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Abstract. This paper is a sequel to [He11] and [GH17]. In [He11] a notion of marking

of isolated hypersurface singularities was defined, and a moduli space Mmar
µ for marked

singularities in one µ-homotopy class of isolated hypersurface singularities was established. It

is an analogue of a Teichmüller space. It comes together with a µ-constant monodromy group

Gmar ⊂ GZ. Here GZ is the group of automorphisms of a Milnor lattice which respect the
Seifert form.

It was conjectured that Mmar
µ is connected. This is equivalent to Gmar = GZ. Also

Torelli type conjectures were formulated. In [He11] and [GH17] Mmar
µ , GZ and Gmar were

determined and all conjectures were proved for the simple, the unimodal and the exceptional

bimodal singularities. In this paper the quadrangle singularities and the bimodal series are

treated. The Torelli type conjectures are true. But the conjecture that Gmar = GZ and
Mmar
µ is connected does not hold for certain subseries of the bimodal series.
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1. Introduction

We dedicate this paper to the memory of Egbert Brieskorn. It has its roots in work which the
second author, Claus Hertling, had done as a student of Brieskorn in Bonn in the early 90’s.

1.1. Reminiscences of the second author. Prof. Dr. Egbert Brieskorn accepted me as a
diploma student in the spring of 1989. On March 10 and 13, 1989, he gave two full days (Friday
+ Monday) of lectures for his new diploma students (including me) and doctoral students. I still
have his handwritten manuscript of 52 pages. There he introduced us to isolated hypersurface
singularities. He talked about the Jacobi algebra, the universal unfolding with its discriminant,
the Milnor fibration, its monodromy, local systems and integrable connections and systems
of regular singular linear differential equations in general, his own work on the Gauss-Manin
connection and especially the Brieskorn lattice, and the mixed Hodge structure which it induces.
He strongly recommended to read [AGV88], [SaM89] and [SS85]. He proposed to me to work on
the moduli of singularities using the Gauss-Manin connection.

I followed his advice in my diploma thesis and my doctoral thesis and beyond the doctoral
thesis. The subject developed into a long-going project of mine, which I took up again and
again. The present paper is in some sense a final step of it.

In the doctoral thesis [He93], I formulated the global Torelli type conjecture that an isolated
hypersurface singularity is determined up to right equivalence by its Brieskorn lattice together
with the Milnor lattice and the Seifert form (conjecture 1.1 (b) reformulates this conjecture). I
proved it in the doctoral thesis for all unimodal singularities, the exceptional bimodal singulari-
ties, the bimodal quadrangle singularities, and the bimodal series E3,p.

For the other seven bimodal series, I made in the spring 1993, some months after finishing the
doctoral thesis, long calculations (120 pages) which led to a proof of this Torelli type conjecture

for all series except the three bimodal subseries S]1,10r, S1,10r, Z1,14r. At that time I thought that

I would never review and publish these results. The paper [He95] recapitulated the main results
of the doctoral thesis and of these calculations for the eight bimodal series, but it did not at all
give all details (only 2.5 pages are devoted to the bimodal series).

Later I constructed a classifying space DBL for Brieskorn lattices [He99] and a moduli space
Mµ(f0) of the right equivalence classes of all singularities in the µ-homotopy class of a reference
singularity f0 [He02]. More recently, in [He11], I defined the notion of a marked singularity, I
constructed a classifying space Mmar

µ (f0) for marked singularities, and I formulated a Torelli
type conjecture for marked singualarities, which is stronger than the Torelli type conjecture in
the doctoral thesis for unmarked singularities.

The three papers [He11], [GH17] and the present paper prove the Torelli conjecture for marked
singularities for all singularities with modality 0, 1 and 2. The present paper deals with the
bimodal quadrangle singularities and the eight bimodal series. It comprises the calculations
from the spring 1993 and adds a lot more arguments and calculations, which are necessary for
the marked version.

It is satisfying, that the Torelli type conjectures hold for all singularities with modality 0, 1
and 2. For each family, the interplay between the variations of the Brieskorn lattices and the
automorphism group of the Milnor lattice with Seifert form is fascinating and takes the best
possible shape. I believe that Brieskorn would have liked these positive results and the many
techniques used for their proofs. I thank him for proposing to me in March 1989 to work on the
moduli of singularities using the Gauss-Manin connection. It was a good advice.

1.2. Notions, conjectures and results. In this paper, a singularity is a holomorphic function
germ f : (Cn+1, 0)→ (C, 0) with an isolated singularity at 0. Then its Milnor lattice Ml(f) ∼= Zµ
is the Z-latticeHn(f−1(τ),Z) for some small τ ∈ R>0 for a suitable representative of f . Its Seifert
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form is called L : Ml(f) ×Ml(f) → Z. Its monodromy is called Mh : Ml(f) → Ml(f). The
automorphism group of the Milnor lattice with the Seifert form is GZ(f) := Aut(Ml(f), L). It
will play a predominant role in this paper.

This paper is a sequel to [He11] and [GH17]. In [He11], a strongly marked singularity (f, ρ)
and a marked singularity (f,±ρ) are defined. Here one has to fix first a reference singularity f0.
Then f is in the µ-homotopy class of f0, i.e. a µ-constant family of singularities exists which
contains f0 and f . And ρ : (Ml(f), L(f)) → (Ml(f0), L(f0)) is a chosen isomorphism. Two
singularities f1 and f2 are right equivalent if a coordinate change ϕ with f1 = f2 ◦ϕ exists. Two
strongly marked singularities (f1, ρ1) and (f2, ρ2) are right equivalent if a coordinate change ϕ
with f1 = f2 ◦ ϕ and ρ1 = ρ2 ◦ (ϕ)hom exists, where (ϕ)hom : Ml(f1) → Ml(f2) is the induced
isomorphism.

In [He02] a moduli space Mµ(f0) for the right equivalence classes of all singularities in the
µ-homotopy class of a reference singularity f0 was constructed as an analytic geometric quotient.
In [He11], this construction was enhanced to the construction of moduli spaces Mmar

µ (f0) and
Msmar
µ (f0) of marked and strongly marked singularities. Here Msmar

µ (f0) is Hausdorff and an
analytic space only if assumption (8.1) or assumption (8.2) holds.

Assumption (8.1): Any singularity in the µ-homotopy

class of f0 has multiplicity ≥ 3.

Assumption (8.2): Any singularity in the µ-homotopy

class of f0 has multiplicity 2.

We expect that one of them holds for any µ-homotopy class of singularities. This would be an
implication of the Zariski multiplicity conjecture. But that is not proved in general.

But Mmar
µ (f0) is Hausdorff and an analytic space, independently of these assumptions. Lo-

cally it is isomorphic to the µ-constant stratum Sµ(f) of a singularity in the base space of
a universal unfolding of that singularity. The group GZ(f0) acts properly discontinuously on
Mmar
µ (f0). The quotient is Mmar

µ (f0)/GZ ∼= Mµ(f0). Therefore a neighborhood of [f ] in Mµ(f0)
is isomorphic to the quotient of Sµ(f) by a finite group. Mmar

µ (f0) can be considered as a Te-
ichmüller space for singularities, in analogy to the Teichmüller spaces for closed complex curves.
It can also be considered as a global µ-constant stratum, simultaneously for all singularities in
one µ-homotopy class.

The papers [He11], [GH17] and this paper determine Mmar
µ (f0) for all singularities with

modality 0, 1 and 2. The second column of the following table (1.1) gives their isomorphism
classes.

Singularity family Mmar
µ (f0) DBL(f0)

ADE-singularities point point
simple elliptic sing. H H
hyperbolic sing. C C
exc. unimodal sing. C C
exc. bimodal sing. C2 C2

quadrangle sing. (H− (a discrete set))× C H× C
the 8 series, for m 6 |p C∗ × C CNBL
the 8 subseries with m|p ∞ many copies of C∗ × C H× CNBL

(1.1)
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Here the eight series and the respective numbers m are given in the following table (1.2).
Here p ∈ Z≥1.

series W ]
1,p S]1,p U1,p E3,p Z1,p Q2,p W1,p S1,p

m 12 10 9 18 14 12 12 10
(1.2)

One sees that Mmar
µ (f0) is simply connected for all singularities with modality 0 and 1 and

for the exceptional bimodal singularities. For the quadrangle singularities and the series with
m 6 |p, it is connected, but not simply connected. And for the subseries with m|p, it is not
even connected, but has infinitely many components. This last result is a counterexample to
conjecture 3.2 (a) in [He11], which said that Mmar

µ (f0) should be connected.
In [He11], also two subgroups Gsmar(f0) and Gmar(f0) of GZ(f0) were defined. Gsmar(f0) was

defined as the subgroup which is generated by the transversal monodromies of all µ-constant
families which contain f0. Here the transversal monodromy of a µ-constant family ft, t ∈ T ,
with ft0 = f0 is the representation π1(T, t0) → GZ(f0) which comes from the local system⋃
t∈T Ml(ft). Then Gmar(f0) is the group generated by Gsmar(f0) and − id. A rough way to

talk about this description is to say that the elements of Gsmar(f0) are of geometric origin.
Gmar(f0) can also be characterized as the subgroup of GZ which maps the component (Mmar

µ )0

of Mmar
µ (f0), which contains [(f0,± id)], to itself. This last characterization gives

GZ(f0)/Gmar(f0)
1:1←→ {components of Mmar

µ (f0)}. (1.3)

In view of this, Mmar
µ (f0) is connected if and only if GZ(f0) = Gmar(f0). By table (1.1), this

holds for all singularities with modality 0, 1 or 2 except the eight subseries withm|p. Obviously, it
is important to control GZ(f0). This was the major task in [He11] and [GH17] for the singularities
considered there, and it takes approximately half of this paper for the singularities considered
here, the bimodal series and the quadrangle singularities. The rough outcome in all cases is
that the pair (Ml(f0), L) is surprisingly rigid and that GZ(f0) is surprisingly small. The next
table (1.4) gives more information on GZ(f0) for all singularities with modality 0, 1 and 2. Here
Mh ∈ GZ is the classical monodromy. It commutes with all elements of GZ. The only families
in table (1.4) where {±Mk

h | k ∈ Z} is not finite, are the hyperbolic singularities Tpqr.

Singularity family GZ(f0)/{±Mk
h | k ∈ Z}

ADE-singularities {id} or S2 or S3

simple elliptic sing. a finite extension of SL(2,Z)
hyperbolic sing. a finite group
exc. unimodal sing. {id} or S2 or S3

exc. bimodal sing. {id} or S2 or S3

quadrangle sing. a triangle group
the 8 series, for m 6 |p a cyclic finite group
the 8 subseries with m|p an infinite Fuchsian group

(1.4)

[He11] treats the ADE-singularities and 22 of the 28 exceptional (unimodal and bimodal)
singularities. [GH17] treats the other 6 exceptional singularities, the simple elliptic singularities
and the hyperbolic singularities. The present paper treats the quadrangle singularities and the
8 series.

In the case of the eight subseries with m|p, Gmar(f0) is the finite subgroup of the infinite
group GZ(f0) such that Gmar(f0)/{±Mk

h | k ∈ Z} is the finite cyclic group which is generated
by one elliptic element.

If the µ-homotopy class of f0 contains at least one singularity with multiplicity two, then
− id ∈ Gsmar(f0) and Gsmar(f0) = Gmar(f0). Conjecture 3.2 (b) in [He11] complements this.
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It claims that − id /∈ Gsmar(f0) if assumption (8.1) holds. This is true for all singularities with
modality 0, 1 and 2. For the bimodal series and the quadrangle singularities, it is proved in this
paper.

In [He99] the second author defined a classifying space DBL(f0) for Brieskorn like lattices
(i.e. for objects which are sufficiently similar to the Brieskorn lattice H ′′0 (f0), see section 7
before theorem 7.11 for details). The group GZ(f0) acts properly discontinuously on it. The
elements of DBL(f0) are marked Brieskorn like lattices, and the elements of DBL(f0)/GZ(f0)
are isomorphism classes of Brieskorn like lattices. One obtains a holomorphic period map

BL : Mmar
µ (f0)→ DBL(f0). (1.5)

By [He02, Theorem 12.8] it is GZ(f0)-equivariant, and it is an immersion (this fact is an infini-
tesimal Torelli type result). Now the following Torelli type conjectures are natural. Part (a) is
for marked singularities. Part (b) recasts the Torelli type conjecture in [He93]. Part (a) implies
part (b).

Conjecture 1.1. (a) [He11, Conjecture 5.3] The map BL is injective.
(b) [He93, Kap. 2 d)] The map BL/GZ(f0) : Mµ(f0)→ DBL(f0)/GZ(f0) is injective.

Theorem 1.2. ([He93][He11][GH17] and the theorems 9.1 and 10.1 in this paper) Both Torelli
type conjectures are true for all singularities with modality 0, 1 and 2.

The proofs have in almost all cases two parts:

(1) A good control of an (often multivalued) period map T → DBL(f0), where T is the
parameter space of a well chosen family of normal forms.

(2) A good control of GZ(f) and its action on Mmar
µ (f0) and DBL(f0).

In all cases, (1) is less work than (2). For the ADE-singularities, (1) is empty as there T is a
point, but (2) is not.

Part (b) of conjecture 1.1 was proved in [He93] for the unimodal and bimodal singularities
except seven of the eight series. For the seven series, the second author had unpublished cal-
culations shortly after [He93]. But for technical reasons, part (b) stayed open for the subseries

S]1,10r, S1,10r, Z1,14r. [He93] and these unpublished calculations give (1) and a part of (2).

In view of these old results, the major point in [He11], [GH17] and in this paper is (2). But
also some refinement of (1) is needed in the case of the singularities in this paper. The refinement
is used for a better control of the transversal monodromy of the family of normal forms.

Finally, the conjecture GZ(f0) = Gmar(f0) is probably wrong in general as it is wrong for
the subseries with m|p. But for all singularities with modality 0, 1 and 2 except the eight
series, the Torelli result for marked singularities and (1.3) require GZ(f0) = Gmar(f0) to be true,
as BL is an immersion and there dimMmar

µ (f0) = modality(f0) = dimDBL(f0). And there
GZ(f0) = Gmar(f0) holds indeed. For the eight series, dimDBL(f0) > dimMmar

µ (f0), so there

is enough space in DBL for infinitely many copies of (Mmar
µ (f0))0.

Open questions are now how to control the subgroup Gmar(f0) ⊂ GZ(f0) in general, and how
to attack the Torelli conjectures in greater generality. For the second question, we plan to thicken
Mmar
µ (f0) to a µ-dimensional F -manifold Mmar(f0) which is locally at each point of Mmar

µ (f0)
the base space of a universal unfolding. Then we will try to embed the Torelli type conjecture
for Mmar

µ into a family of Torelli type conjectures for all the µ-homotopy strata of multigerms
of singularities in Mmar(f0). We hope that this global point of view and the different geometry
there with Stokes structures will give us new techniques. But this is a hope for the future.

1.3. Structure of the paper. Section 2 is a collection of techniques which are useful to
control the automorphisms of a pair (Λ, L) or a pair (Λ,Mh) where Λ is a Z-lattice, L is a
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unimodular bilinear form and Mh is an automorphism of finite order. We define Orlik blocks and
study their automorphisms (lemma 2.8 will be very useful), and we cite classical algebraic facts
on unit roots ζ and the rings Z[ζ]. All this is needed for the control of GZ(f0) in the sections 5
and 6.

Section 3 discusses infinite Fuchsian groups which arise as subgroups of groups GL(2,Z[ζ])
with ζ a unit root. They are in fact arithmetic Fuchsian groups. But our treatment is essentially
self-contained. Solutions of Pell equations with coefficients in Z[ζ] play a role. For the quadrangle
singularities, we need a precise analysis of some of these groups. They are certain triangle groups.

Section 4 recalls some classical notions and facts around singularities: Milnor fibration,
Milnor lattice Ml(f), monodromy Mh, Seifert form L, Coxeter-Dynkin diagram, Stokes matrix,
Thom-Sebastiani type results, suspension, polarized mixed Hodge structure onH∞C , its polarizing
form.

Section 5 is long. It studies GZ(f0) for the eight bimodal series. Theorem 5.1 states the
results. We start with a distinguished basis of the Milnor lattice with Coxeter-Dynkin diagram
in [Eb81]. We calculate the monodromy Mh and find 2 or 3 (3 only for Z1,p) Orlik blocks whose
direct sum is of index 1 or 2 in Ml(f0). Then GZ(f0) is studied using these Orlik blocks and their
rigidity and the results from the sections 2 and 3. A lot of calculations are needed, the different
series behave differently. The singularities in the families Q2,p,W1,6s−3, S1,10 need special care.

Section 6 gives similar results for GZ(f0) for the quadrangle singularities. Theorem 6.1 states
the results. Many, but not all, calculations and arguments in section 5 are also valid in section
6. Therefore this section is much shorter.

Section 7 gives a rather complete account on the Gauss-Manin connection and the Brieskorn
lattice H ′′0 (f) of a singularity f . It does not rewrite the proofs in [Br70] and other papers, but it
cites almost all known results. A highlight is the treatment of the bilinear forms. The polarizing
form of the polarized mixed Hodge structure is connected with the restriction of K. Saito’s higher
residue pairings to H ′′0 (f) and with Pham’s intersection form for Lefschetz thimbles. We need
the Fourier-Laplace transform FL(H ′′0 (f)) for a Thom-Sebastiani formula for Brieskorn lattices.
We need this in the special case of a suspension f(z0, ..., zn) + z2

n+1 because we want to treat
the suspensions in a more conceptual way than in [He93][He11][GH17].

Section 8 reviews the notions and results from [He11], the (strongly) marked singularities and
their moduli spaces Msmar

µ (f0) and Mmar
µ (f0), the µ-constant monodromy groups Gsmar(f0) and

Gmar(f0), and the Torelli conjectures. Corollary 8.14 is an application of the Thom-Sebastiani
result for FL(H ′′0 (f)) in section 7 and states that the marked Torelli conjecture for f0 is equivalent
to the marked Torelli conjecture for f0(z0, ..., zn) +

∑m
j=n+1 z

2
j for any fixed m ≥ n + 1. This

allows us to consider in the sections 9 and 10 only the surface singularities.
Section 9 proves the marked Torelli conjecture for the bimodal series (theorem 9.1). It

establishes the good control (1) of the multivalued period map T → DBL(f0) where T = C∗×C
is the parameter space of normal forms in [AGV85]. Theorem 5.1 provides crucial information
on GZ(f0).

Section 10 proves the marked Torelli conjecture for the quadrangle singularities (theorem
10.1). It starts with a careful choice of normal forms with parameter space T = (C−{0, 1})×C.
It establishes the good control (1) of the multivalued period map T → DBL(f0). Theorem 6.1
provides crucial information on GZ(f0).

2. Z-lattices with unimodal bilinear form and monodromy

This section provides tools for the study of the Milnor lattices with Seifert form and monodromy
for the bimodal series and the quadrangle singularities, in the sections 5 and 6. These lattices
turn out to be quite rigid and to have rather few automorphisms. This is important for the global
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Torelli results in the sections 9 and 10. This section puts together elementary, but nontrivial
observations about Z-lattices with a unimodal bilinear form and an (induced) monodromy.

Let Λ be a Z-lattice of rank µ ∈ Z≥1, i.e. a free Z-module of rank µ. Let L : Λ × Λ → Z be
a unimodal bilinear form, i.e. for any basis δ1, . . . , δµ we have det(L(δi, δj)i,j=1,...,µ) = ±1. We
do not suppose that L is symmetric or antisymmetric. Let Mh : Λ → Λ be the automorphism
which is uniquely determined by

L(Mh(a), b) = −L(b, a)for a, b ∈ Λ. (2.6)

We call L the Seifert form and Mh the monodromy. (2.6) implies

L(Mh(a),Mh(b)) = L(a, b), (2.7)

i.e. L is Mh-invariant. We make the assumption that

Mh is finite, (2.8)

i.e. Mh is semisimple and its eigenvalues are unit roots. Then the characteristic polynomial pΛ

of Mh is a product of cyclotomic polynomials.

Notations 2.1. (a) For any subring R ⊂ C denote ΛR := Λ ⊗Z R. For any monodromy
invariant subspace V ⊂ ΛC denote by E(V ) ⊂ S1 the set of eigenvalues of Mh on V and by pV
its characteristic polynomial. For λ ∈ E(V ) denote Vλ := ker(Mh − λ id : V → V ) ⊂ V . For

any monodromy invariant sublattice Λ(1) ⊂ Λ write E(Λ(1)) := E(Λ
(1)
C ) and pΛ(1) := p

Λ
(1)
C

and

Λ
(1)
λ := (Λ

(1)
C )λ. For any product p ∈ Z[t] of cyclotomic polynomials with p|pΛ(1) denote

Λ
(1)
C,p :=

⊕
λ: p(λ)=0

Λ
(1)
λ andΛ(1)

p := Λ
(1)
C,p ∩ Λ(1). (2.9)

Then Λ
(1)
p is a primitive and monodromy invariant sublattice of Λ(1).

(b) Recall that a sublattice Λ(1) of Λ is primitive (in Λ) if and only if Λ/Λ(1) has no torsion.
Recall also that for any sublattice Λ(2) ⊂ Λ there is a unique primitive sublattice Λ(3) with

Λ
(3)
Q = Λ

(2)
Q , that it is Λ(3) = Λ

(2)
Q ∩ Λ and that [Λ(3) : Λ(2)] <∞.

(c) For n ∈ Z≥1, the cyclotomic polynomial Φn is

Φn =
∏

λ: ord(λ)=n

(t− λ).

It is unitary, in Z[t] and irreducible in Z[t] and Q[t].

(d) We define the square root on S1 − {−1} by
√
e2πiα := eπiα for α ∈]− 1

2 ,
1
2 [.

Lemma 2.2. (a) Let λ ∈ E(Λ) − {1}. Then the sesquilinear (i.e., linear×semilinear) form
hλ : Λλ × Λλ → C with

hλ(a, b) :=
√
−λ · L(a, b) (2.10)

is hermitian, i.e. hλ(b, a) = hλ(a, b). Especially,
√
−λ ·L(a, a) ∈ R. Together, these forms define

a hermitian form h :=
⊕

λ∈E(Λ)−{1} hλ.

(b) Let V ⊂ ΛC be a monodromy invariant subspace with 1 /∈ E(V ). The following two
properties are equivalent.

(α) h|V is positive definite.
(β) The hermitian form on V defined by (a, b) 7→ L(a, b) + L(b, a) is positive definite.
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Proof: (a) For a, b ∈ Vλ
√
−λ · L(b, a) = −

√
−λ · L(Mh(a), b) = −

√
−λ · λ · L(a, b)

=
√
−λ · L(a, b) =

√
−λ · L(a, b).

(b) Consider some λ ∈ E(V ). Observe
√
−λ+

√
−λ > 0 and for a, b ∈ V

L(a, b) + L(b, a) = L(a, b) + L(b, a)

=
√
−λ · hλ(a, b) +

√
−λ · hλ(b, a)

= (
√
−λ+

√
−λ) · hλ(a, b). �

Remarks 2.3. (i) The surface singularities considered in this paper do not have 1 as an eigen-
value of their monodromy. Therefore we do not treat the case λ = 1 here.

(ii) Part (b) of lemma 2.2 connects to the polarization of the polarized Hodge structure of
these surface singularities and rewrites it in different ways. (β) is the classical way, with −L−Lt
on ΛR as intersection form and L+Lt as polarizing form. And (α) is the way used in the sections
3, 5 and 6.

In 1972 Orlik formulated the beautiful conjecture 2.5 below on the integral monodromy of
quasihomogeneous singularities [Or72]. It is known to be true for the quasihomogeneous curve
singularities [MW86] and for the quasihomogeneous singularities with modality ≤ 2 [He95]. But
it is open for most other quasihomogeneous singularities.

A key observation for the treatment of the Milnor lattices of the bimodal series singularities
and the quadrangle singularities is that they all have a structure close to Orlik’s conjecture. The
following definition gives the ingredients.

Definition 2.4. Let (Λ, L,Mh) be as above. An Orlik block is a primitive and monodromy
invariant sublattice Λ(1) ⊂ Λ with Λ(1) % {0} and with a cyclic generator, i.e. a lattice vector

e(1) ∈ Λ(1) with

Λ(1) =

deg p
Λ(1)−1⊕
j=0

Z ·M j
h(e(1)). (2.11)

Conjecture 2.5. [Or72, conjecture 3.1] Let (Λ,Mh) be the Milnor lattice with monodromy of
a quasihomogeneous singularity. Let k := max(dim Λλ |λ ∈ E(Λ)). Then a decomposition

Λ =
⊕k

j=1 Λ(k) into Orlik blocks Λ(1), . . . ,Λ(k) with pΛ(j+1) |pΛ(j) for 0 ≤ j < k exists.

Remarks 2.6. (i) A cyclic monodromy module has only one Jordan block for each eigenvalue.
In this paper Mh is semisimple. Therefore in an Orlik block, each eigenvalue has multiplicity
one.

(ii) In Orlik’s conjecture 2.5, the polynomials pΛ(1) , . . . , pΛ(k) are unique. They are

pΛ(j) =
∏

λ∈E(Λ): dim Λλ≥j

(t− λ) for j = 1, . . . , k. (2.12)

(iii) In the sections 5 and 6, we will work most often with two Orlik blocks Λ(1) and Λ(2) such
that Λ(1) + Λ(2) = Λ(1) ⊕Λ(2) and that it is either equal to Λ or has index 2 in Λ and such that
L(Λ(1),Λ(2)) = L(Λ(2),Λ(1)) = 0.

(iv) In all cases in section 5 with [Λ : Λ(1) ⊕ Λ(2)] = 2 except S1,10, we will show

Aut(Λ, L) = Aut(Λ(1) ⊕ Λ(2), L). (2.13)
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In many of these cases, there is an element γ5 ∈ Λ
(1)
Φ2
− {0} which is mapped by any element

g of Aut(Λ, L) ∪Aut(Λ(1) ⊕ Λ(2), L) to ±γ5 and such that

Λ(1) ⊕ Λ(2) = {a ∈ Λ |L(a, γ5) ∈ 2Z}. (2.14)

Then any g ∈ Aut(Λ, L) maps Λ(1) ⊕ Λ(2) to itself, so Aut(Λ, L) ⊂ Aut(Λ(1) ⊕ Λ(2), L).
If this inclusion ⊂ holds, the following argument shows that Aut(Λ, L) is either equal to or a

subgroup of index 2 in Aut(Λ(1) ⊕ Λ(2), L). Unfortunately it looks hard to exclude the second
case. Therefore in section 5 we show the equality (2.13) in a different (and more laborious) way.

Let Λ(0) ⊂ ΛQ be the unique lattice such that

L : Λ(0) × (Λ(1) ⊕ Λ(2))→ Z
is unimodal. Then Λ(0) ⊃ Λ ⊃ Λ(1) ⊕ Λ(2) and [Λ(0) : Λ] = 2 and

Aut(Λ(1) ⊕ Λ(2), L) = Aut(Λ(0), L).

1st case, Λ(0)/(Λ(1)⊕Λ(2)) ∼= Z/4Z. Then Λ is the unique lattice between Λ(0) and Λ(1)⊕Λ(2)

with [Λ(0) : Λ] = 2. Then any g ∈ Aut(Λ(1) ⊕ Λ(2), L) respects Λ, so (2.13) holds.
2nd case, Λ(0)/(Λ(1) ⊕ Λ(2)) ∼= Z/2Z × Z/2Z. Then there are three lattices between Λ(0)

and Λ(1) ⊕ Λ(2) with index 2 in Λ(0), one for each subgroup of index 2 in Z/2Z × Z/2Z. One
of them is Λ. Another one is {a ∈ Λ(0) |L(a, γ5) ∈ 2Z}. No element of Aut(Λ(0), L) maps Λ to
this lattice. But it looks hard to exclude the possibility that half of the elements of Aut(Λ(0), L)
map Λ to the third lattice between Λ(0) and Λ(1) ⊕ Λ(2).

(v) If Λ(1) ⊂ Λ is an Orlik block with cyclic generator e(1) and if pΛ(1) = p1 ·p2 with deg p1 ≥ 1

and deg p2 ≥ 1, then the sublattice Λ(2) := Λ
(1)
p1 is also an Orlik block, and a cyclic generator is

e(2) := p2(Mh)(e(1)). (2.15)

(vi) If Λ(1) ⊂ Λ is an Orlik block with generator e(1) and λ ∈ E(Λ(1)) is an eigenvalue of the
monodromy on Λ(1), then an eigenvector is

v(e(1), λ) :=
pΛ(1)

t− λ
(Mh)(e(1)). (2.16)

And then

L(v(e(1), λ), v(e(1), λ))

= L(v(e(1), λ),
pΛ(1)

t− λ
(Mh)(e(1)))

= L(
pΛ(1)

t− λ
(M−1

h )v(e(1), λ), e(1))

=
pΛ(1)

t− λ
(λ) · L(v(e(1), λ), e(1))

=
pΛ(1)

t− λ
(λ) · L(

pΛ(1)

t− λ
(Mh)(e(1)), e(1)). (2.17)

This calculation will be useful in section 5.

The following two lemmata concern automorphisms of sums of Orlik blocks (lemma 2.7) or of
a single Orlik block (lemma 2.8). They will be useful tools in order to show the rigidity of the
Milnor lattices in the sections 5 and 6.

Lemma 2.7. Let (Λ,Mh) be as above (we will not need L here, only Mh). Let Λ(1), . . . ,Λ(k) ⊂ Λ
be Orlik blocks with cyclic generators e(1), . . . , e(k) and with

Λ(1) + . . .+ Λ(k) = Λ(1) ⊕ . . .⊕ Λ(k).
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Consider an element

g ∈ Aut(Λ(1) ⊕ . . .⊕ Λ(k),Mh).

Then there are unique polynomials pij ∈ Z[t]<rank Λ(j) for i, j = 1, . . . , k with

g(e(j)) =

k∑
i=1

pij(Mh)(e(i)). (2.18)

Suppose now that p0 ∈ Z[t] divides gcd(pΛ(1) , . . . , pΛ(k)) and that

g = id on Λ
(j)
p

Λ(j)/p0
for any j, (2.19)

so that g acts nontrivial only on (Λ(1) ⊕ . . .⊕ Λ(k))p0
. Then

pij = δij +
pΛ(i)

p0
· qij (2.20)

for suitable polynomials qij ∈ Z[t]<deg p0
.

Suppose furthermore that a unit root ξ satisfies p0(ξ) = 0. Then g with respect to the eigen-

vectors v(e(1), ξ) ∈ Λ
(1)
ξ , . . . , v(e(k), ξ) ∈ Λ

(k)
ξ (defined in (2.16)) is given by

g(v(e(j), ξ)) =

k∑
i=1

(δij +
pΛ(j)

p0
· qij)(ξ) · v(e(i), ξ) (2.21)

Proof: Only the part after (2.18) is nontrivial. Suppose that p0 and g are as stated above.
By assumption

g(e(j))− e(j) ∈ (Λ(1) ⊕ . . .⊕ Λ(k))p0

⊂
k⊕
i=1

Λ
(i)
C,p0

=

k⊕
i=1

pΛ(i)

p0
(Mh)(Λ

(i)
C ).

Thus pij − δij ∈
p

Λ(i)

p0
· C[t], thus pij − δij ∈

p
Λ(i)

p0
· Z[t]<deg p0 .

The following calculation proves (2.21).

g(v(e(j), ξ)) = g

(
pΛ(j)

t− ξ
(Mh)(e(j))

)
=
pΛ(j)

t− ξ
(Mh)

(
g(e(j))

)
=

pΛ(j)

t− ξ
(Mh)

(
k∑
i=1

(
δij +

pΛ(i)

p0
· qij

)
(Mh)(e(i))

)

=

k∑
i=1

((
δij +

pΛ(i)

p0
· qij

)
· pΛ(j)

t− ξ

)
(Mh)(e(i))

=

k∑
i=1

(
δij +

pΛ(j)

p0
· qij

)
(Mh)(v(e(i), ξ))

=

k∑
i=1

(
δij +

pΛ(j)

p0
· qij

)
(ξ) · v(e(i), ξ).

�

Let (Λ, L,Mh) be as above, and suppose that Λ is a single Orlik block. Because of
(2.8) Aut(Λ, L,Mh) ⊃ {±Mk

h | k ∈ Z}. The paper [He18] solves the problem when equality
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Aut(Λ, L,Mh) = {±Mk
h | k ∈ Z} holds. It turns out that it depends only on the finite set

Ord := {ordλ |λ eigenvalue of Mh} ⊂ Z≥1 (2.22)

of orders of the eigenvalues of the monodromy Mh. Though the necessary and sufficient condi-
tions in theorem 1.2 in [He18] are involved. They use the directed graph with vertex set Ord
and set of directed edges {(a, b) ∈ Ord2 | ba is a power of a prime number}. A simpler sufficient
condition (which is sufficient for the cases in this paper) is given in the following lemma. There
the graph is connected and has a root m1, and an additional property holds for the prime number
2. The lemma is cited from [He11, lemma 8.2], but it goes back to arguments in [He98, ch. 6].

Lemma 2.8. Let (Λ, L,Mh) be as above. Suppose that Λ is a single Orlik block. We make
the following nontrivial assumption on the set Ord: There exist four sequences (mi)i=1,...,|Ord |,
(j(i))i=2,...,|Ord |, (pi)i=2,...,|Ord |, (ki)i=2,...,|Ord | of numbers in Z≥1 and two numbers i1, i2 ∈ Z≥1

with i1 ≤ i2 ≤ |Ord | and with the properties:

Ord = {m1, . . . ,m|Ord |},
pi is a prime number, pi = 2 for i1 + 1 ≤ i ≤ i2, pi ≥ 3 else,
j(i) = i− 1 for i1 + 1 ≤ i ≤ i2, j(i) < i else,

mi = mj(i)/p
ki
i .

Then

Aut(Λ, L,Mh) = {±Mk
h | k ∈ Z}. (2.23)

We will need some basic facts for the unit roots ζ = e2πi/m with m ∈ {10, 12, 14, 18}. The
following theorem 2.9 collects some facts for general unit roots. Theorem 2.10 cites two classical
results on orders in algebraic number fields. Lemma 2.11 puts together some specific properties
for the unit roots of the orders m ∈ {10, 12, 14, 18}.

Theorem 2.9. Fix m ∈ Z≥3 and define ζ := e2πi/m, p1 := ζ + ζ.
(a)

Eiw(ζ) := {±ζk | k ∈ Z}
= {unit roots in Q(ζ)} = {unit roots in Z[ζ]}
= {a ∈ Z[ζ] | |a| = 1}.

(b) Z[ζ] is the ring of algebraic integers of Q(ζ).
(c) Z[p1] is the ring of algebraic integers of Q(p1). And Q(p1) is the maximal real subfield of

Q(ζ).
(d) Q(ζ) has class field number 1 and thus Z[ζ] is a principal ideal domain if and only if

m ∈ A1 ∪A2 ∪A3 where

A1 = {1, 3, 5, . . . , 21} ∪ {25, 27, 33, 35, 45},
A2 = {2n |n ∈ A1},
A3 = {4n |n ∈ A4}, A4 = {1, 2, 3, . . . , 12} ∪ {15, 21}.

(e) If Q(ζ) has class field number 1, then Q(p1) has class field number 1 and thus Z[p1] is a
principal ideal domain.

(f) ζ − 1 ∈ (Z[ζ])∗ if m /∈ {pk | p a prime number, k ∈ Z≥1}.
ζ + 1 ∈ (Z[ζ])∗ if m /∈ {2 · pk | p a prime number, k ∈ Z≥1}.

Proof: (a) [Wa97] lemma 1.6 and exercise 2.3. (b) [Wa97] theorem 2.6. (c) [Wa97] proposition
2.16. (d) [Wa97] theorem 11.1. (e) [Wa97] theorem 4.10. (f) [Wa97] proposition 2.8. �
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Theorem 2.10. Let K be an algebraic number field of degree n = s + 2t over Q with s real
embeddings σj : K → R, j = 1, . . . , s, and 2t complex embeddings σj : K → C, j = s+ 1, . . . , n,
with σs+t+j = σs+j for j = 1, . . . , t.

