
\chi_j(d) = (-1)^j \sum_{i=0}^j (-1)^i d_i \geq 0, \quad j = 1, \ldots, n - 1,
\]
\[
\chi_n(d) = (-1)^n \sum_{i=0}^n (-1)^i d_i = 0.
\]

Denoting \(\chi = \chi(d) = (\chi_1(d), \ldots, \chi_n(d)) \in \mathbb{N}^n, \) let us consider the variety \(C_\chi \) of complexes of rank \(\chi \) as in Definition 2. Since \(\chi_i(d) + \chi_{i-1}(d) = d_i \) for all \(i, \) it follows from Proposition 3 that \(C_\chi \) is non-empty of dimension
\[
\frac{1}{2} \sum_{i=0}^n d_i^2.
\]
It follows from Proposition 1 that any complex \(f \in C_\chi \) is exact. Also, since \(\chi \in R \) is clearly maximal, \(C_\chi \) is an irreducible component of \(C \) (see Proposition 14). Let us denote
\[
E = E(d_0, \ldots, d_n) = C_\chi = \{ f \in C/ \ \text{rank}(f_i) \leq \chi_i, \quad i = 1, \ldots, n \},
\]
the closure of the variety \(C_\chi \) of exact complexes. Denote also, for \(i = 1, \ldots, n \)
\[
\chi^i = \chi - e_i = (\chi_1, \ldots, \chi_i-1, \chi_i-1, \chi_{i+1}, \ldots, \chi_n),
\]
and
\[
\Delta_i = C_{\chi^i} = \{ f \in C/ \ \text{rank}(f) \leq \chi - e_i \},
\]
the variety of complexes where the \(i \)-th matrix drops rank by one.

Proposition 19. The codimension of \(\Delta_i \) in \(E \) is equal to one, and
\[
E = C_\chi \cup \Delta_1 \cup \cdots \cup \Delta_n.
\]

Proof. This follows from Proposition 8 and the fact that \(s \in \mathbb{N}^n \) satisfies \(s < \chi \) if and only if \(s \leq \chi - e_i \) for some \(i = 1, \ldots, n. \) \qed
2. Moduli space of foliations.

2.1. Let X denote a (smooth, complete) algebraic variety over the complex numbers, let L be a line bundle on X and let ω denote a global section of $\Omega^1_X \otimes L$ (a twisted differential 1-form). A simple local calculation shows that $\omega \wedge d\omega$ is a section of $\Omega^3_X \otimes L^\otimes 2$. We say that ω is integrable if it satisfies the Frobenius condition $\omega \wedge d\omega = 0$. We denote

$$\mathcal{F}(X, L) \subset \mathbb{P}H^0(X, \Omega^1_X \otimes L),$$

the projective classes of integrable 1-forms. The map

$$\varphi : H^0(X, \Omega^1_X \otimes L) \to H^0(X, \Omega^3_X \otimes L^\otimes 2),$$

such that $\varphi(\omega) = \omega \wedge d\omega$ is a homogeneous quadratic map between vector spaces and hence $\varphi^{-1}(0) = \mathcal{F}(X, L)$ is an algebraic variety defined by homogeneous quadratic equations.

Our purpose is to understand the geometry of $\mathcal{F}(X, L)$. In particular, we are interested in the problem of describing its irreducible components. For a survey on this problem see for example [7].

2.2. Let r and d be natural numbers. Consider a differential 1-form in \mathbb{C}^{r+1}

$$\omega = \sum_{i=0}^{r} a_i dx_i,$$

where the a_i are homogeneous polynomials of degree $d - 1$ in variables x_0, \ldots, x_r, with complex coefficients. We say that ω has degree d (in particular the 1-forms dx_i have degree one). Denoting R the radial vector field, let us assume that

$$<\omega, R> = \sum_{i=0}^{r} a_i x_i = 0,$$

so that ω descends to the complex projective space \mathbb{P}^r as a global section of the twisted sheaf of 1-forms $\Omega^1_{\mathbb{P}^r}(d)$. We denote

$$\mathcal{F}(r, d) = \mathcal{F}(\mathbb{P}^r, \mathcal{O}(d)),$$

parametrizing 1-forms of degree d on \mathbb{P}^r that satisfy the Frobenius integrability condition.
3. Complexes associated to an integrable form.

Let us denote
\[H^0(\mathbb{P}^r, \Omega^k_{\mathbb{P}^r}(d)) = \Omega^k_r(d), \]
and
\[\Omega_r = \bigoplus_{d \in \mathbb{N}} \bigoplus_{0 \leq k \leq r} \Omega^k_r(d), \]
with structure of bi-graded supercommutative associative algebra given by exterior product \(\wedge \) of differential forms.

