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COMMENTARIES ON THE PAPER SOLENOIDAL MANIFOLDS BY DENNIS

SULLIVAN

ALBERTO VERJOVSKY

Abstract. Several remarks and comments on the paper about solenoidal manifolds referred
in the title are given. In particular, the fact is emphasized that there is a parallel theory of

compact solenoidal manifolds of dimensions one, two and three with the theory of compact

manifolds of these dimensions.

A k-dimensional solenoidal manifold or lamination is a metric space which is locally the product
of an euclidean k-disk and an infinite perfect and totally disconnected set (a subset of the Cantor
set). These solenoidal manifolds appear naturally in many branches of mathematics. In topology
the Vietoris-Van Dantzig solenoid ([13] [15]) is one of the fundamental examples in topology and
it motivated the development of homology and cohomology theories which could apply to these
spaces, for instance in the paper by Steenrod [10].

Solenoids appear naturally also as Pontryagin duals of discrete locally compact Hausdorff abelian
groups. For instance if Q denotes the rationals with addition as group structure and with the
discrete topology then its Pontryagin dual Q∗ is the universal 1-dimensional solenoid which is a
compact abelian group which fibers over the circle S1 via an epimorphism p : Q∗ → S1 where the
fibre is the Cantor group which is the pro-finite completion of the integers Z. This fact has an
important relationship with the adèles and idèles and its properties are the first steps in Tate’s
thesis.

Again, solenoids appear naturally also as basic sets of Axiom A diffeomorphisms in the sense of
Smale [9]. In particular one-dimensional expanding attractors are solenoidal manifolds and were
studied extensively by Bob Williams [17].

Let H(K) be the group of homeomorphisms of the Cantor K. Let N be a compact manifold
and ρ : π1(N) → H(K) a homomorphism from the fundamental group of N to H(K). There
is a lamination Lρ associated to ρ called the suspension of ρ which is obtained by taking the

quotient of Ñ ×K under the action of π1(N) given by γ(x, k) = (γ(x), ρ(γ)(k)) where Ñ is the

universal cover of N and the action of of π1(N) on Ñ is by deck transformations.

One has a natural locally trivial fibration p : Lρ → N with fibre K.

In his paper Dennis Sullivan shows that any compact, oriented, 1-dimensional solenoidal manifold
S is a mapping torus of a homeomorphism h : K → Kof the Cantor set K. In other words it
corresponds to the representation of the fundamental group of the circle into H(K) induced by
h. The proof is done by finding a global transversal in the oriented case. Since the topological
dimension of the solenoid is one it follows that S embeds continuously in R3. However there is
a nicer proof of this last fact using an unpublished idea I learned form Evgeny Shchepin.
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Theorem 1. (Shchepin) Let K be the standard triadic Cantor set in the interval [0, 1] ⊂ R ⊂ R2,
and h : K → K any homeomorphism. Then h extends to a homeomorphism H : R2 → R2. We
think of the Cantor set as contained in the x-axis of the (x, y)-plane.

Proof 1. By Tietze extension theorem the map h extends to a continuous map f : R → R. Of
course f might be neither injective nor onto. The map F (x, y) = (x, y + f(x)) is a homeomor-
phism of R2 to itself and F (K) is the graph of h. On the other hand the map h−1 : K → K also
extends to a map g : R→ R. The map G(x, y) = (x− g(y), y) is a homeomorphism of R2. Thus
G◦F sends K to the vertical axis: G◦F (x, 0) = (0, h(x)) if x ∈ K. Then we take H = T ◦G◦F ,
where T (x, y) = (y, x). �

Therefore we see that any oriented one dimensional solenoid S is contained as a “diffuse braid” in
the open solid torus R2×S1 which is the mapping torus of H. In this respect one can consult [5].

The fact that any oriented one-dimensional solenoidal manifold is the suspension of a homeo-
morphism h of the Cantor set implies, as shown in the paper, that any such one-dimensional
solenoidal manifold is cobordant to zero: there exists a compact two dimensional solenoidal man-
ifold whose boundary is the given solenoidal one-dimensional manifold.

The proof is based on the fact that any homeomorphism of the Cantor set is a product of com-
mutators and therefore there exists a representation ρ : π1(Σ) → H(K), where Σ is a smooth
compact surface Σ with connected boundary a circle, such that the restriction of ρ to the element
represented to the boundary is h.

The proof of the fact that de group of homeomorphisms of the Cantor set is perfect is proven in
all detail in the paper [2] by R.D. Anderson.