(a) [BS66, Ch. 2, 3.1 Theorem 1] Define σ := (σ1, . . . , σs+t) : K → Rs × Ct ∼= Rn. Any
Q-basis of K maps to an R-basis of Rn. Thus the image under σ of any order O ⊂ K is a lattice
of rank n in Rn.

(b) (Dirichlet’s unit theorem, [BS66, Ch. 2, 4.3 Theorem 5]) Let O ⊂ K be an order. One
can choose r = s + t − 1 units a1, . . . , ar ∈ O∗ such that any unit has a unique representation
ξ · ak1

1 · . . . · akrr with k1, . . . , kr ∈ Z and ξ a root of 1 in O.

Of course, n = ϕ(m) = 2t in the case O = Z[ζ] ⊂ K = Q(ζ), and n = ϕ(m)
2 = s in the case

O = Z[p1] ⊂ K = Q[p1], where ζ = e2πi/m and p1 = ζ + ζ.
The unit roots of orders m ∈ {10, 12, 14, 18} are most important in this paper. The next

lemma collects specific properties of Z[ζ] for these orders.

Lemma 2.11. Fix m ∈ {10, 12, 14, 18} and define ζ = e2πi/m and p1 = ζ + ζ.
Z[ζ] and Z[p1] are principal ideal domains (by theorem 2.9 (d)+(e)).
(a) m = 10: Φ10(t) = t4 − t3 + t2 − t+ 1,

Z[ζ]∗ = Eiw(ζ) · Z[p1]∗ ⊃ {ζ − 1},
Z[p1]∗ = {±1} × {pk1 | k ∈ Z} ⊃ {p1 − 2, p1 − 1, p1, p1 + 1},

p1 =

√
5 + 1

2
> 0, p3 := ζ3 + ζ

3
=
−
√

5 + 1

2
< 0,

Gal(Q(p1) : Q) = {id, ϕ}, ϕ : p1 7→ p3 7→ p1,

(x− p1)(x− p3) = x2 − x− 1, p1 + p3 = 1, p1p3 = −1, p2
1 = p1 + 1.

(b) m = 12: Φ12(t) = t4 − t2 + 1,

Z[ζ]∗ = Eiw(ζ) · Z[p1]∗ ∪ (ζ + 1) · Eiw(ζ) · Z[p1]∗

= Eiw(ζ) · {(ζ + 1)k | k ∈ Z} ⊃ {ζ − 1, ζ + 1},
Z[p1]∗ = {±1} × {pk1 | k ∈ Z} ⊃ {p1 − 2, p1 + 2},

p1 =
√

3 > 0, p5 := ζ5 + ζ
5

= −
√

3 < 0,

Gal(Q(p1) : Q) = {id, ϕ}, ϕ : p1 7→ p5 7→ p1,

(x− p1)(x− p5) = x2 − 3, p1 + p5 = 0, p1p5 = −3, p2
1 = 3.

(c) m = 14: Φ14(t) = t6 − t5 + t4 − t3 + t2 − t+ 1,

Z[ζ]∗ = Eiw(ζ) · Z[p1]∗ ⊃ {ζ − 1},
Z[p1]∗ = {±1} × {pk1

1 p
k3
3 | k1, k3 ∈ Z}

⊃ {p1 − 2, p1 − 1, p1, p1 + 1},

p1 > 0, p3 := ζ3 + ζ
3
> 0, p5 := ζ5 + ζ

5
< 0,

Gal(Q(p1) : Q) = {id, ϕ, ϕ2}, ϕ : p1 7→ p3 7→ p5 7→ p1,

(x− p1)(x− p3)(x− p5) = x3 − x2 − 2x+ 1, p1 + p3 + p5 = 1,

p1p3p5 = −1, p1p3 = p1 − 1, p2
1 = −p5 + 2.
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(d) m = 18: Φ18(t) = t6 − t3 + 1,

Z[ζ]∗ = Eiw(ζ) · Z[p1]∗ ⊃ {ζ − 1},
Z[p1]∗ = {±1} × {pk1

1 p
k5
5 | k1, k5 ∈ Z}

⊃ {p1 − 2, p1, p1 + 1},

p1 > 0, p5 := ζ5 + ζ
5
< 0, p7 := ζ7 + ζ

7
< 0,

Gal(Q(p1) : Q) = {id, ϕ, ϕ2}, ϕ : p1 7→ p5 7→ p7 7→ p1,

(x− p1)(x− p5)(x− p7) = x3 − 3x− 1, p1 + p5 + p7 = 0,

p1p5p7 = 1, p1p5 = −p5 − 1, p2
1 = −p7 + 2.

Proof: That the index [Z[ζ]∗ : Eiw(ζ) · Z[p1]∗] is 1 for m ∈ {10, 14, 18} and 2 for m = 12,
follows from [Wa97, theorem 4.12 and corollary 4.13]. That Z[p1]∗ is as stated, follows for
m ∈ {10, 14, 18} from [Wa97, theorem 8.2 and lemma 8.1 (a)]. For m = 12 [Wa97, §8.1] is not so
useful, but there the proof of Z[p1]∗ = {±1} · {pk1 | k ∈ Z} is easy. Everything else is elementary.
�

Part (b) of the following lemma applies with Λ = Ml(f) and Λ(1) = B̃1⊕B2 (see the theorems
5.1 and 6.1) to most of the Milnor lattices in the sections 5 and 6. We will need (2.24).

Lemma 2.12. (a) Let p =
∏
i∈I Φmi be a product of cyclotomic polynomials. Then p(1) ≡ 1(2)

if and only if all mi ∈ Z≥1 − {2k | k ∈ Z≥0}.
(b) Let (Λ, L,Mh) be as above (we will not need L here, only Mh). Let Λ(1) ⊂ Λ be an

Mh-invariant sublattice with [Λ : Λ(1)] = 2. Write

pΛ = p1 · p2with pj =
∏
m∈Jj

Φm

and J1 ⊂ Z≥1 − {2k | k ∈ Z≥0}, J2 ⊂ {2k | k ∈ Z≥0}.
Then J2 6= ∅, p2 6= 1, and

Λp = Λ(1)
p for any p with p|p1, (2.24)

[Λp : Λ(1)
p ] = 2 for any p with p2|p. (2.25)

Proof: (a) Observe Φ2k(t) = t2
k−1

+ 1 for k ≥ 1 and

t2
k·q − 1 = (t2

k

− 1)(t2
k(q−1) + t2

k(q−2) + . . .+ t2
k

+ 1). (2.26)

For odd q > 1, the second factor has at t = 1 the odd value q. Therefore Φm(1) ≡ 1(2) for any
m with 2k|m|2k · q and 2k 6= m with q odd.

(b) For an arbitrary element γ ∈ Λ− Λ(1),

Λ− Λ(1) = γ + Λ(1).

This set is Mh-invariant because Λ(1) is Mh-invariant. Thus for any k ∈ Z≥1 M
k
h (γ) ∈ Λ−Λ(1).

By part (a) p1(1) ≡ 1(2). Thus p1(Mh)(γ) ∈ Λ− Λ(1) and

p1(Mh)(Λ− Λ(1)) ⊂ Λ− Λ(1).

On the other hand

p1(Mh)(Λp1) = {0} ⊂ Λ(1), thus Λp1 ⊂ Λ(1), thus (2.24).

p1(Mh)(Λ) ⊂ Λp2
, thus Λp2

∩ (Λ− Λ(1)) 6= ∅, thus (2.25).

�
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3. Some Fuchsian groups

Notations 3.1. For any m ∈ Z≥3 define ζ := e2πi/m and p1 := ζ + ζ. The letter ξ will denote
in this section a primitive m-th unit root. An element of Q(ζ) will be written as a or a(ζ). Then
a(ξ) is the image ϕ(a) for ϕ ∈ Gal(Q(ζ) : Q) with ϕ(ζ) = ξ.

Any element A =

(
a b
c d

)
∈ GL(2,C) acts on P1C by the linear transformation z 7→ az+b

cz+d ,

which is an automorphism of P1C. The limit set L(Γ) ⊂ P1C of a subgroup Γ ⊂ GL(2,C) is
[Le64, III 1B]

L(Γ) = {z ∈ P1C | ∃ z0 ∈ P1C and ∃ a sequence of different

elements γi ∈ Γ with γi(z0)→ z}.
A subgroup Γ ⊂ GL(2,C) and the induced subgroup of PGL(2,C) are called Fuchsian if Γ maps
a certain circle C ⊂ P1C to itself and L(Γ) ⊂ C. By a theorem of Poincaré [Le64, III 3I], a
subgroup Γ ⊂ GL(2,C) is Fuchsian if it maps a certain circle C ⊂ P1C to itself and is discrete
in GL(2,C).

In the sections 5 and 6 we will encounter Fuchsian groups which arise in the following way.

Theorem 3.2. Let m ∈ Z≥3, ζ := e2πi/m, p1 := ζ + ζ, and w = w(ζ) ∈ Q(ζ) with

w(ζ) > 0 (thus w(ζ) = w(ζ) ∈ Q(p1)), (3.1)

w(ξ) < 0 for any primitive m-th unit root ξ /∈ {ζ, ζ}. (3.2)

Then the matrix group

Γ := {A ∈ GL(2,Z[ζ]) |
(
−1 0
0 w

)
= At

(
−1 0
0 w

)
A} (3.3)

is an infinite Fuchsian group. It preserves the circle

C = {z ∈ C | |z|2 = w}. (3.4)

The map

{(a, c, δ) ∈ Z[ζ]2 × Eiw(ζ) | |a|2 − 1 = w · |c|2} → Γ

(a, c, δ) 7→ A :=

(
a w · c · δ
c a · δ

)
(3.5)

is a bijection (here Eiw(ζ) = {±ζk | k ∈ Z}, see theorem 2.9 (a)).

Proof: The matrix

(
−1 0
0 w

)
defines an indefinite hermitian form on C2. The isotropic lines

are C ·
(
z
1

)
with z ∈ C. Therefore any matrix A ∈ Γ maps C to itself.

The matrix equation which defines Γ can be spelled out as follows,(
−1 0
0 w

)
=

(
a c
b d

)(
−1 0
0 w

)(
a b

c d

)
=

(
−aa+ wcc −ab+ wcd

−ab+ wcd −bb+ wdd

)
. (3.6)

The determinant δ = detA = ad − bc is in Z[ζ] and has absolute value 1, so it is in Eiw(ζ) by
theorem 2.9 (a). The equations above give

aδ = a(ad− bc) = (wcc+ 1)d− (wcd)c = d, (3.7)

wcδ = wc(ad− bc) = (ab)a− (aa− 1)b = b.
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This yields the bijection (3.5).
The defining equation

|a(ζ)|2 − 1 = w(ζ) · |c(ζ)|2 (3.8)

for the pairs (a(ζ), c(ζ)) ∈ Z[ζ]2 on the left hand side of (3.5) is in the case (a, c) ∈ Z[p1]2 and
w(ζ) ∈ Z[p1] a Pell equation. We obtain the inequalities

0 ≤ |c(ζ)|2 = w(ζ)−1(|a(ζ)|2 − 1),

|a(ζ)| ≥ 1 (3.9)

and

0 ≤ |c(ξ)|2 = (−w(ξ))−1(1− |a(ξ)|2) < (−w(ξ))−1,

|a(ξ)| ≤ 1for any primitive m-th unit root ξ /∈ {ζ, ζ}. (3.10)

Γ maps C to itself. Therefore by Poincaré’s theorem, it is a Fuchsian group if it is a discrete
matrix group. This holds if the set

P1 := {a ∈ Z[ζ] | ∃ c ∈ Z[ζ] with |a|2 − 1 = w · |c|2}
intersects each compact set K ⊂ C in a finite set.

The embedding σ : Q(ζ) → Rϕ(n) from theorem 2.10 (a) maps Z[ζ] to a lattice in Rϕ(n).
Because of (3.10), it maps P1 ∩K to a subset of

σ(Z[ζ]) ∩
(
K × {z ∈ C | |z| ≤ 1}ϕ(n)/2−1

)
.

This is a finite set. Therefore Γ is a Fuchsian group.
The next lemma shows that the set P1 and the group Γ contain infinitely many elements. �

Lemma 3.3. Let m ∈ Z≥3, ζ, p1 and w ∈ Q(p1) be as in theorem 3.2. Then the set

P2 := {(a, c) ∈ Z[p1] | a2 − 1 = w · c2} (3.11)

contains infinitely many pairs. If w ∈ Z[p1], then P2 contains pairs (a, c) with w|(a− 1).

Proof: If w̃ = w · u2 for some u ∈ Z[p1]− {0} then a pair (a, c̃) ∈ Z[p1]2 with a2 − 1 = w̃ · c̃2
induces a pair (a, c) = (a, c̃ · u) in P2. Therefore we can suppose w ∈ Z[p1].

We will now construct infinitely many units in Z[
√
w, p1]∗ − Z[p1]∗ and from them infinitely

many pairs (a, c) in P2.
The algebraic number field Q(

√
w, p1) has degree ϕ(m) over Q and two real embeddings and

ϕ(m)−2 complex embeddings, because of (3.1) and (3.2). By Dirichlet’s unit theorem (theorem
2.10 (b)), the unit group Z[

√
w, p1]∗ of the order Z[

√
w, p1] in Q(

√
w, p1) contains a free abelian

group of rank 2 + ϕ(m)−2
2 − 1 = ϕ(m)

2 .

The unit group Z[p1]∗ contains only a free abelian group of rank ϕ(m)
2 −1. Therefore infinitely

many units a1 +
√
wc1 ∈ Z[

√
w, p1]∗ with a1 6= 0 and c1 6= 0 exist. Then also a1 −

√
wc1,

(a1 +
√
wc1)2 = (a2

1 + wc21) +
√
w(2a1c1) =: a2 +

√
wc2,

andh := (a1 +
√
wc1)(a1 −

√
wc1) = a2

1 − wc21
are units, h being in Z[p1]∗. Then

(a3, c3) := (
a2

h
,
c2
h

) ∈ P2 (3.12)

because

a2
3 − wc23 = h−2(a2

2 − wc22) = h−2(a2 +
√
wc2)(a2 −

√
wc2)

= h−2(a1 +
√
wc1)2(a1 −

√
wc1)2 = 1.
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Only finitely many units a1 +
√
wc1 can give the same pair (a3, c3). Therefore there are infinitely

many pairs (a3, c3) in P2.
For the last statement, suppose that (a4, c4) ∈ P2 with c4 6= 0. Then the pair

(a5, c5) := (a2
4 + wc24, 2a4c4)

is also in P2,

a2
5 − wc25 = (a5 +

√
wc5)(a5 −

√
wc5)

= (a4 +
√
wc4)2(a4 −

√
wc4)2 = (a2

4 − wc24)2 = 1.

And it satisfies w|(a5 − 1) because of

a5 − 1 = a2
4 + wc24 − 1 = 2wc24.

�

Remarks 3.4. (i) The equation a2− 1 = wc2 is for w ∈ Z[p1] a Pell equation. A generalization
of lemma 3.3 is theorem 3 in [Sch06].

(ii) The notion of an arithmetic Fuchsian group is defined in [Sh71, ch 9.2]. The group Γ in
theorem 3.2 is in fact an arithmetic Fuchsian group. This would follow immediately from [Ta75,
theorem 2], if it were clear a priori that Γ is a Fuchsian group of the first kind, i.e. a Fuchsian
group with limit set L(Γ) = C. It follows with some work from a comparison of the data in
theorem 3.2 with the data in [Sh71, ch. 9.2].

(iii) The five triangle groups below in theorem 3.6 are arithmetic triangle groups. They are
in the list in [Ta77, theorem 3] of all 85 arithmetic triangle groups.

(iv) Theorem 3.2 and lemma 3.3 will be used in the steps 2 and 4 in the proof of theorem 5.1
on the groups GZ for the bimodal series.

Remarks 3.5. (i) The triangle groups below in theorem 3.6 will arise in theorem 6.1 as quotients
of the groups GZ for the quadrangle singularities.

(ii) There the first six of the eight elements w(ζ) in table (5.72) in the case r = 0 will be used.

So here W1,0 and S1,0 are seen as 0-th members of the series W ]
1,p and S]1,p, not the series W1,p

and S1,p.

(iii) Using the notations and formulas from lemma 2.11, the first six of the eight elements
w(ζ) in table (5.72) in the case r = 0 can be written as follows. In the case U1,0 we change from

m = 9 to m = 18, so below ζ = e2πi/18 for E3,0 and U1,0.

W1,0 : w(ζ) =
6

(2− p1)p1
=

1

(2− p1)(2 + p1)
· 2p1(p1 + 2).

S1,0 : w(ζ) =
−2

(−p3)(−p3 − 1)
= 1 · 2p3

1.

U1,0 : w(ζ) =
−3

(2 + p7)(1− p1)
= 1 · p1(p1 + 2).

E3,0 : w(ζ) =
3(2− p1)

(p1 + 2)(p1 − 1)
= (2− p1)2 · p1(p1 + 2).

Z1,0 : w(ζ) =
1

−p5
= 1 · (−p5)−1 = 1 · (p1 − 1).

Q2,0 : w(ζ) =
2− p1

p1 + 1
= (2− p1) · 1

p1 + 1
. (3.13)
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(iv) In theorem 3.2 one can replace w by w̃ := w · uu for any u ∈ Z[ζ]∗. The group Γ for w

and the group Γ̃ for w̃ are isomorphic, and the triples in (3.5) are related by

(ã, c̃, δ̃) = (a, c · u−1, δ).

We can choose u such that w̃ is simpler to work with than w. In the products for w in (iii), the
left terms are of the form uu for a suitable unit u ∈ Z[ζ]∗. The right terms are w̃. We will work
with the terms w̃ in theorem 3.6.

Theorem 3.6. The image in PGL(2,C) of the group Γ in theorem 3.2 for the following values
of m and w

W1,0 S1,0 E3,0 & U1,0 Z1,0 Q2,0

m 12 10 18 14 12
w 2p1(p1 + 2) 2p3

1 p1(p1 + 2) (−p5)−1 (p1 + 1)−1
(3.14)

is a Schwarzian triangle group of the following type:

W1,0 S1,0 E3,0 & U1,0 Z1,0 Q2,0

(2, 12, 12) (2, 10, 10) (2, 3, 18) (2, 3, 14) (2, 3, 12)
(3.15)

Proof: The proof has three steps. In step 1, we will present two matrices A1 and A2 in Γ
whose images in PGL(2,C) are elliptic and generate in each case a Schwarzian triangle group
of the claimed type. We will prove this. In step 2, we will show that no matrix in Γ is closer to
A1 than A2. This will be used in step 3 to prove that the images in PGL(2,C) of A1 and A2

generate the image of Γ in PGL(2,C). The steps 1 and 3 together give theorem 3.6.

Step 1: One checks easily with (3.5) that the following matrices A1 and A2 are in Γ.

A1 =

(
ζ 0
0 1

)
for all 5 cases. (3.16)

W1,0 : A2 =

(
p1 + 2 −2p1(p1 + 2)

1 −(p1 + 2)

)
,detA2 = −1,

S1,0 : A2 =

(
(ζ + 1)p1 −2p3

1ζ
1 −(ζ + 1)p1

)
,detA2 = −ζ,

E3,0 & U1,0 : A2 =

(
p1 + 1 −p1(p1 + 2)

1 −(p1 + 1)

)
,detA2 = −1,

Z1,0 : A2 = p1(1− ζ3) ·
(

1 −(−p5)−1

1 −1

)
,detA2 = ζ3,

Q2,0 : A2 =

(
ζ + 1 −ζ
p1 + 1 −(ζ + 1)

)
,detA2 = −ζ.

(3.17)

A matrix A ∈ GL(2,C) is elliptic if its eigenvalues λ1 and λ2 satisfy λ2

λ1
∈ S1. Let

(
zj
1

)
be

an eigenvector with eigenvalue λj for j = 1, 2 (possibly z1 = 0 and z2 = ∞). Then the linear

transformation of A is a rotation around the fixed point z1 with angle α(A) = arg λ2

λ1
. For A ∈ Γ

elliptic we number the eigenvalues λ1, λ2 such that |z1| < |z2|, so then |z1|2 < w and z1 is in the
interior of the circle C. One sees in all 5 cases

λ1(A1) = 1, λ2(A1) = ζ, α(A1) =
2π

m
, (3.18)

tr(A2) = 0, α(A2) = π. (3.19)
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The following table lists for the product A1A2 the eigenvalues λ1, λ2 and the angle α(A1A2).

λ1 λ2 α
W1,0 ζ4 ζ3 −2π

12
S1,0 ζ4 ζ3 −2π

10
E3,0 & U1,0 ζ8 ζ2 −2π

3

Z1,0 e2πi/6ζ2 e−2πi/6ζ2 −2π
3

Q2,0 ζ6 ζ2 −2π
3

(3.20)

Therefore the images of A1 and A2 in PGL(2,C) generate a Schwarzian triangle group of the
type in table (3.15) [Le64, VII 1G].

Step 2: Write A2 =

(
a2 b2
c2 d2

)
and write A =

(
a b
c d

)
for any A ∈ Γ.

Claim 1: Any A ∈ Γ with c 6= 0 satisfies |a| ≥ |a2|.

The proof consists in making the proof of theorem 3.2 more constructive.
First we look for candidates f ∈ Z[p1] of |a|2 which are compatible with the inequalities

(3.9) and (3.10) and which satisfy f < |a2|2. Then we will show that these candidates are not
compatible with the equality |a|2 = 1 + w · |c|2.

Denote by

σR = (σR
1 , . . . , σ

R
ϕ(m)/2) : Q(p1)→ Rϕ(m)/2

the tuple of the embeddings σR
j : Q(p1) → R. Then σR(Z[p1]) is a Z-lattice in Rϕ(m)/2. The

candidates are the numbers f = f(p1) in Z[p1] with

σR(f) ∈ ]1, |a2|2[ × ]0, 1[ϕ(m)/2−1. (3.21)

This follows from the inequalities (3.9) and (3.10). With sufficient numerical precision of the
numbers pj in lemma 2.11, it is easy to find these candidates. They are as follows.

W1,0 : f(p1) = α · 1 + β · p1, (α, β) ∈ {(2, 1), (4, 2), (6, 3)}.
S1,0 : f(p1) = α · 1 + β · p1, (α, β) ∈ {(2, 2), (2, 3)}.
E3,0 & U1,0 : ∅.
Z1,0 : ∅.
Q2,0 : ∅.

All these candidates will be excluded with the help of the condition

Norm(|a|2 − 1) = Norm(w · |c|2) = Norm(w) ·Norm(|b|2).

Here the norm is the norm in Q(p1) and Z[p1] with values in Q respectively Z.

The case W1,0: Norm(w) = −12, Norm(1 + p1) = −2, Norm(3 + 2p1) = −3,
Norm(5 + 3p1) = −2.

The case S1,0: Norm(w) = −4,Norm(1 + 2p1) = −1,Norm(1 + 3p1) = −5.

Step 3: It is sufficient to show the following claim 2.

Claim 2: For any matrix A3 ∈ Γ with c3 6= 0, a number k ∈ Z exists such that the product

A4 := A3 ·A−k1 A2A
k
1 =

(
a3 b3
c3 d3

)(
a2 ζ−kb2
ζkc2 d2

)
(3.22)

satisfies

|c4| < |c3|, here c4 = c3a2 + ζkd3c2. (3.23)
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We can choose k ∈ Z such that

β := | arg(c3a2)− arg(−ζkd3c2)| ≤ π

m
. (3.24)

Observe

|ζkd3c2|2

|c3a2|2
=
|a3|2 |a2|2−1

w(ζ)

|a3|2−1
w(ζ) |a2|2

=
1− |a2|−2

1− |a3|−2
. (3.25)

The trivial inequality 1−|a3|−2 < 1 and the inequality |a3| ≥ |a2| from step 2 give the inequalities(
1− |a2|−2

)
|c3a2|2 < |ζkd3c2|2 ≤ |c3a2|2. (3.26)

Observe also √
1− |a2|−2 < cos

π

m
. (3.27)

Therefore

|c4| = |c3a2|2(sinβ)2 + (|c3a2| cosβ − |d3c2|)2

< |c3a2|2(sin
π

m
)2 +

(
1−

√
1− |a2|−2

)2

· |c3a2|2

= |c3|2 · |a2|2
(

(sin
π

m
)2 +

(
1−

√
1− |a2|−2)

)2
)

(∗)
< |c3|2. (3.28)

(∗)
< follows in all 5 cases by an explicit calculation. �

4. Review on the topology of singularities

In this section, we recall some classical facts about the topology of singularities, and we fix some
notations.

An isolated hypersurface singularity (short: singularity) is a holomorphic function germ
f : (Cn+1, 0)→ (C, 0) with an isolated singularity at 0. Its Jacobi ideal is

J(f) :=

(
∂f

∂x0
, . . . ,

∂f

∂xn

)
⊂ OCn+1,0.

Its Jacobi algebra is OCn+1,0/J(f). Its Milnor number µ := dimOCn+1,0/J(f) is finite. For the
following notions and facts compare [AGV88] and [Eb07]. A good representative of f has to be
defined with some care [Mi68][AGV88][Eb07]. It is f : X → ∆ with ∆ = {τ ∈ C | |τ | < δ} a
small disk around 0 and X = {x ∈ Cn+1 | |x| < ε} ∩ f−1(∆) for some sufficiently small ε > 0
(first choose ε, then δ). Then f : X ′ → ∆′ with X ′ = X − f−1(0) and ∆′ = ∆− {0} is a locally
trivial C∞-fibration, the Milnor fibration. Each fiber has the homotopy type of a bouquet of µ
n-spheres [Mi68].

Therefore the (reduced for n = 0) middle homology groups are

H
(red)
n (f−1(τ),Z) ∼= Zµ for τ ∈ ∆′. Each comes equipped with an intersection form I, which

is a datum of one fiber, a monodromy Mh and a Seifert form L, which come from the Milnor
fibration, see [AGV88, I.2.3] for their definitions. Mh is a quasiunipotent automorphism, I and
L are bilinear forms with values in Z, I is (−1)n-symmetric, and L is unimodular. L determines
Mh and I because of the formulas [AGV88, I.2.3]

L(Mha, b) = (−1)n+1L(b, a), (4.1)

I(a, b) = −L(a, b) + (−1)n+1L(b, a) = L((M − id)a, b). (4.2)
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(4.2) tells especially that ker(Mh − id) is the radical of I and that L is (−1)n+1-symmetric on
this radical. The semisimple part of Mh is called Ms, the unipotent part Mu, the nilpotent part
N = logMu.

The Milnor lattices Hn(f−1(τ),Z) for all Milnor fibrations f : X ′ → ∆′ and then all

τ ∈ R>0 ∩∆′

are canonically isomorphic, and the isomorphisms respect Mh, I and L. This follows from
Lemma 2.2 in [LR73]. These lattices are identified and called Milnor lattice Ml(f).

The group GZ is

GZ = GZ(f) := Aut(Ml(f), L) = Aut(Ml(f),Mh, I, L), (4.3)

the second equality is true because L determines Mh and I. A good control of this group for
the bimodal series and the quadrangle singularities will be crucial in this paper. It is the task
of the sections 5 and 6.

The Milnor lattice comes equipped with a set B of distinguished bases, certain tuples δ =
(δ1, . . . , δµ) of Z-bases of the Milnor lattice. Each one is defined with a generic deformation of f
which has µ A1-singularities which have all different critical values. One chooses a distinguished
system of paths in ∆ from the critical values to δ ∈ ∂∆ and pushes vanishing cycles along these
paths to Hn(f−1(δ),Z) = Ml(f). See [AGV88] or [Eb07] for details. In all cases except the
simple singularities, the set B is infinite. Each distinguished basis determines the monodromy
by the formula

Mh = sδ1 ◦ . . . ◦ sδµ (4.4)

where

sδ : Ml(f)→Ml(f),

sδ(b) := b− (−1)n(n+1)/2 · I(δ, b) · δ, (4.5)

is the Picard-Lefschetz transformation of a vanishing cycle δ, a reflection for even n and a
symplectic transvection for odd n.

The matrix of the Seifert form with respect to a distinguished basis is lower triangular with
(−1)(n+1)(n+2)/2 on the diagonal. This motivates two definitions, the normalized Seifert form

Lhnor := (−1)(n+1)(n+2)/2 · L, (4.6)

and the Stokes matrix S of the distinguished basis with

S := (−1)(n+1)(n+2)/2 · L(δt, δ)t = Lhnor(δt, δ)t. (4.7)

S is an upper triangular matrix in GL(µ,Z) with 1’s on the diagonal.
The Coxeter-Dynkin diagram (short: CDD) of a distinguished basis encodes S in a geometric

way. It has µ vertices which are numbered from 1 to µ. Between two vertices i and j with i < j
one draws

no edge if Sij = 0,
|Sij | edges if Sij < 0,
Sij dotted edges if Sij > 0.

Coxeter-Dynkin diagrams for the 8 bimodal series will be given in section 5, following [Eb81].
A result of Thom and Sebastiani compares the Milnor lattices and monodromies of the singu-

larities f = f(x0, . . . , xn), g = g(y0, . . . , ym) and f + g = f(x0, . . . , xn) + g(xn+1, . . . , xm+n+1).
There are extensions by Deligne for the Seifert form and by Gabrielov for distinguished bases.
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All results are in [AGV88, I.2.7]. They are restated here. There is a canonical isomorphism

Φ : Ml(f + g)
∼=−→ Ml(f)⊗Ml(g), (4.8)

with Mh(f + g) ∼= Mh(f)⊗Mh(g) (4.9)

and Lhnor(f + g) ∼= Lhnor(f)⊗ Lhnor(g). (4.10)

If δ = (δ1, . . . , δµ(f)) and γ = (γ1, . . . , γµ(g)) are distinguished bases of f and g with Stokes
matrices S(f) and S(g), then

Φ−1(δ1 ⊗ γ1, . . . , δ1 ⊗ γµ(g), δ2 ⊗ γ1, . . . , δ2 ⊗ γµ(g), . . . , δµ(f) ⊗ γ1, . . . , δµ(f) ⊗ γµ(g))

is a distinguished basis of Ml(f + g), that means, one takes the vanishing cycles Φ−1(δi⊗ γj) in
the lexicographic order. Then by (4.7) and (4.10), the matrix

S(f + g) = S(f)⊗ S(g) (4.11)

(where the tensor product is defined so that it fits to the lexicographic order) is the Stokes matrix
of this distinguished basis.

In the special case g = x2
n+1, the function germ f + g = f(x0, . . . , xn) + x2

n+1 ∈ OCn+2,0 is
called stabilization or suspension of f . As there are only two isomorphisms Ml(x2

n+1)→ Z, and
they differ by a sign, there are two equally canonical isomorphisms Ml(f) → Ml(f + x2

n+1),
and they differ just by a sign. Therefore automorphisms and bilinear forms on Ml(f) can be
identified with automorphisms and bilinear forms on Ml(f +x2

n+1). In this sense [AGV88, I.2.7]

Lhnor(f + x2
n+1) = Lhnor(f), (4.12)

M(f + x2
n+1) = −M(f), (4.13)

GZ(f + x2
n+1) = GZ(f). (4.14)

The image in Ml(f + x2
n+1) of a distinguished basis in Ml(f) under either of the both iso-

morphisms Ml(f) → Ml(f + x2
n+1) is again a distinguished basis, and it has the same Stokes

matrix.
Denote by H∞C the µ-dimensional vector space of global flat multi-valued sections in the flat

cohomology bundle
⋃
τ∈∆′ H

n(f−1(τ),C) (reduced cohomology for n = 0). It comes equipped
with a Z-lattice H∞Z , a real subspace H∞R , a monodromy which is also denoted by Mh, and
the dual Lnor of the normalized Seifert form Lhnor. It is a unimodular form on H∞Z , and the
analogue of (4.1),

Lnor(Mha, b) = (−1)n+1Lnor(b, a)for a, b ∈ H∞Z , (4.15)

holds.
We apply the notations 2.1 (a) to Ml(f) and to H∞Z and extend them slightly:

Ml(f)λ := ker(Mh − λ id)µ : Ml(f)C →Ml(f)C, (4.16)

Ml(f)6=1 :=
⊕
λ6=1

Ml(f)λ,Ml(f) 6=−1 :=
⊕
λ6=−1

Ml(f)λ,

Ml(f)p :=
⊕

λ: p(λ)=0

Ml(f)λ,Ml(f)p,Z := Ml(f)p ∩Ml(f).

H∞λ , H∞6=1, H∞6=−1, H∞p and H∞p,Z are defined analogously.
There are a natural Hodge filtration F •St on H∞C and a weight filtration W• on H∞Q

such that (H∞6=1, H
∞
6=1,Z, F

•
St,W•,−N,S) is a polarized mixed Hodge structure of weight n and

(H∞1 , H∞1,Z, F
•
St,W•,−N,S) is a polarized mixed Hodge structure of weight n+1 [He02, Theorem

10.30].
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In the case of a singularity with semisimple monodromy, so N = 0, the weight filtrations
become trivial, and the polarized mixed Hodge structures are polarized pure Hodge structures.
This holds for all bimodal singularities. Therefore we do not care here about the weight filtra-
tion. We will define the Hodge filtration using the Brieskorn lattice in theorem 7.7 (following
Varchenko, Scherk&Steenbrink and M. Saito).

The pure Hodge structure of weight n on H∞6=1 for any singularity with semisimple monodromy
has the following properties. The Hodge filtration is Ms-invariant and satisfies

H∞λ =
⊕
p∈Z

Hp,n−p
λ for λ 6= 1, (4.17)

where Hp,n−p
λ := F pH∞λ ∩ Fn−pH∞λ , (⇒ Hn−p,p

λ
= Hp,n−p

λ , )

equivalently H∞λ = F pH∞λ ⊕ Fn+1−pH∞
λ
.

The polarizing form carries an isotropy and a positivity condition,

S(Hp,n−p
λ , Hq,n−q

λ
) = 0if p+ q 6= 0, (4.18)

ip−(n−p) · S(a, a) > 0 for a ∈ Hp,n−p
λ − {0}. (4.19)

The pure Hodge structure of weight n+ 1 on H∞1 has analogous properties, with n replaced by
n+ 1.

The polarizing form S : H∞Q ×H∞Q → Q is defined by [He02, 10.6].

S(a, b) := −Lnor(a, νb) (4.20)

where ν : H∞Q → H∞Q is the Mh-invariant automorphism

ν :=

{ 1
Mh−id on H∞6=1,
−N

Mh−id on H∞1 ,
(4.21)

S is nondegenerate and Mh-invariant. It is (−1)n-symmetric on H∞6=1 and (−1)n+1-symmetric

on H∞1 . The restriction to H∞6=1 is (−1)n(n+1)/2 · I∨, where I∨ on H∞6=1 is dual to I (which is

nondegenerate on Ml(f) 6=1).

5. The group GZ for the bimodal series singularities

The normal forms from [AGV85, §13] for the eight bimodal series will be listed below in section
9. The following table gives their names, the Milnor numbers, certain polynomials b1, b2 or,
in the case of the series Z1,p, polynomials b1, b2, b3 such that b1b2 respectively b1b2b3 is the
characteristic polynomial of the surface singularities, and two important numbers m and rI . In
the series p ∈ Z≥1.

series µ b1 b2 b3 m rI
W ]

1,p 15 + p Φ12 (t12+p − 1)/Φ1 − 12 1

S]1,p 14 + p Φ10Φ2 (t10+p − 1)/Φ1 − 10 1
U1,p 14 + p Φ9 (t9+p − 1)/Φ1 − 9 1
E3,p 16 + p Φ18Φ2 t9+p + 1 − 18 2
Z1,p 15 + p Φ14Φ2 t7+p + 1 Φ2 14 2
Q2,p 14 + p Φ12Φ4Φ3 t6+p + 1 − 12 2
W1,p 15 + p Φ12Φ6Φ3Φ2 t6+p + 1 − 12 2
S1,p 14 + p Φ10Φ5Φ2 t5+p + 1 − 10 2

(5.1)
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The following theorem on the group GZ will be proved in two steps. Directly after the
theorem, the arguments and properties which hold for all eight series will be given. Then in
eight subsections, one for each series, the corresponding objects will be made explicit and some
specific details will be given. For each series, denote ζ := e2πi/m ∈ S1 ⊂ C.

