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SINGULARITIES AND POLYHEDRA1

EGBERT BRIESKORN

I reported about work of my students Thomas Fischer, Alexandra Kaess, Ute Neuschäfer,
Frank Rothenhäusler and Stefan Scheidt. This work describes the neighbourhood boundaries of
quasi–homogeneous surface singularities in a new way. It is known that these neighbourhood
boundaries are quotients G/Γ of a 3–dimensional Lie group G and a discrete subgroup Γ. For
example, for the quotient singularities C2/Γ the group G is Spin(3)=S3, the group of unit
quaternions, and Γ could for example be one of the three binary polyhedral groups (binary
tetrahedral T, binary octahedral O, binary icosahedral I). This gives the three singularities
E6, E7, E8. For the next set of examples, the simply–elliptic singularities Ẽ6, Ẽ7, Ẽ8, the group
G is the Heisenberg group, and Γ is a congruence subgroup of the lattice of its integral matrices.
In most cases however, G is SU(1, 1) or some covering of it, and Γ comes from a Fuchsian group
Γ ⊂ PSU(1, 1) acting on the hyperbolic plane H = {x ∈ C| |z| < 1}. All of this is well known.

Now I describe a very original construction discovered by Thomas Fischer in his 1992 PhD–
thesis:

Let Γ ⊂ PSU(1, 1) be discrete with compact quotient H/Γ. Assume that Γ has at least
one point in H with nontrivial isotropy subgroup. Choose such a point o ∈ H. Let p be
the order of its isotropy group {γ ∈ Γ | γ(o) = o}. Let Γ ⊂ SU(1, 1) be the inverse im-
age of Γ. For many singularities, the neighbourhood boundary is of the form SU(1, 1)/Γ
with a suitable Γ. For example, for the 14 quasihomogeneous exceptional 1–modular singu-
larities E12, E13, E14, Z11, Z12, Z13, Q10, Q11, Q12,W12,W13, S11, U12 the group Γ is the group of
orientation–preserving automorphisms of H in the group

∑
(p, q, r) generated by the reflections

in the sides of a hyperbolic triangle with angles π/p, π/q, π/r. In this case, the choice of o ∈ H
amounts to choosing one of the integers in the so–called Dolgachev triple (p, q, r). We shall
indicate this by underlining this number, e.g. (2, 3, 7). Fischer’s construction:

SU(1, 1) =

{(
a b

b a

) ∣∣aa− bb = 1

}
=
{
x ∈ R4

∣∣ x2
0 + x2

1 − x2
3 − x2

4 = 1
}

=: S

is a 3–dimensional pseudosphere with Minkowski–metric with signature (+,−,−). Up to a
factor −1/8, this agrees with the Killing metric. The construction will be done in R4 with
〈x, x〉 = x2

0 + x2
1 − x2

3 − x2
4. Let C+ be the positive cone C+ = {x ∈ R4 |〈x, x〉 > 0} and

π : C+ → S be the retraction by central projection π(x) := x/
√
〈x, x〉. For any g ∈ S, let

Hg be the halfspace Hg := {x ∈ R4|〈x, g〉 ≤ 1}. Its boundary ∂Hg is the affine tangent space
∂Hg = Tg(S). For any z ∈ Γ(o) in the chosen special orbit Γ(o) ⊂ H, let Lz be the coset
Lz = {γ ∈ Γ | γ(o) = z}. It has the cardinality 2p. Let Qz ∈ R4 be defined by

Qz :=
⋂

g∈Lz

Hg .
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Qz is a 4–dimensional prism, the product of R2 with a plane 2p–gon. Consider

P :=
⋃

z∈Γ(o)

Qz

and ∂+P := ∂P ∩ C+.
∂+P is the support of a 3–dimensional polyhedral complex and π : ∂+P → S is a homeomor-

phism, which transfers the polyhedral structure to S. The following definition and theorem of
Fischer analyzes this structure:

Definition: Fg = C+ ∩ ∂Hg ∩ (Qg(o) r
⋃

z∈Γ(o)
z 6=g(o)

Qz).

Theorem:
(1) Fg is a compact polyhedron in the Minkowski–3–space ∂Hg

(2) {Fg}g∈Γ is the set of 3–dimensional faces of a 3–dimensional polyhedral complex with
support ∂+P .

(3) Γ operates simply transitively on {Fg|g ∈ Γ}.
(4) {π(Fg)} is a tesselation of S by totally geodesic polyhedra in this Minkowski–

pseudosphere. Γ acts simply transitively on the set of these π(Fg), so each of them
can serve as a fundamental domain.

(5) Hence S/Γ is obtained from FG by pairing faces and identifying them in a specified way
given by Γ and the construction.

Fischer calculated the examples (2, 3, 7), (2, 3, 8), (2, 3, 9). These fit in very well with the
classical cases E6 = (2, 3, 3), E7 = (2, 3, 4) and E8 = (2, 3, 5). I myself added an analysis of the
cases Ẽ6, Ẽ7, Ẽ8. The following pictures show the resulting 9 fundamental domains:

The other four students worked out all 14 exceptional (p, q, , r) with the exception of r = 2.
As a result, a pattern seems to emerge. The following shows a sample of their pictures:
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I presented some conjectures on the series–patterns. Work in progress by Ludwig Balke may
lead to a new and original way of looking at symmetry–breaking.
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The following pages show the handwritten notes of Brieskorn from the ”Vortragsbuch” of the
singularities workshop 1996 in Oberwolfach.
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