Some of the most interesting and important solenoids are the two dimensional solenoidal man-
ifolds (or solenoidal surfaces). In this respect Dennis himself has constructed one of the most
beautiful and natural laminations whose Teichmüller space is remarkable: The universal com-
mensurability Teichmüller space [11]. His paper in Acta [3], in collaboration with I. Biswas and
S. Nag, is also an essential reference for this subject.

The idea of considering profinite constructions is very natural. If Σ is a compact surface and if we
consider the inverse limit corresponding to the tower of all finite index coverings of Σ we obtain
a two dimensional solenoidal manifold or surface lamination L: we can consider complex struc-
tures on this lamination so that each leaf has a complex structure and the complex structures
vary continuously in the transversal direction. There exists a canonical projection π : L → Σ.
For a dense set of complex structures the restriction to each leaf is a conformal map to a finite
cover of the original surface. Moreover the inverse limit of a point Kz := π−1{z}, z ∈ Σ is a
Cantor set. In fact in this construction one could use, to get the same inverse limit, any co-final
set of finite coverings, for instance normal subgroups or even characteristic subgroups. In the
latter case Kz is a nonabelian Cantor group.

The lamination L is the suspension of a homeomorphism ρ : π1(Σ)→ H(K).

If Σ is a surface of genus two we can consider a simple closed curve γ in Σ which separates the
surface into two surfaces of genus one with common boundary γ. The restriction of the lam-
ination to γ is an oriented one dimensional solenoid. Thus there exists four homeomorphisms
f1, f2, g1, g2 of the Cantor group Kz such that [f1, f2] = [g1, g2] := h and the one dimensional
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solenoid is the suspension of h.

To me this is fascinating because these four homeomorphisms of the Cantor set satisfying the
commutator relations above determine the universal solenoid. I think that it is a very interesting
problem to understand the structure of these homeomorphisms.

Theorem 2 of the paper by Dennis Sullivan gives a sketch of the theorem that every solenoidal
surface has a smooth structure, and in fact a laminated complex structure. Of course this is a
classical theorem for surfaces (compact or not). This can be attributed to Radó and Kerékjártó
since they prove that every surface can be triangulated (i.e. is homeomorphic to a simplicial
complex of dimension two). There is a more recent proof of this fact by Thomassen [12]. The
triangulation theorem can be adapted to solenoidal surfaces. The definition of a triangulation of
a solenoidal surface is the natural one: each leaf is triangulated and the triangulation depends
continuously in the transverse direction, in other words, if L(z) denotes the leaf through z one
requires:

For every point z ∈ L there exists a subcomplex C ⊂ L(z) which is homeomorphic to a 2-disk
and a homeomorphism φ : C ×K → L such that φ restricted to C × {k} is a simplicial linear
homeomorphsm from C × {k} onto a subcomplex of the triangulated leaf

L(φ(c, k)) (c ∈ C, k ∈ K).

Theorem 2. Let L be a topological compact solenoidal surface then L can be triangulated.

Let me give a sketch of my own proof of this theorem. The Riemann mapping theorem together
with Carathéodory’s theorem of prime ends imply that any continuous Jordan curve in the plane
is locally flat, which implies that every Jordan curve has a topological tubular neighborhood. It
is easy to prove - via the Riemann mapping theorem - that given two topological disks which
are the images of two topological embeddings φi : ∆̄→ S (i = 1, 2) of the unit closed disk in the
complex plane into a topological surface S one can perturb φi (i = 1, 2) to two embeddings φi
such that the images of S1 = ∂∆̄ meet topologically transversally (locally like the intersection
of the coordinate axis in R2 at the origin). A Riemann surface can be covered by coordinate
charts ψj : ∆̄→ S such that the union of images of the disk of radius 1/2 still cover the surface
and the covering is locally finite. We can perturb slightly the embeddings so that the images of
the boundary of the disk of radius 1/2 meet topologically transversally. The union of the images
of the these boundary circles divide the surface into cells with boundary a Jordan curve with a
finite number of marked points where two such curves meet transversally. Using these points we
can subdivide each cell to triangulate the Riemann surface. For a solenoidal surface L a similar
construction works: we can cover the lamination with laminated charts fi : ∆̄ × K → L and
then we can perturb these charts to have in each leaf a situation like the previous for a Riemann
surface.