Theorem 5.1. For any surface singularity f in any of the eight bimodal series, the following
holds.

(a) (See definition 2.3 for the notion Orlik block) For all series except Z1,p, there are Orlik
blocks B1, B2 ⊂ Ml(f), and for the series Z1,p, there are Orlik blocks B1, B2, B3 ⊂ Ml(f) with
the following properties. The characteristic polynomial pBj of the monodromy on Bj is bj. The
sum

∑
j≥1Bj is a direct sum

⊕
j≥1Bj, and it is a sublattice of Ml(f) of full rank µ and of

index rI . Define

B̃1 :=

{
B1 for all series except Z1,p,
B1 ⊕B3 for the series Z1,p.

(5.2)

Then

L(B̃1, B2) = 0 = L(B2, B̃1) for all series, (5.3)

GZ = Aut(
⊕
j≥1

Bj , L) for all series except S1,10. (5.4)

In the case S1,10, a substitute for (5.4) is

g ∈ GZ with g((B1)Φ10
) = (B1)Φ10

⇒ g(Bj) = Bj for j = 1, 2. (5.5)

(b) Φm 6 | b2 ⇐⇒ m 6 | p. In that case

GZ = {(±Mk1

h |B̃1
)× (±Mk2

h |B2
) | k1, k2 ∈ Z}. (5.6)

(c) In the case of the subseries with m|p, the eigenspace Ml(f)ζ ⊂Ml(f)C is 2-dimensional.

The hermitian form hζ on it from lemma 2.2 (a) with hζ(a, b) :=
√
−ζ ·L(a, b) for a, b ∈Ml(f)ζ

is nondegenerate and indefinite, so P(Ml(f)ζ) ∼= P1 contains a half-plane

Hζ := {C · a | a ∈Ml(f)ζ with hζ(a, a) < 0} ⊂ P(Ml(f)ζ). (5.7)

Therefore the group Aut(Ml(f)ζ , hζ)/S
1 · id is isomorphic to PSL(2,R). The homomorphism

Ψ : GZ → Aut(Ml(f)ζ , hζ)/S
1 · id, g 7→ g|Ml(f)ζmodS1 · id, (5.8)

is well-defined. Ψ(GZ) is an infinite Fuchsian group acting on the half-plane Hζ . And

ker Ψ = {±Mk
h | k ∈ Z}. (5.9)

Proof: Here we explain the common arguments of the proof, which hold for all eight series.
We will announce definitions and properties of several objects. In the following eight subsections,
one for each series, the objects will be defined, and their properties will be shown.

(a) For each of the eight series of surface singularities, a distinguished basis e1, . . . , eµ with
the Coxeter-Dynkin diagram in the corresponding figure will be given in the subsections 5.1 to
5.8. The distinguished basis is the one in [Eb81, Tabelle 6 & Abb. 16], with a small change
in the cases W1,1 and S1,1. They are exceptional in [Eb81]. With the actions of the braids
α1, . . . , αµ−1 (see [Eb07, 5.7] for these braids and their actions) and a sign change, we arrive
at a new numbering of the same unnumbered diagram, such that W1,1 and S1,1 are no longer
exceptional (i.e. the top vertex has the number p+ q + r+ 3 in the notation of [Eb81, Abb. 16]
even for W1,1 and S1,1). We thank Wolfgang Ebeling for the explanation how to arrive at this
numbering.
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Recall that for a surface singularity (then n = 2) the reflection along a vanishing cycle δ is

sδ(b) = b+ I(δ, b) · δ for any b ∈Ml(f).

The Coxeter-Dynkin diagram has between the vertices i and j with i < j no edge if Sij = 0,
|Sij | edges if Sij < 0 and Sij dotted edges if Sij > 0. Here for i < j

I(ei, ej) = I(ej , ei) = −Sij , I(ei, ei) = −2,
L(ei, ej) = 0, L(ej , ei) = Sij , L(ei, ei) = 1.

(5.10)

The monodromy can be calculated fairly efficiently by hand (one should write down some inter-
mediate steps) with the formula

Mh = se1 ◦ . . . ◦ seµ . (5.11)

The cyclic sublattices Bj ⊂Ml(f) are chosen by choosing the generating lattice vectors βj with

Bj :=
∑
i≥0

Z ·M i
h(βj). (5.12)

The following table gives them.

series β1 β2 β3

W ]
1,p e3 e8 −

S]1,p e8 e9 −
U1,p e8 e10 −
E3,p e3 e10 −
Z1,p e8 e11 e3 − e4 − e9

Q2,p e8 e11 −
W1,p e3 + e9 + e11 e16 −
S1,p −e8 + e13 e15 −

(5.13)

We will write down the action of the powers of the monodromy,

βj 7→Mh(βj) 7→M2
h(βj) 7→ . . . 7→M

deg bj
h (βj), (5.14)

in the subsections. Verifying bj(Mh)(βj) = 0 will show that the characteristic polynomial of Mh

on Bj is bj . We will also write down nice generators of Bj . This will show that Bj is a primitive
sublattice of Ml(f), that

∑
j≥1Bj =

⊕
j≥1Bj is a direct sum and that it is a sublattice of full

rank and of index rI in Ml(f). In all cases except W1,p and S1,p, the index rI is obvious from
the nice generators, in the two cases W1,p and S1,p, it requires the calculation of a determinant.

The left and right L-orthogonality of B̃1 and B2 in (5.3) will be proved now. eµ is a cyclic

generator for B2 in all eight series. The nice generators for B̃1 show B̃1 ⊂
⊕µ−2

j=1 Z·ej for all cases

except W1,1 and S1,1. This and L(ei, eµ) = 0 for i < µ show L(B̃1, eµ) = 0, thus L(B̃1, B2) = 0.
From the CDD one sees easily L(eµ, ei) = 0 for i ≤ µ− 2 for all cases except W1,1 and S1,1, thus

L(eµ, B̃1) = 0 and L(B2, B̃1) = 0. For the cases W1,1 and S1,1, L(B1, eµ) = 0 = L(eµ, B1) and
thus L(B1, B2) = 0 = L(B2, B1) hold also.

(5.5) for S1,10 will be shown in subsection 5.8. With respect to part (a), it rests to show (5.4).
It is trivial for the 3 series with rI = 1. It will be shown in subsection 5.6 for the series Q2,p and
in subsection 5.7 for the subseries W1,6s−3 (s ∈ Z≥1) of the series W1,p. For all other series, it

will be shown below. It requires a study of smaller Orlik blocks. Φ2|b1 holds in the series S]1,p,

E3,p, Z1,p, W1,p and S1,p. In these cases define (see (2.16) for the notion v(β1,−1))

γ1 := v(β1,−1) :=
b1
Φ2

(Mh)(β1) (5.15)
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and calculate L(γ1, γ1) using (2.17): L(γ1, γ1) = b1
Φ2

(−1) · L(γ1, β1).

series γ1 L(γ1, γ1)

S]1,p Φ10(Mh)(e8) = 2e1 + e2 − e4 − e5 − e6 + e8 5
E3,p Φ18(Mh)(e3) = −e2 + 2e3 + e6 − e7 + e9 6
Z1,p Φ14(Mh)(e8)

= e2 + e3 − 3e4 − e6 + e7 − 3e9 − e10 21
W1,p (Φ12Φ6Φ3)(Mh)(e3 + e9 + e11)

= e4 − e5 + e9 + e11 − e13 − e15 6
S1,p (Φ10Φ5)(Mh)(−e8 + e13)

= −2e1 + e7 − e8 − e9 − e11 − e12 − e14 10

(5.16)

In the case of the series Z1,p, define γ3 := β3 and calculate

L(γ3, γ3) = 3, L(γ1, γ3) = L(γ3, γ1) = 7. (5.17)

Φ2|b2 holds in certain subseries of the series S]1,p, E3,p, Z1,p, W1,p and S1,p. In these cases
define

γ2 := v(β2,−1) :=
b2
Φ2

(Mh)(β2) (5.18)

and calculate L(γ2, γ2) using (2.17): L(γ2, γ2) = b2
Φ2

(−1) · L(γ2, β2).

series Condition for Φ2|b2 L(γ2, γ2)

S]1,p p ≡ 0(2) 5 + p
2

E3,p p ≡ 0(2) 18 + 2p
Z1,p p ≡ 0(2) 14 + 2p
W1,p p ≡ 1(2) 12 + 2p
S1,p p ≡ 0(2) 10 + 2p

(5.19)

In table (5.20), the first line for S]1,p is the case p ≡ 0(4), the second line is the case p ≡ 2(4).

series γ2

S]1,p −e2 + e4 + e5 + e6 − e7 +
∑2+p/4
j=1 (e7+2j + e10+ p

2 +2j)

−e4 + e5 +
∑(6+p)/4
j=1 (−e8+2j + e11+ p

2 +2j)

E3,p −e2 + 2e5 + e6 − e7 + e9 + 2
∑4+p/2
j=1 e8+2j

Z1,p −e2 + 2e5 + e6 − e7 + e10 + 2
∑3+p/2
j=1 e9+2j

W1,p −2e3 + e4 + e5 + e9 + e11 + e13 + e15 + 2
∑(1+p)/2
j=1 e14+2j

S1,p 2(−e1 − e2 + e4 + e5 + e6)− e7 − e8

+e9 + e11 + e12 + e14 − 2
∑p/2
j=1 e14+2j

(5.20)

In the subseries of E3,p,W1,p and S1,p with Φ2|b2, one sees

γ̃2 :=
1

2
(γ1 + γ2)

!
∈Ml(f). (5.21)

In the subseries of Z1,p with Φ2|b2, one sees

γ̃2 :=
1

2
(γ1 + γ2 − 3γ3)

!
∈Ml(f). (5.22)
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Together with [Ml(f) : B1 ⊕B2] = 2 for these subseries, this shows

Ml(f)Φ2
= Zγ1 ⊕ Zγ̃2 for E3,2q,W1,2q−1, S1,2q, (5.23)

Ml(f)Φ2
= Z(γ1 − 2γ3)⊕ Zγ̃2 ⊕ Zγ3 for Z1,2q. (5.24)

For S]1,2q, Ml(f) = B1 ⊕ B2 gives Ml(f)Φ2
= Zγ1 ⊕ Zγ2. The matrices of L for these bases

of Ml(f)Φ2
in these cases are

S]1,2q E3,2q Z1,2q(
5 0
0 5 + q

) (
6 3
3 6 + q

) 5 2 1
2 5 + q −1
1 −1 3


W1,2q−1 S1,2q(
6 3
3 4 + q

) (
10 5
5 5 + q

) (5.25)

These matrices are positive definite. The corresponding quadratic forms (x1 x2)(matrix)

(
x1

x2

)
respectively (x1 x2 x3)(matrix)

x1

x2

x3

 are

5x2
1 + (5 + q)x2

2 for S]1,2q

3x2
1 + 3(x1 + x2)2 + (3 + q)x2

2 for E3,2q

(2x1 + x2)2 + (x1 + x3)2

+(x2 − x3)2 + (3 + q)x2
2 + x2

3 for Z1,2q (5.26)

3x2
1 + 3(x1 + x2)2 + (1 + q)x2

2 for W1,2q−1

5x2
1 + 5(x1 + x2)2 + qx2

2 for S1,2q

This shows

{a ∈Ml(f)Φ2
|L(a, a) = L(γ1, γ1)} = {±γ1}. (5.27)

for W1,2q−1 with q 6= 2, for S1,2q with q 6= 5, and for all S]1,2q and E3,2q. It shows for Z1,2q

{a ∈Ml(f)Φ2
|L(a, a) = 3} = {±γ3}, (5.28)

{a ∈Ml(f)Φ2
|L(a, a) = 5} = {±(γ1 − 2γ3)}. (5.29)

All this implies

Aut(Ml(f)Φ2
, L) = {± id |Zγ1

} × {± id |Zγ2
} for S]1,2q,

for E3,2q, for S1,2q with q 6= 5,

and for W1,2q−1 with q 6= 2, (5.30)

Aut(Ml(f)Φ2
, L) = {± id |Zγ1⊕Zγ3

} × {± id |Zγ2
} for Z1,2q. (5.31)

In the cases S]1,2q−1, E3,2q−1, Z1,2q−1, W1,2q and S1,2q−1 with Φ2 6 | b2,

Ml(f)Φ2
= (B̃1)Φ2

and Aut(Ml(f)Φ2
, L) = {± id}. (5.32)

Define

γ4 :=

{
γ1 for E3,p,W1,p, S1,p

γ1 − 3γ3 for Z1,p.
(5.33)
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Then for E3,p, W1,p with p 6= 3, S1,p with p 6= 10, Z1,p

g(γ4) = ±γ4 for g ∈ GZ, (5.34)

and for E3,p, W1,p (including p = 3), S1,p (including p = 10), Z1,p

B̃1 ⊕B2 = {a ∈Ml(f) |L(a, γ4) ≡ 0(2)}. (5.35)

Here ⊂ in (5.35) follows from

L(B2, γ4) = 0 and L(β1, γ4) ≡ 0(2)

and in the case of Z1,p L(β3, γ4) = 4. Now = in (5.35) follows from L(Ml(f), γ4) = Z and

[Ml(f) : B̃1 ⊕B2] = 2. Together (5.34) and (5.35) show that any g ∈ GZ respects B̃1 ⊕B2, so

GZ ⊂ Aut(B̃1 ⊕B2, L) (5.36)

for E3,p, W1,p with p 6= 3, S1,p with p 6= 10 and Z1,p. We claim that (5.34) and thus (5.36) hold
also for W1,3. That will be proved in the subsection 5.7.

It rests to show Aut(B̃1 ⊕ B2, L) ⊂ GZ for the series E3,p, Z1,p, W1,p, S1,p. We will extend

the definition of γ̃2 in such a way to the cases with Φ2 6 |b2 that (B̃1⊕B2) +Z · γ̃2 = Ml(f). And

we will show g(γ̃2) ∈ Ml(f) for any g ∈ Aut(B̃1 ⊕ B2, L). This implies Aut(B̃1 ⊕ B2, L) ⊂ GZ.

The proof of g(γ̃2) ∈Ml(f) requires a better control of Aut(B̃1 ⊕B2, L).
Consider all eight series and define

b4 :=
gcd(b1, b2)

gcd(b1, b2,Φm)
= gcd(

b1
Φm

, b2) ∈ Z[t]. (5.37)

Then

b4 =


1 for W ]

1,p, S
]
1,2q−1, U1,p, E3,2q−1, Z1,2q−1,

Q2,p with p 6≡ 0(4),W1,2q, S1,2q−1,

Φ2 for S]1,2q, E3,2q, Z1,2q,W1,2q−1 with q 6≡ 2(3), S1,2q,
Φ4 for Q2,4s,
Φ6Φ2 for W1,6s−3.

(5.38)

We claim that in all cases except S1,10, any g ∈ GZ ∪ Aut(B̃1 ⊕ B2, L) maps (B̃1)b4 to (B̃1)b4
and (B2)b4 to (B2)b4 . In the cases with b4 = 1 this is an empty statement as then

(B̃1)b4 = {0} = (B2)b4 .

In the cases Q2,p with p ≡ 0(4) and W1,6s−3, this will be shown in the subsections 5.6 and 5.7.
In all other cases b4 = Φ2 and (B2)b4 = Z · γ2 and

(B̃1)b4 =

{
Z · (γ1 − 2γ3)⊕ Z · γ3 for Z1,2q,
Z · γ1 else.

(5.39)

Because (B̃1 ⊕B2)Φ2 ⊂Ml(f)Φ2 , (5.27)–(5.29) hold also with (B̃1 ⊕B2)Φ2 instead of Ml(f)Φ2 .

They characterize (B̃1)Φ2
within Ml(f)Φ2

and within (B̃1 ⊕B2)Φ2
. Thus any

g ∈ GZ ∪Aut(B̃1 ⊕B2, L)

maps (B̃1)Φ2
to itself, and then it maps also the L-orthogonal sublattice (B2)Φ2

to itself.

For all eight series except S1,10, this implies the following. For any g ∈ GZ ∪Aut(B̃1⊕B2, L)

g : B̃1 → B̃1 and B2 → B2 if m 6 | p, (5.40)

g : (B̃1)b1/Φm → (B̃1)b1/Φm
g : (B2)b2/Φm → (B2)b2/Φm

}
if m|p and the

type is not S1,10.
(5.41)
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Now we want to apply lemma 2.8 to these Orlik blocks. One checks easily that all hypotheses
are satisfied. Therefore

Aut(B̃1 ⊕B2, L) (5.42)

= {±Mk
h |B̃1

| k ∈ Z} × {±Mk
h |B2

| k ∈ Z} if m 6 | p,

and if m| p and the type is not S1,10, then Aut(B̃1 ⊕B2, L) projects to a subgroup of

Aut((B̃1)b1/Φm , L)×Aut((B2)b2/Φm , L) (5.43)

= {±Mk
h |(B̃1)b1/Φm

| k ∈ Z} × {±Mk
h |(B2)b2/Φm

| k ∈ Z}.

The group Aut(B̃1 ⊕B2, L) for m 6 |p is generated by

Mh,− id, Mh|B̃1
× id |B2 , and (− id |B̃1

)× id |B2 ,

and analogously for the group in (5.43) if m| p.
Now we extend the definition of γ2. For E3,2q−1, Z1,2q−1 and S1,2q−1 define it as follows:

γ2 := e2 − e6 + e7 + e9for E3,2q−1, (5.44)

γ2 := e2 − e6 + e7 + e10for Z1,2q−1,

γ2 := 2(−e1 − e2 +
∑

j∈{4,5,6}

ej)− e7 − e8 +
∑

j∈{9,11,12,14}

ejfor S1,2q−1.

(5.105), (5.110) and (5.162) show γ2 ∈ B2. For W1,2q (so p = 2q) define

γ2 := (tp(t+ 1)Φ12 +

p−1∑
j=0

tj)(Mh)(e16) (5.45)

= (tp(1 + t− t2 − t3 + t4 + t5) +

p−1∑
j=0

tj)(Mh)(e16)

= −2e2 + 2e6 − 2e7 + e4 + e5 + e9 − e11 + e13 − e15.

Observe that in the case 12|p, Φ12 divides
∑p−1
j=0 t

j so that then γ2 ∈ Φ12(Mh)(B2) = (B2)b2/Φ12
.

In all four cases 1
2 (γ4 + γ2) ∈Ml(f).

Now for the series E3,p, Z1,p,W1,p and S1,p

γ4 ∈ (B1)Φ2
,

{
γ2 ∈ B2 if m 6 | p,
γ2 ∈ (B2)b2/Φm if m| p, (5.46)

γ̃2 :=
1

2
(γ4 + γ2)

!
∈Ml(f), (5.47)

Ml(f) = (B̃1 ⊕B2) + Zγ̃2, (5.48)

(Mh|B̃1
× id |B2

)(γ̃2) = ((− id |B̃1
)× id |B2

)(γ̃2)

=
1

2
(−γ4 + γ2) = −γ4 + γ̃2 ∈Ml(f). (5.49)

Therefore any g ∈ Aut(B̃1 ⊕ B2, L) maps γ̃2 to an element of Ml(f). Thus it maps Ml(f) to
Ml(f), thus g ∈ GZ. This finishes the proof of (5.4) and of part (a) for all series except Q2,p

and W1,6s−3 and S1,10. For Q2,p and W1,6s−3 and S1,10 see the subsections 5.6, 5.7 and 5.8.

(b) This follows immediately from (5.4) and (5.42). The subsections 5.6 and 5.7 establish
(5.4) and (5.42) also for the series Q2,p and W1,6s−3.
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(c) Now we consider the eight subseries with m|p. Write p = m · r with r ∈ Z≥1. Recall

ζ = e2πi/m, and recall that Z[ζ] is a principal ideal domain (lemma 2.11). In the following, ξ
will be any primitive m-th unit root.

Formula (2.24) in lemma 2.12 (b) applies with Λ = Ml(f),Λ(1) = B̃1⊕B2, p = Φm, and gives

Ml(f)Φm = (B̃1 ⊕B2)Φm = (B1 ⊕B2)Φm = (B1)Φm ⊕ (B2)Φm . (5.50)

Therefore the space

Ml(f)ξ,Z[ζ] := Ml(f)ξ ∩Ml(f)Z[ζ] (5.51)

is a free Z[ζ]-module of rank 2 with basis v1,ξ, v2,ξ with

vj,ξ := v(βj , ξ) =
bj
t− ξ

(Mh)(βj) for j = 1, 2 (5.52)

(see (2.16) for the notion v(βj , ξ)). Observe vj,ξ = vj,ξ.

The proof of part (c) will consist of four steps. Step 1 calculates the values of the hermitian
form hξ from lemma 2.2 on a suitable Z[ζ]-basis of Ml(f)ξ,Z[ζ]. Step 2 analyzes what this implies
for automorphisms of the pair (Ml(f)ξ,Z[ζ], L) and thus gives a first approximation to Ψ(GZ).
Step 3 uses (5.5) for S1,10 and (5.41) for all other singularities and the Orlik block structure of
the blocks Bj to control the action of g ∈ GZ on all eigenspaces simultaneously. It will prove
(5.9). Step 4 combines the steps 2 and 3 with results from section 3 and shows that Ψ(GZ) is
an infinite Fuchsian group.

Step 1: The form

hξ : Ml(f)ξ ×Ml(f)ξ → C, (a, b) 7→
√
−ξ · L(a, b)

from lemma 2.2 is hermitian. In this step it will be calculated with respect to the Z[ζ]-basis
v1,ξ, v2,ξ of Ml(f)ξ,Z[ζ]. For i 6= j

hξ(vi,ξ, vj,ξ) =
√
−ξ · L(vi,ξ, vj,ξ) = 0 (5.53)

because of (5.3). L(vj,ξ, vj,ξ) will be calculated with (2.17),

L(vj,ξ, vj,ξ) =
bj

t− ξ
(ξ) · L(

bj
t− ξ

(Mh)(βj), βj), (5.54)

first for j = 2, then for j = 1.
One calculates for all eight subseries:

k 0 1 2 · · · deg b2 − 1 deg b2
L(Mk

h (β2), β2) 1 −1 0 · · · 0 0 if rI = 1, −1 if rI ≥ 2

For the three subseries with rI = 1 (so W ]
1,12r, S

]
1,10r, U1,9r)

b2
t− ξ

=
tm+p − 1

(t− ξ) · Φ1
= Φ−1

1 ·
m+p−1∑
j=0

ξm+p−1−j · tj , (5.55)

b2

t− ξ
(ξ) = (ξ − 1)−1 · (m+ p) · ξ = m(1 + r)(ξ − 1)−1 · ξ, (5.56)

L(
b2
t− ξ

(Mh)(β2), β2) = (ξ − 1)−1 · ξ · (1− ξ) = ξ
2
, (5.57)

hξ(v2,ξ, v2,ξ) = m(1 + r) · (1− ξ)−1 ·
√
−ξ > 0. (5.58)
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For the five subseries with rI = 2

b2
t− ξ

=
tm/2+p + 1

t− ξ
=

m/2+p−1∑
j=0

ξm/2+p−1−j · tj , (5.59)

b2

t− ξ
(ξ) = (

m

2
+ p)(−ξ) =

m

2
(1 + 2r)(−ξ), (5.60)

L(
b2
t− ξ

(Mh)(β2), β2) = −ξ(1− ξ), (5.61)

hξ(v2,ξ, v2,ξ) =
m

2
(1 + 2r) · (1− ξ) ·

√
−ξ > 0. (5.62)

Now we turn to hξ(v1,ξ, v1,ξ). One calculates for all eight series

k 0 1 2 3 4 5 6 7 8 9 10 11
L(Mk

h (β1), β1)

for W ]
1,p 1 −1 1 0 0 1

for S]1,p 1 −1 0 1 0
for U1,p 1 −1 0 0 1 0 −1 0 0
for E3,p 1 −1 1 0 1 0 1 0 1
for Z1,p 1 −1 0 0 1 0 0
for Q2,p 1 −1 0 1 0 0 0 0 0 0 −1 0
for W1,p 3 −3 2 −1 0 1 −1 1 −1 0 1 −2
for S1,p 2 −2 0 1 0 −1 1 0 −1 0

and

for W ]
1,p

b1
t− ξ

=
Φ12

t− ξ
= t3 + ξt2 + (ξ2 − 1)t+ (ξ3 − ξ),

for S]1,p
b1
t− ξ

=
Φ10Φ2

t− ξ
=
t5 + 1

t− ξ
= t4 + ξt3 + ξ2t2 + ξ3t+ ξ4,

for U1,p
b1
t− ξ

=
Φ9

t− ξ
=
t6 + t3 + 1

t− ξ
= t5 + ξt4 + ξ2t3 + (ξ3 + 1)t2 + (ξ4 + ξ)t+ (ξ5 + ξ2),

for E3,p
b1
t− ξ

=
Φ18Φ2

t− ξ
=
t7 + t6 − t4 − t3 + t+ 1

t− ξ
= t6 + (ξ + 1)t5

+(ξ2 + ξ)t4 + (ξ6 + ξ2)t3 + (ξ7 + ξ6)t2 + (ξ8 + ξ7)t+ ξ8,

for Z1,p
b1
t− ξ

=
t7 + 1

t− ξ
= t6 + ξt5 + ξ2t4 + ξ3t3 + ξ4t2 + ξ5t+ ξ6,

for Q2,p
b1
t− ξ

=
Φ12Φ4Φ3

t− ξ
=
t8 + t7 + t6 + t2 + t+ 1

t− ξ
= t7 + (ξ + 1)t6 + (ξ2 + ξ + 1)t5 + (ξ3 + ξ2 + ξ)t4

+(ξ4 + ξ3 + ξ2)t3 + (ξ5 + ξ4 + ξ3)t2 + (ξ5 + ξ4)t+ ξ5,



TORELLI RESULTS FOR MARKED BIMODAL SINGULARITIES 149

for W1,p
b1
t− ξ

=
Φ12Φ6Φ3Φ2

t− ξ
=
t9 + t8 + t5 + t4 + t+ 1

t− ξ
= t8 + (ξ + 1)t7 + (ξ2 + ξ)t6 + (ξ3 + ξ2)t5 + (ξ3 + ξ2)t4

+(ξ3 + ξ2)t3 + (ξ4 + ξ3)t2 + (ξ5 + ξ4)t+ ξ5,

for S1,p
b1
t− ξ

=
Φ10Φ5Φ2

t− ξ
=

∑9
j=0 t

j

t− ξ
= t8 + (ξ + 1)t7 + (ξ2 + ξ + 1)t6 + (ξ3 + ξ2 + ξ + 1)t5

+(ξ4 + ξ3 + ξ2 + ξ + 1)t4 + (ξ4 + ξ3 + ξ2 + ξ)t3

+(ξ4 + ξ3 + ξ2)t2 + (ξ4 + ξ3)t+ ξ4.

This table and this list give the following values.
b1
t−ξ (ξ) L( b1

t−ξ (Mh)(β1), β1)

W ]
1,p 4ξ

3 − 2ξ = −2(ξ + ξ)ξ2 ξ3(1− ξ)
S]1,p 5ξ

4
= −5ξ −ξ(ξ2 + ξ

2 − 1)

U1,p 6ξ
5

+ 3ξ
2

= 3ξ(ξ3 − 1) −ξ6(ξ2 + ξ
2
)

E3,p 3(ξ
6

+ ξ
5

+ ξ
9

+ ξ
8
) = −3(ξ + 1)(ξ3 + 1) ξ2(ξ + ξ)(ξ2 + ξ

2
)

Z1,p 7ξ
6

= −7ξ ξ2(ξ4 + ξ
4

+ 1)

Q2,p 6(ξ
7

+ ξ
6

+ ξ
5
) = −6(ξ + ξ + 1) ξ2(ξ + 1) = (1− ξ)−1

W1,p 4(ξ
8

+ ξ
7

+ ξ
6

+ ξ
5
) = 4ξ

7
(1 + ξ)(ξ + ξ) ξ3(ξ − 1)(ξ − 1)

S1,p 5(ξ
8

+ ξ
7

+ ξ
6

+ ξ
5

+ ξ
4
) −1 + ξ + ξ2 − 2ξ3 + ξ4

With hξ(v1,ξ, v1,ξ) =
√
−ξ · L(v1,ξ, v1,ξ) and (5.54) and the information on the rings Z[ζ] in

lemma 2.11, we obtain the following values.

hξ(v1,ξ, v1,ξ)

W ]
1,p (−2)(ξ + ξ) · (1− ξ)

√
−ξ

S]1,p 5(ξ2 + ξ
2
)(ξ2 + ξ

2 − 1) · (1− ξ)−1
√
−ξ

U1,p 3(ξ4 + ξ
4

+ 1) · (1− ξ)
√
−ξ

E3,p (−3)(1 + ξ)(1 + ξ)(ξ + ξ − 1) · (1− ξ)−1
√
−ξ

Z1,p (−7)(ξ2 + ξ
2
) · (1− ξ)

√
−ξ

Q2,p (−6)(ξ + ξ + 1) · (1− ξ)−1
√
−ξ

W1,p (−4)(ξ + ξ) · (1− ξ)
√
−ξ

S1,p (−10)(ξ2 + ξ
2
) · (1− ξ)

√
−ξ

(5.63)

Here observe that as in (5.58) and (5.62) (1− ξ)
√
−ξ > 0 and (1− ξ)−1

√
−ξ > 0. In each of the

eight cases we find

hξ(v1,ξ, v1,ξ) > 0 for ξ 6∈ {ζ, ζ}, (5.64)

hξ(v1,ξ, v1,ξ) < 0 for ξ ∈ {ζ, ζ}, (5.65)

and

L(v1,ξ, β1) = L(
b1
t− ξ

(Mh)(β1), β1) ∈ Z[ζ]∗. (5.66)

Step 2: Define for each of the eight series

b5 :=
b1

Φm
∈ Z[t] unitary. (5.67)
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Then

series W ]
1,p S]1,p U1,p E3,p Z1,p Q2,p W1,p S1,p

b5 1 Φ2 1 Φ2 Φ2 Φ4Φ3 Φ6Φ3Φ2 Φ5Φ2

and

b5(ξ)/b5(ξ) ∈ {±ξk | k ∈ Z}. (5.68)

Define for each of the eight subseries with m|p

b6 :=
b2

Φm
∈ Z[t] unitary (5.69)

and

w(ξ) := −hξ(v2,ξ, v2,ξ)

hξ(v1,ξ, v1,ξ)
= −

b2
t−ξ (ξ) · L(v2,ξ, β2)

b1
t−ξ (ξ) · L(v1,ξ, β1)

= −b6
b5

(ξ) · L(v2,ξ, β2)

L(v1,ξ, β1)
. (5.70)

Then

b5(ξ)w(ξ) = b6(ξ) · L(v2,ξ, β2)

L(v1,ξ, β1)
∈ Z[ζ]. (5.71)

It is in Z[ζ] because of (5.66). The following table lists w(ξ).

w(ξ)

W ]
1,p (1 + r)(+6)[(1− ξ)(1− ξ)(ξ + ξ)]−1

S]1,p (1 + r)(−2)[(ξ2 + ξ
2
)(ξ2 + ξ

2 − 1)]−1

U1,p (1 + r)(−3)[(1− ξ)(1− ξ)(ξ4 + ξ
4

+ 1)]−1

E3,p (1 + 2r)(+3)(1− ξ)(1− ξ)[(1 + ξ)(1 + ξ)(ξ + ξ − 1)]−1

Z1,p (1 + 2r)(+1)[ξ2 + ξ
2
]−1

Q2,p (1 + 2r)(+1)(1− ξ)(1− ξ)[ξ + ξ + 1]−1

W1,p (1 + 2r)(+ 3
2 )[ξ + ξ]−1

S1,p (1 + 2r)(+ 1
2 )[ξ2 + ξ

2
]−1

(5.72)

The inequalities (5.58)(5.62)(5.64)(5.65) give

w(ξ)

{
< 0 for ξ 6∈ {ζ, ζ},
> 0 for ξ ∈ {ζ, ζ}. (5.73)

Using the Z[ζ]-basis v1,ξ, v2,ξ of Ml(f)ξ,Z[ζ], the automorphism group Aut(Ml((f)ξ,Z[ζ], hξ)
can be identified with the matrix group

{A(ξ) ∈ GL(2,Z[ζ]) |(
−1 0
0 w(ξ)

)
= A(ξ)t ·

(
−1 0
0 w(ξ)

)
·A(ξ)}. (5.74)

The isomorphism is A(ξ) 7→ g with

g(v1,ξ, v2,ξ) = (v1,ξ, v2,ξ) ·A(ξ). (5.75)

The inequalities (5.73) and theorem 3.2 tell that the matrix group in the case of ξ = ζ projects
to an infinite Fuchsian group. Additionally, 3.2 tells that the elements of the matrix group for
any ξ can be represented by triples (a(ξ), c(ξ), δ(ξ)) ∈ Z[ζ]2 × {±ζk | k ∈ Z} with

a(ξ)a(ξ)− 1 = w(ξ) · c(ξ)c(ξ), (5.76)
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where

A(ξ) =

(
a(ξ) w(ξ) · c(ξ) · δ(ξ)
c(ξ) a(ξ) · δ(ξ)

)
. (5.77)

This gives a first approximation of Ψ(GZ). It took into account only the eigenspace Ml(f)ξ,Z[ζ]

and the pairing hξ which L and complex conjugation induce on it.

Step 3: Now (5.9) will be shown. We will use that the Bj are Orlik blocks and lemma 2.8
and (5.5) for S1,10 and (5.43) for all other singularities.

Let g ∈ ker Ψ ⊂ GZ, i.e. g|Ml(f)ζ ∈ C∗ · id. Then g|Ml(f)ξ ∈ C∗ · id for all ξ with Φm(ξ) = 0,
and

g((Bj)Φm) = (Bj)Φm for j = 1, 2. (5.78)

Now g(Bj) = Bj for j = 1, 2 follows in the case S1,10 from (5.5). For all other singularities
g(Bj) = Bj for j = 1, 2 follows with (5.43) (and (5.32) for B3 in the case Z1,14r).

We want to apply lemma 2.8 to the Orlik blocks B1 and B2. One checks easily that all
hypotheses are satisfied. In the case Z1,14r B3 is glued to B1 by (5.32). Therefore in all cases

g = (ε1 ·Mk1

h )|B1 × (ε2 ·Mk2

h )|B2 (5.79)

for some ε1, ε2 ∈ {±1} and k1, k2 ∈ Z. Now consider

g̃ := ε2 ·M−k2

h ◦ g. (5.80)

It satisfies

g̃|B1
= ε1ε2 ·Mk1−k2

h |B1
, g̃|B2

= id, g̃|Ml(f)ξ
∈ C∗ · id,

thus g̃|Ml(f)ξ = id, g̃|Ml(f)Φm
= id . (5.81)

Comparison with table (5.1) shows

g̃ = id for the first 5 series in (5.1),

g̃ = id or g̃ = −M
m
2 (1+2r)

h for the last 3 series in (5.1).

In any case, g̃ and g are in {±Mk
h | k ∈ Z}, and thus ker Ψ = {±Mk

h | k ∈ Z}.