Definition 20. Gelfand, Kapranov and Zelevinsky defined in [5] another product in \(\Omega_r \), the second multiplication \(* \), as follows:
\[
\omega_1 * \omega_2 = \frac{d_1}{d_1 + d_2} \omega_1 \wedge d\omega_2 + (-1)^{(k_1+1)(k_2+1)} \frac{d_2}{d_1 + d_2} \omega_2 \wedge d\omega_1, \\
= \frac{d_1}{d_1 + d_2} \omega_1 \wedge d\omega_2 + (-1)^{(k_1+1)} \frac{d_2}{d_1 + d_2} d\omega_1 \wedge \omega_2,
\]
where \(\omega_i \in \Omega^k_r(d_i) \) for \(i = 1, 2 \) and \(d_1 + d_2 \neq 0 \). In case \((d_1, d_2) = (0, 0) \) one defines \(\omega_1 * \omega_2 = 0 \).

It follows that \(\omega_1 * \omega_2 = 0 \) if \(d_1 = 0 \) or \(d_2 = 0 \).

Remark 21. For \(\omega_i \in \Omega^k_r(d_i) \) for \(i = 1, 2 \) as above,

a) \(\omega_1 * \omega_2 \) belongs to \(\Omega^{(k_1+k_2+1)}_r(d_1 + d_2) \).

b) \(\omega_1 * \omega_2 = (-1)^{(k_1+1)(k_2+1)} \omega_2 * \omega_1 \).

c) It follows from an easy direct calculation that \(* \) is associative (see [5]).

d) For any \(\omega \in \Omega^1_r(d) \) we have \(\omega * \omega = \omega \wedge d\omega \). In particular, \(\omega \) is integrable if and only if \(\omega * \omega = 0 \).

Definition 22. For \(\omega \in \Omega^k_r(d) \) we consider the operator \(\delta_\omega \)
\[
\delta_\omega : \Omega_r \rightarrow \Omega_r,
\]
such that \(\delta_\omega(\eta) = \omega * \eta \) for \(\eta \in \Omega_r \).

Remark 23. From Remark 21 a), if \(\omega \in \Omega^k_r(d_1) \) then
\[
\delta_\omega(\Omega^{k_2}_r(d_2)) \subset \Omega^{(k_1+k_2+1)}_r(d_1 + d_2).
\]
In particular, if \(\omega \in \Omega^1_r(d_1) \),
\[
\delta_\omega(\Omega^{k_2}_r(d_2)) \subset \Omega^{(k_2+2)}_r(d_1 + d_2).
\]

Definition 24. For \(\omega \in \Omega^1_r(d) \) and \(e \in \mathbb{Z} \) we define two differential graded vector spaces
\[
C^+_\omega(e) : \Omega^0_r(e) \rightarrow \Omega^2_r(e + d) \rightarrow \Omega^1_r(e + 2d) \rightarrow \cdots \rightarrow \Omega^{2k}_r(e + kd) \rightarrow \ldots,
\]
\[
C^-\omega(e) : \Omega^1_r(e) \rightarrow \Omega^3_r(e + d) \rightarrow \Omega^2_r(e + 2d) \rightarrow \cdots \rightarrow \Omega^{2k+1}_r(e + kd) \rightarrow \ldots,
\]
where all maps are \(\delta_\omega \) as in Remark 23.
Proposition 25. Let \(\omega \in \Omega^1_r(d), e \in \mathbb{Z} \) and \(k \in \mathbb{N} \) such that \(k + 2 \leq r \). Then \(\omega \ast \eta = 0 \) for all \(\eta \in \Omega^k_r(e) \) if and only if \(\omega = 0 \). In other words, the linear map
\[
\delta : \Omega^1_r(d) \to \text{Hom}_K(\Omega^k_r(e), \Omega^{k+2}_r(e + d)),
\]
sending \(\omega \to \delta_\omega \), is injective.

Proof. First remark that \(\omega \wedge \eta = 0 \) for all \(\eta \in \Omega^k_r(e) \) (with \(k + 1 \leq r \)) easily implies \(\omega = 0 \). Now suppose \(\omega \ast \eta = 0 \), that is, \(d \omega \wedge d \eta + \eta \wedge d \omega = 0 \), for all \(\eta \in \Omega^k_r(e) \). Take
\[
\eta = x_i^{e-k} dx_{i_1} \wedge \cdots \wedge dx_{i_k}
\]
(here \(x_i \) denote affine coordinates and \(1 < i_1 < \ldots < i_k < n \)). Since \(d \eta = 0 \), we have
\[
dx_{i_1} \wedge \cdots \wedge dx_{i_k} \wedge d \omega = 0.
\]
Hence \(d \omega = 0 \) by the first remark. Using the hypothesis again, we know \(\omega \wedge d \eta = 0 \) for all \(\eta \in \Omega^k_r(e) \). Now take \(\eta = x_i^{e-k} dx_{i_1} \wedge \cdots \wedge dx_{i_k} \) (where \(1 < i_1 < \cdots < i_k < n \)). It follows that \(dx_{i_1} \wedge \cdots \wedge dx_{i_k+1} \wedge \omega = 0 \) and hence \(\omega = 0 \).

