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Abstract. The volume cut off by a hyperplane from a bounded body with smooth boundary
in R2k never is an algebraic function on the space of hyperplanes: for k=1 it is the famous

lemma XXVIII from Newton’s Principia. Following an analogy of these volume functions with

the solutions of hyperbolic PDE’s, we study the local version of the same problem: can such
a volume function coincide with an algebraic one at least in some domains of the space of

hyperplanes, intersecting the body? We prove some homological and geometric obstructions

to this integrability property. Based on these restrictions, we find a family of examples of
such “locally integrable” bodies in Euclidean spaces.

1. Introduction

According to an Archimedes’ theorem, the volume cut by a plane from a ball in R3 depends
algebraically on the coordinates of the plane. The same is true also for all balls and ellipsoids
in all odd-dimensional Euclidean spaces, but no additional examples are known by now.

On the contrary, Newton proved that for no bounded convex domain with smooth boundary
in R2 the areas cut from it by the affine lines depend algebraically on the coordinates of these
lines, see [12], [7], [2], [6]. V.I. Arnold [3] conjectured that similar statements hold also in
higher dimensions. The even-dimensional part of this problem was completed in [16]: there is
no bounded domain (convex or not) with smooth boundary in R2k, for which the volume cut
off by a hyperplane is algebraic. The odd-dimensional part of Arnold’s conjecture (stating that
the ellipsoids in R2k+1 are unique bodies with this property) has only partial solutions: several
geometric obstructions to the algebraicity of volumes are presented in [15]; however it is not
clear whether they are sufficient for the proof of the general problem.

We study a local version of the same problem: given a body W ⊂ RN , can the corresponding
volume function coincide with an algebraic one at least in some open subset of the space of all
affine subspaces in RN intersecting W? We prove some topological and geometric obstructions
to this local integrability property, and find a series of new bodies satisfying it.

There is a deep analogy between this problem and the lacuna problem in the theory of hy-
perbolic PDE’s developed in [13], [11], [4], [5]; for a list of parallel notions see page 138 in [15].
Many of our objects and terminology are borrowed from the theory of lacunas.

1.1. Notation and definitions. Denote by P the space of all affine hyperplanes in RN . It al-
most coincides with RPN : the homogeneous coordinates (a1 : · · · : aN : b) define the hyperplane
with the equation

(1) a1x1 + · · ·+ aNxN + b = 0,

and (0 : · · · : 0 : 1) is the only point in RPN but not in P.
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Let W ⊂ RN be a smooth body, that is, a bounded (not necessarily connected) domain with
smooth boundary. It defines a two-valued function VW on P: its values VW (X) on a hyperplane
X are equal to the volumes of intersections of the body W with two halfspaces in RN separated
by X.

The space P consists of open domains whose points are the hyperplanes transversal to ∂W ,
and the walls between these domains formed by the hyperplanes tangent to it: these walls
form the projective dual hypersurface of ∂W . Such an open domain in P is called a lacuna
if the restriction of the volume functions to this domain coincides with an algebraic function
on P, that is, there exists a non-trivial polynomial F (a1, . . . , aN , b, V ) vanishing in any point
(a1, . . . , aN , b, V ) such that V equals either of the two volumes cut off from the body W by the
hyperplane with the equation (1) from our domain. The body W is called algebraically integrable
if all domains of P are lacunas.

There is a trivial example of a lacuna: it is the domain consisting of hyperplanes not inter-
secting the body W , so that the corresponding volume function is equal identically to a pair of
constants in it, 0 and the volume of entire W . Given a body, does it define nontrivial lacunas in
P (so that the corresponding volume functions are not constant)?

In the case of convex W ⊂ R2k and infinitely differentiable ∂W the answer is negative (there
is only one non-trivial domain in P, and it is not a lacuna); for k = 1 it is the Newton’s lemma
XXVIII. The main result of [16] says that for an arbitrary bounded body with C∞-boundary in
R2k all regular domains in P cannot be lacunas simultaneously.

2. Obstructions to the integrability

In this section we assume that the boundary ∂W of the body W ⊂ RN is a smooth component
(or a collection of components) of the zero set of an irreducible polynomial with real coefficients.