Step 4: By step 2, Ψ(GZ) is a subgroup of an infinite Fuchsian group and therefore itself a
Fuchsian group. It rests to show that it is an infinite group. By step 3, the kernel of

Ψ : GZ → Ψ(GZ)

is {±Mk
h | k ∈ Z}, so it is finite. Therefore it rests to show that GZ is infinite. We will see that

the subgroup of elements g ∈ GZ with

g = id on any eigenspace Ml(f)λ with Φm(λ) 6= 0,

i.e. g = id on (B̃1)b5 and on (B2)b6 . (5.82)

is infinite.
Consider an element g ∈ GZ with (5.82). For all singularities except S1,10 (5.4) holds. For

S1,10 (5.82) implies g(γ4) = ±γ4, and then (5.36) gives g ∈ Aut(B1 ⊕B2, L). In the case of the
series Z1,14r, the element g maps B1⊕B2 to itself because (B1⊕B2)C contains ker Φm(Mh). In

any case, lemma 2.7 applies with k = 2,Λ(1) = B1,Λ
(2) = B2, e

(1) = β1, e
(2) = β2, p0 = Φm. By

(2.20) there are unique polynomials pij ∈ Z[t]<deg bi for i = 1, 2 with

g(βj) = p1j(Mh)(β1) + p2j(Mh)(β2) (5.83)
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and

p11 = 1 + b5 · q11, p12 = b5 · q12,
p21 = b6 · q21, p22 = 1 + b6 · q22

(5.84)

for suitable polynomials qij ∈ Z[t]<ϕ(m).
g restricts to an automorphism of the pair (B1⊕B2)Φm , L). By (2.21), the matrix A(ξ) from

(5.75) in step 2 takes the form

A(ξ) =

(
1 + b5(ξ)q11(ξ) b6(ξ)q12(ξ)
b5(ξ)q21(ξ) 1 + b6(ξ)q22(ξ)

)
. (5.85)

By step 2, this matrix A(ξ) satisfies (5.76) and (5.77).
Vice versa, any polynomials qij ∈ Z[t]<ϕ(m) for i = 1, 2 such that the matrix in (5.85) satisfies

(5.76) and (5.77), give rise via (5.84) and (5.83) to an element g ∈ GZ with (5.82).
We have to prove existence of infinitely many polynomials qij ∈ Z[t]<ϕ(m) such that the

matrix in (5.85) satisfies (5.76) and (5.77) and that q12(ξ) 6= 0 and q21(ξ) 6= 0. We start by
defining

w0(ξ) := w(ξ)b5(ξ)b5(ξ) ∈ Z[ζ] ∩ R (5.86)

and asking for infinitely many solutions a(ξ), f(ξ) ∈ Z[ζ] ∩ R of the Pell equation

a(ξ)2 − 1 = w0(ξ) · f(ξ)2 (5.87)

with the additional condition

w0(ξ) | a(ξ)− 1. (5.88)

Such solutions exist due to lemma 3.3. They give rise to the elements

q11(ξ) :=
a(ξ)− 1

b5(ξ)
, q12(ξ) := f(ξ) · w(ξ)b5(ξ)

b6(ξ)
, (5.89)

q21(ξ) := f(ξ), q22(ξ) :=
a(ξ)− 1

b6(ξ)
. (5.90)

Here observe

b6(ξ) |w(ξ)b5(ξ) |w0(ξ) | a(ξ)− 1,

see (5.71), (5.68) and (5.66). These elements come from unique polynomials qij ∈ Z[t]<ϕ(m).
These polynomials satisfy all desired properties.

5.1. The series W ]
1,p. Here we only describe the case when p = 2q is even. But one can easily

obtain the odd case p = 2q−1 from that via replacing each eα+q by eα−1+q in the following lists.
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3

4 58

11+q resp. 12+q

6

1

2

7

910+q resp. 11+q 15+p

Figure 1. The CDD of a distinguished basis e1, . . . , eµ for W ]
1,2q−1 resp. W ]

1,2q

from [Eb81, Tabelle 6 & Abb. 16]

The monodromy acts on the distinguished basis e1, . . . , eµ with the CDD in figure 1 as follows:

e1 7→ −e1 − e2 + e3 + e4 + e5 + e6,

e2 7→ e1 + e2 + e8 + e12+q,

e3 7→ −e1 − e3 − e6 + e7,

e4 7→ e2 − e6 + e7 + e8,

e5 7→ e2 − e6 + e7 + e12+q,

e6 7→ e1 − 2e2 + e3 + e4 + e5 + 3e6 − 2e7,

e7 7→ −2e2 + e3 + e4 + e5 + 2e6 − e7,

e7+i 7→ e8+i for 1 ≤ i ≤ 3 + q,

e11+q 7→ −e4 − e8 − e9 − . . .− e11+q,

e11+q+i 7→ e12+q+i for 1 ≤ i ≤ 3 + q,

e15+p 7→ −e5 − e12+q − . . .− e15+p.

By table (5.13) the generators of the Orlik blocks B1 and B2 are β1 := e3 and β2 := e8. The
monodromy acts on them as follows:

e3 7→ −e1 − e3 − e6 + e7 7→ e1 + e2 − e4 − e5 − e6

7→ −e1 7→ e1 + e2 − e3 − e4 − e5 − e6, (5.91)

e8 7→ e9 7→ . . . 7→ e11+q 7→ −e4 − e8 − e9 − . . .− e11+q

7→ −e2 + e4 + e6 − e7 7→ −e12+q 7→ −e13+q 7→ . . . 7→ −e15+p

7→ e5 + e12+q + . . .+ e15+p 7→ e2 − e5 − e6 + e7 7→ e8. (5.92)
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3

4 59

11+q resp. 12+q

6

1

2

14+p

7

8

10+q resp. 11+q

Figure 2. The CDD of a distinguished basis e1, . . . , eµ for S]1,2q−1 resp. S]1,2q
from [Eb81, Tabelle 6 & Abb. 16]

Thus the characteristic polynomial of Mh on Bj is bj , and the blocks are

B1 = 〈e3, e1, e6 − e7, e2 − e4 − e5 − e6〉, (5.93)

B2 = 〈e8, e9, . . . , e15+p; e4, e5,−e2 + e6 − e7〉. (5.94)

This shows that B1 and B2 are primitive sublattices with B1 + B2 = B1 ⊕ B2 = Ml (f), i.e.
rI = 1.

5.2. The series S]1,p. Again we only describe the case when p = 2q is even. But one can easily
obtain the odd case p = 2q−1 from that via replacing each eα+q by eα−1+q in the following lists.
The monodromy acts on the distinguished basis e1, . . . , eµ with the CDD in figure 2 as follows:

e1 7→ −e1 − e2 + e3 + e4 + e5 + e6,

e2 7→ e1 + e2 + e9 + e12+q,

e3 7→ −e1 − e6 + e7 + e8,

e4 7→ e2 − e6 + e7 + e9,

e5 7→ e2 − e6 + e7 + e12+q,

e6 7→ e1 − 2e2 + e3 + e4 + e5 + 3e6 − 2e7,

e7 7→ −2e2 + e3 + e4 + e5 + 2e6 − e7,

e8 7→ −e3 − e8,

e8+i 7→ e9+i for 1 ≤ i ≤ 2 + q,

e11+q 7→ −e4 − e9 − e10 − . . .− e11+q,

e11+q+i 7→ e12+q+i for 1 ≤ i ≤ 2 + q,

e14+p 7→ −e5 − e12+q − e13+q − . . .− e14+p.
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By table (5.13) the generators of the Orlik blocks B1 and B2 are β1 := e8 and β2 := e9. The
monodromy acts on them as follows:

e8 7→ −e3 − e8 7→ e1 + e3 + e6 − e7

7→ −e1 − e2 + e3 + e4 + e5 + e6 + e8

7→ −e3 − e6 + e7 7→ −e8, (5.95)

e9 7→ e10 7→ . . . 7→ e11+q 7→ −e4 − e9 − e10 − . . .− e11+q

7→ −e2 + e4 + e6 − e7 7→ −e12+q 7→ −e13+q 7→ . . . 7→ −e14+p

7→ e5 + e12+q + . . .+ e14+p 7→ e2 − e5 − e6 + e7 7→ e9. (5.96)

Thus the characteristic polynomial of Mh on Bj is bj , and the blocks are

B1 = 〈e8, e3, e6 − e7, e1,−e2 + e4 + e5 + e6〉, (5.97)

B2 = 〈e9, e10, . . . , e14+p; e4, e5,−e2 + e6 − e7〉. (5.98)

This shows that B1 and B2 are primitive sublattices with B1 + B2 = B1 ⊕ B2 = Ml (f) and
rI = 1.

3

4 510 12+q

6

1

2

13+q 14+p

7

8

1111+q

9

Figure 3. The CDD of a distinguished basis e1, . . . , eµ for U1,p from [Eb81,
Tabelle 6 & Abb. 16]

5.3. The series U1,p. Here (and in all series except W ]
1,p and S]1,p) the list of the monodromy

action on the distinguished basis e1, . . . , eµ with the CDD in figure 3 includes both cases p = 2q
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and p = 2q − 1. It looks as follows:

e1 7→ −e1 − e2 + e3 + e4 + e5 + e6,

e2 7→ e1 + e2 + e10 + e12+q,

e3 7→ −e1 − e6 + e7 + e8,

e4 7→ e2 − e6 + e7 + e10,

e5 7→ e2 − e6 + e7 + e12+q,

e6 7→ e1 − 2e2 + e3 + e4 + e5 + 3e6 − 2e7,

e7 7→ −2e1 + e3 + e4 + e5 + 2e6 − e7,

e8 7→ e9,

e9 7→ −e3 − e8 − e9,

e9+i 7→ e10+i for 1 ≤ i ≤ 1 + q,

e11+q 7→ −e4 − e10 − e11 − . . .− e11+q,

e11+q+i 7→ e12+q+i for 1 ≤ i ≤ 2 + p− q,
e14+p 7→ −e5 − e12+q − e13+q − . . .− e14+p.

By table (5.13) the generators of the Orlik blocks B1 and B2 are β1 := e8 and β2 := e10. The
monodromy acts on them as follows:

e8 7→ e9 7→ −e3 − e8 − e9 7→ e1 + e3 + e6 − e7

7→ −e1 − e2 + e3 + e4 + e5 + e6 + e8

7→ −e6 + e7 + e8 + e9 7→ −e1 − e3 − e6 + e7 − e8, (5.99)

e10 7→ e11 7→ . . . 7→ e11+q 7→ −e4 − e10 − e11 − . . .− e11+q

7→ −e2 + e4 + e6 − e7 7→ −e12+q 7→ −e13+q 7→ . . . 7→ −e14+p

7→ e5 + e12+q + . . .+ e14+p 7→ e2 − e5 − e6 + e7 7→ e10. (5.100)

Thus the characteristic polynomial of Mh on Bj is bj , and the blocks are

B1 = 〈e1, e3, e8, e9, e6 − e7,−e2 + e4 + e5 + e6〉, (5.101)

B2 = 〈e10, e11, . . . , e14+p; e4, e5,−e2 + e6 − e7〉. (5.102)

Again B1 and B2 are primitive sublattices with B1 +B2 = B1 ⊕B2 = Ml (f) and rI = 1.

3

4 58 9

6

1

2

10 11 12 13 14

7

16+p

Figure 4. The CDD of a distinguished basis e1, . . . , eµ for E3,p from [Eb81,
Tabelle 6 & Abb. 16]
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5.4. The series E3,p. Here the monodromy acts on the distinguished basis e1, . . . , eµ with the
CDD in figure 4 as follows:

e1 7→ e3 + e4 + e5 + e6,

e2 7→ e9 + e10,

e3 7→ −e1 − e3 − e6 + e7,

e4 7→ −e1 − e6 + e7 + e8,

e5 7→ −e1 − e6 + e7 + e9,

e6 7→ 2e1 − e2 + e3 + e4 + e5 + 3e6 − 2e7,

e7 7→ e1 − e2 + e3 + e4 + e5 + 2e6 − e7,

e8 7→ −e4 − e8,

e9 7→ e1 + e2 + e10,

e9+i 7→ e10+i for 1 ≤ i ≤ 6 + p,

e16+p 7→ −e5 − e9 − e10 − . . .− e16+p.

By table (5.13) the generators of the Orlik blocks B1 and B2 are β1 := e3 and β2 := e10. The
monodromy acts on them as follows:

e3 7→ −e1 − e3 − e6 + e7 7→ −e4 − e5 − e6

7→ e2 − e3 − e4 − e5 − e6 − e8 − e9 7→ −e5 − e7

7→ e2 − e3 − e4 − e5 − e6 − e9 7→ −e4 − e5 − e7 − e8

7→ e1 + e2 − e3 − e5 − e7 − e9 7→ e3 + e6 − e7

7→ −e3, (5.103)

e10 7→ e11 7→ . . . 7→ e16+p 7→ −e5 −
16+p∑
i=9

ei

7→ −e2 + e5 + e6 − e7 7→ −e10. (5.104)

Thus the characteristic polynomial of Mh on Bj is bj , and the blocks are

B1 = 〈e1, e3, e4, e8, e6 − e7, e5 + e6, e2 − e9〉, (5.105)

B2 = 〈e10, e11, . . . , e16+p, e5 + e9, e2 − e6 + e7 + e9〉. (5.106)

This shows that B1 and B2 are primitive sublattices with B1 + B2 = B1 ⊕ B2. Furthermore
B1 ⊕B2 ⊃ {2e2} and B1 +B2 + Z · e2 = Ml(f). This shows [Ml(f) : B1 ⊕B2] = 2 = rI .
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Figure 5. The CDD of a distinguished basis e1, . . . , eµ for Z1,p from [Eb81,
Tabelle 6 & Abb. 16]

5.5. The series Z1,p. Here the monodromy acts on the distinguished basis e1, . . . , eµ with the
CDD in figure 5 as follows:

e1 7→ e3 + e4 + e5 + e6,

e2 7→ e10 + e11,

e3 7→ −e1 − e3 − e6 + e7,

e4 7→ −e1 − e6 + e7 + e8,

e5 7→ −e1 − e6 + e7 + e10,

e6 7→ 2e1 − e2 + e3 + e4 + e5 + 3e6 − 2e7,

e7 7→ e1 − e2 + e3 + e4 + e5 + 2e6 − e7,

e8 7→ e9,

e9 7→ −e4 − e8 − e9,

e10 7→ e1 + e2 + e11,

e11+i 7→ e12+i for 1 ≤ i ≤ 3 + p,

e15+p 7→ −e5 − e10 − e11 − . . .− e15+p.

Here there are three Orlik blocks B1, B2 and B3. By table (5.13) their generators are

β1 := e8, β2 := e11, and β3 := e3 + e4 − e9.

The monodromy acts on them as follows:

e8 7→ e9 7→ −e4 − e8 − e9 7→ e1 + e4 + e6 − e7

7→ e3 + e4 + e5 + e6 + e8

7→ −e1 − e2 + e4 + e5 + e7 + e8 + e9 + e10

7→ −e4 − e6 + e7 7→ −e8, (5.107)

e11 7→ e12 7→ . . . 7→ e15+p 7→ −e5 −
15+p∑
i=10

ei

7→ −e2 + e5 + e6 − e7 7→ −e11, (5.108)

e3 − e4 − e9 7→ −e3 + e4 + e9. (5.109)
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Thus the characteristic polynomial of Mh on Bj is bj , and the blocks are

B1 = 〈e8, e9, e4, e1, e6 − e7, e3 + e5 + e6,

−e2 + e5 + e7 + e10〉, (5.110)

B2 = 〈e11, e12, . . . , e15+p; e5 + e10,−e2 + e5 + e6 − e7〉, (5.111)

B3 = 〈e3 − e4 − e9〉. (5.112)

This shows that B1, B2 and B3 are primitive sublattices with B1 + B2 + B3 = B1 ⊕ B2 ⊕ B3.
Furthermore B1 ⊕ B2 ⊕ B3 ⊃ {2e5} and B1 + B2 + B3 + Z · e5 = Ml(f). This shows [Ml(f) :
B1 ⊕B2 ⊕B3] = 2 = rI .
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Figure 6. The CDD of a distinguished basis e1, . . . , eµ for Q2,p from [Eb81,
Tabelle 6 & Abb. 16]

5.6. The series Q2,p. Here the monodromy acts on the distinguished basis e1, . . . , eµ with the
CDD in figure 6 as follows:

e1 7→ e3 + e4 + e5 + e6,

e2 7→ e10 + e11,

e3 7→ −e1 − e6 + e7 + e8,

e4 7→ −e1 − e6 + e7 + e9,

e5 7→ −e1 − e6 + e7 + e10,

e6 7→ 2e1 − e2 + e3 + e4 + e5 + 3e6 − 2e7,

e7 7→ e1 − e2 + e3 + e4 + e5 + 2e6 − e7,

e8 7→ −e3 − e8,

e9 7→ −e4 − e9,

e10 7→ e1 + e2 + e11,

e10+i 7→ e11+i for 1 ≤ i ≤ 3 + p,

e14+p 7→ −e5 − e10 − e11 − . . .− e14+p.
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By table (5.13) the generators of the Orlik blocks B1 and B2 are β1 := e8 and β2 := e11. The
monodromy acts on them as follows:

e8 7→ −e3 − e8 7→ e1 + e3 + e6 − e7 7→ e3 + e4 + e5 + e6 + e8

7→ −e1 − e2 + e4 + e5 + e7 + e9 + e10 7→ −e4 − e6 + e7

7→ −e9 7→ e4 + e9 7→ −e1 − e4 − e6 + e7, (5.113)

e11 7→ e12 7→ . . . 7→ e14+p 7→ −e5 −
14+p∑
i=10

ei

7→ −e2 + e5 + e6 − e7 7→ −e11. (5.114)

Thus the characteristic polynomial of Mh on Bj is bj , and the blocks are

B1 = 〈e8, e3, e9, e4, e1, e6 − e7,

e5 + e6,−e2 + e5 + e7 + e10〉, (5.115)

B2 = 〈e11, e12, . . . , e14+p; e5 + e10,−e2 + e5 + e6 − e7〉. (5.116)

This shows that B1 and B2 are primitive sublattices with B1 + B2 = B1 ⊕ B2. Furthermore
B1 ⊕B2 ⊃ {2e5} and B1 +B2 + Z · e5 = Ml(f). This shows [Ml(f) : B1 ⊕B2] = 2 = rI .

The proof of (5.4) for Q2,p was postponed to this subsection and has to be given now. Recall
the definition (5.37) of b4 and recall b4 = Φ4 for Q2,4s and b4 = 1 for the other Q2,p. The next
aims are:

(i) For Q2,4s: To show for any g ∈ GZ ∪Aut(B1 ⊕B2, L)

g : (B1)b4 → (B1)b4 and (B2)b4 → (B2)b4 . (5.117)

(ii) For all Q2,p: To find an element γ4 ∈ (B1)Φ4 with

B1 ⊕B2 = {a ∈Ml(f) |L(a, γ4) ≡ 0(2)} (5.118)

= {a ∈Ml(f) |L(a,Mh(γ4)) ≡ 0(2)},
g(γ4) ∈ {±γ4,±Mh(γ4)} for any g ∈ GZ. (5.119)

(iii) For all Q2,p: To find an element γ5 ∈Ml(f) with

B1 +B2 + Z · γ5 = Ml(f) (5.120)

and g(γ5) ∈Ml(f) for any g ∈ Aut(B1 ⊕B2, L). (5.121)

For all Q2,p define

γ1 :=
b1
Φ4

(Mh)(β1) = (Φ12Φ3)(Mh)(e8)

= (t6 + t5 − t3 + t+ 1)(Mh)(e8)

= −2e3 − 2e4 − e5 − 2e6 + e7 − e8 − e9. (5.122)

Obviously M2
h(γ1) = −γ1. By remark 2.6 (v), (B1)Φ4

is an Orlik block with cyclic generator γ1,
so (B1)Φ4

= Z · γ1 ⊕ Z ·Mh(γ1). Calculate

Mh(γ1) = 2e1 + e2 − e5 + e6 − 2e7 − e8 − e9 − e10. (5.123)
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For Q2,4s define

γ2 :=
b2
Φ4

(Mh)(β2) =
t6+4s + 1

t2 + 1
(Mh)(e11)

= (t4+4s − t2+4s + t4s − . . .− t2 + 1)(Mh)(e11)

= −e5 − e10 + (−1)

2+2s∑
j=1

e10+2j + (−2)

1+s∑
j=1

e9+4j . (5.124)

Obviously M2
h(γ2) = −γ2. By remark 2.6 (v), (B2)Φ4 is an Orlik block with cyclic generator γ2,

so (B2)Φ4
= Z · γ2 ⊕ Z ·Mh(γ2). Calculate

Mh(γ2) = −e2 + e5 + e6 − e7 +

2+2s∑
j=1

(−1)j+1e10+2j . (5.125)

For Q2,4s define

γ3 :=
1

2
(γ1 +Mh(γ1) + γ2 +Mh(γ2)) (5.126)

and observe

γ3 = e1 −
∑

j∈{3,4,5,7,8,9,10}

ej −
1+s∑
j=1

(e9+4j + e10+4j)

!
∈ Ml(f). (5.127)

Together with [Ml(f) : B1 ⊕ B2] = 2 this shows (5.120) and that γ1,Mh(γ1), γ3,Mh(γ3) is
a Z-basis of Ml(f)Φ4 . We want to calculate the matrices of L with respect to the basis
γ1,Mh(γ1), γ2,Mh(γ2) of (B1 ⊕ B2)Φ4

and the basis γ1,Mh(γ1), γ3,Mh(γ3) of Ml(f)Φ4
. Es-

sentially we need to calculate only the values L(γ1, γ1) and L(γ2, γ2), because of (5.3) and
because of the identities for any a ∈Ml(f)Φ4

,

L(a,Mh(a)) = L(Mh(a),M2
h(a)) = −L(Mh(a), a)

= L(a, a) = L(Mh(a),Mh(a)).
(5.128)

Using M2
h(γj) = −γj and calculations similar to (2.17), we find

L(γ1, γ1) = L(
b1
Φ4

(−M−1
h )(γ1), e8) = 3 · L(Mh(γ1), e8) = 3, (5.129)

L(γ2, γ2) = L(
b2
Φ4

(M−1
h )(γ2), e11)

= (3 + 2s) · L(γ2, e11) = 3 + 2s, (5.130)
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thus

L(


γ1

Mh(γ1)
γ2

Mh(γ2)

 ,


γ1

Mh(γ1)
γ2

Mh(γ2)


t

) =


3 3 0 0
−3 3 0 0
0 0 3 + 2s 3 + 2s
0 0 −(3 + 2s) 3 + 2s

 (5.131)

and

L(


γ1

Mh(γ1)
γ3

Mh(γ3)

 ,


γ1

Mh(γ1)
γ3

Mh(γ3)


t

) =


3 3 3 0
−3 3 0 3
0 3 3 + s 3 + s
−3 0 −(3 + s) 3 + s

 . (5.132)

The quadratic form associated to the last matrix is

3

2
·
[
(x1 + x3)2 + (x1 − x4)2 + (x2 + x3)2 + (x2 + x4)2

]
(5.133)

+s · (x2
3 + x2

4).

This shows (first for Q2,4s, but in fact for all Q2,p)

{a ∈Ml(f)Φ4
|L(a, a) = 3} = {±γ1,±Mh(γ1)}, (5.134)

and because of (B1 ⊕B2)Φ4 ⊂Ml(f)Φ4

{a ∈ (B1 ⊕B2)Φ4
|L(a, a) = 3} = {±γ1,±Mh(γ1)}, (5.135)

This implies that any g ∈ GZ ∪Aut(B1⊕B2, L) maps the set {±γ1,±Mh(γ1)} to itself and thus
(B1)Φ4

to itself and thus the L-orthogonal sublattice (B2)Φ4
to itself. This shows (5.117) and

gives (i).
Define for all Q2,p

γ4 := γ1 +Mh(γ1) (5.136)

= 2e1 + e2 − 2e3 − 2e4 − 2e5 − e6 − e7 − 2e8 − 2e9 − e10.

Observe

Mh(γ4) = −γ1 +Mh(γ1) (5.137)

= −2γ1 + γ4. (5.138)

(5.134) and (5.137) imply (5.119). (5.138) implies the second equality in (5.118). One calculates

L(e8, γ4) = 0. (5.139)

This shows L(e8,Mh(γ4)) ≡ 0(2) (in fact, it is = −2). The Mh-invariance of L and the fact that
e8 is a cyclic generator of the Orlik block B1 give B1 ⊂ {a ∈ Ml(f) |L(a, γ4) ≡ 0(2)}. As (5.3)
implies L(B2, γ4) = 0, so B1 ⊕B2 ⊂ {a ∈Ml(f) |L(a, γ4) ≡ 0(2)}. Now rI = 2 and for example
L(e2, γ4) = −1 6≡ 0(2) show (5.118) and (ii). (ii) implies GZ ⊂ Aut(B1 ⊕B2, L).

(iii) implies Aut(B1 ⊕B2, L) ⊂ GZ, but (iii) has still to be proved.
We continue as in the final part of the proof of part (a) for the other series. (i) holds. Lemma

2.8 can be applied. Therefore (5.42) and (5.43) hold for Q2,p. The group Aut(B1 ⊕ B2, L) for
12 6 |p is generated by Mh,− id,Mh|B1

× id |B2
and (− id)|B1

× id |B2
, and analogously for the

group in (5.43) if 12|p.
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Figure 7. The CDD of a distinguished basis e1, . . . , eµ for W1,p from [Eb81,
Tabelle 6 & Abb. 16]

For Q2,4s we define γ5 := γ3. It satisfies (5.120). If 12|4s, it is in (B1)b1/Φm + (B3)b2/Φm , so
we can work with the group in (5.43). If 12 6 |4s, we work with the group in (5.42). In both cases
γ5 satisfies (5.121), because of

(Mh|B1 × id |B2)(γ5) = γ5 −Mh(γ1) ∈Ml(f), (5.140)

((− id)|B1 × id |B2)(γ5) = γ5 − (γ1 +Mh(γ1)) ∈Ml(f). (5.141)

For other Q2,p, we choose a different (rather simple) γ5,

γ5 := e10 (5.142)

=
1

2
(−e2 + e6 − e7 + e10)− 1

2
(−e2 + e6 − e7 − e10),

with −e2 + e6 − e7 + e10 ∈ B1,−e2 + e6 − e7 − e10 ∈ B2.

Then (5.120) holds. And

(Mh|B1
× id |B2

)(γ5) = e1 + e2 ∈Ml(f), (5.143)

((− id)|B1
× id |B2

)(γ5) = e2 − e6 + e7 ∈Ml(f). (5.144)

In any case (5.120) and (5.121) and (iii) hold. Thus Aut(B1 ⊕B2, L) ⊂ GZ, and (5.4) is proved
for Q2,p.
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5.7. The series W1,p. Here the monodromy acts on the distinguished basis e1, . . . , eµ with the
CDD in figure 7 as follows:

e1 7→ −e1 − e2 + e3 + e4 + e5 + e6,

e2 7→ 2e1 + 2e2 + e8 + e12 + e16,

e3 7→ −e1 − e3 − e6 + e7,

e4 7→ e2 − e6 + e7 + e8,

e5 7→ e2 − e6 + e7 + e12,

e6 7→ e1 − 2e2 + e3 + e4 + e5 + 3e6 − 2e7,

e7 7→ −2e2 + e3 + e4 + e5 + 2e6 − e7,

e8 7→ e9,

e9 7→ e10,

e10 7→ e11,

e11 7→ −e4 − e8 − e9 − e10 − e11,

e12 7→ e13,

e13 7→ e14,

e14 7→ e15,

e15 7→ −e5 − e12 − e13 − e14 − e15,

e15+i 7→ e16+i for 1 ≤ i ≤ p− 1,

e15+p 7→ −e1 − e2 − e16 − e17 − . . .− e15+p.

By table (5.13) the generators of the Orlik blocks B1 and B2 are β1 := e3+e9+e11 and β2 := e16.
The monodromy acts on them as follows:

e3 + e9 + e11 7→ −e1 − e3 − e4 − e6 + e7 − e8 − e9 − e11

7→ e1 − e5 − e7 + e11

7→ −e1 − e4 − e8 − e9 − e10 − e11 − e12

7→ e1 − e3 − e5 − e7 − e13

7→ e3 + e6 − e7 − e12 − e14

7→ −e3 − e13 − e15

7→ e1 + e3 + e5 + e6 − e7 + e12 + e13 + e15

7→ −e1 + e4 + e7 − e15

7→ e1 + e5 + e8 + e12 + e13 + e14 + e15 (5.145)

7→ −e1 + e3 + e4 + e7 + e9

7→ −e3 − e6 + e7 + e8 + e10

7→ e3 + e9 + e11,
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e16 7→ e17 7→ . . . 7→ e14+p 7→ e15+p

7→ −e1 − e2 −
15+p∑
i=16

ei

7→ −e3 − e4 − e5 − e6 − e8 − e12

7→ −e4 − e5 − e7 − e8 − e9 − e12 − e13

7→ −e3 − e4 − e5 − e7 − e8 − e9 − e10 − e12 − e13 − e14

7→ e1 − e4 − e5 + e6 − 2e7 −
15∑
i=8

ei

7→ −e2 + e4 + e5 + 2e6 − 2e7 (5.146)

7→ −e16.

Thus the characteristic polynomial of Mh on Bj is bj . Here the blocks B1 and B2 are generated
by the first deg b1 respectively deg b2 of the elements above. Here B1 + B2 = B1 ⊕ B2 and
[Ml(f) : B1 ⊕ B2] = 2 = rI follow by the calculation of the determinant which expresses these
generators of B1 and B2 in the distinguished basis e1, . . . , eµ. Then it also follows that B1 and
B2 are primitive sublattices.

The proof of (5.4) for W1,6s−3 was postponed to this subsection and has to be given here.
But the majority of the arguments was already given in the proof of part (a). It rests to prove
the following two points:

(i) (5.34) holds for W1,3.
(ii) In the case W1,6s−3, any g ∈ GZ ∪ Aut(B1 ⊕ B2, L) maps (B1)b4 to itself and (B2)b4 to

itself. Here b4 = Φ6Φ2.

For the rest of this subsection we restrict to W6s−3. Define for it

δ1 :=
b1

Φ6Φ2
(Mh)(β1) = (Φ12Φ3)(Mh)(e3 + e9 + e11) (5.147)

= Φ3(Mh)(e9 − e13) = e9 + e10 + e11 − e13 − e14 − e15,

δ2 :=
b2

Φ6Φ2
(Mh)(β2) =

t6+p + 1

t3 + 1
(Mh)(e16) (5.148)

= (t3+p − tp + . . .− t3 + 1)(Mh)(e16)

= e1 + e2 −
∑

j∈{3,4,5,7,8,9,10,12,13,14}

ej +

p∑
j=1

e15+j +

p/3−1∑
j=0

(−1)je16+3j .

δ1 and δ2 are cyclic generators of the Orlik blocks (B1)Φ6Φ2
and (B2)Φ6Φ2

, see remark 2.6 (v).
Thus δi,Mh(δi) and M2

h(δi) are a Z-basis of (Bi)Φ6Φ2
. One calculates
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Mh(δ1) = −e4 − e8 − e9 + e5 + e12 + e13, (5.149)

M2
h(δ1) = −e8 − e9 − e10 + e12 + e13 + e14, (5.150)

Mh(δ2) = e1 + e3 + 2e6 − 2e7 −
∑

j=9,10,11,13,14,15

ej

+

p/3−1∑
j=0

(−1)je17+3j , (5.151)

M2
h(δ2) = −e2 + 2e4 + 2e5 + 2e6 − e7 + e8 + e9 + e12 + e13

+

p/3−1∑
j=0

(−1)je18+3j . (5.152)

We need to calculate the 6 × 6 matrix of values of L for the Z-basis
δ1,Mh(δ1),M2

h(δ1), δ2,Mh(δ2),M2
h(δ2) of (B1 ⊕ B2)Φ6Φ2 . Because of (5.3), it is block di-

agonal with two 3 × 3 blocks. Because L is Mh-invariant and because of the identities for any
a ∈Ml(f)Φ6Φ2

,

L(Mh(a), a) = −L(a, a), L(M2
h(a), a) = −L(a,Mh(a)),

L(a,M2
h(a)) = L(Mh(a),M3

h(a)) = −L(Mh(a), a) = L(a, a),

each 3× 3 matrix is determined by two values. The matrices are

L(M i
h(δ1),M j

h(δ1))i,j=0,1,2 =

 2 2 2
−2 2 2
−2 −2 2

 , (5.153)

L(M i
h(δ2),M j

h(δ2))i,j=0,1,2 =

 1 + 2s 0 1 + 2s
−1− 2s 1 + 2s 0

0 −1− 2s 1 + 2s

 . (5.154)

Recall the definition γ̃2 := 1
2 (γ1 + γ2) in (5.21), and recall

Ml(f)Φ2
= Zγ1 ⊕ Zγ̃2

2:1
⊃ Zγ1 ⊕ Zγ2 = (B1 ⊕B2)Φ2

. (5.155)

Thus also

Ml(f)Φ6Φ2 = 〈δ1,Mh(δ1),M2
h(δ1), δ2,Mh(δ2), γ̃2〉

2:1
⊃ (B1 ⊕B2)Φ6Φ2

, (5.156)

where

γ̃2 =
1

2
(γ1 + γ2) =

1

2
(δ1 −Mh(δ1) +M2

h(δ1) + δ2 −Mh(δ2) +M2
h(δ2)).

The matrix of L for the Z-basis δ1,Mh(δ1),M2
h(δ1), δ2,Mh(δ2), γ̃2 of Ml(f)Φ6Φ2 is

2 2 2 0 0 1
−2 2 2 0 0 −1
−2 −2 2 0 0 1
0 0 0 1 + 2s 0 1 + 2s
0 0 0 −1− 2s 1 + 2s −1− 2s
1 −1 1 1 + 2s −1− 2s 3 + 3s

 (5.157)
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The associated quadratic form (x1 . . . x6)(matrix)

x1

...
x6

 is

1

2

[
(2x1 + x6)2 + (2x2 − x6)2 + (2x3 + x6)2

]
(5.158)

+
1

2
(1 + 2s)

[
(x4 − x5 + x6)2 + (x4 + x6)2 + (x5 − x6)2

]
.

One finds

{a ∈Ml(f)Φ6Φ2
|L(a, a) = 2} = {±M j

h(δ1) | j = 0, 1, 2}, (5.159)

and also

{a ∈ (B1 ⊕B2)Φ6Φ2
|L(a, a) = 2} = {±M j

h(δ1) | j = 0, 1, 2}. (5.160)

Thus any g ∈ GZ ∪ Aut(B1 ⊕ B2, L) maps δ1 to an element of {±M j
h(δ1) | j = 0, 1, 2}. These

are cyclic generators of the Orlik block (B1)Φ6Φ2 . Thus any g ∈ GZ ∪ Aut(B1 ⊕ B2, L) maps
(B1)Φ6Φ2 to itself. As (B2)Φ6Φ2 is the L-orthogonal sublattice within Ml(f)Φ6Φ2 , such a g maps
also (B2)Φ6Φ2

to itself. This shows (ii) above. Especially such a g maps (B1)Φ2
to itself and its

generator γ4 = γ1 to ±γ4. This shows (i) above.

3

4 59 12

6

1

2

13 14

7

8

1011

15

14+p

Figure 8. The CDD of a distinguished basis e1, . . . , eµ for S1,p from [Eb81,
Tabelle 6 & Abb. 16]
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5.8. The series S1,p. Here the monodromy acts on the distinguished basis e1, . . . , eµ with the
CDD in figure 8 as follows:

e1 7→ −e1 − e2 + e3 + e4 + e5 + e6,

e2 7→ 2e1 + 2e2 + e9 + e12 + e15,

e3 7→ −e1 − e6 + e7 + e8,

e4 7→ e2 − e6 + e7 + e9,

e5 7→ e2 − e6 + e7 + e12,

e6 7→ e1 − 2e2 + e3 + e4 + e5 + 3e6 − 2e7,

e7 7→ −2e2 + e3 + e4 + e5 + 2e6 − e7,

e8 7→ −e3 − e8,

e9 7→ e10,

e10 7→ e11,

e11 7→ −e4 − e9 − e10 − e11,

e12 7→ e13,

e13 7→ e14,

e14 7→ −e5 − e12 − e13 − e14,

e14+i 7→ e15+i for 1 ≤ i ≤ p− 1,

e14+p 7→ −e1 − e2 − e15 − e16 − . . .− e14+p.

By table (5.13) the generators of the Orlik blocks B1 and B2 are β1 := −e8 + e13 and β2 := e15.
The monodromy acts on them as follows:

−e8 + e13 7→ e3 + e8 + e14

7→ −e1 − e3 − e5 − e6 + e7 − e12 − e13 − e14

7→ e1 − e3 − e4 − e7 − e8

7→ e3 + e6 − e7 − e9

7→ e8 − e10

7→ −e3 − e8 − e11

7→ e1 + e3 + e4 + e6 − e7 + e9 + e10 + e11

7→ −e1 + e3 + e5 + e7 + e8

7→ −e3 − e6 + e7 + e12 (5.161)

7→ −e8 + e13,

e15 7→ e16 7→ . . . 7→ e14+p 7→ −e1 − e2 −
14+p∑
i=15

ei

7→ −e3 − e4 − e5 − e6 − e9 − e12

7→ −e3 − e4 − e5 − e7 − e8 − e9 − e10 − e12 − e13

7→ e1 − e4 − e5 + e6 − 2e7 −
∑

j∈{9,10,11,12,13,14}

ej

7→ −e2 + e4 + e5 + 2e6 − 2e7 7→ −e15. (5.162)
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Thus the characteristic polynomial of Mh on Bj is bj . Here the blocks B1 and B2 are generated
by the first deg b1 respectively deg b2 of the elements above. Here B1 + B2 = B1 ⊕ B2 and
[Ml(f) : B1 ⊕ B2] = 2 = rI follow by the calculation of the determinant which expresses these
generators of B1 and B2 in the distinguished basis e1, . . . , eµ. Then it also follows that B1 and
B2 are primitive sublattices.