A triangulated solenoidal surface has a natural flat structure with singularities: we give each
triangle of the triangulation the euclidean metric so that it is an equilateral triangle and all of
these triangles have edges of equal lengths. This provides each leaf with a flat metric singular
at the vertices (a sort of laminated Veech surface). By Riemann extension theorem each leaf is
a complex surface and thus each solenoidal surface has a complex structure

Reciprocally every compact smooth solenoidal manifolds S has a triangulation à la Cairns. Let
me give a sketch of the proof which is modeled on Cairns proof. Whitney embedding theorem
is valid for smooth solenoidal manifolds: there exists a topological embedding j : S → Rn. This
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follows from the usual fact that smooth real valued functions (in the sense of laminations) sepa-
rate points. The embedding j when restricted to a leaf is an embedding (not necessarely a proper
embedding) and if Φ : Dk × T → S (T a closed subset of the Cantor set) is a solenoidal chart
the composition j ◦φ when restricted to a plaque Dk×{t}, t ∈ T is an embedding kt : Dk → Rn.

We require that the embeddings of plaques depend continuously on the transverse parameter
(i.e. the map t 7→ kt ∈ C∞(Dk,Rn) is continuous). Then if we consider the solenoidal manifold
j(S) ⊂ Rn we can apply a very large homothetic transformationT , x 7→ rx x ∈ Rn, r ∈ R with
r > 0 very large so that the curvature of the leaves of j(S is almost zero). Now we consider the
canonical cubulation by unit cubes of Rn and the intersection of T (j(S)) with each cube of the
cubulation. Since we can assume without difficulty that J(S) is transverse to all the skeletons
of the cubulation, we see that each leaf is almost an affine subspace of dimension k with respect
to a unit cube, so that each leaf meets each cube in a convex polytope of dimension k after
subdividing in an obvious way each of these polytopes we get the triangulation of the solenoidal
manifold.
Since every solenoidal surface has a smooth structure we can provide each leaf with a Riemannian
metric in such a way that the metric is smooth on each leaf and it depends continuously on the
transverse parameter. We call such a solenoidal surface with a leaf-wise metric metric g a
solenoidal Riemannian surface (S, g).

Given a compact solenoidal surface (S, g) we see that each leaf has a conformal type with respect
to g, i.e for any z ∈ S the universal covering of the leaf L(z) is conformally equivalent to the
Riemann sphere (elliptic leaf) the complex plane (parabolic leaf) or the Poincaré disk (hyperbolic
leaf). If g′ es any other leaf-wise smooth Riemannian metric the conformal type of the leaf does
not change. This is a beautiful observation of Elmar Winkelnkemper (1976). Therefore one can
speak of a hyperbolic solenoidal Riemannian surface when all the leaves are of hyperbolic type.
We have the analog of the uniformization theorem of Koebe-Poincaré for compact hyperbolic
solenoidal Riemannian surface.

Theorem 3. (Candel [4] and Verjovsky [14]). If every leaf of a laminar Riemannian surface is
conformally covered by the disk, then the unique constant curvature minus one metric on each
leaf is transversally continuous.

Sullivan states and sketches a proof of the following theorem of Alberto Candel [4]:

Theorem 4. For any transversally continuous Riemannian metric on a smooth laminar surface,
sometimes both but at least one of the following holds:

(1) The universal cover of every leaf is conformally the disk.
(2) There is a nontrivial tranversal measure (a measure on each transversal so that the germs

of transversal holonomy maps along paths are measure preserving).

Of course there are compact solenoidal surfaces such that every leaf has universal covering
conformally equivalent to the euclidean plane. For instance the inverse limit of finite covers of a
flat 2-torus. For these laminations some times it is impossible to simultaneously uniformize all
the leaves [6].
Sullivan gives an example of a noncompact surface lamination without transverse measure but
there is, in my opinion, a better compact example which of course Dennis knows since I learned
it from him. Let S2 be the dyadic solenoid given as the inverse limit of

· · · −→ S1 z→z
2

−→ S1 z→z
2

−→ S1.
Then S2 is a compact abelian solenoidal group with a canonical metric which induces Haar
measure on the group. After choosing an orientation, there is a unit vector field Y tangent to
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the lamination. The squaring map F (Z) = Z2 is an isomorphism of S2 onto itself. Its derivative
in the sense of laminations expands by two every unit tangent vector Y (x). The suspension
of F is defined as the mapping torus of F . It is a two dimensional lamination. There is the
canonical suspension flow generated by the vector field X tangent to S2. In fact the leaves of
this lamination are the orbits of a locally free action of the real affine group since we have the
Lie bracet relation [X,Y ] = Y . It is not difficult to prove:

Proposition 1. If L is a compact lamination whose leaves are given by a locally free action of
the real affine group, then the lamination does not admit a transverse measure.