For any generic real hyperplane X, we define an (N − 2)-dimensional complex manifold, and
some collection of elements of its (N − 2)-dimensional homology group, one of which is given by
the manifold X ∪ ∂W , and the others are called vanishing cycles. Our main result (Theorem 1
below) says that if the intersection index of the first cycle with either of these vanishing cycles
is not equal to 0, then the component of P containing X is not a lacuna. Let us introduce all
these objects.

Let A be the zero set in CN of the polynomial distinguishing ∂W . This set A can have
singular points in the imaginary domain. Let us fix a Whitney stratification of the algebraic
subvariety A∪CPN−1

∞ ⊂ CPN , where CPN is the standard compactification of CN , and CPN−1
∞

is the “infinitely distant” hyperplane in it. An affine hyperplane X ⊂ CN is called generic if
its closure in CPN is transversal to this chosen stratification of A ∪ CPN−1

∞ . The set of generic
hyperplanes contains a Zariski open subset in the space PC of all complex hyperplanes in CN .
In particular, the real planes in RN , whose complexifications are generic, are dense in P. Using
the complexifications of real planes, we will consider P as a subset of PC.

Denote by Reg the space of all generic hyperplanes in CN , and denote by RegR the set of
hyperplanes with real coefficients that are transversal to ∂W ; in particular RegR ⊃ Reg∩P. All
elements of the difference RegR \ (Reg ∩ P) correspond to real planes whose complexifications
are not transversal to the stratified variety A ∪ CPN−1

∞ at some pairs of its complex conjugate
imaginary points. The codimension of this difference in P is at least 2, in particular it does not
separate different connected components of Reg ∩ P.

The volume function is analytic inside any component of RegR.

Given a complex hyperplane X in CN , denote by C̆N , X̆ and Ă the sets CN , X and A from
which all singular points of the hypersurface A are removed.
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Consider the chain of homomorphisms

(2) HN (C̆N , X̆ ∪ Ă)→ HN−1(X̆ ∪ Ă)→ HN−2(X̆ ∩ Ă),

where the first arrow is the usual boundary operator, and the second one is the Mayer-Vietoris
differential. (All homology groups here and below are with integer coefficients only).

By the Thom isotopy lemma (see e.g. [10]), for all X ∈ Reg the groups of any of three
kinds indicated in (2) are isomorphic to each other; moreover, any path in Reg identifies such
groups for the endpoints of the path via the Gauss–Manin connection (that is, the homological
realization of the covering homotopy property over this path).

Let X0 ∈ Reg ∩ P be a generic plane. The group HN (C̆N , X̆0 ∪ Ă) contains two important
elements Λ±(X0): the parts of the body W ⊂ RN cut off by the real part of the hyperplane
X0 and taken with the canonical (once fixed) orientation of RN . Let ∆±(X0) be the images

of these elements in the group HN−2(X̆0 ∩ Ă) under the composite homomorphism (2). They
are represented by the manifold X0 ∩ ∂W taken with some (opposite) orientations, in particular
∆−(X0) + ∆+(X0) = 0.

For any X ∈ Reg the first and the last groups in (2) contain also some distinguished sets of
elements, called vanishing contours and vanishing cycles respectively and defined in the following
way.

Let u be a generic point of the hypersurface Ă, that is, a non-singular point of A such that
the second fundamental form of A at this point is non-degenerate. Such points are dense in A
since A is irreducible and bounds a body in RN . The set of all hyperplanes tangent to A at
points close to u is then a smooth hypersurface in PC.