The proof of (5.5) for S1,10 was postponed to this section and has to be given here. From
now on only S1,10 is considered. (5.25) shows that (Ml(f)Φ2 , L) is an A2-lattice with roots
{±γ1,±γ̃2,±(γ̃2 − γ1)}. Here γ1 generates (B1)Φ2

. We will show that (B1)Φ10
and ±γ1 satisfy

the following special relationship:[
((B1)Φ10 + Z · a)Q ∩Ml(f) : ((B1)Φ10 + Z · a)

]
=

{
5 if a = ±γ1,
1 if a ∈ {±γ̃2,±(γ̃2 − γ1)}. (5.163)

If a = ±γ1, then

((B1)Φ10 + Z · a)Q ∩Ml(f) = (B1)Φ10Φ2 =

4⊕
j=0

Z · (tjΦ5)(Mh)(β1),

(B1)Φ10
+ Z · a = (B1)Φ10

+ (B1)Φ2

=

3⊕
j=0

Z · (tjΦ2Φ5)(Mh)(β1) ⊕ Z · (Φ10Φ5)(Mh)(β1),

so the index is  4⊕
j=0

Z · tj :

3⊕
j=0

Z · tjΦ2 ⊕ Z · Φ10

 = 5.

Now recall that (B1)Φ10
is a primitive sublattice of Ml(f) and that

B1 ⊂
14⊕
j=1

Z · ej , so (B1)Φ10
⊂

14⊕
j=1

Z · ej .

Observe that

γ̃2 ≡ γ̃2 − γ1 ≡ −
24∑
j=15

ej mod

14∑
j=1

Z · ej .

Because of the sum −
∑24
j=15 ej in γ̃2 and in γ̃2 − γ1, the sublattices (B1)Φ10

⊕ Z · γ̃2 and

(B1)Φ10
⊕ Z · (γ̃2 − γ1) are primitive in Ml(f), so the index above is 1. This shows (5.163).

Now (5.5) is an easy consequence: Consider an element g ∈ GZ with g((B1)Φ10
) = (B1)Φ10

. It
must map γ1 to some root of the A2-lattice (Ml(f)Φ10

, L). Because of (5.163), the image must
be ±γ1, so g((B1)Φ2) = (B1)Φ2 . Therefore g((B1)Φ10Φ2) = (B1)Φ10Φ2 and by its L-orthogonality
also g((B2)Φ10Φ2) = (B2)Φ10Φ2 .

For S1,10 b1 = Φ10Φ5Φ2 and b2 = Φ30Φ10Φ6Φ2, so the eigenspaces with eigenvalues different
from the roots of Φ10Φ2 are one-dimensional and are either in (B1)C or in (B2)C. This implies
(5.5) for S1,10.

This finishes the proof of theorem 5.1. �
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6. The group GZ for the quadrangle singularities

The normal forms from [AGV85, §13] for the six families of quadrangle singularities will be listed
below in section 10. The quadrangle singularities can be seen as special 0-th members of the

eight bimodal series, with the two series W ]
1,p and W1,p for W1,0 and the two series S]1,p and S1,p

for S1,0.
The following table specializes the table (5.1) to the case p = 0. For W1,0 and S1,0, we have

chosen the specialization of the cases W ]
1,p and S]1,p, not W1,p and S1,p. The reason is that the

Orlik blocks in theorem 5.1 for W ]
1,p and S]1,p work also for W1,0 and S1,0, but those for W1,p and

S1,p work not for W1,0 and S1,0. Again b1b2 respectively b1b2b3 for Z1,0 are the characteristic
polynomials of the surface singularities.

family µ b1 b2 b3 m rI
W1,0 15 Φ12 Φ12Φ6Φ4Φ3Φ2 − 12 1
S1,0 14 Φ10Φ2 Φ10Φ5Φ2 − 10 1
U1,0 14 Φ9 Φ9Φ3 − 9 1
E3,0 16 Φ18Φ2 Φ18Φ6Φ2 − 18 2
Z1,0 15 Φ14Φ2 Φ14Φ2 Φ2 14 2
Q2,0 14 Φ12Φ4Φ3 Φ12Φ4 − 12 2

(6.1)

The following theorem on the group GZ has a strong similarity with the analogous theorem
5.1 for the eight bimodal series. And luckily, also large parts of the proof of theorem 5.1 apply
also to the case p = 0. We do not have (5.4) GZ = Aut(

⊕
j≥1Bj , L) for E3,0, Z1,0, Q2,0. But we

have an analogue of the substitute (5.5) for S1,10, the formula (6.4). Contrary to theorem 5.1,
we need and give a precise description of the induced Fuchsian group. The proof uses theorem
3.6. A part of the proof (a surjectivity) is postponed to section 10. For each family, denote
ζ := e2πi/m ∈ S1 ⊂ C.

Theorem 6.1. For any surface singularity f in any of the six families of quadrangle singulari-
ties, the following holds.

(a) (See definition 2.3 for the notion Orlik block) For all families except Z1,0, there are
Orlik blocks B1, B2 ⊂ Ml(f), and for Z1,0, there are Orlik blocks B1, B2, B3 ⊂ Ml(f) with the
following properties. The characteristic polynomial pBj of the monodromy on Bj is bj. The sum∑
j≥1Bj is a direct sum

⊕
j≥1Bj, and it is a sublattice of Ml(f) of full rank µ and of index rI .

Define

B̃1 :=

{
B1 for all cases except Z1,0,
B1 ⊕B3 for Z1,0.

(6.2)

Then

L(B̃1, B2) = 0 = L(B2, B̃1), (6.3)

g ∈ GZ with g((B1)Φm) = (B1)Φm ⇒ g(Bj) = Bj for j ≥ 1. (6.4)

(b) The eigenspace Ml(f)ζ ⊂ Ml(f)C is 2-dimensional. The hermitian form hζ on it from

lemma 2.2 (a) with hζ(a, b) :=
√
−ζ · L(a, b) for a, b ∈ Ml(f)ζ is nondegenerate and indefinite,

so P(Ml(f)ζ) ∼= P1 contains a half-plane

Hζ := {C · a | a ∈Ml(f)ζ with hζ(a, a) < 0} ⊂ P(Ml(f)ζ). (6.5)

Therefore the group Aut(Ml(f)ζ , hζ)/S
1 · id is isomorphic to PSL(2,R). The homomorphism

Ψ : GZ → Aut(Ml(f)ζ , hζ)/S
1 · id, g 7→ g|Ml(f)ζmodS1 · id, (6.6)
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is well-defined. Ψ(GZ) is an infinite Fuchsian group acting on the half-plane Hζ . It is a triangle
group of the same type as in theorem 3.6, so of the following type:

W1,0 S1,0 E3,0 & U1,0 Z1,0 Q2,0

(2, 12, 12) (2, 10, 10) (2, 3, 18) (2, 3, 14) (2, 3, 12)
(6.7)

And

ker Ψ = {±Mk
h | k ∈ Z}. (6.8)

Proof: (a) We choose again (as in section 5) for each of the six cases a distinguished basis
with the Coxeter-Dynkin diagram in [Eb81, Tabelle 6 and Abb. 16].

The diagrams for W ]
1,p and W1,p specialize both to the same diagram for W1,0. Though the

description of the action of the monodromy on the distinguished basis for W ]
1,p in 5.1 specializes

to W1,0, but not the description for W1,p in 5.7. In the latter case e2 7→ 2e1 +2e2 +e8 +e12 +e16,
but e16 does not exist for W1,0. Therefore we work with the specialization to p = 0 of the

formulas for W ]
1,p in subsection 5.1.

The same applies to S1,0. There we work with the specialization to p = 0 of the formulas for

S]1,p in subsection 5.2.

The Orlik blocks B1 and B2 (and B3 for Z1,0) are defined as in the proof of theorem 5.1, there
for p > 0, now for p = 0. By the same arguments, the sum

∑
j≥1Bj is a direct sum

⊕
j≥1Bj

and a sublattice of Ml(f) of full rank µ and index rI , and (6.3) holds.
With respect to part (a), it rests to show (6.4). In the cases W1,0 and U1,0, it is trivial as

rI = 1 and b1 = Φm and B1 and B2 are L-orthogonal.
In the cases S1,0, E3,0, Z1,0 and Q2,0, the proof will be similar to the proof of (5.5) for S1,10

in subsection 5.8. First we treat S1,0, E3,0 and Z1,0 together, then we come to Q2,0.
The following formulas in the proof of part (a) of theorem 5.1 specialize to the cases S1,0, E3,0

and Z1,0: (5.10)–(5.26), (5.28), (5.33), (5.35).
The quadratic forms in (5.26) give now the following variants of (5.27) and (5.29):

{a ∈Ml(f)Φ2
|L(a, a) = 5} = {±γ1,±γ2}for S1,0, (6.9)

{a ∈Ml(f)Φ2
|L(a, a) = 6} = {±γ1,±γ̃2,±(γ̃2 − γ1)}for E3,0,

{a ∈Ml(f)Φ2
|L(a, a) = 5} = {±(γ1 − 3γ2),

±γ̃2,±(γ̃2 − γ2)}for Z1,0.

The first element (up to sign) of each of these three sets generates in the corresponding case
(B1)Φ2 . We claim that (B1)Φm and this first element satisfy the following special relationship.
For a in any of these three sets define

r(a) := [((B1)Φm + Z · a)Q ∩Ml(f) : ((B1)Φm + Z · a)] ∈ Z≥1. (6.10)

Then we claim:

S1,0 E3,0 Z1,0

a r(a) ±γ1 5 ±γ1 3 ±(γ1 − 2γ3) 7
a r(a) ±γ2 1 ±γ̃2,±(γ̃2 − γ1) 1 ±γ̃2,±(γ̃2 − γ2) 1

(6.11)

The proof is the same as the proof of (5.163) for S1,10 in subsection 5.8. We use that for any
unitary polynomial p(t) ∈ Z[t]deg p⊕

j=0

Z · tj :

deg p−1⊕
j=0

Z · tjΦ2 ⊕ Z · p(t)

 = |p(−1)|, (6.12)
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and

Φ10(−1) = 5,Φ18(−1) = 3,Φ14(−1) = 7. (6.13)

We also use

B1 ⊂
m1∑
j=1

Z · ej with m1 := 8, 9, 10 for S1,0, E3,0, Z1,0 (6.14)

and that the elements in the second line of (6.11) are modulo
∑m1

j=1 Z · ej

S1,0 : γ2 ≡ e9 + e11 + e12 + e14, (6.15)

E3,0 : γ̃2 ≡ e10 + e12 + e14 + e16, γ̃2 − γ1 ≡ γ̃2,

Z1,0 : γ̃2 ≡ e11 + e13 + e15, γ̃2 − γ2 ≡ −γ̃2.

Therefore (B1)Φm + Z · a for these elements a is primitive in Ml(f), and thus r(a) = 1.
The derivation of (6.4) from (6.11) and (6.9) for S1,0, E3,0 and Z1,0 is almost the same as the

derivation of (5.5) from (5.163) for S1,10 in subsection 5.8.
The only additional argument concerns B3 = Z · γ3 in the case Z1,0. Because of (5.28) any

g ∈ GZ maps B3 to itself. Because of L(γ1−2γ3, γ3) = 1 6= 0, B3 and (B1)Φ2 are glued together:
If g = ε · id on (B1)Φ2

for some ε ∈ {±1}, then g = ε · id on B3.
Now we come to Q2,0. The formulas (5.113)–(5.116), (5.118)–(5.119), (5.122)–(5.133),

(5.136)–(5.139) are also valid for p = 0 respectively s = 0. The quadratic form in (5.133)
now gives the following variant of (5.134):

A := {γ1, γ3, γ1 − γ3 +Mh(γ3), γ1 −Mh(γ1) +Mh(γ3)}, (6.16)

{b ∈Ml(f)Φ4 |L(b, b) = 3} =
⋃
a∈A
{±a,±Mh(a)}, (6.17)

so these are 16 elements which come in 4 sets of 4 elements such that each set is Mh-invariant.
Recall that M2

h = − id on Ml(f)Φ4 . The set {±γ1,±Mh(γ1)} generates (B1)Φ4 .
We claim that (B1)Φ12

and this set satisfy the following special relationship. For a ∈ A define
the index

r(a) :=
[
((B1)Φ12

+ Z · a+ Z ·Mh(a))Q ∩Ml(f) (6.18)

: ((B1)Φ12
+ Z · a+ Z ·Mh(a))

]
∈ Z≥1.

Then we claim:

r(a) =

 9 for a = γ1,
1 for a ∈ {γ3, γ1 −Mh(γ1) +Mh(γ3)},
1 or 2 for a = γ1 − γ3 +Mh(γ3).

(6.19)

r(γ1) = 9 holds because of

((B1)Φ12 + Z · γ1 + Z ·Mh(γ1))Q ∩Ml(f) (6.20)

= (B1)Φ12Φ4
=

5⊕
j=0

Z · (tjΦ3)(Mh)(β1),

(B1)Φ12
+ Z · γ1 + Z ·Mh(γ1) (6.21)

=

3⊕
j=0

Z · (tjΦ4Φ3)(Mh)(β1)⊕
1⊕
j=0

Z · (tjΦ12Φ3)(Mh)(β1),
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and thus

r(γ1) =

 5⊕
j=0

Z · tj :

3⊕
j=0

Z · tjΦ4 ⊕
1⊕
j=0

Z · tjΦ12

 = 3 · 3. (6.22)

For a ∈ A− {γ1}, r(a) ∈ {1, 2} holds because of

B1 ⊂
10∑
j=1

Z · ej , (6.23)

and because the elements a and Mh(a) for a ∈ A− {γ1} are modulo
∑10
j=1 Z · ej

γ1 ≡ −e13 − e14, (6.24)

Mh(γ1) ≡ e12 + e13,

γ1 − γ3 +Mh(γ3) ≡ e12 + 2e13 + e14,

Mh(γ1 − γ3 +Mh(γ3)) ≡ −e12 + e14,

γ1 −Mh(γ1) +Mh(γ3) ≡ e12 + e13,

Mh(γ1 −Mh(γ1) +Mh(γ3)) ≡ e13 + e14.

The derivation of (6.4) for Q2,0 from (6.17) and (6.19) is a simple variant of the derivation of
(5.5) from (5.163) for S1,10 in subsection 5.8: Consider an element g ∈ GZ with

g((B1)Φ12
) = (B1)Φ12

.

Because of (6.17), it maps the set {±γ1,±Mh(γ1)} to one of the four sets on the right hand
side of (6.17). Because of (6.19), the image must be the set {±γ1,±Mh(γ1)} itself. As this set
generates (B1)Φ4 , g maps (B1)Φ4 to itself. Then g maps the sets (B1)Φ12Φ4 , B1 = (B1)Φ12Φ4Φ3

and B2 = (B2)Φ12Φ4
to themselves. This finishes the proof of part (a).

(b) All the formulas and arguments in the proof of part (c) of theorem 5.1 for the cases

W ]
1,12r, S

]
1,10r, U1,9r, E3,18r, Z1,14r and Q2,12r are also valid for r = 0.

In step 3 now (6.4) is used instead of (5.4), just as (5.5) for S1,10. Therefore (6.7) holds and
Ψ(GZ) is an infinite Fuchsian group.

By table (5.72), the remarks 3.5 and theorem 3.6, Ψ(GZ) is a subgroup of a triangle group of
the same type as in theorem 3.6, for each case. The proof of theorem 10.1 will show that it is
the full triangle group. �

7. Gauss-Manin connection and Brieskorn lattice

The Gauss-Manin connection of isolated hypersurface singularities had been considered first by
Brieskorn in 1970 [Br70]. Since then it had been described by many people in many papers (K.
Saito, Greuel, Pham, Varchenko, M. Saito, Hertling, and others). The following presentation
will be short on the D-module foundations. It will be very precise on the relations between
the different pairings (more precise than anywhere in the literature). And it will emphasize the
computational aspects. Other versions are in [AGV88], [He93], [He95], [Ku98] and [He02].

Throughout most of this section, we consider a fixed isolated hypersurface singularity
f : (Cn+1, 0)→ (C, 0), its flat cohomology bundle

⋃
τ∈∆∗ H

n(f−1(τ),C), and the space H∞C
of global flat multi-valued sections (see section 4 for H∞C ).

First we define the elementary sections es(A,α), the spaces Cα which they generate, and the
V -filtration.
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Any global flat multi-valued section A ∈ H∞λ and any choice of α ∈ Q with e−2πiα = λ leads
to a holomorphic univalued section with specific growth condition at 0 ∈ ∆, the elementary
section es(A,α) with

es(A,α)(τ) := elog τ(α− N
2πi ) ·A(log τ). (7.1)

Recall that N is the nilpotent part of the monodromy Mh. Denote by Cα the C-vector space of
all elementary sections with fixed α and λ. The map

ψα := es(., α) : H∞λ → Cα (7.2)

is an isomorphism. The space V mod :=
⊕

α∈(−1,0] C{τ}[τ−1] · Cα is the space of all germs at 0

of the sheaf of holomorphic sections on the flat cohomology bundle with moderate growth at 0.
The Kashiwara-Malgrange V -filtration is given by the subspaces

V α :=
⊕

β∈[α,α+1)

C{τ} · Cβ , V >α :=
⊕

β∈(α,α+1]

C{τ} · Cβ . (7.3)

It is a decreasing filtration by free C{τ}-modules of rank µ with GrαV = V α/V >α ∼= Cα. And

τ : Cα → Cα+1 bijective, τ · es(A,α) = es(A,α+ 1),

∂τ : Cα → Cα−1 bijective if α 6= 0, (7.4)

τ∂τ − α : Cα → Cα nilpotent, (τ∂τ − α)es(A,α) = es(
−N
2πi

A, α).

Therefore ∂−1
τ : V >−1 → V >0 is an isomorphism, and V >−1 is a free C{{∂−1

τ }}-module of rank
µ.

With the polarizing form S (see (4.20)), we define a ∂−1
τ -sesquilinear pairing Kf on V >−1.

Its restriction to the Brieskorn lattice will be the restriction of K. Saito’s higher residue pairings
to the Brieskorn lattice (which he defined on an extension of the Brieskorn lattice to a universal
unfolding).

Lemma 7.1. A unique pairing

Kf : V >−1 × V >−1 → C{{∂−1
τ }} (7.5)

with the properties in (7.6)–(7.9) exists. In (7.6) and (7.7) A ∈ H∞e−2πiα , B ∈ H∞e−2πiβ .

Kf (es(A,α), es(B, β)) =
1

(2πi)n
S(A,B) · ∂−1

τ , (7.6)

for α, β ∈ (−1, 0), α+ β = −1,

Kf (es(A,α), es(B, β)) =
−1

(2πi)n+1
S(A,B) · ∂−2

τ , (7.7)

for α = β = 0,

Kf : Cα × Cβ → 0 for α, β ∈ R>−1, α+ β /∈ Z, (7.8)

∂−1
τ ·Kf (a, b) = Kf (∂−1

τ a, b) = Kf (a,−∂−1
τ b) (7.9)

for a, b ∈ V >−1.

It satisfies also (for α, β ∈ R>−1)

Kf : Cα × Cβ → C · ∂−α−β−2
τ if α+ β ∈ Z, (7.10)

Kf (τa, b)−Kf (a, τb) = [τ,Kf (a, b)] for a, b ∈ V >−1, (7.11)

where [τ, ∂−kτ ] = k∂−k−1
τ . If one writes Kf (a, b) =

∑
k≥1K

(−k)
f (a, b) · ∂−kτ with K

(k)
f (a, b) ∈ C,

then K
(−k)
f is (−1)k+n+1-symmetric.
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Proof: It is clear that (7.6)–(7.9) define a unique ∂−1
τ -sesquilinear pairing on V >−1. Its

∂−1
τ -sesquilinearity gives (7.10). One checks (7.11) with (7.4) and the infinitesimal N -invariance

of S. The symmetry of the K
(k)
f follows from the symmetry of S and the ∂−1

τ -sesquilinearity of
Kf . �

Remark 7.2. In the sections 9 and 10, we will prove the global Torelli conjecture for many
families of marked bimodal surface singularities. We want to claim that it follows also for all
suspensions of these families, and also for the curve singularities, if the surface singularities are
themselves suspensions of curve singularities.

The Milnor lattices of f and f + x2
n+1 are up to a sign uniquely isomorphic. The normalized

Seifert form Lhnor and the group GZ are the same.
But the Brieskorn lattices of f and f +x2

n+1 are not isomorphic. In [He93], the second author
had a lemma saying that they are sufficiently similar and vary in the same way in µ-constant
families.

Stronger and more elegant is the specialization to f+x2
n+1 of a Thom-Sebastiani formula. But

that requires to look at a Fourier-Laplace transformation. In the present situation of sections
of moderate growth, this can be done in a nice and explicit way. Lemma 7.3, definition 7.4 and
theorem 7.5 do a good part of the work. Theorem 7.9 gives a Thom-Sebastiani formula for a
Fourier-Laplace transform of the Brieskorn lattice. Theorem 7.7 states well known properties of
the Brieskorn lattice.

The pairing in lemma 7.3 had been considered first by Pham [Ph85], see remark 7.6 (i).

Lemma 7.3. Let γ−π : Hn(f−1(z),C)→ Hn(f−1(−z),C) (respectively γπ) be the isomorphism
by flat shift in mathematically negative (respectively positive) direction. Define a pairing

P : Hn(f−1(z),C)×Hn(f−1(−z),C)→ Cfor z 6= 0 (7.12)

by P (a, b) :=
1

(2πi)n+1
· Lnor(a, γ−π(b)).

It is (−1)n+1-symmetric and nondegenerate and takes values in (2πi)−(n+1) · Z on
Hn(f−1(z),Z) × Hn(f−1(−z),Z). It is flat, i.e. it has constant values on pairs of flat sec-
tions in the cohomology bundle.

Proof: The only property which might not be immediately obvious, is the (−1)n+1-symmetry.
It compares the P in (7.12) with the P where in (7.12) z is replaced by −z. It follows from the
flatness, from Mhγ−π = γπ and (4.15): Let a ∈ Hn(f−1(z),Z), b ∈ Hn(f−1(−z),Z), then

(2πi)n+1 · P (b, a) = Lnor(b, γ−πa) = (−1)n+1Lnor(Mhγ−πa, b)

= (−1)n+1Lnor(γπa, b) = (−1)n+1Lnor(a, γ−πb)

= (2πi)n+1 · (−1)n+1 · P (a, b). (7.13)

�

Definition 7.4. [He02, (7.47)] For each α ∈ R>0 define the automorphism

G(α) : H∞e−2πiα → H∞e−2πiα ,

G(α) :=
∑
k≥0

1

k!
Γ(k)(α) ·

(
−N
2πi

)k
= ′′Γ

(
α · id +

−N
2πi

)
′′. (7.14)

Here Γ is the Gamma function, and Γ(k) is its k-th derivative. Define the automorphism

G :=
∑

α∈(0,1]

G(α) : H∞C → H∞C . (7.15)
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The following theorem was first formulated in [He03, Proposition 7.7]. A detailed proof is in
[BH17, Theorem 5.2]. The most difficult part is the proof of (7.21).

Theorem 7.5. (a) Let τ and z both be coordinates on C. For α > 0 and A ∈ H∞e−2πiα , the
Fourier-Laplace transformation FL with

FL(es(A,α− 1)(τ))(z) :=

∫ ∞·z
0

e−τ/z · es(A,α− 1)(τ)dτ (7.16)

is well defined and maps the elementary section es(A,α− 1)(τ) in τ to the elementary section

FL(es(A,α− 1)(τ))(z) = es(G(α)A,α)(z) (7.17)

in z.

(b) It extends to a well defined isomorphism

FL :
∑

α∈(−1,0]

C{∂−1
τ } · Cατ → V >0

z . (7.18)

Here the indices τ at Cα and z at V >0 indicate that the coordinate τ respectively z has to be
used. It satisfies for a, b ∈

∑
α∈(−1,0] C{∂−1

τ } · Cατ

FL(∂−1
τ a) = z · FL(a), (7.19)

FL(τ · a) = z2∂zFL(a), (7.20)

P (FL(a), FL(b)) =
∑
k≥1

ckz
lif Kf (a, b) =

∑
k≥1

ck∂
−k
τ . (7.21)

Remarks 7.6. (i) Pham [Ph85] defined the pairing P in lemma 7.3 starting with an intersection
form for Lefschetz thimbles. In our situation, Hn(f−1(z),Z) for z ∈ ∆∗ is canonically isomorphic
to the Z-module generated by Lefschetz thimbles above the straight path from 0 to z. And it is
easy to see that the pairing

(−1)n(n+1)/2 · Lhnor(., γ−π) : (7.22)

Hn(f−1(z),Z)×Hn(f−1(−z),Z)→ Z

for z ∈ ∆∗ is the intersection form for Lefschetz thimbles [He05]. This formula connects lemma
7.3 with Pham’s definition.

(ii) Neither Pham nor K. Saito knew the formulas (7.6) and (7.7) for Kf with the polarizing
form S. Pham had the version of (7.21) with K. Saito’s higher residue pairings [SaK83] instead
of Kf . He did not consider explicitly the automorphisms G(α) and (7.17).

(iii) Because of (7.19), we have to consider on the left hand side of (7.18) and in (7.19)–(7.21)
the subspace

∑
α∈(−1,0] C{∂−1

τ } · Cατ of V >−1
τ . The convergence condition is stronger.

Now we come to the Brieskorn lattice. It is a free C{τ}-module H ′′0 (f) ⊂ V >−1 of rank µ
which had first been studied by Brieskorn [Br70]. The name Brieskorn lattice is due to [SaM89],
the notation H ′′0 (f) is from [Br70]. The Brieskorn lattice is generated by germs of sections s[ω]
from holomorphic (n + 1)-forms ω ∈ Ωn+1

X : Integrating the Gelfand-Leray form ω
df |f−1(τ) over

cycles in Hn(f−1(τ),C) gives a holomorphic section s[ω] in the cohomology bundle, whose germ
s[ω]0 at 0 is in fact in V >−1 (this was proved first by Malgrange). The following theorem collects
well known properties of the Brieskorn lattice. Afterwards we make comments on their proofs.
See also [He02].



TORELLI RESULTS FOR MARKED BIMODAL SINGULARITIES 177

Theorem 7.7. Algebraic properties:

H ′′0 (f) ∼= Ωn+1
Cn+1,0/df ∧ dΩn−1

Cn+1,0, (7.23)

∂−1
τ : H ′′0 (f)

∼=−→ H ′0(f) ⊂ H ′′0 (f)

with H ′0(f) ∼= df ∧ ΩnCn+1,0/df ∧ dΩn−1
Cn+1,0,

and ∂τ : s[df ∧ η]0 7→ s[dη]0. (7.24)

Compatibility with Kf : Kf is the restriction to H ′′0 (f) of K. Saito’s higher residue pairings. It
satisfies

Kf : H ′′0 (f)×H ′′0 (f)→ ∂−n−1
τ · C{{∂−1

τ }}. (7.25)

The leading part

K
(−n−1)
f : H ′′0 (f)/H ′0(f)×H ′′0 (f)/H ′0(f)→ C (7.26)

is symmetric (lemma 7.2) and nondegenerate. It is Grothendieck’s residue pairing on
Ωn+1

Cn+1,0/df ∧ ΩnCn+1,0.

Relation to Steenbrink’s Hodge filtration F •H∞C : For λ = e−2πiα with α ∈ (−1, 0],

F pStH
∞
λ = ψ−1

α

(
∂n−pτ Grn−p+αV H ′′0 (f)

)
. (7.27)

Define the unordered tuple Sp(f) =
∑µ
i=1(αi) =

∑
α∈Q d(α) · (α) ∈ Z≥0[Q] of spectral numbers

α1, . . . , αµ ∈ Q by

d(α) := dim GrαV H
′′
0 − dim GrαV H

′
0. (7.28)

Number them such that α1 ≤ . . . ≤ αµ. Then they satisfy the symmetry

αi + αµ+1−i = n− 1 (7.29)

and

−1 < α1 ≤ . . . ≤ αµ < n, (7.30)

V >−1 ⊃ H ′′0 ⊃ V n−1,

0 = Fn+1H∞, F 0H∞6=1 = H∞6=1, F
1H∞1 = H∞1 .

The algebraic properties had been proved by Brieskorn [Br70] with some help by Sebastiani.
That Kf is the restriction to H ′′0 (f) of K. Saito’s higher residue pairings [SaK83] follows from
(7.21) and Pham’s identification of P with the Fourier-Laplace transform of K. Saito’s higher
residue pairings [Ph85]. See [He02] for an alternative reasoning. Then (7.25) and the properties
of (7.26) follow from K. Saito’s work.

Steenbrink defined the Hodge filtration F •St first using resolution of singularities [St77]. Then
Varchenko [Va80-1] constructed a closely related Hodge filtration F •V a from the Brieskorn lattice
H ′′0 (f). Scherk and Steenbrink [SS85] (and also M. Saito) modified this construction to recover
F •St. This is (7.27). Then (7.29) and (7.30) follow from properties of the Hodge filtration.
Though V >−1 ⊃ H ′′0 was proved before by Malgrange.

Remark 7.8. The Fourier-Laplace transformation FL is defined on any sum of elementary
sections with the stronger convergence condition in (7.17). Therefore it is not defined on arbitrary
elements of H ′′0 . But because of (7.30),

H ′′0 = (H ′′0 ∩
⊕

−1<α<n−1

Cατ )⊕ V n−1
τ , (7.31)
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and the elements of the first summand are finite sums of elementary sections. Therefore the
space

FL(H ′′0 ∩
⊕

−1<α<n−1

Cατ )⊕ V nz (7.32)

is a well-defined free C{z}-module of rank µ. For simplicity we call it FL(H ′′0 ), although that is
not completely correct. It satisfies

z2∂z : FL(H ′′0 ) → FL(H ′′0 ), (7.33)

and P : FL(H ′′0 )× FL(H ′′0 ) → zn+1 · C{z}, (7.34)

and the leading part of P is a symmetric and nondegenerate pairing on FL(H ′′0 )/z · FL(H ′′0 ),
all of this because of (7.19)–(7.21), (7.24)–(7.26). It thus satisfies all properties of a TERP-
structure [He02, definition 2.12]. Because of the Z-lattice H∞Z and the Z-lattice bundle in the
cohomology, we can even call it a TEZP-structure. More precisely, we denote as TEZP structure
the following tuple.

TEZP (f) := (H∞Z , Lnor, V modz , P, FL(H ′′0 ))(f). (7.35)

Here V modz comes equipped with the actions of z, ∂−1
z and z∂z. We formulated theorem 7.5 and

introduced FL(H ′′0 ) because of the following Thom-Sebastiani result.

Theorem 7.9. [SS85][BH17, Theorem 6.4] Consider besides f(x0, . . . , xn) a second singularity
g(xn+1, . . . , xn+m+1). Then

TEZP (f + g) ∼= TEZP (f)⊗ TEZP (g). (7.36)

Remarks 7.10. (i) The isomorphism for the data (H∞Z , Lnor) is the classical Thom-Sebastiani
result in (4.8) and (4.10). The isomorphism for P follows from its definition with Lnor. The
isomorphism for V modz is trivial. The isomorphism for H ′′0 was essentially proved in [SS85, (8.7)
Lemma]. Though Scherk and Steenbrink did not make the compatibility with the topological
Thom-Sebastiani isomorphism between the cohomology bundles precise, and they avoided the
use of the Fourier-Laplace transformation. They obtained a ∂−1

τ -linear isomorphism

H ′′0 (f + g) ∼= H ′′0 (f)⊗H ′′0 (g).

(ii) They applied this isomorphism to obtain a Thom-Sebastiani formula for F •St in [SS85,
Theorems (8.2) and (8.11)]. Though their Thom-Sebastiani formula is wrong if N 6= 0. In the
application of the isomorphism, they had mixed ∂−1

τ -linearity and τ -linearity and went with this
isomorphism directly into the defining formula (7.27) of F •St. But the true Thom-Sebastiani
formula is quite close [BH17, Corollary 6.5]. One has to replace in [SS85, Theorems (8.2) and
(8.11)] F •St by G(F •St). This follows immediately from (7.27) and (7.36). Of course, in the case
N = 0, the isomorphism G in definition 7.4 is just a rescaling, and then G(F •St) = F •St, so then
their Thom-Sebastiani formula is correct.

(iii) As a corollary of theorem 7.9, we obtain for a suspension of f

TEZP (f + x2
n+1) ∼= TEZP (f)⊗ TEZP (x2

n+1). (7.37)

This allows us to consider in the sections 9 and 10 only the surface singularities. More generally,
it implies the corollary 8.14. This corollary is the reason why we introduced FL(H ′′0 (f)). Formula
(7.36) and this corollary are more elegant and general than the arguments with which suspensions
were treated in [He93], [He95], [He11] and [GH17].

(iv) The Thom-Sebastiani formula for F •St expresses in the case of a suspension F •St(f +x2
n+1)

in terms of F •St(f). It is made explicit in [BH17, Theorem 4.6]. It can be seen as a square
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root of a Tate twist, because F •St(f) and F •St(f + x2
n+1 + x2

n+2) are simply related by a Tate
twist. f and f + x2

n+1 + x2
n+2 have the same polarizing form S by (4.20) and (4.21), because

Mh(f) = Mh(f + x2
n+1 + x2

n+2). But the polarizing form of f + x2
n+1 is quite different, because

of Mh(f + x2
n+1) = −Mh(f) and (4.20) and (4.21). The formula in [BH17, Theorem 4.6] which

expresses F •St(f+x2
n+1) in terms of F •St(f) involves the G(α) from definition 7.4 and is compatible

with the isotropy condition (4.18) and (the generalization in the case N 6= 0 of) the positivity
condition (4.19).

Fix for a moment a reference singularity f0. In [He99] a classifying space DPMHS(f0) and a
classifying space DBL(f0) are constructed. DPMHS is a classifying space for Ms-invariant Hodge
filtrations F • on H∞C (f0) such that (H∞6=1, H

∞
6=1,Z, F

•,W,−N,S) and (H∞1 , H∞1,Z, F
•,W,−N,S)

are polarized mixed Hodge structures of weight n respectively n+1 with the same Hodge numbers
as F •St(f0).
DBL is a classifying space for subspaces L0 ⊂ V >−1

τ with the following properties:

(α) L0 is a free C{τ}-module of rank µ.
(β) L0 is a free C{{∂−1

τ }}-module of rank µ.
(γ) The filtration F • in H∞C (f0) which is constructed by formula (7.27) with L0 instead of

H ′′0 (f0) is in DPMHS .
(δ) It satisfies Kf (L0,L0) ⊂ ∂−n−1

τ · C{{∂−1
τ }}.

Theorem 7.11. Fix a reference singularity f0(x0, . . . , xn).
(a) [He99, ch. 2] DPMHS(f0) is a real homogeneous space and a complex manifold. It is a

locally trivial bundle over a product DPHS of classifying spaces for pure polarized Hodge struc-
tures. The fibers carry an affine algebraic structure and are isomorphic to CNPMHS for some
NPMHS ∈ Z≥0. The group GZ(f0) acts properly discontinuously on DPMHS.

(b) [He99, ch. 5] DBL(f0) is a complex manifold and a locally trivial bundle over DPMHS.
The fibers have a natural C∗-action with negative weights and are affine algebraic manifolds and
are isomorphic to CNBL for some NBL ∈ Z≥0. The group GZ(f0) acts properly discontinuously
on DBL.