\(\square \)

Proposition 26. \(\omega \in \Omega^1_r(d) \) is integrable if and only if \(\delta^2_\omega = 0 \)

Proof. The associativity stated in Remark 21 c) implies that \(\delta_{\omega_1} \circ \delta_{\omega_2} = \delta_{\omega_1 \ast \omega_2} \). In particular, \(\delta^2_\omega = \delta_{\omega \ast \omega} \) and hence the claim follows from Remark 21 d) and Proposition 25.

\(\square \)

Remark 27. It follows from Proposition 26 that \(C^+(r,e) \) and \(C^-(r,e) \) (Definition 24) are differential complexes (for any \(e \in \mathbb{Z} \)) if and only if \(\omega \) is integrable.

Remark 28. To fix ideas we shall mostly discuss \(C^+(r,e) \), but similar considerations apply to \(C^-(r,e) \). If no confusion seems to arise we shall denote \(C^-(r,e) = C^-(r,e) \).

Theorem 29. Fix \(e \in \mathbb{Z} \). Let us consider the graded vector space
\[
\Omega_r(e) = \bigoplus_{0 \leq k \leq \lfloor \frac{r-2}{2} \rfloor} \Omega^m_r(e + kd),
\]
(direct sum of the spaces appearing in \(C^-(r,e) \) above). Define the linear map
\[
\delta(e) = \delta : \Omega^1_r(d) \to \prod_{k=1}^{\lfloor \frac{r-1}{2} \rfloor} \text{Hom}_K(\Omega^{2k-1}_r(e + (k - 1)d), \Omega^{2k+1}_r(e + kd)),
\]
such that \(\delta(\omega) = \delta_\omega \) for each \(\omega \in \Omega^1_r(d) \), and its projectivization
\[
\mathbb{P}\delta : \mathbb{P}\Omega^1_r(d) \to \prod_{k=1}^{\lfloor \frac{r-1}{2} \rfloor} \mathbb{P}\text{Hom}_K(\Omega^{2k-1}_r(e + (k - 1)d), \Omega^{2k+1}_r(e + kd)).
\]
Denote \(C = \mathcal{C}(\Omega^1_r(e), \Omega^3_r(e + d), \Omega^5_r(e + 2d), \ldots, \Omega^{2\lfloor \frac{r-1}{2} \rfloor+1}_r(e + \lfloor \frac{r-1}{2} \rfloor d)) \) the variety of complexes as in 1.1 and \(\mathcal{F}(r,d) \) the variety of foliations as in 2.2. Then
\[
\mathcal{F}(r,d) = (\mathbb{P}\delta)^{-1}(C).
\]
In other terms, \(\mathbb{P}\delta(\mathcal{F}(r,d)) = \mathcal{L} \cap \mathcal{C} \), that is, the variety of foliations \(\mathcal{F}(r,d) \) corresponds via the linear injective map \(\mathbb{P}\delta \) to the intersection of the variety of complexes with the linear space \(\mathcal{L} = \text{im}(\mathbb{P}\delta) \).
Proof. The statement is a rephrasing of Remark 27. □

Proposition 30. Let us denote

\[d^k_r(e) = \dim \Omega^k_r(e) = \binom{r - k + e}{r - k} \binom{d - 1}{k}, \]

(see [8]) and in particular

\[d_k = d^{2k+1}_r(e + kd) = \dim \Omega^{2k+1}_r(e + kd), \quad 0 \leq k \leq \left\lfloor \frac{r - 1}{2} \right\rfloor. \]

For this \(d = (d_0, d_1, \ldots, d_{\left\lfloor \frac{r - 1}{2} \right\rfloor}) \) we consider the finite ordered set \(R = R(d) \) as in Proposition 14. Then each irreducible component of the variety of foliations \(\mathcal{F}(r, d) \) is an irreducible component of the linear section \((\mathbb{P}\delta)^{-1}(\mathcal{T}_r) \) for a unique \(r \in R^+ \).

Proof. From Proposition 14, we have the decomposition into irreducible components

\[\mathcal{C} = \bigcup_{r \in R^+} \mathcal{T}_r. \]

From Theorem 29 we obtain:

\[\mathcal{F}(r, d) = (\mathbb{P}\delta)^{-1}(\mathcal{C}) = \bigcup_{r \in R^+} (\mathbb{P}\delta)^{-1}(\mathcal{T}_r). \]

This implies that each irreducible component \(X \) of \(\mathcal{F}(r, d) \) is an irreducible component of \((\mathbb{P}\delta)^{-1}(\mathcal{T}_r) \) for some \(r \in R^+ \). This element \(r \) is the sequence of ranks of \(\delta_\omega \) for a general \(\omega \in X \), hence it is unique. □
References

Universidad de Buenos Aires / CONICET
Departamento de Matemática, FCEN
Ciudad Universitaria
(1428) Buenos Aires
ARGENTINA
fcukier@dm.uba.ar