Let B be a small ball in CN centered at our generic point u ∈ Ă, and X(u) ⊂ CN be the
tangent hyperplane of A at u. For any hyperplane X ′(u) sufficiently close to X(u) but lying in
Reg, consider the sequence

(3) HN (B,X ′(u) ∪A)→ HN−1((X ′(u) ∪A) ∩B)→ HN−2(X ′(u) ∩A ∩B),

whose maps are defined as in (2). All three groups in this sequence are then isomorphic to Z, and
both maps in it are the isomorphisms. Denote by Λ(u) and ∆(u) some generators of the first and
the last groups in (3) obtained one from another by this composite homomorphism. Denote by

the same letters Λ(u) and ∆(u) the images of these elements in the groups HN (C̆N , X̆ ′(u) ∪ Ă)

and HN−2(X̆ ′(u) ∩ Ă) under the identical embedding.
An arbitrary path in Reg connecting the points X ′(u) and X0 identifies the groups of any

of three types (2) for these hyperplanes, in particular moves the elements Λ(u) and ∆(u) into

some two elements of the groups HN (C̆N , X̆0 ∪ Ă) and HN−2(X̆0 ∩ Ă) respectively. All elements
of the latter two groups which can be obtained in this way from any choice of a generic point
u, a path connecting X and X ′(u) in Reg, and a generator of the group HN (B,X ′(u) ∪A), are
called the vanishing contours and vanishing cycles respectively.

Theorem 1. If the domain of RegR ⊂ P containing X0 is a lacuna then the intersection indices
〈∆+(X0),∆〉 ≡ −〈∆−(X0),∆〉 of (n− 2)-dimensional cycles in the complex (n− 2)-dimensional

manifold X̆0 ∩ Ă are equal to 0 for all vanishing cycles ∆ ∈ HN−2(X̆0 ∩ Ă).

Proof. The integrals of the holomorphic volume form

(4) dx1 ∧ · · · ∧ xN

along the relative cycles define a linear function on the group HN (CN , X ∪ A), and also on the

group HN (C̆N , X̆ ∪ Ă) for any X ∈ P.
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Every element Λ of the group

(5) HN (C̆N , X̆0 ∪ Ă)

defines a function germ Int(Λ) in a neighborhood of our point X0 in Reg: its value at any point

X ≈ X0 is equal to the integral of the form (4) along the relative cycle Λ(X) ∈ HN (C̆N , X̆ ∪ Ă),
obtained from Λ by the Gauss-Manin connection over the paths connecting X0 and X in our
neighborhood. By the construction, this function is complex analytic. If Λ is one of cycles Λ+ or
Λ−, then the restriction of this function to RegR coincides with the volume function, which also
is analytic; therefore the analytic continuations of both functions to entire Reg coincide. If this
analytic continuation is infinite-valued then the domain of RegR containing X0 is not a lacuna.

So we get a linear map Int from the group (5) to the space of all analytic function germs at
the point X0 ∈ P. Denote by H the image of the group (5) under this map (or, equivalently, the
group (5) itself factored through the subgroup consisting of all elements defining zero germs).
By the construction, H is an integer lattice. The group π1(Reg, X0) acts on the group (5) by
monodromy operators, and on H by analytic continuations; these actions commute with our
epimorphism Int : HN (C̆N , X̆0 ∪ Ă)→ H.

Now suppose that 〈∆+(X0),∆〉 6= 0 for some cycle ∆ vanishing along a path connecting the
points X0 and X ′(u). Consider the loop in π1(Reg, X0) going along this path from X0 to X ′(u),
rotating around the set of planes tangent to A at points close to u, and coming back to X0 along
the same path. By the Picard–Lefschetz formula (and the functoriality of the maps (2)) this
loop adds to the cycle Λ+(X0) the class of the contour Λ vanishing along our path and taken
with a non-zero coefficient c (equal to ±〈∆+(X0),∆〉).

If N is odd then we will pass this loop again and again. In this case the intersection index
of (N − 2)-dimensional cycles in X̆ ∩ Ă is skew-symmetric, therefore any new travel along this
loop adds to our integration chain a new copy of the cycle c · Λ. The function germ defined by
any vanishing cycle is not equal to zero, hence we get immediately an infinite number of leaves
of the analytic continuation.

Lemma 1. Let N be even, then the orbit of the germ defined by any vanishing contour Λ under
our π1(Reg, X0)-action in H is infinite.