(c) DPMHS(f0) and DPMHS(f0 + x2
n+1) are canonically isomorphic. DBL(f0) and

DBL(f0 + x2
n+1) are canonically isomorphic.

Part (c) is not formulated in [He99]. The isomorphism DBL(f0)→ DBL(f0 + x2
n+1) is given

by the generalization of (7.36), namely the map

L0 7→ FL−1
(
FL(L0)⊗ FL(H ′′0 (x2

n+1))
)
. (7.38)

The isomorphism DPMHS(f0) → DPMHS(f0 + x2
n+1) is obtained by applying Gr•V . It follows

also from [BH17, Theorem 4.6].

In the sections 9 and 10, µ-constant families of singularities in two parameters will be studied.
The following definition and theorem treat a more general situation. It had been considered
especially in [Va80-2] [AGV88] [SaM91] [He93] [Ku98].

Definition 7.12. A holomorphic µ-constant family of singularities consists of a number µ ∈ Z≥1,
a connected complex manifold T , an open neighborhood X ⊂ Cn+1 × T of {0} × T and a
holomorphic function F : X → C such that Ft := F |Xt with Xt := X ∩Cn+1×{t} for any t ∈ T
has an isolated singularity at 0 with Milnor number µ.

Theorem 7.13. Consider a holomorphic µ-constant family as in definition 7.12.
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(a) The Milnor lattices (Ml(Ft), L) with Seifert forms for t ∈ T are locally canonically iso-
morphic. They glue to a local system

⋃
t∈T Ml(Ft) of free Z-modules of rank µ.

(b) Therefore also the spaces Cα(Ft), V
mod
τ (Ft), V ατ (Ft) are locally canonically isomorphic

and glue to local systems.

(c) But the Brieskorn lattices H ′′0 (Ft) ⊂ V >−1
τ (Ft) vary holomorphically. For ω ∈ Ωn+1

X/T ,

s[ω]0(t) := s[ω|Xt ]0 ∈ H ′′0 (Ft). Let ξ be a holomorphic vector field on T . Its canonical lifts to
C× T (with coordinate τ on C) and X are also denoted ξ. The covariant derivative of s[ω]0(t)
by ξ is

ξ s[ω]0(t) = s[Lieξ ω]0(t) + (−∂τ )s[ξ(F ) · ω]0(t). (7.39)

(d) All germs Ft have the same spectrum.

Remarks 7.14. (i) Part (a) is less trivial than one might expect, as it is not clear whether
ε(t) and δ(t) in the definition of a Milnor fibration Ft : X(ε(t), δ(t)) → ∆δ(t) can be chosen as
continuous functions in t. But lemma 2.2 in [LR73] saves the situation. See [Va80-2] [He93]
[Ku98] [He11] for details.

(ii) Part (b) follows from part (a). Formula (7.39) is well known, see e.g. [Va80-2] [AGV88]
[He93] [Ku98]. Part (d) is proved in [Va82].

(iii) The bundle
⋃
t∈T H

′′
0 (Ft) ⊂

⋃
t∈T V

>−1
τ (Ft) can be seen as a germ along {0} × T on

(C, 0)× T of a holomorphic rank µ bundle.
s[ω]0 for ω ∈ Ωn+1

X/T is a holomorphic section in this bundle.

But in theorem 9.6 and theorem 10.6 we will be imprecise and consider s[ω]0 as a possibly
multi-valued holomorphic map s[ω]0 : T → V >−1

τ (Ft0) for a reference singularity Ft0 .

(iv) s[ω]0 is a sum s[ω]0 =
∑
α>−1 s(ω, α) of holomorphic families s(ω, α)(t) ∈ Cα(Ft), t ∈ T ,

of elementary sections. For each t ∈ T ,

α(s[ω]0(t)) := α(ω|Xt) := min(α | s(ω, α)(t) 6= 0) (7.40)

is the order of s[ω]0(t), and s(ω, α(ω|Xt))(t) is its principal part. The order is upper semicontin-
uous in t.

(v) A notation: ω0 := dx0 . . . dxn.

All bimodal series singularities in table (9.1) except W ]
1,p (see remark 9.5 for W ]

1,p) are Newton

nondegenerate. All quadrangle singularities in table (10.1) are semiquasihomogeneous. For such
singularities there are useful results for the computation of the order α(ω|Xt), which we describe
in the following. We start with a definition of Kouchnirenko.

Definition 7.15. Let f : (Cn+1, 0)→ (C, 0) be a singularity.
(a) [Ko76] Write f =

∑
i∈Zn+1
≥0

aix
i and define

supp(f) := {i ∈ Zn+1
≥0 | ai 6= 0}, (7.41)

Γ+(f) :=
(

convex hull of
⋃

i∈supp(f)

(i+ Rn+1
≥0 )

)
⊂ Rn+1,

Γcom(f) := {σ |σ is a compact face of Γ+(f)},
Γcom,n(f) := {σ ∈ Γcom(f) | dimσ = n},

lσ : Rn+1 → R for σ ∈ Γcom,n(f)

as the linear function with σ ⊂ l−1
σ (1).
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(b) [SaM88][KV85] The Newton order ν : C{x0, . . . , xn} → Q≥0 ∪ {∞} is

ν(
∑
i

bix
i) := min(lσ(i) | all i with bi 6= 0, all σ ∈ Γcom,n(f)). (7.42)

The Newton order ν : Ωn+1
Cn+1,0 → Q>0 ∪ {∞} is

ν((
∑
i

bix
i) · ω0) := ν((

∑
i

bix
i)x0 . . . xn). (7.43)

The Newton order ν : H ′′0 (f)→ Q>0 ∪ {∞} is

ν := max(ν(η) | η ≡ ω mod df ∧ dΩn−1
Cn+1,0). (7.44)

(c) [Ko76] For σ ∈ Γcom(f) define fσ :=
∑
i∈σ aix

i. The singularity f is Newton nondegenerate

if for each σ ∈ Γcom(f) the Jacobi ideal J(fσ) of fσ has no zero in (C∗)n+1. It is convenient if
f contains for each index j ∈ {0, . . . , n} a monomial x

mj
j for some mj ≥ 2.

The following theorem was proved in 1983 by M. Saito [SaM88]. The proof shortly afterwards
by Khovanskii and Varchenko [KV85] is completely different.

Theorem 7.16. Let f be a Newton nondegenerate and convenient singularity. For any
ω ∈ Ωn+1

Cn+1,0, its order α(ω) (defined in remark 7.14 (iv)) is α(ω) = ν(ω)− 1.

The following corollary is an easy consequence. It is proved in [He93, Satz 1.10].

Corollary 7.17. Let f be a Newton nondegenerate and convenient singularity. Define

s(f) := min

(
ν(
∂f

∂xj
· ω0)− 1 | j ∈ {0, . . . , n}

)
> 0, (7.45)

I(f) := {i ∈ Zn+1
≥0 | ν(xiω0)− 1 < s(f)}. (7.46)

Then for i ∈ I(f)

α(xiω0) = ν(xiω0)− 1, (7.47)

the numbers α(xiω0), i ∈ I(f), are the spectral numbers in the interval (−1, s(f)), and

α((
∑
i

bix
i) · ω0) =

 min(α(xiω0) | i ∈ I(f), bi 6= 0)
if an i ∈ I(f) with bi 6= 0 exists,

≥ s(f) else.
(7.48)

Remarks 7.18. (i) We expect that theorem 7.16 holds also without the condition that f is
convenient. This would be desirable as many normal forms of singularities are Newton nonde-
generate, but not convenient.

(ii) A singularity is (µ + 1)-determined, i.e. f + g ∼R f for any g ∈ mµ+1, where m is the
maximal ideal in C{x} [Ma68]. If f is Newton nondegenerate, then f+

∑n
j=0 cjx

mj
j for arbitrary

mj ≥ µ+ 1 and sufficiently generic cj ∈ C∗ is Newton nondegenerate and convenient and right
equivalent to f .

Furthermore, because of mµ ⊂ J(f) and the Artin approximation theorem, one can choose
a coordinate change ϕ with f +

∑n
j=0 cjx

mj
j = f ◦ ϕ such that all ϕj − xj ∈ mmin(mk)−µ.

Unfortunately, this is not sufficient for a generalization of theorem 7.16 to the case where f is
not convenient.

(iii) We claim that the calculations in the proof of theorem 9.6 can be carried out with almost
no change (but with additional terms) for f +

∑n
j=0 cjx

mj
j with large mj and that they give

essentially the same results. With this claim, we justify that we calculate in the proof of theorem
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9.6 with the normal forms f in table (9.1) which are almost all not convenient, but that we apply
theorem 7.16 and corollary 7.17.

(iv) Theorem 7.16 holds without the condition that f is convenient if f is semiquasihomoge-
neous. That is the case when there is only one compact face of dimension n.

Definition 7.19. (a) A singularity f is semiquasihomogeneous with weights w0, . . . , wn ∈ Q>0

if

f =
∑

i∈Zn+1
≥0

aix
i with degw x

i ≥ 1 for all i with ai 6= 0, (7.49)

and the quasihomogeneous polynomial

fqh :=
∑

i: degw x
i=1

aix
i (7.50)

has an isolated singularity at 0.

(b) A singularity f is quasihomogeneous if it is semiquasihomogeneous with f = fqh.

A quasihomogeneous singularity f satisfies the Euler equation

f =

n∑
j=0

wjxj
∂f

∂xj
. (7.51)

This equation and (7.24) and elementary calculations in [Br70] imply part (a) of the following
lemma.

Lemma 7.20. (a) Let f be a quasihomogeneous singularity with weights (w0, . . . , wn). If
ω = xiω0 is a monomial differential form then

either s[ω]0 = 0

or α(ω) = degw(xix0 . . . xn)− 1 and s[ω]0 = s(ω, α(ω)). (7.52)

(b) Let f be a semiquasihomogeneous singularity with weights (w0, . . . , wn) and f 6= fqh. The
1-parameter family fqh+t·(f−fqh) is a µ-constant family. If ω = xiω0 is a monomial differential
form then

α(ω) ≥ degw(xix0 . . . xn)− 1, (7.53)

s(ω , degw(xix0 . . . xn)− 1)(t) = s[ω]0(0),

s(ω, α)(t) =
∑
k≥0

1

k!
· tk · (−∂τ )ks((f − fqh)k · ω, α+ k)(0).

The last expression is polynomial in t because α((f − fqh)kω) > α+ k for large k.

Proof of part (b): In [AGV85, ch. 12] it is shown that fqh + t(f − fqh) is a µ-constant
family. The other assertions follow with theorem 7.13 (c) and part (a) of lemma 7.20. �

8. Review on marked singularities, their moduli spaces, µ-constant monodromy
groups and Torelli conjectures

This paper and the paper [GH17] complete the study of the data in the title of this section for
the singularities of modality ≤ 2. These data were introduced in [He11]. Here we review them.
We start with the notions marked singularity and strongly marked singularity.
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Definition 8.1. Fix one reference singularity f0.
(a) Then a strong marking for any singularity f in the µ-homotopy class of f0 (i.e. there is a

family of singularities with constant Milnor number and parameter space [0, 1] which connects
f0 and f) is an isomorphism ρ : (Ml(f), L)→ (Ml(f0), L).

(b) The pair (f, ρ) is a strongly marked singularity. Two strongly marked singularities (f1, ρ1)
and (f2, ρ2) are right equivalent (notation: ∼R) if a coordinate change ϕ : (Cn+1, 0)→ (Cn+1, 0)
with

f1 = f2 ◦ ϕandρ1 = ρ2 ◦ ϕhom
exists, where ϕhom : (Ml(f1), L)→ (Ml(f2), L) is the induced isomorphism.

(c) The notion of a marked singularity is slightly weaker. If f and ρ are as above, then the
pair (f,±ρ) is a marked singularity (writing ±ρ, the set {ρ,−ρ} is meant, neither ρ nor −ρ is
preferred).

(d) Two marked singularities (f1,±ρ1) and (f2,±ρ2) are right equivalent (notation: ∼R) if a
coordinate change ϕ with

f1 = f2 ◦ ϕandρ1 = ερ2 ◦ ϕhom for some ε ∈ {±1}
exists.

Remarks 8.2. (i) The notion of a marked singularity behaves better than the notion of a
strongly marked singularity, because it is not known whether all µ-homotopy families of singu-
larities satisfy one of the following two properties:

Assumption (8.1): Any singularity in the µ-homotopy (8.1)

class of f0 has multiplicity ≥ 3.

Assumption (8.2): Any singularity in the µ-homotopy (8.2)

class of f0 has multiplicity 2.

We expect that always one of two assumptions holds. For curve singularities and singularities
right equivalent to semiquasihomogeneous singularities and all singularities with modality ≤ 2
this is true, but in general it is not known. In a µ-homotopy family where neither of the two
assumptions holds, strong marking behaves badly, see (ii).

(ii) If mult(f) = 2 then (f, ρ) ∼R (f,−ρ), which is easy to see. If mult(f) ≥ 3, then
(f, ρ) 6∼R (f,−ρ), whose proof in [He11] is quite intricate. These properties imply that the
moduli space for strongly marked singularities discussed below is not Hausdorff in the case of a
µ-homotopy class which satisfies neither one of the assumptions (8.1) or (8.2).

In [He02] a moduli space Mµ(f0) was constructed for the µ-homotopy class of any singularity
f0. As a set it is simply the set of right equivalence classes of singularities in the µ-homotopy
class of f0. But in [He02] it is constructed as an analytic geometric quotient, and it is shown
that it is locally isomorphic to the µ-constant stratum of a singularity modulo the action of a
finite group. The µ-constant stratum of a singularity is the germ (Sµ, 0) ⊂ (M, 0) within the
germ of the base space of a universal unfolding F of f , such that for a suitable representative

Sµ = {t ∈M |Ft has only one singularity x0 and Ft(x0) = 0}. (8.3)

It comes equipped with a canonical complex structure, and Mµ inherits a canonical complex
structure, see the chapters 12 and 13 in [He02].

In [He11] analogous results for marked singularities were proved. A better property is that
Mmar
µ is locally isomorphic to a µ-constant stratum without dividing out a finite group ac-

tion. Therefore one can consider it as a global µ-constant stratum or as a Teichmüller space for
singularities. The following theorem collects results from [He11, theorem 4.3].
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Theorem 8.3. Fix one reference singularity f0. Define the sets

Msmar
µ (f0) := {strongly marked (f, ρ) | (8.4)

f in the µ-homotopy class of f0}/ ∼R,
Mmar
µ (f0) := {marked (f,±ρ) | (8.5)

f in the µ-homotopy class of f0}/ ∼R .

(a) Mmar
µ (f0) carries a natural canonical complex structure. It can be constructed with the

underlying reduced complex structure as an analytic geometric quotient (see [He11, theorem 4.3]
for details).

(b) The germ (Mmar
µ (f0), [(f,±ρ)]) with its canonical complex structure is isomorphic to the

µ-constant stratum of f with its canonical complex structure (see [He02, chapter 12] for the
definition of that).

(c) For any ψ ∈ GZ(f0) =: GZ, the map

ψmar : Mmar
µ →Mmar

µ , [(f,±ρ)]→ [(f,±ψ ◦ ρ)]

is an automorphism of Mmar
µ . The action

GZ ×Mmar
µ →Mmar

µ , (ψ, [(f,±ρ)] 7→ ψmar([(f,±ρ)])

is a group action from the left.
(d) The action of GZ on Mmar

µ is properly discontinuous. The quotient Mmar
µ /GZ is the

moduli space Mµ for right equivalence classes in the µ-homotopy class of f0, with its canonical
complex structure. Especially, [(f1,±ρ1)] and [(f2,±ρ2)] are in one GZ-orbit if and only if f1

and f2 are right equivalent.
(e) If assumption (8.1) or (8.2) holds then (a) to (d) are also true for Msmar

µ and ψsmar
with ψsmar([(f, ρ)]) := [(f, ψ ◦ ρ)]. If neither (8.1) nor (8.2) holds then the natural topology on
Msmar
µ is not Hausdorff.

We stick to the situation in theorem 8.3 and define two subgroups of GZ(f0). The definitions
in [He11, definition 3.1] are different, they use µ-constant families. The following definitions are
a part of theorem 4.4 in [He11].

Definition 8.4. Let (Mmar
µ )0 be the topological component of Mmar

µ (with its reduced complex
structure) which contains [(f0,± id)]. Then

Gmar(f0) := {ψ ∈ GZ |ψ maps (Mmar
µ )0 to itself} ⊂ GZ(f0). (8.6)

If assumption (8.1) or (8.2) holds, (Msmar
µ )0 and Gsmar(f0) ⊂ GZ(f0) are defined analogously.

The following theorem is also proved in [He11].

Theorem 8.5. (a) In the situation above, the map

GZ/G
mar(f0) → {topological components of Mmar

µ }
ψ ·Gmar(f0) 7→ the component ψmar((M

mar
µ )0)

is a bijection.
(b) If assumption (8.1) or (8.2) holds then (a) is also true for Msmar

µ and Gsmar(f0).
(c) − id ∈ GZ acts trivially on Mmar

µ (f0). Suppose that assumption (8.2) holds and that

f0 = g0(x0, . . . , xn−1) + x2
n. Then − id acts trivially on Msmar

µ (f0) and

Msmar
µ (f0) = Mmar

µ (f0) = Mmar
µ (g0),

Gsmar(f0) = Gmar(f0) = Gmar(g0).
(8.7)
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Suppose additionally that assumption (8.1) holds for g0 (instead of f0). Then {± id} acts freely
on Msmar

µ (g0), and the quotient map

Msmar
µ (g0)

/{± id}−→ Mmar
µ (g0), [(f, ρ)] 7→ [(f,±ρ)]

is a double covering.

The following conjecture was formulated as conjecture 3.2 in [He11].

Conjecture 8.6. [He11, Conjecture 3.2] (a) Fix a singularity f0. Then Mmar
µ is connected.

Equivalently (in view of theorem 8.5 (a)): Gmar(f0) = GZ.
(b) If the µ-homotopy class of f0 satisfies assumption (8.1), then − id /∈ Gsmar(f0).

The study of the singularities with modality ≤ 2 in [He11][GH17] and this paper gives: Part
(b) is true for all singularities with modality ≤ 2. Part (a) is true for almost all singularities
with modality ≤ 2, but not for all. The exceptions are the subseries for p = m · r of the eight
bimodal series. This is a part of theorem 9.1. Now we expect that part (a) will be wrong for
many singularities.

Using the other definition of Gmar in [He11], part (a) says that up to ± id, any element of GZ
can be realized as transversal monodromy of a µ-constant family with parameter space S1. As
it is wrong for some singularities and probably for many more, part (a) of conjecture 8.6 has to
be replaced now by the question whether the subgroup Gmar of GZ can be described in a nice
conceptual way.

In order to understand the stabilizers StabGZ([(f, ρ)]) and StabGZ([(f,±ρ)]) of points

[(f, ρ)] ∈Msmar
µ (f0) and [(f,±ρ)] ∈Mmar

µ (f0),

we have to look at the symmetries of a single singularity. These had been discussed in [He02,
chapter 13.2]. The discussion had been taken up again in [He11].

Definition 8.7. Let f0 = f0(x0, . . . , xn) be a reference singularity and let f be any singularity
in the µ-homotopy class of f0. If ρ is a marking, then GZ(f) = ρ−1 ◦GZ ◦ ρ.

We define

R := {ϕ : (Cn+1, 0)→ (Cn+1, 0) biholomorphic}, (8.8)

Rf := {ϕ ∈ R | f ◦ ϕ = f}, (8.9)

Rf := j1Rf/(j1Rf )0, (8.10)

GsmarR (f) := {ϕhom |ϕ ∈ Rf} ⊂ GZ(f), (8.11)

GmarR (f) := {±ψ |ψ ∈ GsmarR (f)}, (8.12)

Gsmar,genR (f0) :=
⋂

[(f,ρ)]∈Msmar
µ

ρ−1 ◦GsmarR (f) ◦ ρ ⊂ GZ. (8.13)

Again, the definition of GsmarR is different from the definition in [He11, definition 3.1]. The
characterization in (8.11) is [He11, theorem 3.3. (e)]. Rf is the finite group of components of
the group j1Rf of 1-jets of coordinate changes which leave f invariant. The following theorem
collects results from several theorems in [He11].

Theorem 8.8. Consider the data in definition 8.7.
(a) If mult(f) ≥ 3 then j1Rf = Rf .
(b) The homomorphism ()hom : Rf → GZ(f) factors through Rf . Its image is

(Rf )hom = GsmarR (f) ⊂ GZ(f).

(c) The homomorphism ()hom : Rf → GsmarR (f) is an isomorphism.
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(d)

− id /∈ GsmarR (f) ⇐⇒ mult f ≥ 3. (8.14)

Equivalently: GmarR (f) = GsmarR (f) if mult f = 2, and GmarR (f) = GsmarR (f) × {± id}
if mult f ≥ 3.

(e) GmarR (f) = GmarR (f + x2
n+1).

(f) Mh ∈ Gsmar(f). If f is quasihomogeneous then Mh ∈ GsmarR (f).
(g) For any [(f, ρ)] ∈Msmar

µ

StabGZ([(f, ρ)]) = ρ ◦GsmarR (f) ◦ ρ−1, (8.15)

StabGZ([(f,±ρ)]) = ρ ◦GmarR (f) ◦ ρ−1. (8.16)

( (8.15) does not require assumption (8.1) or (8.2)). As GZ acts properly discontinuously on
Mmar
µ (f0), GsmarR (f) and GmarR (f) are finite. (But this follows already from the finiteness of Rf

and (b).)

The group Gsmar,genR (f0) in (8.13) had not been considered in [He11]. Usually it is very small.
It is useful because of the following elementary fact.

Lemma 8.9. Let T be the parameter space of a µ-constant family as in definition 7.12. The
transversal monodromy of it is the representation π1(T, t0) → GZ(Ft0) which comes from the
local system

⋃
t∈T Ml(Ft).

If its image is in Gsmar,genR (Ft0), then there is a natural map T →Msmar
µ (Ft0).

Proof: The trivial strong marking + id for Ft0 induces along any path strong markings of
other singularities Ft. Two paths which meet at a point t, might not induce the same strong
marking of Ft, but the two markings differ only by an element of GsmarR (Ft). Therefore they
induce the same right equivalence class of a marked singularity. �

Finally, we come to the Brieskorn lattices of marked singularities and Torelli problems. After
fixing a reference singularity f0, a marked singularity (f,±ρ) comes equipped with a marked
Brieskorn lattice BL(f,±ρ). The classifying space DBL(f0) in theorem 7.11 is a classifying
space for marked Brieskorn lattices. Theorem 7.13 implies part (a) of the following theorem.

Theorem 8.10. Fix one reference singularity f0.
(a) There is a natural holomorphic period map

BL : Mmar
µ (f0)→ DBL(f0). (8.17)

It is GZ-equivariant.
(b) [He02, theorem 12.8] It is an immersion, here the reduced complex structure on Mmar

µ (f0)
is considered.

The second author conjectured part (b) of the following global Torelli conjecture in [He93],
part (c) in [He02] and part (a) in [He11].

Conjecture 8.11. Fix one reference singularity f0.
(a) The period map BL : Mmar

µ → DBL is injective.
(b) The period map LBL : Mµ = Mmar

µ /GZ → DBL/GZ is injective.
(c) For any singularity f in the µ-homotopy class of f0 and any marking ρ,

StabGZ([(f,±ρ)]) = StabGZ(BL([(f,±ρ)])) (8.18)

(only ⊂ and the finiteness of both groups are clear).
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The second author has a long-going project on Torelli type conjectures. Already in [He93], part
(b) was proved for all simple and unimodal singularities and almost all bimodal singularities (all
except 3 subseries of the 8 bimodal series). This was possible without the general construction
of Mµ and DBL, which came later in [He02] and [He99]. In the concrete cases considered in
[He93], it is easy to identify a posteriori the spaces Mµ and DBL.

The following lemma from [He11] clarifies the logic between the parts (a), (b) and (c) of
conjecture 8.11.

Lemma 8.12. In conjecture 8.11, (a) ⇐⇒ (b) and (c).

Part (a) of conjecture 8.11 was proved in [He11] for the simple and those 22 of the 28 ex-
ceptional unimodal and bimodal singularities, where all eigenvalues of the monodromy have
multiplicity one. In [GH17] part (a) was proved for the remaining unimodal and the remain-
ing exceptional bimodal singularities. In the sections 9 and 10, part (a) will be proved for
the remaining bimodal singularities, namely the bimodal series singularities and the quadrangle
singularities.

As part (b) had been proved for almost all singularities with modality ≤ 2, the main work in
[GH17] and here is the good control of the group GZ. But that is surprisingly difficult. In the
case of the bimodal singularities in this paper, also the control of the Gauss-Manin connection
side had to be improved: We provide better information on the transversal monodromy of the
studied families than in [He93]. Due to this improvement, also the annoying gap of 3 subseries
of the 8 bimodal series, where part (b) was not proved in [He93], could be closed here.

Remark 8.13. In the sections 9 and 10, we will restrict to consider surface singularities, i.e.
singularities in 3 variables. This is justified by the following corollary. It is an application
for suspensions of the Thom-Sebastiani formula for the Fourier-Laplace transforms of Brieskorn
lattices in theorem 7.9. This is elegant, but the preparations in section 7 were heavy. In the
earlier papers [He93][He11][GH17], we had dealt with this problem in a less conceptual, but
leaner way, sometimes with extra calculations for curve singularities.

Corollary 8.14. Consider the µ-homotopy class of a reference singularity f0(x0, . . . , xn) which

satisfies assumption (8.1) and such that for any m ≥ 1 the µ-homotopy class of f0 +
∑n+m
j=n+1 x

2
j

satisfies assumption (8.2).
Fix a number m ≥ 1. The global Torelli conjecture 8.11 (a) holds for f0 if any only if it holds

for the reference singularity f0 +
∑n+m
j=n+1 x

2
j

Proof: By (8.7), Mmar
µ (f0) and Mmar

µ (f0 +
∑n+m
j=n+1 x

2
j ) are canonically isomorphic. By

theorem 7.11 (c), the classifying spaces DBL(f0) and DBL(f0 +
∑n+m
j=n+1 x

2
j ) are canonically

isomorphic. It rests to see that these isomorphisms are compatible with the period maps BL
for f0 and for f0 +

∑n+m
j=n+1 x

2
j . This is also rather clear from the formula (7.37) for the TEZP-

structure of a suspension. �

9. Period maps and Torelli results for the bimodal series and GZ % Gmar for
the subseries

In this section we will prove for the bimodal series the strong global Torelli conjecture 8.11 (a),
the conjecture 8.6 (b) − id /∈ Gsmar and for the singularities with m 6 |p the conjecture 8.6
(a) GZ = Gmar. But for the singularities in the subseries with m|p, we will see GZ % Gmar,
|GZ| =∞, |Gmar| <∞. Theorem 9.1 states these results in more detail.

The singularities in the eight bimodal series W ]
1,p, S

]
1,p, U1,p, E3,p, Z1,p, Q2,p, W1,p and S1,p

have as surface singularities the normal forms in table (9.1) [AGV85, 15.1]. Here p ≥ 1 and
q ≥ 1, and the parameters (t1, t2) are in T := (C− {0})× C.
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W ]
1,2q−1 (x2 + y3)2 + (t1 + t2y)xy4+q + z2

W ]
1,2q (x2 + y3)2 + (t1 + t2y)x2y3+q + z2

S]1,2q−1 x2z + y3z + yz2 + (t1 + t2y)xy3+q

S]1,2q x2z + y3z + yz2 + (t1 + t2y)x2y2+q

U1,2q−1 x3 + xz2 + xy3 + (t1 + t2y)y1+qz2

U1,2q x3 + xz2 + xy3 + (t1 + t2y)y3+qz
E3,p x3 + x2y3 + (t1 + t2y)y9+p + z2

Z1,p x3y + x2y3 + (t1 + t2y)y7+p + z2

Q2,p x3 + yz2 + x2y2 + (t1 + t2y)y6+p

W1,p x4 + x2y3 + (t1 + t2y)y6+p + z2

S1,p x2z + yz2 + x2y2 + (t1 + t2y)y5+p

(9.1)

Recall that table (5.1) lists for these singularities the Milnor number µ, the characteristic
polynomials bj , j ≥ 1, of the monodromy on the Orlik blocks Bj in theorem 5.1, the order m of
the monodromy on B1 and the index rI = [Ml(f) :

⊕
j≥1Bj ]. The order of the monodromy on

B2 is

m+ rI · p =: m2. (9.2)

We will need the space T cov := (C− {0})× C and the m2-fold covering

cT : T cov → T, (τ1, t2) 7→ (τm2
1 , t2). (9.3)

For each 2-parameter family of singularities in table (9.1), we choose f0 := f(1,0) as reference

singularity. In the following, we will write Mmar
µ , (Mmar

µ )0, GZ, Gmar, Ml, H∞ and Cα for

Mmar
µ (f0),(Mmar

µ (f0))0, GZ(f0), Gmar(f0), Ml(f0), H∞(f0) and Cα(f0).
We denote by MT ∈ GZ the monodromy of the homology bundle

⋃
(t1,t2)∈T Ml(f(t1,t2))→ T

along the cycle {(e2πis, 0) | s ∈ [0, 1]}. We call MT the transversal monodromy. By the other
definition of Gmar in [He11], MT ∈ Gmar. As always, ζ := e2πi/m.

Theorem 9.1. Consider a family of bimodal series singularities in table (9.1).
(a) Mm2

T = id. Therefore the pull back to T cov with cT of the family of singularities over T
has trivial transversal monodromy. Thus the strong marking + id for f(1,0) induces a well defined

strong marking for each singularity of this family over T cov. This gives a map T cov → (Msmar
µ )0

and a map T cov → (Mmar
µ )0.

(b) Both maps are isomorphisms. And − id /∈ Gsmar, where Gsmar is the group for the

singularities of multiplicity ≥ 3, namely the curve singularities W ]
1,p, E3,p, Z1,p,W1,p and the

surface singularities S]1,p, U1,p, Q2,p, S1,p. So, conjecture 8.6 (b) is true.

(c) The period map BL : Mmar
µ → DBL is an embedding. So, the strong global Torelli

conjecture 8.11 (a) is true.

(d) If m 6 |p then GZ = Gmar. So, here conjecture 8.6 (a) is true.

(e) In the case of the subseries with m|p, GZ % Gmar. So, here conjecture 8.6 (a) is wrong.
More precisely, Gmar and GZ are as follows. MT has on the 2-dimensional C-vector space
Mlζ the eigenvalues 1 and ζ. Let Mlζ,1 be the 1-dimensional eigenspace of MT on Mlζ with
eigenvalue 1. Then |GZ| =∞ and |Gmar| <∞ and

Gmar = {g ∈ GZ | g(Mlζ,1) = Mlζ,1}. (9.4)
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Ψ(GZ) is an infinite Fuchsian group by theorem 5.1 (c). Ψ(Gmar) is the finite subgroup of
elliptic elements which fix the point [Mlζ,1] ∈ Hζ (Hζ was defined in (5.7)). And Mmar

µ consists
of infinitely many copies of T cov.

Theorem 9.1 will be proved in this section in several steps. It builds on two hard results.
The first and more difficult one is theorem 5.1 on GZ. The second one is easier, but still rather
technical. It is the calculation of the multi-valued period map T → DBL. The results are fixed
in theorem 9.6.

But we prefer to present the nice geometry before the technical details. Therefore we will
now explain everything what can be understood without going into the details of the Gauss-
Manin connection and theorem 9.6. Afterwards we will come to the Gauss-Manin connection
and theorem 9.6.

Define

α1 :=
−1

m
< β1 :=

−1

m2
< 0 < α2 :=

1

m2
< β2 :=

1

m
(9.5)

and recall that ψα : H∞ → Cα, A 7→ es(A,α), is an isomorphism. Therefore and because of
table (5.1)

dimCβ1 = dimCα2 = 1, (9.6)

dimCα1 = dimCβ2 =

{
1 if m 6 |p,
2 if m|p.

For the cases with m 6 |p, define the 2-dimensional space

Dsub
BL := {C · (v1 + v2 + v4) | v1 ∈ Cα1 − {0}, v2 ∈ Cβ1 − {0}, v4 ∈ Cβ2}

= {C · (v0
1 + ρ1v

0
2 + ρ2v

0
4) | (ρ1, ρ2) ∈ (C− {0})× C} (9.7)

for some generators v0
1 , v

0
2 , v

0
4 of Cα1 , Cβ1 , Cβ2

∼= (C− {0})× C.

For the cases with m|p, the polarizing form S defines an indefinite hermitian form

((a, b) 7→ S(a, b))

on H∞ζ . This follows from the corresponding statement for hζ on Mlζ in theorem 5.1, from

lemma 2.2 (b) and from the relation between Seifert form L and polarizing form S, see (4.20).
Thus we get a half-plane

H(Cα1) := {C · v | v ∈ Cα1 with S(ψ−1
α1

(v), ψ−1
α1 (v)) < 0}

⊂ P(Cα). (9.8)

Now define for the cases with m|p the 3-dimensional space

Dsub
BL := {C · (v1 + v2 + v4) | v1 ∈ Cα1 − {0} with [C · v1] ∈ H(Cα1),

v2 ∈ Cβ1 − {0}, v4 ∈ C · ψβ2
(ψ−1
α1 (v1)) ⊂ Cβ2} (9.9)

∼= H(Cα1)× (C− {0})× C.

Theorem 9.2. (a) Dsub
BL embeds canonically into DBL.

(b) For suitable v0
1 ∈ Cα1 − {0}, v0

2 ∈ Cβ1 − {0} and for v0
4 := ψβ2(ψ−1

α1 (v0
1)) ∈ Cβ2 − {0}, the

multi-valued period map BLT : T → DBL has its image in Dsub
BL and takes the form

(t1, t2) 7→ C ·
(
v0

1 + t
1/m2

1 · v0
2 +

(
t2
t1

+ r(t1)

)
v0

4ß

)
(9.10)
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with

r(t1) =



0 in the cases (rI = 1 & p ≥ 3),
the cases (rI = 2 & p ≥ 2)
and the case U1,2,

cT · t1 in the cases (rI = 2 & p = 1)

and the cases W ]
1,2 and S]1,2,

cT · t21 in the cases (rI = 1 & p = 1),

(9.11)

for a suitable constant cT ∈ C. In the cases with m|p, the transversal monodromy MT has on
Cα1 the eigenvalues 1 and ζ, and C · v0

1 is the eigenspace with eigenvalue 1. The class [C · v0
1 ] is

in H(Cα1).

(c) The induced period map BLT cov : T cov → Dsub
BL is an isomorphism if m 6 |p and an

isomorphism to the fiber above [C · v0
1 ] ∈ H(Cα1) of the projection Dsub

BL → H(Cα1) if m|p.

(d) In the case of the subseries U1,9r, G
mar contains an element g3 such that Ψ(g3) is elliptic

of order 18 (for all subseries with p = m · r, Ψ(MT ) is elliptic of order m, for U1,9r m = 9).

(e) f(t1,t2) and f(t̃1,t̃2) are right equivalent

⇐⇒


∃ k ∈ Z with (t̃1, t̃2) = (ζrIpk · t1, ζ(rIp+2)k · t2)

for all 8 series except U1,2q,
∃ k ∈ Z and ε ∈ {±1} with

(t̃1, t̃2) = (εζrIpk · t1, εζ(rIp+2)k · t2) for U1,2q.

(9.12)

The parts (a), (b) and (d) of theorem 9.2 will be proved after theorem 9.6.