The last part of the paper deals with the Teichmüller theory of compact solenoidal (or laminar)
surfaces. For a compact laminar surface such that all its leaves are hyperbolic it is possible to
develop Teichmüller theory. Almost everything valid for a hyperbolic Riemann surface is also
valid for such a lamination. In general the Teichmüller space is infinite dimensional if the trans-
verse structure is a Cantor set.

Thus it is possible to speak of Teichmüller distance, quadratic differentials, etc.

Theorem 5. The space of hyperbolic structures on a hyperbolic laminar surface (as in Theorem
4) up to isometries isotopic to the identity has the structure of a separable complex Banach man-
ifold. The metric is the natural Teichmüller metric based on the minimal conformal distortion
of a map between structures. The isotopy classes of homeomorphisms preserving a chosen leaf
act by isometries on this Banach manifold.

As was remarked before, Sullivan constructs the universal Teichmüller space of the solenoidal
surface S obtained by taking the inverse limit of all finite pointed covers of a compact surface of
genus greater than one and chosen base point. The base points upstairs in the covers determine
a point and a distinguished leaf L in the inverse limit solenoidal surface. In this space the
commensurability automorphism group of the fundamental group of any higher genus compact
surface acts by isometries. This group is independent of the genus dy definition.

Theorem 6. The space of hyperbolic structures up to isometry preserving the distinguished leaf
on this solenoidal surface S is non Hausdorff and any Hausdorff quotient is a point.

The proof ot this result relies on the recent deep results by Jeremy Kahn and Vladimir Marković
on the validity of the Ehrenpreis Conjecture [7].

The remark by Sullivan is that the action of the commensurability automorphism group of the
fundamental group is by isometries and minimal. The action is described in the paper in Acta
Mathematica [3] mentioned before.

Sullivan does not include in his article the role of laminations in holomorphic dynamics, a subject
created by him to prove the Feiganbaum universality conjectures, and continued, for instance,
in the use of 3-dimensional hyperbolic laminations by Misha Lyubich and Yair Minsky. in [8].

Given any compact manifold M a representation of ρ : π1(M) → H(K), where H(K) is the
group of homeomorphisms of the Cantor set, gives rise to a solenoidal manifold. Therefore if M
is any compact manifold with residually finite fundamental group (as in the case of a Riemann
surface of genus bigger than one or any compact hyperbolic manifold) one has a lamination by
considering the inverse limit of the tower of its finite covers. This is, in a sense, the profinite
completion of a manifold with residually finite fundamental group. The fundamental groups of
compact hyperbolic 3-manifolds are residually finite so that we can consider the infinite tower
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of finite covers.

A direct consequence of the recent results by Ian Agol [1] and Daniel Wise [17] which solve in
the affirmative the question by Bill Thurston whether every hyperbolic 3-manifold M virtually
fibers over the circle (i.e. there exists a finite covering M̃ and a locally-trivial fibration over the

circle p : M̃ → S1) we have:

Theorem 7. Let M be a compact hyperbolic 3-manifold and let L(M) be the compact 3-
dimensional lamination obtained by the inverse limit of the directed set of its finite covers.
Then:

(1) L(M) fibers over M with fiber the Cantor set
(2) There exists a locally trivial fibration π : L(M)→ S1 with fiber a laminar surface S.
(3) By 2. there exists a homeomorphism f : S → S such that L(M) is obtained by suspending

f .

I think that the study of the homeomorphism f in 3 above is interesting. It is the lifting, in the
tower of coverings of the fibre p−1({1}) of the virtual fibration, of the pseudo-Anosov homeo-
morphism of the fibre which determines the fibration over the circle.

A solenoidal manifold (or lamination) is said to be hyperbolic if there exist a Riemannian metric
for which every leaf has constant negative curvature -1.

In view of theorem 7 some natural questions arise:

Question. Let L be a compact laminar surface. Let f : L → L be a homeomorphism. Let M be
the 3-dimensional compact solenoidal manifold which is obtained by suspending f .

(1) When is M a hyperbolic compact solenoidal 3-manifold ?
(2) Is there a classification à la Thurston of isotopy classes of homeomorphisms of compact

laminar surfaces?
(3) Does every compact hyperbolic 3-dimensional hyperbolic lamination fibers over the circle?

Another topic would be to develop the theory of geodesic laminations for compact hyperbolic
solenoidal surfaces.
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