Proof of this lemma is based on considerations of §3 in [16]. The main tool there is a reflection
group associated with any body like W . It acts on a lattice F generated by finitely many elements
corresponding to the vanishing contours, and the orbits of all these generators are not greater
than the orbit of an arbitrary germ Int(Λ) defined by our vanishing contour under the action of
the entire group π1(Reg, X0). (The action by reflections in F is defined by the loops in Reg, all
whose points are the planes parallel to X0). Therefore if our π1(Reg, X0)-orbit in H of a germ
defined by a vanishing contour is finite, then this reflection group also should be finite. However,
it was proved in [16] that this reflection group always is infinite. �

Therefore the orbit of our contour c · Λ also is infinite. However, this orbit is a subset of the
set of differences between the elements of the orbit ot the class Int(Λ+(X)) ∈ H. The latter
orbit is thus also infinite, that is, the analytic continuation of the volume function has infinitely
many leaves at the point X0, and cannot be algebraic. �

Theorem 2. If N is even then two neighboring domains of the set RegR of generic hyperplanes
in P (that is, two domains separated by only one piece of the variety projective dual to ∂W )
cannot be lacunas simultaneously.

Proof. Let X1, X2 be two points of Reg∩P separated by such a piece consisting of hyperplanes
tangent to the surface ∂W close to some its generic point u; suppose that the planes X1 and
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X2 are parallel and very close to the plane X(u) tangent to A at this point. Then we have

three important elements of the group HN (C̆N , X̆1 ∪ Ă). The first one is our real contour
Λ+(X1) defined by the points of W cut off by the plane X1. The second cycle, M(Λ+(X2)),

is obtained from the similar element Λ+(X2) of the group HN (C̆N , X̆2 ∪ Ă) by the Gauss–
Manin continuation over a small arc connecting the points X2 and X1 in the space Reg of
generic complex hyperplanes. The third element is the vanishing cycle Λ(u) generating the
group HN (B,X1 ∪ A) where B is a small ball centered at the point u, see (3). By Lemma 3.3
of §III.3 in [15], these three cycles are related by the equality

(6) Λ+(X1)−M(Λ+(X2)) = ±Λ(u),

where the sign ± depends on the choice of the orientation of the last cycle. By Lemma 1, the
orbit of the class Int(Λ(u)) ∈ H of the vanishing contour Λ(u) under the monodromy action in
H is infinite in the case of even N , therefore the orbits of the classes of elements Λ+(X1) and
Λ+(X2) cannot be finite simultaneously. �

Remark 1. It follows by induction from the identity (6) that either of the relative homology
classes Λ+(X0) and Λ−(X0) is equal to the sum of several vanishing contours corresponding to
the tangency points of ∂W with the hyperplanes parallel to X0 and lying to the corresponding
side from it.

3. Local geometry of the boundaries of lacunas and Davydova condition

Let X1 and u be the same as in the previous proof. Let ∆+(X1) and ∆(u) be two elements

of the group HN−2(X̆1 ∩ Ă) obtained by the homomorphism (2) from the elements Λ+(X1) and

Λ(u) used in this proof. If their intersection index in X̆1∩Ă is not equal to zero, then by Theorem
1 the domain of RegR containing X1 is not a lacuna. This property 〈∆+(X1),∆(u)〉 6= 0 can be
checked directly in the terms of the local geometry of ∂W at the point u: more precisely, in the
terms of its second fundamental form, cf. [8], [5].

Let us choose affine coordinates y1, . . . , yN in RN with the origin at the point u in such a way
that y1 = 0 on the tangent hyperplane X(u), and y1 > 0 on the examined hyperplane X1 in
our neighborhood B of the point u. The hypersurface ∂W is then defined by an equation of the
form y1 = χ(y2, . . . , yN ) in a vicinity of the point u. The function χ is smooth and has a critical
point at the origin: dχ(0) = 0. This critical point is Morse since u is generic.

Proposition 1 (see e.g. [11] or Theorem 3.1 in page 183 of [15]). 〈∆+(X1),∆(u)〉 = 0 if and
only if the positive inertia index of the quadratic part of the Taylor expansion of the function χ
at the critical point is even.