Proof of theorem 9.2 (c) and (e):
(c) This follows immediately from (9.10).
(e) First we prove ⇐. We give explicit coordinate changes. A case by case comparison with

the normal forms in table (9.1) shows that the following equality (9.13) holds. Here (δ1, δ2, δ3)
are as in table (9.14), and k ∈ Z.

f(t1,t2)(x · ζδ1·k, y · ζδ2·k, z · ζδ3·k) = f(t1·ζrIpk,t2·ζ(rIp+2)k)(x, y, z). (9.13)

δ1 δ2 δ3
W ]

1,p and W1,p 3 2 0

S]1,p and S1,p 3 2 4
U1,p 3 2 3
E3,p 6 2 0
Z1,0 4 2 0
Q2,p 4 2 5

(9.14)

In the case U1,2q we have additionally

f(t1,t2)(x, y,−z) = f(−t1,−t2)(x, y, z). (9.15)

This shows ⇐.
Now we prove⇒. Let f(t1,t2) and f(t̃1,t̃2) be right equivalent. ThenBLT (t1, t2) andBLT (t̃1, t̃2)

are isomorphic, so a g ∈ GZ with g(BLT (t1, t2)) = BLT (t̃1, t̃2) exists. We claim that v0
1 , v

0
2

and v0
4 are eigenvectors of g with some eigenvalues λ1, λ2 and λ1. For v0

2 this is trivial as
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dimCβ1 = 1, for v0
1 in the case m 6 |p also. In the case m|p, it follows for v0

1 from (9.10). For v0
4

use v0
4 = ψβ2

(ψ−1
α1 (v0

1)). We claim also

λ1 ∈ Eiw(ζ), λ2 ∈ Eiw(e2πi/m2). (9.16)

For λ2 this is a consequence of the following three facts and of theorem 2.9 (a)&(b).

(i) The 1-dimensional eigenspace Mle2πi/m2 is already defined over Q(e2πi/m2). Therefore
λ2 ∈ Q(e2πi/m2).

(ii) |λ2| = 1 because L pairs Mle2πi/m2 and Mle−2πi/m2 .
(iii) λ2 is an algebraic integer because g ∈ GZ.

If m 6 |p, the same reasoning applies also to λ1. Suppose for a moment m|p.
By part (b), the transversal monodromy MT acts on Cα1 and on H∞ζ with eigenvalues 1 and

ζ, and the 1-dimensional eigenspaces with eigenvalue 1 are C · v0
1 and C · ψ−1

α1
(v0

1). Therefore

C · ψ−1
α1

(v0
1) is already defined over Q(ζ), i.e. C · ψ−1

α1
(v0

1) ∩H∞Q(ζ) is a 1-dimensional Q(ζ)-vector

space. This implies (i) λ1 ∈ Q(ζ). (ii) |λ1| = 1 holds because v0
1 ∈ H(Cα1). And (iii) (λ1 is

an algebraic integer) holds anyway. Again with theorem 2.9 (a)&(b) we conclude λ1 ∈ Eiw(ζ).
Now (9.16) is proved in all cases.

The equality g(BLT (t1, t2)) = BLT (t̃1, t̃2) becomes

C ·
(
λ1 · v0

1 + λ2 · t1/m2

1 · v0
2 + λ1

(
t2
t1

+ r(t1)

)
· v0

4

)
= C ·

(
v0

1 + t̃
1/m2

1 · v0
2 +

(
t̃2

t̃1
+ r(t̃1)

)
· v0

4

)
,

so t̃
1/m2

1 = λ2λ1 · t1/m2

1 ,
t̃2

t̃1
+ r(t̃1) = λ1

2
(
t2
t1

+ r(t1)

)
,

so t̃1 = λm2
2 λ1

m2 · t1,

and t̃2 = λ1
2 · t̃1
t1
· t2 + t̃1 · (λ1

2 · r(t1)− r(t̃1)). (9.17)

Because of (9.16), we can write λ1 and λ2 as follows, here k, l ∈ Z and ε1, ε2 ∈ {±1}.

λ1 λ2

All cases with m ≡ 0(2), m2 ≡ 0(2) ζ
k

e2πil/m2

The cases W ]
1,2q−1 and S]1,2q−1 ε2 · ζ

k
ε2 · e2πil/m2

The cases U1,2q−1 ε1 · ζ
k

e2πil/m2

The cases U1,2q ε1 · ζ
k

ε2 · e2πil/m2

(9.18)

One checks that (9.17) boils down to

t̃1 = ζrIpk · t1, t̃2 = ζ(rIp+2)k · t2, (9.19)

in all cases except U1,2q. In the cases U1,2q, it boils down to

t̃1 = ε1ε2 · ζpk · t1, t̃2 = ε1ε2 · ζ(p+2)k. (9.20)

This finishes the proof of ⇒ and the proof of theorem 9.2 (e). �

The statements in theorem 9.1 on the transversal monodromy (Mm2

T = id, MT has the
eigenvalues 1 and ζ on Mlζ) will be proved after theorem 9.6. The rest of theorem 9.1 will be
proved now.
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Proof of theorem 9.1 (without the statements on MT ):
(a) This is clear.
(b) Consider the maps

T cov //

∼=
��

(Msmar
µ )0

BL

��
Dsub
BL
� � // DBL

(9.21)

As T cov ↪→ Dsub
BL ↪→ DBL is an embedding, T cov → (Msmar

µ )0 is an embedding.

Both spaces T cov and (Msmar
µ )0 are locally µ-constant strata of universal unfoldings and are

therefore smooth of dimension 2. Dsub
BL is almost closed in DBL. Its closure consists of itself and

the space {C · (v1 + v4) | v1 and v4 as in (9.7) or (9.9)} (so v2 = 0). No g ∈ GZ maps a point of
this space to a point of Dsub

BL . And T cov contains representatives of any right equivalence class in
the µ-homotopy family. Therefore the image of (Msmar

µ )0 in DBL cannot be bigger than Dsub
BL .

Thus T cov ∼= (Msmar
µ )0.

In the case of singularities of multiplicity 2, Msmar
µ

∼= Mmar
µ holds anyway by theorem 8.5

(c), and then also (Msmar
µ )0 ∼= (Mmar

µ )0 holds.
Consider the case of singularities of multiplicity ≥ 3. Then − id ∈ GZ acts nontrivially

on Msmar
µ by theorem 8.5 (c). It acts trivially on DBL. The map (Msmar

µ )0 → DBL is an

embedding. Therefore − id ∈ GZ does not act on (Msmar
µ )0, therefore − id /∈ Gsmar. Then

(Msmar
µ )0 → (Mmar

µ )0 is an isomorphism by theorem 8.5 (c).

(c) for m 6 |p and (d): (Mmar
µ )0

∼=−→ T cov
∼=−→ Dsub

BL ↪→ DBL is an embedding. GZ = Gmar

would imply Mmar
µ = (Mmar

µ )0. Therefore it is sufficient to prove GZ = Gmar.

Let g1 ∈ GZ. It acts on Dsub
BL . By the proof of theorem 9.2 (e), the map

(Mmar
µ )0/Gmar → Dsub

BL/GZ (9.22)

is an isomorphism. Therefore an element g2 ∈ Gmar exists which acts in the same way on Dsub
BL

as g1. Consider g3 := g1 ◦ g−1
2 . It acts trivially on Dsub

BL . It has eigenvalues λ1, λ2 and λ1 on
Cα1 , Cβ1 and Cβ2 . Therefore

C(v1 + v2 + v4) = C(λ1 · v1 + λ2 · v2 + λ1 · v4)

for any C(v1 + v2 + v4) ∈ Dsub
BL ,

thus λ2λ1 = 1, λ1
2

= id, so λ1 = λ2 ∈ {±1},
and g3 = λ1 · id on Mlζ ⊕Mle2πi/m2 . (9.23)

GZ was determined in theorem 5.1 (b). It contains very few automorphisms g3 with (9.23).
Formula (5.6) and table (5.1) show that the group {g ∈ GZ | g = ± id on Mlζ ⊕Mle2πi/m2 } is as
follows:

{± id} in the cases W ]
1,2q−1, S

]
1,2q−1, U1,2q, E3,p, Z1,p, (9.24)

{± id,±(id |B1
× (−Mm2/2

h )|B2
)}in the cases W ]

1,2q, S
]
1,2q, U1,2q−1,

{± id,±((−Mm/2
h )|B1

× id |B2
)} in the cases Q2,p,W1,p, S1,p.

Claim:

{g ∈ GZ | g = ± id on Mlζ ⊕Mle2πi/m2} = GmarR . (9.25)
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This claim shows g3 ∈ GmarR and g1 ∈ Gmar, so that GZ = Gmar.
The inclusion ⊃ in (9.25) holds because of the following: Any element of GmarR = GmarR (f(1,0))

acts on Dsub
BL with BLT (1, 0) as fixed point. The proof of theorem 9.2 (e) shows that it acts then

trivially on Dsub
BL .

The group GmarR contains ± id. In order to prove equality in (9.25) for the cases in the second
and third line of (9.24), it is sufficient to show that GmarR contains more elements than ± id.
Equivalent is that GsmarR (f) for a generic singularity f with multiplicity ≥ 3 contains one other
element than + id. The following table lists coordinate changes which give such an element.

W ]
1,2q (x, y) 7→ (−x, y)

S]1,2q (x, y, z) 7→ (−x, y, z)
U1,2q−1 (x, y, z) 7→ (x, y,−z)
Q2,p (x, y, z) 7→ (x, y,−z)
W1,p (x, y) 7→ (−x, y)
S1,p (x, y, z) 7→ (−x, y, z)

(9.26)

This proves the claim and finishes the proof of (c) for m 6 |p and (d).

(c) for m|p and (e): First we prove (9.4).

Ψ(MT ) is an elliptic element with fixed point [Mlζ,1] ∈ Hζ and angle 2π
m = arg( ζ1 ). All

elements of Gmar, including MT , act on H(Cα1) as elliptic elements with fixed point [C · v0
1 ],

because all elements in Gmar act on (Mmar
µ )0 and on its image BLT cov ((Mmar

µ )0) ⊂ Dsub
BL .

Therefore all elements of Gmar act on Hζ as elliptic elements with fixed point [Mlζ,1]. This
shows ⊂ in (9.4).

Now let g1 ∈ {g ∈ GZ | g(Mlζ,1) = Mlζ,1}. It has an eigenvalue λ1 on Mlζ,1 and an eigenvalue
λ2 on the other eigenspace within Mlζ (which is the hζ-orthogonal subspace of Mlζ). By (9.16)
λ1 and λ2 ∈ Eiw(ζ). Therefore Ψ(g1) is an elliptic element with fixed point [Mlζ,1] ∈ Hζ and

angle arg λ2

λ1
.

In all cases except possibly U1,9r, the product g2 = g1 ◦Mk
T for a suitable k ∈ Z acts trivially

on Hζ . In the cases U1,9r, the product g2 = g1 ◦ gk3 for g3 ∈ Gmar as in theorem 9.2 (d) does the
same.

Formula (5.9) in theorem 5.1 (c) applies to g2 and shows g2 ∈ {±Mk
h | k ∈ Z}. Therefore

g2 ∈ Gmar and g1 ∈ Gmar. This shows ⊃ in (9.4), so (9.4) is now proved.
Especially, Ψ(Gmar) and Gmar are finite. By theorem 5.1 (c), Ψ(GZ) and GZ are infinite.

Therefore GZ % Gmar.
By theorem 8.5 (a), Mmar

µ consists of infinitely many copies of (Mmar
µ )0.

If two different copies would have intersecting images in DBL under the period map BL,
the images would coincide, and there would be a copy different from (Mmar

µ )0 with the same

image in DBL as (Mmar
µ )0. An element g3 ∈ GZ which maps (Mmar

µ )0 to this copy would be in

{g ∈ GZ | g(Mlζ,1) = Mlζ,1} − Gmar = ∅, a contradiction. Therefore BL : Mmar
µ → Dsub

BL is an
embedding. �

Remarks 9.3. (i) The arithmetic triangle group of type (2, 3, 14) for Z1,0 in theorem 3.6 contains
elliptic elements of order 3 although arg ζ = 2π

14 and the matrices defining these elliptic elements
are in GL(2,Z[ζ]). The eigenspaces in M(2× 1,C) of these matrices are not defined over Q(ζ),
but only over Q(e2πi/3, ζ). This example shows that (9.16) in the case m|p and the arguments
proving it are nontrivial.

(ii) In 1993, the second author worked on the Torelli conjecture for the unmarked bimodal
series singularities. He missed to consider MT carefully and thus was not sure which elliptic
elements fix [C · v0

1 ] ∈ H(Cα1). Therefore he could not prove the Torelli conjecture for the
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unmarked singularities in the subseries S]1,10r, S1,10r and Z1,14r. Now theorem 9.1 gives the
marked and unmarked Torelli theorem for all bimodal series singularities.

Now we come to the spectral numbers and the classifying space DBL.

Lemma 9.4. Consider a family of bimodal series singularities in table (9.1).
(a) The spectral numbers α1, ..., αµ with α1 ≤ ... ≤ αµ satisfy

α1 =
−1

m
< α2 =

1

m2
< α3 ≤ ... ≤ αµ−2 (9.27)

< αµ−1 = 1− 1

m2
< αµ = 1 +

1

m

and are uniquely determined by this and the characteristic polynomial
∏
j≥1 bj of the monodromy

with bj as in table (5.1).

(b) Recall from (9.5) β1 = −1
m2

= −α2 and β2 = 1
m = −α1. Then

dimCα1 =

{
1 if m 6 |p,
2 if m|p, (9.28)

dimCβ =


1 for β ∈ (α1, β2) ∩ 1

m2
(Z− {0}) if rI = 1,

and for β ∈ (α1, β2) ∩ ( 1
m2

+ 2
m2

Z) if rI = 2,

0 for other β ∈ (α1, β2).

(9.29)

The following two pictures illustrate this for 2m < p < 3m, the first for rI = 1, the second for
rI = 2.

α1 = −1
m β1 = −1

m2

α4α3 β2 = 1
mα2 = 1

m2

0

α1 = −1
m β1 = −1

m2

α4α3 β2 = 1
mα2 = 1

m2

0

(c) Denote by (∗) the condition

(∗) : β ∈ (α1, 0) with Cβ 6= {0}(then dimCβ = 1).

If m 6 |p the classfying space DBL in [He99] is

DBL = {C · (v1 +
∑
β:(∗)

v(β) + v2) | (9.30)

v1 ∈ Cα1 − {0}, v(β) ∈ Cβ , v2 ∈ Cβ2}
∼= CNBL with NBL := |{β : (∗)}|+ 1.

In (9.8) H(Cα1) was defined for m|p. If m|p then DBL is

DBL = {C · (v1 +
∑
β:(∗)

v(β) + v2) | (9.31)

v1 ∈ Cα1 − {0} with [C · v1] ∈ H(Cα1),

v(β) ∈ Cβ , v2 ∈ C · ψβ2
(ψ−1
α1 (v1)) ⊂ Cβ2}

∼= H(Cα1)× CNBL with NBL := |{β : (∗)}|+ 1.
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Proof: (a) The spectral numbers are well known [AGV88, 13.3.4, p. 389]. They also follow
from corollary 7.17 and the proof of theorem 9.6.

(b) (9.28) follows from dimCα1 = dimMlζ and Φm 6 |b2 ⇐⇒ m 6 |p. (9.29) follows from the
values of bj in table (5.1).

(c) The spectral numbers and the numbers β with Cβ 6= {0} give for each L0 ∈ DBL

L0 = C · σ1 ⊕ L0 ∩
⊕

β:α2≤β≤β2

Cβ ⊕ V >β2 (9.32)

where

α(σ1) = α1, σ1 ∈ Cα1 ⊕
⊕
β:(∗)

Cβ ⊕ Cβ2 . (9.33)

Here observe that for β with α2 ≤ β < β2 and Cβ 6= {0}, the space Cβ is one-dimensional and
is generated by the principal part of a section in L0.

If m 6 |p then dimCβ2 = 1 and Cβ2 is not generated by the principal part of a section in L0.
If m|p then dimCβ2 = 2 and the one-dimensional subspace

{v ∈ Cβ2 |K(−2)
f (v, s(σ1, α1)) = 0} ⊂ Cβ2

is in L0, because then β2 is a spectral number with multiplicity 1. And then the principal part
s(σ1, α1) must be compatible with a polarized Hodge structure of weight 2 on H∞ζ ⊕H∞ζ . This

amounts to [C · s(σ1, α1)] ∈ H(Cα1). Especially then

Cβ2 = C · ψβ2
(ψ−1
α1 s(σ1, α1))⊕ {v ∈ Cβ2 |K(−2)

f (v, s(σ1, α1)) = 0}, (9.34)

and σ1 can be chosen with

α(σ1) = α1, σ1 ∈ Cα1 ⊕
⊕
β:(∗)

Cβ ⊕ C · ψβ2(ψ−1
α1 s(σ1, α1)). (9.35)

σ1 is (up to rescaling) uniquely determined by (9.33) if m 6 |p and by (9.35) if m|p. And it can
be chosen freely with (9.33) respectively with (9.35) and [C · s(σ1, α1)] ∈ H(Cα1). The condition

(δ) K
(−2)
f (L0,L0) = 0 on DBL directly before theorem 7.11 implies that L0 ∩

⊕
α2≤β≤β2

Cβ is
uniquely determined by σ1. Therefore L0 is uniquely determined by σ1. Therefore DBL is as
stated in (9.30) and (9.31). �

Remarks 9.5. (i) All the normal forms in table (9.1) except W ]
1,p are Newton nondegener-

ate. But also the normal form fp(x, y, z̃) for W ]
1,p in table (9.1) can be made easily Newton

nondegenerate with the coordinate change z̃ = z + i(x2 + y3). Then

fp(x, y, z + i(x2 + y3)) = z2 + 2ix2z + 2iy3z (9.36)

+

{
(t1 + t2y)xy4+q if p = 2q − 1,
(t1 + t2y)x2y3+q if p = 2q.

(ii) The Newton boundaries of the normal forms in table (9.1) except for W ]
1,p and of the

normal form in (9.36) for W ]
1,p have each two compact n-dimensional faces σ1 and σ2. The

following table lists the corresponding linear forms lσj and the value s(f) from corollary 7.17. A
linear form is encoded by the values (lσj (x), lσj (y), lσj (z)).
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W ]
1,p σ1 : 1

12 (3, 2, 6) σ2 : 1
12+p (3, 2, 6 + p) 5

12+p

S]1,p σ1 : 1
10 (3, 2, 4) σ2 : 1

10+p (3, 2, 4 + p) 5
10+p

U1,p σ1 : 1
9 (3, 2, 3) σ2 : 1

9+p (3 + p, 2, 3) 5
9+p

E3,p σ1 : 1
18 (6, 2, 9) σ2 : 1

2(9+p) (6 + p, 2, 9 + p) 4
9

Z1,p σ1 : 1
14 (4, 2, 7) σ2 : 1

2(7+p) (4 + p, 2, 7 + p) 3
7

Q2,p σ1 : 1
12 (4, 2, 5) σ2 : 1

2(6+p) (4 + p, 2, 5 + p) 1
2

W1,p σ1 : 1
12 (3, 2, 6) σ2 : 1

2(6+p) (3 + p, 2, 6 + p) 5
12

S1,p σ1 : 1
10 (3, 2, 4) σ2 : 1

2(5+p) (3 + p, 2, 4 + p) 1
2

(9.37)

Theorem 9.6. Consider the normal form in (9.36) for W ]
1,p and the normal forms in table

(9.1) for the other seven series. Recall the notation ω0 := dxdydz from remark 7.14 (v). Define

b1 := s(ω0, α1)(1, 0) ∈ Cα1 ,

b2 := s(ω0, β1)(1, 0) ∈ Cβ1 ,

b3 := s(yω0, α2)(1, 0) ∈ Cα2 ,

b4 := s(yω0, β2)(1, 0) ∈ Cβ2 .

If m|p, choose b5 ∈ Cβ2 with C · b5 = {v ∈ Cβ2 |K(−2)
f (b1, v) = 0}.

(a) All bj 6= 0. And K
(−2)
f (b1 + b2, b3 + b4) = 0. If m|p then Cβ2 = C · b4 ⊕ C · b5.

(b) We write t = (t1, t2). Recall the notation α(s[ω]0(t)) = min(α | s(ω, α)(t) 6= 0) from
remark 7.14 (iv).

α(s[ω0]0(t)) = α1, (9.38)

s(ω0, α1)(t) = b1, (9.39)

s(ω0, β)(t) = 0for α1 < β < β1, (9.40)

s(ω0, β1)(t) = t
1/m2

1 · b2, (9.41)

s(ω0, α2)(t) =
t2
t1
· −1

m2
· t−1/m2

1 · b3 + s(ω, α2)(t1, 0), (9.42)

s(ω0, β2)(t)

{
= s(ω0, β2)(t1, 0) if m 6 |p,
∈ s(ω0, β2)(t1, 0) + C · b5 if m|p, (9.43)

with

s(ω0, α2)(t1, 0) s(ω0, β2)(t1, 0)
(rI = 2 & p ≥ 2) or
(rI = 1 & p ≥ 3) or U1,2 0 0

W ]
1,1, S

]
1,1, U1,1 c1 · t2−1/m2

1 · b3 c2 · t21 · b4
W ]

1,2, S
]
1,2, E3,1

Z1,1, Q2,1,W1,1, S1,1 c1 · t1−1/m2

1 · b3 c2 · t1 · b4

(9.44)

for some values c1, c2 ∈ C.

α(s[yω0]0(t) = α2, (9.45)

s(yω0, α2)(t) = t
−1/m2

1 · b3, (9.46)

s(yω0, β2)(t)

{
= b4 if m 6 |p or t2 = 0,
∈ b4 + C · b5 if m|p, (9.47)
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s(σ, β2)(t)

{
= 0 if m 6 |p
∈ C · b5 if m|p (9.48)

for σ ∈ H ′′0 (ft) with α(σ) > α2.

(c) In the five series with rI = 2 (see table (5.1)) for b ∈ Z≥0

α(s[yb+1ω0]0(t)) = α2 +
2b

m2
=

2b+ 1

m2
, (9.49)

s(yb+1ω0,
2b+ 1

m2
)(t) = t

−(2b+1)/m2

1 · s(yb+1ω0,
2b+ 1

m2
)(1, 0). (9.50)

Especially, if p = mr then 2r+1
m2

= 1
m = β2, b5 can be chosen as b5 = s(yr+1ω0, β2)(1, 0), and

s(yr+1ω0, β2)(t) = t
−1/m
1 · b5. (9.51)

(d) In the three subseries W ]
1,12r, S

]
1,10r, U1,9r (i.e. the subseries with rI = 1 and m|p), b5 can

be chosen such that b5 and ω in the following table (9.54) satisfy

α(s[ω]0(t)) = β2 =
1

m
, (9.52)

s(ω, β2 + 1)(t) = t
−1/m
1 · b5. (9.53)

ω

W ]
1,12+24r, S

]
1,10+20r xyrω0

U1,9+18r yrzω0

W ]
1,24r, S

]
1,20r, U1,18r yr+1ω0

(9.54)

Proof: (a) Observe ν(ω0)− 1 = α1 < s(f) and ν(yω0)− 1 = α2 < s(f). This, theorem 7.16
and corollary 7.17 show (9.38), (9.45), b1 6= 0 and b3 6= 0. b2 6= 0 will be shown below. (9.40)

(which will also be shown below) and K
(−2)
f (H ′′0 (ft), H

′′
0 (ft)) = 0 give especially

0 = K
(−2)
f (s[ω0]0(1, 0), s[yω0]0(1, 0)) = K

(−2)
f (b1 + b2, b3 + b4).

As K
(−2)
f (b2, b3) 6= 0, also K

(−2)
f (b1, b4) 6= 0 and b4 6= 0 and in the case m|p Cβ2 = C · b4⊕C · b5.

(b)–(d) We restrict to the series E3,p. The calculations for the series Z1,p, Q2,p,W1,p and S1,p

are very similar. The calculations for the series W ]
1,p, S

]
1,p and U1,p are similar, but require more

case discussions.
The two compact faces σ1 and σ2 (remark 9.5) of the Newton boundary give rise to the

following two relations

1

3
xfx +

1

9
yfy +

1

2
zfz −

p

9
t1y

9+p − p+ 1

9
t2y

10+p = f, (9.55)

6 + p

2(9 + p)
xfx +

2

2(9 + p)
yfy +

1

2
zfz

− p

2(9 + p)
x3 − 1

9 + p
t2y

10+p = f. (9.56)
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These relations and (7.24) give the following two values for ∂ττs[x
aybω0]0(t):

∂ττs[x
aybω0]0(t)

= lσ1(a+ 1, b+ 1, 1) · s[xaybω0]0(t) (9.57)

−p
9
t1∂τs[x

ayb+9+pω0]0(t)− p+ 1

9
t2∂τs[x

ayb+10+pω0]0(t),

= lσ2
(a+ 1, b+ 1, 1) · s[xaybω0]0(t) (9.58)

− p

2(9 + p)
∂τs[x

a+3ybω0]0(t) − 1

9 + p
t2∂τs[x

ayb+10+pω0]0(t).

This gives for any β with dimCβ 6= 0

(β + 1− lσ1(a+ 1, b+ 1, 1))s(xaybω0, β)(t)

= −p
9
t1∂τs(x

ayb+9+pω0, β + 1)(t)

−p+ 1

9
t2∂τs(x

ayb+10+pω0, β + 1)(t), (9.59)

(β + 1− lσ2
(a+ 1, b+ 1, 1))s(xaybω0, β)(t)

= − p

2(9 + p)
∂τs(x

a+3ybω0, β + 1)(t

− 1

9 + p
t2∂τs(x

ayb+10+pω0, β + 1)(t). (9.60)

Furthermore, (7.39) gives

∂t1s[x
aybω0]0(t) = (−∂τ )s[xayb+9+pω0]0(t), (9.61)

∂t2s[x
aybω0]0(t) = (−∂τ )s[xayb+10+pω0]0(t)

= ∂t1s[x
ayb+1ω0]0(t). (9.62)

(9.59)–(9.62) give (p
9
t1∂t1 +

p+ 1

9
t2∂t2 − (β + 1) + lσ1(a+ 1, b+ 1, 1)

)
s(xaybω0, β)(t) = 0, (9.63)( 1

9 + p
t2∂t2 − (β + 1) + lσ2(a+ 1, b+ 1, 1)

)
s(xaybω0, β)(t)

=
p

2(9 + p)
∂τs(x

a+3ybω0, β + 1)(t). (9.64)

(9.63) gives for t2 = 0

s(xaybω0, β)(t1, 0) = t
9
p (β+1−lσ1 (a+1,b+1,1))

1 · s(xaybω0, β)(1, 0). (9.65)

The following eight equations are special cases of (9.65).

s(ω0, α1)(t1, 0) = b1, (9.66)

s(ω0, β1)(t1, 0) = t
1/m2

1 · b2, (9.67)

s(ω0, α2)(t1, 0) = t
−1/m2+1/p
1 · s(ω0, α2)(1, 0), (9.68)

s(ω0, β2)(t1, 0) = t
1/p
1 · s(ω0, β2)(1, 0), (9.69)



TORELLI RESULTS FOR MARKED BIMODAL SINGULARITIES 199

s(yb+1ω0,
2b+ 1

m2
)(t1, 0) = t

−(2b+1)/m2

1 · s(yb+1ω0,
2b+ 1

m2
)(1, 0), (9.70)

s(yω0, α2)(t1, 0) = t−α2
1 · b3 = t

−1/m2

1 · b3, (9.71)

s(yω0, β2)(t1, 0) = b4, (9.72)

s(yr+1ω0, β2)(t1, 0) = t
−1/m2

1 · s(yr+1ω0, β2)(1, 0)if p = 18r. (9.73)

Claim: Fix some b ∈ Z≥0.

(i) ν(yb+1ω0) = α2 + b
9+p = 2b+1

m2
.

(ii) Any (n + 1)-form df ∧ dη which contains yb+1ω0 as a summand, contains a summand
g · ω0 with g a monomial (times a nonzero scalar) with ν(g · ω0) ≤ ν(yb+1ω0).

(iii) ν(yb+1ω0) = 2b+1
m2

.

Proof of the claim: (i) Trivial. (iii) follows from (i) and (ii).
(ii) The only monomial differential (n− 1)-forms η such that df ∧ dη contains fy · yc · ω0 are

η1 = −xycdz and η2 = yczdx, and

df ∧ dη1 = fy · yc · ω0 − fx · c · xyc−1 · ω0,

df ∧ dη2 = fy · yc · ω0 − fz · c · yc−1z · ω0.

These (n+ 1)-forms contain (3− 2c)x2yc+2ω0 respectively 3x2yc+2ω0, and

ν(x2yc+2ω0) ≤ ν(yc+8+pω0).

(�)

The claim and theorem 7.16 imply

α(s[yb+1ω0]0(t)) =
2b+ 1

m2
, (9.74)

s(yb+1ω0,
2b+ 1

m2
)(t) 6= 0. (9.75)

Especially, b3 6= 0, and if p = 18r also s(yr+1ω0, β2)(t) 6= 0. In this case p = 18r, the vanishing

K
(−2)
f (s[ω0]0(1, 0), s[yr+1ω0]0(1, 0)) = 0

gives K
(−2)
f (b1, s(y

r+1ω0, β2)(1, 0)) = 0. Therefore in this case we can choose

b5 = s(yr+1ω0, β2)(1, 0).

The elementary sections s(yb+1ω0,
2b+1
m2

)(t) are independent of t2 because (9.62) gives

∂t2s(y
b+1ω0,

2b+ 1

m2
)(t) = ∂t1s(y

b+2ω0,
2b+ 1

m2
)(t) = 0.

Now part (c), i.e. (9.49)–(9.51), and (9.46) are proved.
(9.62) gives also

∂t2s[ω0]0(t) = ∂t1s[yω0]0(t), (9.76)

so s(ω0, β)(t) = s(ω0, β)(t1, 0) for α1 ≤ β < α2.

With (9.66) and (9.59) and (9.75) we obtain

s(ω0, β)(t1, 0) =


b1 if β = α1,
−p

9(β−α1) t1∂τs(y
9+pω0, β + 1)(t1, 0) = 0 if α1 < β < β1,

−p
9(β1−α1) t1∂τs(y

9+pω0, β1 + 1)(t1, 0) 6= 0 if β = β1.
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This gives b2 6= 0 and (together with (9.66) and (9.67)) (9.39)–(9.41).

The argument in the proof of part (a) with K
(−2)
f (H ′′0 (ft), H

′′
0 (ft)) = 0 gives b4 6= 0 and (9.47)

and (9.48).
It rests to show (9.42)–(9.44). From (9.76), (9.46) and (9.47) we obtain

∂t2s(ω0, α2)(t) = ∂t1s(yω0, α2)(t) = ∂t1(t
−1/m2

1 · b3),

∂t2s(ω0, β2)(t) = ∂t1s(yω0, β2)(t)

{
= 0 if m 6 |p,
∈ C · b5 if m|p,

which gives (9.42) and (9.43).
For (9.44) observe the following. The sections

s(yω0, α2)(t1, 0) = t
−1/m2

1 · b3,
s(yω0, β2)(t1, 0) = b4,

and in the case m|ps(yr+1ω0, β2)(t1, 0) = t
−1/m
1 · b5

are univalued nowhere vanishing sections in the bundles
⋃
t1∈T C

α2(t1, 0) and
⋃
t1∈T C

β2(t1, 0),

and they generate these bundles. Also s(ω0, α2)(t1, 0) and s(ω0, β2)(t1, 0) are univalued sections
in these bundles. (9.68) and (9.69) show for p ≥ 2 that they are everywhere vanishing. For p = 1
they give the statement for E3,1 in the last line of table (9.44). This finishes the proof of the
parts (b) and (c) for the series E3,p. �

Proof of Mm2

T = id:
By theorem 9.6, the following sections in the bundles

⋃
t1∈T C

β(t1, 0) for β as in table (9.77)

are univalued nowhere vanishing sections and generate these bundles (in the case β = α1 only if
m 6 |p).

section b1 t
1/m2

1 · b2 t
−1/m2

1 · b3 b4 t
−1/m
1 · b5 if m|p

β α1 β1 α2 β2 β2

eigenvalue of 1 e−2πi/m2 e2πi/m2 1 e2πi/m

MT on C · bj

(9.77)

Therefore b1 and b4 are univalued, and b2 and b3 (and b5 if m|p) are multivalued flat sections
with eigenvalues of MT as in the table. Thus Mm2

T is on Cα1 , Cβ1 , Cα2 , Cβ2 ,Mlζ and Mle2πi/m2

the identity. We will show that it is the identity on all of Ml.
Consider firstly the case m 6 |p. Then by (9.24) Mm2

T is in

{id} in the cases W ]
1,2q−1, S

]
1,2q−1, U1,2q, E3,p, Z1,p, (9.78)

{id, id |B1
× (−Mm2/2

h )|B2
}in the cases W ]

1,2q, S
]
1,2q, U1,2q−1,

{id, (−Mm/2
h )|B1

× id |B2
} in the cases Q2,p,W1,p, S1,p.

On the other hand, in the cases in the second and third line of (9.78), m2 = m + rIp is even,
and MT itself is in GZ which is given by (5.6) in theorem 5.1. Thus Mm2

T = id also in the second
and third line of (9.78).

Consider secondly the case m|p, so p = mr. By (5.9) in theorem 5.1, Mm2

T = ε ·Mk
h for some

ε ∈ {±1} and some k ∈ Z. Then ε · ζk = 1 and ε · e2πik/m2 = 1. If ε = 1, then the two conditions
boil down to m|k and m2|k, so to m2|k. Then Mm2

T = id. If ε = −1, we will come below to a
contradiction. Then the two conditions require m even and m2 even.

For each eigenvalue λ of Mh on Ml with dimMlλ = 1, an eigenvector in Mlλ,Z[λ] exists.
Then MT has an eigenvalue in Eiw(λ) on this eigenvector, and Mm2

T has the eigenvalue 1 on



TORELLI RESULTS FOR MARKED BIMODAL SINGULARITIES 201

this eigenvector. Here m2 even is used. Therefore Mm2

T = id on Mlλ for each

λ ∈ {ζ, e2πi/m2} ∪ {λ̃ | dimMlλ̃ = 1}.

Comparison with table (5.1) shows that no k ∈ Z with −λk = 1 for all these λ exists. This gives
a contradiction. The case ε = −1 is impossible. Mm2

T = id is proved in all cases. �

Proof that MT has the eigenvalues 1 and ζ on Mlζ and on Cα1 :
By table (9.77), MT has on Cβ2 and on H∞

e−2πiβ2
= H∞

ζ
the eigenvalues 1 and ζ. As Mlζ is

dual to H∞
ζ

and H∞ζ is complex conjugate to H∞
ζ

, Mt has on Mlζ , H
∞
ζ = H∞

e−2πiα1
and Cα1

the eigenvalues 1 and ζ. �

Proof of theorem 9.2 (a)+(b)+(d):
(a) This follows immediately from (9.7), (9.9) and lemma (9.4) (c).
(b) All of this follows by carefully putting together the results in theorem 9.6. Here v0

1 = b1,
v0

2 = b2, v0
4 ∈ C∗ · b4 suitable, and the section in the brackets on the right hand side of (9.10) is

s[ω0]0(t) +

 1

m

t2
t1

+

 0
−c1 · t21
−c1 · t1


 · s[yω0]0(t) (9.79)

mod
⊕

α2<β<β2

Cβ ⊕ C · b5 ⊕ V >β2 .

The three cases in {...} correspond to the three lines in (9.44). The linear combination is chosen

such that it has no part in Cα2 . This section and the fact K
(−2)
f (H ′′0 (ft), H

′′
0 (ft)) = 0 determine

H ′′0 (ft). By table (9.77), MT has on v0
1 = b4 the eigenvalue 1.

(c) Consider the coordinate change

ϕ : (C3, 0)→ (C3, 0), (x, y, z) 7→ (x, y,−z). (9.80)

We treat the cases U1,9+18r and U1,18r separately.
The case U1,9+18r: Then ϕ ∈ Gsmar,genR ⊂ Gsmar, and

ϕ∗(ω0) = −ω0, ϕ
∗(yrzω0) = yrzω0. (9.81)

Now compare (9.39) and (9.54). ϕ induces an automorphism (ϕ)coh on Cα1 and Cβ2 with

(ϕ)coh(b1) = −b1, (ϕ)coh(b4) = −b4, (ϕ)coh(b5) = b5. (9.82)

One can choose g3 = −MT ◦ (ϕ)hom ∈ Gmar.
The case U1,18r: Because of (9.54) and (9.77), instead of (9.81) the identities

ϕ∗(ω0) = −ω0, ϕ
∗(yr+1ω0) = −yr+1ω0 (9.83)

are relevant. Now (ϕ)coh is because of (9.15) an isomorphism

H ′′0 (f(t1,0))→ H ′′0 (f(−t1,0)), C
β2(t1, 0)→ Cβ2(−t1, 0).

The composition

(− id) ◦ (math. pos. flat shift from Cβ2(−t1, 0) to Cβ2(t1, 0)) ◦ (ϕ)coh
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acts on Cβ2(t1, 0) and has because of (9.76) the eigenvectors b4 and b5 with the eigenvalues 1
and eπi/9:

b4 t
−1/9
1 b5 Cβ2(t1, 0)

↓ ↓ (ϕ)coh ↓
−b4 −(e−πit1)−1/9b5 Cβ2(−t1, 0)
↓ ↓ shift ↓
−b4 −eπi/9t−1/9

1 b5 Cβ2(t1, 0)
↓ ↓ − id ↓
b4 eπi/9t

−1/9
1 b5 Cβ2(t1, 0)

The corresponding composition

(− id) ◦ (math. pos. flat shift from Ml(f(−t1,0)) to Ml(f(t1,0))) ◦ (ϕ)hom

is in Gmar and can be chosen as g3. �

10. Period maps and Torelli results for the quadrangle singularities

In this section we will prove for the quadrangle singularities the strong global Torelli conjecture
8.11 (a), the conjectures 8.6 (b) − id /∈ Gsmar and (a) GZ = Gmar. The Torelli conjecture for the
unmarked singularities had been proved in [He93] (and the proof had been sketched in [He95]).
The main new ingredient for the Torelli result for marked singularities is a much stronger control
of the group GZ, in theorem 6.1. But we will also recall the old ingredients from [He93], the
space DBL and a period map for which we need calculations of the Gauss-Manin connection.

The six bimodal families of quadrangle singularities have as surface singularities the normal
forms f(t1,t2) in table (10.1). These are not the normal forms in [AGV85, 15.1]. We will justify
the normal forms and explain their properties after theorem 10.1. The parameters (t1, t2) are
in T (5) := (C− {0, 1})× C. Table (10.1) lists additionally weights (wx, wy, wz) such that f(t1,0)

is quasihomogeneous of weighted degree 1 and two numbers m0 and m∞ We set m1 := m0.
Observe wy = 2

m < wx ≤ wz.

(wx, wy, wz) m0 m∞
W1,0 x4 + (4t1 − 2)x2y3 + y6 + t2x

2y4 + z2 ( 1
4 ,

1
6 ,

1
2 ) 12 6

S1,0 x2z + y3z + yz2 + t1x
2y2 + t2x

2y3 ( 3
10 ,

2
10 ,

4
10 ) 10 5

U1,0 xz(x− z) + y3(x− t1z) + t2y
4z ( 1

3 ,
2
9 ,

1
3 ) 9 9

E3,0 x(x− y3)(x− t1y3) + t2x
2y4 + z2 ( 1

3 ,
1
9 ,

1
2 ) 9 9

Z1,0 xy(x− y2)(x− t1y2) + t2x
2y4 + z2 ( 2

7 ,
1
7 ,

1
2 ) 7 7

Q2,0 x(x− y2)(x− t1y2) + yz2 + t2xz
2 ( 1

3 ,
1
6 ,

5
12 ) 6 6

(10.1)

Recall that table (6.1) lists for these singularities the Milnor number µ, the characteristic
polynomials bj , j ≥ 1, of the monodromy on the Orlik blocks Bj in theorem 5.1, the order m of
the monodromy and the index rI .

For each 2-parameter family in table (10.1), we choose f0 := f(i,0) as reference singularity.

And as in section 9, Mmar
µ , (Mmar

µ )0, GZ, Gmar, Ml, H∞ and Cα mean the objects for f0. As

always, ζ := e2πi/m.
We will construct branched coverings c(2) and c(6) and unbranched coverings c(1) and c(5) as

follows.
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T (3)

c(1)

��

⊂ T (4) := H

c(2)

��
T (1) := C− {0, 1} ⊂ T (2) := P1C

(10.2)

T (7) := T (3) × C

c(5):=c(1)×id
��

⊂ T (8) := T (4) × C

c(6):=c(2)×id
��

T (5) = T (1) × C ⊂ T (6) := T (2) × C

Let Γ ⊂ PGL(2,R) be a triangle group of type ( 1
m0
, 1
m1
, 1
m∞

). The quotient H/Γ is an
orbifold with three orbifold points of orders m0,m1 and m∞. They are the images of the elliptic
fixed points of Γ on T (4) = H of orders m0,m1 and m∞. As a manifold H/Γ ∼= P1C. Choose
coordinates on H/Γ such that 0 and 1 are orbifold points of order m0 = m1 and∞ is an orbifold
point of order m∞. Denote by

c(2) : T (4) = H→ T (2) = P1C (10.3)

the quotient map. It is a branched covering. Denote

T (3) := T (4) − (c(2))−1({0, 1,∞}),
andc(1) := c(2)|T (4) : T (3) → T (1). (10.4)

It is a covering.

Theorem 10.1. Consider a bimodal family of quadrangle surface singularities in table (10.1).
(a) There are canonical isomorphisms

T (7) → (Msmar
µ )0 → (Mmar

µ )0. (10.5)

(b) − id /∈ Gsmar, where Gsmar is the group for the singularities of multiplicity ≥ 3, namely the
curve singularities W1,0, E3,0, Z1,0 and the surface singularities S1,0, U1,0, Q2,0. So, conjecture
8.6 (b) is true.

(c) GZ = Gmar. So, Mmar
µ = (Mmar

µ )0, and conjecture 8.6 (a) is true.

(d) The period map BL : Mmar
µ → DBL is an embedding. So, the strong global Torelli

conjecture 8.11 (a) is true.

The Torelli result for unmarked singularities (the period map Mmar
µ /GZ → DBL/GZ is an

embedding) was proved already in [He93], and also that there is a well defined period map
T (7) → DBL and that it is an embedding. But we prefer to give an independent account and
recover these results. The hardest part is in any case new. It is the precise control of GZ in
theorem 6.1.

First we discuss the normal forms in table (10.1) and the right equivalence classes in them.
Each bimodal family of quadrangle surface singularities contains a 1-parameter subfamily of

quasihomogeneous singularities. The exceptional set of the minimal good resolution of such
a singularity consists of 5 smooth rational curves. One, the central curve, intersects each of
the other 4, the branches, in one point. The right equivalence class of one quasihomogeneous
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surface singularity is determined by the central curve with the 4 intersection points and the self
intersection numbers of the 4 branches. Table (10.6) lists these self intersection numbers.

W1,0 S1,0 U1,0 E3,0 Z1,0 Q2,0

(2, 2, 3, 3) (2, 2, 3, 4) (2, 3, 3, 3) (2, 2, 2, 3) (2, 2, 2, 4) (2, 2, 2, 5)
(10.6)

In table (10.1), the singularities with t2 = 0 are quasihomogeneous. Their normal forms are
not taken from [AGV85, 15.1], but from [Bi92, Anhang A2, p. 191]. They are chosen such that

the cross ratio of the 4 intersection points on the central curve has j-invariant j = 4
27

(t21−t1+1)3

t21(1−t1)2 .

This fact implies that the families in table (10.1) contain representatives of all right equivalence
classes in one µ-homotopy class.

From the weights (or the spectral numbers, see below theorem 10.6) one deduces easily that
any monomial basis of the Jacobi algebra of one quasihomogeneous surface singularity ft1,0
contains precisely one monomial p>1 of weighted degree > 1 and that

degw p>1 = 1 +
2

m
= 1 + wy.

[AGV85, 12.6 Theorem] says here that any semiquasihomogeneous singularity with quasihomo-
geneous part ft1,0 is right equivalent to ft1,0 + t2 · p>1 for some t2 ∈ C. In table (10.1) we have
chosen the monomial p>1 such that it is part of a monomial basis of the Jacobi algebra of ft1,0
for any t1 ∈ T (1).

Remarks 10.2. It is nontrivial (and slightly surprising) that such a monomial p>1 exists si-
multaneously for all t1 ∈ T (1). In [He93][He95] the second author had overlooked this problem
and had chosen in the four cases S1,0, E3,0, Z1,0, Q2,0 a monomial which does not work for spe-

cial parameters t1 ∈ T (1). The following table (10.8) lists for all 6 families all monomials p̃ of
weighted degree 1 + 2

m and for each of them the function q(t1) with

p̃ ≡ q(t1) · p>1 mod (Jacobi ideal of ft1,0), (10.7)

where p>1 =
∂f(t1,t2)

∂t2
is the monomial chosen in table (10.1).

p>1 p̃ : q(t1) p̃ : q(t1) p̃ : q(t1)
W1,0 x2y4 x4y : 1− 2t1 y7 : 1− 2t1 x2yz : 0

y4z : 0 yz2 : 0
S1,0 x2y3 x2yz : −t1 y4z : −t1 y2z2 : t1

y6 : 2t1 − 1 x4 : 2t1 − 1 z3 : t1(2t1 − 3)
U1,0 y4z x2yz : −t1 xyz2 : −t1 xy4 : t1

x3y : t1(t1 − 2) yz3 : 1− 2t1

E3,0 x2y4 x3y : t1+1
2 xy7 : t1+1

2t1
y10 :

t21−t1+1

t21
yz2 : 0

Z1,0 x2y4 x3y2 : t1+1
2 xy6 : t1+1

2t1
y8 :

t21−t1+1

t21
x4 : 3

2 t
2
1 − 2t1 + 3

2 yz2 : 0
Q2,0 xz2 x2y3 : 1

(1−t1)2 x3y : t1+1
2(1−t1)2 xy5 : t1+1

2t1(1−t1)2

y7 :
t21−t1+1

t21(1−t1)2 y2z2 : 0

(10.8)

Thus p>1 could be replaced in the normal form in table (10.1) by any of the following monomials:

W1,0 S1,0 U1,0 E3,0 Z1,0 Q2,0

− x2yz, y4z, y2z2 x2yz, xyz2, xy4 − − x2y3 (10.9)
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We denote by G3 and G2 ⊂ G3 the groups of automorphisms of T (2) = P1C

G3 := {t1 7→ t1, 1− t1, 1
t1
, t1
t1−1 ,

1
1−t1 ,

t1−1
t1
} ∼= S3 as a group,

G2 := {t1 7→ t1, 1− t1} ⊂ G3
∼= S2 as a group.

(10.10)

They act also on T (1) = C− {0, 1}.

Theorem 10.3. Consider a bimodal family of quadrangle surface singularities in table (10.1).
A function

κ : G2 × T (1) → C∗ for W1,0, S1,0, (10.11)

κ : G3 × T (1) → C∗ for U1,0, E3,0, Z1,0, Q2,0,

with the following properties exists.

f(t1,t2) ∼R f(t̃1,t̃2) ⇐⇒ ∃ g ∈
{
G2 for W1,0, S1,0,
G3 for U1,0, E3,0, Z1,0, Q2,0,

with t̃1 = g(t1), t̃m∞2 = κ(g, t1) · tm∞2 , (10.12)

κ(id, t1) = 1, (10.13)

κ(g2g1, t1) = κ(g1, t1) · κ(g2, g1(t1)). (10.14)

Table (10.15) lists κ(g, t1) for generators g of the group.

W1,0 S1,0 U1,0 E3,0 Z1,0 Q2,0

t1 7→ 1− t1 1 −1 1
(

1−t1
t1

)18 (
1−t1
t1

)14

−1

t1 7→ t−1
1 − − −t−3

1 t−12
1 t−10

1 t31

(10.15)

Proof: (10.13)–(10.15) are consistent (to check this is nontrivial only for E3,0 and Z1,0) and
define a unique function κ as in (10.11). We will show now that it satisfies ⇐ in (10.12). We
postpone the proof of ⇒ in (10.12) to the end of this section.

The equality

f(t1,t2)(x · e2πiwx , y · e2πiwy , z · e2πiwz ) = f(t1,t2·e2πi2/m) (10.16)

gives ⇐ in (10.12) for g = id and κ(id, t1) = 1 (for U1,0 m = m∞ = 9, in the other cases

m∞ = m
2 ). We list now coordinate changes (x, y, z) 7→ ϕ(1)(x, y, z) and (x, y, z) 7→ ϕ(2)(x, y, z)

with

f(t1,t2)(ϕ
(1)(x, y, z)) = f(1−t1,0) + t2 · p(1)(t1, x, y, z)

for all 6 cases, (10.17)

f(t1,t2)(ϕ
(2)(x, y, z)) = f(t−1

1 ,0)(x, y, z) + t2 · p(2)(t1, x, y, z)

for U1,0, E3,0, Z1,0, Q2,0 (10.18)

for certain quasihomogeneous polynomials p(1) and p(2) in x, y, z with

degw p
(1) = degw p

(2) = 1 +
2

m
.
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ϕ(1)(x, y, z) ϕ(2)(x, y, z)
W1,0 (x,−y, z) −
S1,0 (ix, y,−z − y2) −
U1,0 (−x+ z,−y, z) (−z, t−1/3

1 y,−x)

E3,0 (x− y3,−y, z) (x, t
−1/3
1 y, z)

Z1,0 (e−2πi/14(x− y2), i · e−2πi/28y, z) (t
1/7
1 x, t

−3/7
1 y, z)

Q2,0 (x− y2, iy, e−2πi/8z) (x, t
−1/2
1 y, t

1/4
1 z)

(10.19)

One can calculate p(1) and p(2) easily. The proof of [AGV85, 12.6 Lemma] implies here

f(t̃1,0) + t2 · p̃ ∼R f(t̃1,t̃2)

where t2 · p̃ ≡ t̃2 · p>1 mod (Jacobi ideal of f(t̃1,0)). (10.20)

With table (10.8) one finds t̃2 with (10.20) for p̃ = p(1) and for p̃ = p(2). Then one verifies table
(10.15). �

Remarks 10.4. (i) For the quasihomogeneous singularities, (10.12) becomes

f(t1,0) ∼R f(t̃1,0) ⇐⇒ ∃ g ∈ G2 resp. G3 with t̃1 = g(t1).

This is proved in [Bi92, Satz 1.5.2] using the minimal good resolution. Our proof of⇒ in (10.12)
for all singularities at the end of this section will be different.

(ii) The right equivalence classes in T (5) are the orbits of a group action on T (5) in the cases
W1,0 and S1,0. There the group is a central extension of G2 by a cyclic group of order m∞ = m

2 ,

1→
(

cyclic group
of order m

)
→ (group acting on T (5))→ G2 → 1.

In the other cases U1,0, E3,0, Z1,0 and Q2,0, an m-th root of κ(t1 → t−1
1 , .) : T (1) → C∗ is not

uni-valued, but multi-valued. There one has only a groupoid acting on T (5), whose orbits are
the right equivalence classes in T (5).

(iii) In any case, the space Mmar
µ = (Mmar

µ )0 ∼= T (7) (by theorem 10.1) will be more canonical

than T (5), and there the right equivalence classes are the orbits of the action of the group
GZ = Gmar.

Now we come to the spectral numbers and the classifying space DBL.

Lemma 10.5. Consider a bimodal family of quadrangle surface singularities in table (10.1).
Denote ω0 := dxdydz.

(a) The spectral numbers α1, . . . , αµ with α1 ≤ . . . ≤ αµ satisfy

α1 =
−1

m
< α2 =

1

m
< α3 ≤ . . . ≤ αµ−2 (10.21)

< αµ−1 = 1− 1

m
< αµ = 1 +

1

m
,

dimCα1 = dimCα2 = 2. (10.22)

The following picture illustrates this.

α1 α2 αµαµ−1

1/20 1
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We also have

V α1(f(t1,t2)) ⊃ H ′′0 (f(t1,t2) ⊃ V >α2(f(t1,t2)), (10.23)

H ′′0 (f(t1,t2)) = C · (s(ω0, α1)(t1, t2) + s(ω0, α2)(t1, t2))

+ C · s(yω0, α2)(t1, t2) + V >α2(f(t1,t2)). (10.24)

(b) The polarizing form S defines an indefinite form ((a, b) 7→ S(a, b)) on H∞ζ . We get a
half-plane

H(Cα1) := {C · v | v ∈ Cα1 with S(ψ−1
α1

(v), ψ−1
α1 (v)) < 0} (10.25)

⊂ P1(Cα1).

(c)

DBL = {C · (v1 + v2) | v1 ∈ Cα1 − {0} with [C · v1] ∈ H(Cα1),

v2 ∈ C · ψα2(ψ−1
α1 (v1)) ⊂ Cα2} (10.26)

∼= H(Cα1)× C.

Proof: (a) The spectral numbers are well known [AGV88, 13.3.4, p. 389] and can be calcu-
lated in the semiquasihomogeneous cases for example with the generating series (here m = 2,
(w0, w1, w2) = (wx, wy, wz))

m∏
j=0

t− twj
twj − 1

=

µ∑
i=1

tαi+1. (10.27)

(10.22) and (10.23) are obvious. (10.24) follows from lemma 7.20 and

degw(ω0) = α1 + 1, degw(yω0) = α2 + 1, and degw(xiyjzkω0) > α2 + 1

for any other monomial xiyjzk, because wy < wx ≤ wz.

(b) This follows as in section 9 before theorem 9.2. It follows also from the fact that
Gr•V H

′′
0 (f(t1,t2)) and S induce as in (7.27) a polarized Hodge structure of weight 2 on

H∞(f(t1,t2)). Especially,

a1(t1, t2) := ψ−1
α1
s(ω0, α1)(t1, t2) ∈ H∞(f(t1,t2))ζ , (10.28)

a2(t1, t2) := ψ−1
α2
s(yω0, α2)(t1, t2) ∈ H∞(f(t1,t2))ζ

satisfy

on H∞(f(t1,t2))ζ : C · a1 = H2,0 = F 2 ⊂ H∞(f(t1,t2))ζ (10.29)

= F 1 = H2,0 ⊕H1,1 = C · a1 ⊕ C · a2,

on H∞(f(t1,t2))ζ : C · a2 = H1,1 = F 1 ⊂ H∞(f(t1,t2))ζ (10.30)

= F 0 = H1,1 ⊕H0,2 = C · a2 ⊕ C · a1,

0 < i2−0S(a1, a1), 0 < i1−1S(a2, a2), 0 = S(a1, a2). (10.31)

(c) This follows as in lemma 9.4 (c) in the case m|p. �

The multi-valued period map BLT (5) : T (5) → DBL had been calculated in [He93]. We recall
the result and sketch the proof. In part (e) of theorem 10.6 we add a formula for the case S1,0

which will be useful for the determination of a transversal monodromy in theorem 10.7.
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Theorem 10.6. Consider a bimodal family of quadrangle surface singularities in table (10.1).

(a) s(ω0, α1)(t1, t2) = s(ω0, α1)(t1, 0) = s[ω0](t1, 0) is independent of t2 and satisfies the
hypergeometric differential equation

0 =
(
t1(1− t1)∂2

t1 + (c− (a+ b+ 1)t1)∂t1 − ab
)
s[ω0](t1, 0) (10.32)

with (1− c, c− a− b, a− b) = ( 1
m0
, 1
m1
, 1
m∞

).

(b) The multi-valued period map

BLT (1) : T (1) → H(Cα1), t1 7→ C · s[ω0](t1, 0), (10.33)

lifts to a uni-valued period map

BLT (3) : T (3) → H(Cα1) (10.34)

which is an open embedding and extends to an isomorphism

BLT (4) : T (4) → H(Cα1). (10.35)

(c)

s(ω0, α2)(t1, t2) = t2 · (−∂τ )s[p>1ω0](t1, 0), (10.36)

Cα2 = C · s[yω0](t1, 0)⊕ C · ∂τs[p>1ω0](t1, 0). (10.37)

(d) The multi-valued period map

BLT (5) : T (5) → DBL (10.38)

is locally in T (1) and H(Cα1) an isomorphism of line bundles and lifts to an open embedding of
line bundles

BLT (7) : T (7) → DBL. (10.39)

(We do not know whether this extends to an isomorphism of line bundles T (8) → DBL, but we
do not expect it.)

(e) In the case of S1,0

∂t1s[xω0](t1, 0) =
2t1 − 1

5t1(1− t1)
· s[xω0](t1, 0). (10.40)

Proof: (a) We just sketch the ansatz for the calculations which prove (10.32). f(t1,0) and
∂t1f(t1,0) are quasihomogeneous of weighted degree 1. List all monomials d1, . . . , dl in x, y, z

which turn up in f2
(t1,0), f(t1,0) · ∂t1f(t1,0) and (∂t1f(t1,0))

2, find l − 2 independent linear combi-

nations of d1ω0, . . . , dlω0 in df(t1,0) ∧ dΩ1
C3 , and determine an equation

p1 · (∂t1f(t1,0))
2 · ω0 + p2 · f(t1,0) · ∂t1f(t1,0) · ω0 + p3 · f2

(t1,0) · ω0

≡ 0 mod df(t1,0) ∧ dΩ1
C3 (10.41)

with p1, p2, p3 ∈ Q[t1]. Then(
p1∂

2
t1 − (α1 + 2)p2∂t1 + (α1 + 2)(α1 + 1)p3

)
s[ω0](t1, 0). (10.42)

Because of corollary 8.14 one can work in the cases W1,0, E3,0, Z1,0 with the curve singulari-
ties. There the number l of monomials is l = 5. In the other cases, the surfaces singularities
S1,0, U1,0, Q2,0, it is l = 9.

(b) The period map BLT (1) is not constant because s[ω0](t1, 0) and

∂t1s[ω0](t1, 0) = (−∂τ )s[∂t1f(t1,0) · ω0](t1, 0)
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are linearly independent because ∂t1f(t1,0) is not in the Jacobi ideal. Therefore the multi-valued
coefficient functions f1(t1) and f2(t1) with

s[ω0](t1, 0) = f1(t1) · v0
1 + f2(t1) · v0

2 (10.43)

for an arbitrary basis v0
1 , v

0
2 of Cα1 are linearly independent scalar solutions of the same hy-

pergeometric differential equation. Their quotient (t1 7→ f1(t1)
f2(t1) ) is a Schwarzian function [Fo51,

sec. 113+114], which maps the closure of the upper half-plane to a hyperbolic triangle with
angles π

m0
, π
m1
, π
m∞

. The vertices are the images of 0, 1,∞. Therefore the multi-valued map

BLT (1) : T (1) → H(Cα1) is an inverse of the quotient map c(1) : T (3) → T (1). This shows (10.34)
and (10.35).

(c) s(ω0, α2)(t1, 0) = 0 because of formula (7.52) in lemma 7.20 (a).

∂t2s(ω0, α2)(t1, t2) = (−∂τ )s(p>1ω0, α2 + 1)(t1, t2)

= (−∂τ )s[p>1ω0](t1, 0)

thus s(ω0, α2)(t1, t2) = t2 · (−∂τ )s[p>1ω0](t1, 0)

≡ t2 · v2 mod C · s[yω0](t1, 0) (10.44)

with a suitable v2 ∈ ψ−1
α2

(ψα1
(s[ω0](t1, 0)))− {0}.

Here v2 6= 0 follows from (10.37) which is a consequence of the fact that p>1 is not in the Jacobi
ideal of f(t1,0).

(d) This follows from (10.34) and part (c).

(e) The proof is similar to the calculations which prove part (a), but simpler.

∂t1s[xω0](t1, 0)

= (−∂τ )s[∂t1f(t1,0) · xω0](t1, 0) = (−∂τ )s[x3y2ω0](t1, 0)

(∗)
=

2t1 − 1

6t1(t1 − 1)
(−∂τ )s[f(t1,0) · xω0](t1, 0)

=
2t1 − 1

6t1(t1 − 1)
(−∂ττ)s[xω0](t1, 0) =

2t1 − 1

6t1(t1 − 1)
(−6

5
)s[xω0](t1, 0)

=
2t1 − 1

5t1(1− t1)
s[xω0](t1, 0).

For
(∗)
= one has to find 3 relations in df(t1,0) ∧ dΩ1

C3 between the monomial differential forms

x3y2ω0, xy
3zω0, xyz

2ω0 and x3zω0 in f(t1,0) · xω0 and x3y2ω0. �

The last step before the proof of theorem 10.1 is the following result on a transversal mon-
odromy group. Its proof uses formula (6.8) in theorem 6.1.

Theorem 10.7. Consider a bimodal family of quadrangle surface singularities in table (10.1).
The pull back to T (3) with c(1) of the homology group

⋃
t1∈T (1) Ml(f(t1,0))→ T (1) comes equipped

with a monodromy representation π(3) : π1(T (3), τ (3))→ GZ (with c(1)(τ (3)) = i) which is called
transversal monodromy group.

(a) The following table lists the local monodromies around elliptic fixed points in (c(2))−1(0),
(c(2))−1(1) and (c(2))−1(∞).

W1,0 S1,0 U1,0 E3,0 Z1,0 Q2,0

(c(2))−1({0, 1}) id id id id id id
(c(2))−1(∞) id M5

h id id id M6
h

(10.45)
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Therefore Im(π(3)) = {id} for W1,0, U1,0, E3,0, Z1,0, and Im(π(3)) = {id,Mm∞
h } for S1,0 and

Q2,0.

(b)

{g ∈ GZ | g acts trivially on DBL}
= {g ∈ GZ | g = ± id on Mlζ}
= {± id,±Mm∞

h }

=

{
{± id} for U1,0, E3,0, Z1,0

{± id,±Mm∞
h } for W1,0, S1,0, Q2,0.

(10.46)

(c) Gsmar,genR is here the group in (8.13) for the singularities of multiplicity ≥ 3, namely the
curve singularities W1,0, E3,0, Z1,0 and the surface singularities S1,0, U1,0, Q2,0.

Gsmar,genR =

{
{id} for U1,0, E3,0, Z1,0,
{id,Mm∞

h } for W1,0, S1,0, Q2,0.
(10.47)

Proof: We start with part (b). Suppose that g ∈ GZ acts trivially on DBL. Then it acts
trivially on H(Cα1), so g = λ · id on Mlζ for some λ ∈ C∗. And C · (v1 + v2) = C · (λv1 +λv2), so

λ = λ ∈ {±1}. This together with formula (6.8) and the set of eigenvalues of Mh gives (10.46).
(a) The Papperitz-Riemann symbol 0 1 ∞

0 0 a z
1− c c− a− b b

 (10.48)

encodes the local behaviour near 0, 1 and ∞ of scalar solutions of the hypergeometric equation.
Locally suitable solutions have the following form (h.o.t. = higher order terms):

near 0 : t01 + h.o.t. and t1−c1 + h.o.t.,
near 1 : (t1 − 1)0 + h.o.t. and (t1 − 1)c−a−b + h.o.t.,

near ∞ : t−a1 + h.o.t. and t−b1 + h.o.t.

(10.49)

Especially, the local monodromy of the space of solutions has the eigenvalues

around 0 : 1 and e2πi(1−c),
around 1 : 1 and e2πi(c−a−b),
around ∞ : e−2πia and e−2πib.

(10.50)

In our situation (1− c, c− a− b, a− b) = ( 1
m0
, 1
m1
, 1
m∞

),

W1,0 S1,0 U1,0 E3,0 Z1,0 Q2,0

a 1
2

1
2

4
9

4
9

3
7

5
12

b 1
3

3
10

1
3

1
3

2
7

1
4

c 11
12

9
10

8
9

8
9

6
7

5
6

(10.51)

The branched covering c(2) : T (4) → T (2) has at elliptic fixed points the orders m0,m1,m∞.
Therefore the local monodromies of the pull back to T (3) of the solutions on

T (1) = C− {0, 1} ⊂ T (2) = P1C

become + id except around the elliptic fixed points in (c(2))−1(∞) in the cases S1,0 and Q2,0

where they become − id.
The same holds for the restrictions to Mlζ of the local monodromies in π(3).
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With (6.8) we obtain (10.45) for U1,0, E3,0, Z1,0 and the following approximation of (10.45)
for W1,0, S1,0, Q2,0.

W1,0 S1,0 Q2,0

(c(2))−1({0, 1}) id or −M6
h id or −M5

h id or −M6
h

(c(2))−1(∞) id or −M6
h − id or M5

h − id or M6
h

(10.52)

The case W1,0: The sublattice Ml−1,Z has rank 1. Therefore the local transversal mon-

odromies of the homology bundle on T (1) around 0, 1 and ∞ have on Ml−1,Z eigenvalues in

{±1}. The branched covering T (4) → T (2) is at the elliptic fixed points of even order. Thus π(3)

restricts to the trivial monodromy on Ml−1,Z. This excludes −M6
h in (10.52).

The case S1,0: The local transversal monodromies of the homology bundle on T (1) around
0, 1 and ∞ have on Mle−2πi/5 eigenvalues in Eiw(ζ). The branched covering is at the elliptic
fixed points in (c(2))−1({0, 1}) of order 10. Thus the local monodromies of π(3) around points
in (c(2))−1({0, 1}) are trivial on Mle−2πi/5 . This excludes −M5

h in the first line of (10.52). The

branched covering is at the elliptic fixed points in (c(2))−1(∞) of order 5. Formula (10.40) in
theorem 10.6 gives near ∞

s[xω0](t1, 0) = (t
−2/5
1 + h.o.t.) · (a flat multi-valued section). (10.53)

Therefore also the local monodromy of π(3) around points in (c(2))−1(∞) is trivial. This excludes
− id in the second line of (10.52).

The case Q2,0: The local transversal monodromies of the homology bundle on T (1) around 0,

1 and ∞ have on Mle−2πi/3 eigenvalues in Eiw(e2πi/6). The branched covering T (4) → T (2) is at
the elliptic fixed points of order 6. Thus π(3) restricts to the trivial monodromy on Mle−2πi/3 .
This excludes −M6

h in the first line and − id in the second line of (10.52).

(c) − id /∈ Gsmar,genR by theorem 8.8 (d). Gsmar,genR fixes BL(f,±ρ) for any (f,±ρ) ∈Mmar
µ .

Because T (7) → DBL is an open embedding, Gsmar,genR fixes DBL. By part (b) Gsmar,genR = {id}
for U1,0, E3,0, Z1,0, and Gsmar,genR = {id} or {id,Mm∞

h } or {id,−Mm∞
h } for W1,0, S1,0, Q2,0. The

coordinate changes ϕ of the curve singularities W1,0 and the surface singularities S1,0 and Q2,0

in the following table give a nontrivial element of Gsmar,genR .

W1,0 S1,0 Q2,0

(x, y) 7→ (−x, y) (x, y, z) 7→ (−x, y, z) (x, y, z) 7→ (x, y,−z) (10.54)

The coordinate change ϕ maps ω0 to −ω0 and s[ω0](t1, 0) to −s[ω0](t1, 0). Therefore
(ϕ)hom|Mlζ = − id and (ϕ)hom = Mm∞

h (and not −Mm∞
h ). This shows (10.46) for

W1,0, S1,0, Q2,0. �

Finally we come to the proof of theorem 10.1. Within this proof, we will also finish the proof
of theorem 6.1. After it, we will finish the proof of theorem 10.3.

Proof of theorem 10.1: By theorem 10.7 (a)+(c), the transversal monodromy representa-
tion π(7) of the pull back to T (7) with c(5) of the homology bundle

⋃
(t1,t2)∈T (5) Ml(f(t1,t2))→ T (5)

is trivial in the cases W1,0, U1,0, E3,0, Z1,0 and has image in Gsmar,genR = {id,Mm∞
h } in the cases

S1,0 and Q2,0. Thus the strong marking + id on f(i,0) induces for each f(t1,t2) two strong mark-
ings in the same right equivalence class in the cases S1,0 and Q2,0 and one strong marking in the

other cases. In any case, this gives a map T (7) → (Msmar
µ )0.

The composition T (7) → (Msmar
µ )0 → DBL is an open embedding by theorem 10.6. Also recall

that (Msmar
µ )0 → DBL is an immersion and that all three spaces are 2-dimensional manifolds.



212 FALKO GAUSS AND CLAUS HERTLING

Therefore T (7) → (Msmar
µ )0 and (Msmar

µ )0 → DBL are open embeddings. We postpone the

proof that the map T (7) → (Msmar
µ )0 is an isomorphism.

Part (b) follows now easily: Consider the case of singularities of multiplicity ≥ 3. − id ∈ GZ
acts trivially on DBL. It acts nontrivially on Msmar

µ by theorem 8.5 (c). The map

(Msmar
µ )0 → DBL

is an embedding. Therefore − id ∈ GZ does not act on (Msmar
µ )0. Therefore − id /∈ Gsmar. This

shows part (b). In this case (Msmar
µ )0 ∼= (Mmar

µ )0 by theorem 8.5 (c).

In the case of singularities of multiplicity 2, Msmar
µ = Mmar

µ and (Msmar
µ )0 = (Mmar

µ )0 hold
anyway.
c(2) : T (4) = H→ T (2) = P1C is the branched covering from an action of a triangle group Γ of

type ( 1
m0
, 1
m1
, 1
m∞

) on H. The group Γ is a normal subgroup of index 2 respectively 6 of a triangle

group Γqh of type (2, 2m, 2m) for W1,0 and S1,0 and of type (2, 3, 2m) for U1,0, E3,0, Z1,0 and
Q2,0 such that Γqh/Γ = (G2 respectively G3). The following pictures show hyperbolic triangles

associated to Γ and Γqh. The symbols [0], [1], [∞], [ 1
2 ], [2], [−1], [e2πi/6] at special points indicate

the images of these points under c(2).

The group Γqh maps the set of elliptic fixed points (c(2))−1({0, 1,∞}) = T (4) − T (3) of Γ to
itself, so it acts on T (3).

By the proved implication⇐ in (10.12) in theorem 10.3, the orbits of Γqh in T (3) are contained
in the right equivalence classes of quasihomogeneous singularities. By the embedding

T (3) → H(Cα1)

in theorem 10.6, Γqh acts also on H(Cα1), and the orbits are contained in the orbits of Ψ(Gmar),
because the orbits of Gmar on (Mmar

µ )0 are the right equivalence classes in (Mmar
µ )0.

Now compare the actions of Γqh and Ψ(Gmar) on H(Cα1). Γqh acts as a triangle group of
type (2, 2m, 2m) respectively (2, 3, 2m), and Ψ(Gmar) acts by theorem 6.1 (b) as a subgroup of
a triangle group of the same type. And the orbits of Γqh are contained in the orbits of Ψ(Gmar).
Therefore the actions coincide, and Ψ(Gmar) = Ψ(GZ) is a triangle group of the claimed type in
(6.7). This gives the surjectivity in theorem 6.1 and finishes the proof of theorem 6.1.

It also shows that Gmar acts on T (3). Because T (3) contains representatives of the right
equivalence classes of all quasihomogeneous singularities in the given µ-homotopy family, the
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marked quasihomogeneous singularities in (Mmar
µ )0 must all be in T (3). This proves that the

open embedding T (7) → (Mmar
µ )0 is an isomorphism.

Next we will prove GZ = Gmar. Consider an element g1 ∈ GZ. Because of Ψ(Gmar) = Ψ(GZ),
we can multiply it with an element g2 ∈ Gmar such that g3 = g1g2 satisfies Ψ(g3) = id. By
formula (6.8) in theorem 6.1 g3 ∈ {±Mk

h | k ∈ Z} ⊂ Gmar. This proves GZ = Gmar.
Now Mmar

µ = (Mmar
µ )0 holds. Because BL : (Mmar

µ )0 → DBL is an embedding, BL :
Mmar
µ → DBL is an embedding. This finishes the proof of theorem 10.1. �

Proof of ⇒ in (10.12) in theorem 10.3: GZ acts as Γqh on H(Cα1) and thus as G2

respectively G3 on T (1). This shows ⇒ in (10.12) for the quasihomogeneous singularities.
An element g ∈ GZ which acts trivially on T (3) is in {±Mk

h | k ∈ Z} and restricts to λ · id on
Mlζ for some λ ∈ Eiw(ζ). Because of

g : C · (v1 + v2) 7→ C(λ · v1 + λ · v2) = C · (v1 + λ
2 · v2)

it acts on the fibers of the projection DBL → H(Cα1) by multiplication with λ
2
, and it acts in

the same way on the fibers of the projection T (7) → T (3). But (λ
2
)m∞ = 1. This shows ⇒ in

(10.12) for all singularities. �
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(1970), 103–161. DOI: 10.1007/BF01155695

[Eb81] W. Ebeling: Quadratische Formen und Monodromiegruppen von Singularitäten. Math. Ann. 255 (1981),
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