The trivial example occurs when this inertia index is equal to 0: in this case the cycle ∆+(X1)
(consisting of all real points of X1 ∩ A) is empty close to u and certainly cannot intersect the
vanishing cycle ∆(u) concentrated in the neighborhood of u.

Remark 2. This geometric condition is completely analogous to the Davydova condition in the
theory of hyperbolic PDE’s, see [8], although the integration cycles and forms in this theory are
different. In both theories, the homology classes of the varieties like X ∩A play the crucial role.
However, in our case these cycles are related with the N -dimensional integration contours by
the maps (2), while in the hyperbolic science the integration contours lie in some groups similar
to our HN (CN \ (X ∪A)), which in the case of generic X are related to the group HN−2(X ∩A)
by the double Leray tube operation.

Now let U be a connected component of the space RegR ⊂ P, and Y ∈ ∂U a hyperplane
tangent to ∂W .
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Definition 1 (cf. [5]). The domain U is a local lacuna at the point Y if the volume function
VW coincides with a pair of regular analytic single-valued functions in the intersection of the
domain U with some neighborhood of the point Y in P.

Proposition 2 (cf. [5]). 1. Let Y ∈ P be a hyperplane having a generic tangency with ∂W at
some point u. A domain of RegR is a local lacuna close to this point Y if and only if the condition
〈∆+(X1),∆(u)〉 = 0 from Proposition 1 is satisfied for some (and then for any) neighboring point
X1 of this domain.

2. If a domain is not a local lacuna at some generic point of its boundary, then it also is not
a lacuna.

The proof of statement 1 essentially repeats that of a similar statement in [5]: it follows from
the removable singularity theorem. The proof of statement 2 uses additionally Theorem 1. �

So, in the case of even N exactly one of neighboring domains of RegR at a generic point
Y ∈ ∂W is a local lacuna, and the other is not.

In the case of odd N , either both neighboring domains are local lacunas or both are not. In
particular, if N is odd and the hypersurface ∂W contains the points at which the inertia indices
of its second fundamental quadratic form are odd, then the body W definitely is not algebraically
integrable.

The study of geometric restrictions preventing a domain to be a local lacuna at more compli-
cated points of its boundary also is parallel to that for hyperbolic PDE’s, see [9], [14], [15].

4. Examples of lacunas

Let m = N − 3, so that RN is decomposed into the sum R3
x ⊕ Rmy .

Our easiest example is the tubular ε-neighborhood in RN of the unit 2-sphere in R3
x, that is,

the body defined by the inequality

(7)

(√
x2

1 + x2
2 + x2

3 − 1

)2

+ (y2
1 + · · ·+ y2

m) ≤ ε2 ,

where 0 < ε < 1. (This equation of its boundary is not polynomial, but is obviously equivalent
to a polynomial one of degree 4).

There is a much more general class of examples. Instead of y2
1 + · · ·+y2

m, consider an arbitrary
smooth function ψ : Rmy → R+, invariant under the central symmetries in Rmy , whose unique

critical point is a minimum point at the origin, ψ(0) = 0, and the entire set ψ−1([0, ε2]) is
contained in some compact neighborhood of the origin in Rmy . Define the body W in R3

x ⊕ Rmy
by the condition

(8)

(√
x2

1 + x2
2 + x2

3 − 1

)2

+ ψ(y1, . . . , ym) ≤ ε2.

Denote by C the volume of this body (8), and by Ω the (N−1)-dimensional Euclidean volume
of its section by an arbitrary hyperplane in Rm+3 containing the plane Rmy .

Theorem 3. If a hyperplane X ⊂ R3+m defined by some equation

α1x1 + α2x2 + α3x3 +

m∑
j=1

βjyj = γ

is sufficiently close to one containing the subspace Rmy (that is, X is nearly orthogonal to R3
x and

contains a point of R3
x sufficiently close to the origin), then the volumes of two parts cut by X
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from the body (8) are equal to

(9)
C

2
± Ω

γ√
α2

1 + α2
2 + α2

3

.

In particular, the domain in P containing X is a lacuna.

Remark 3. The right-hand fraction in (9) is the distance from the plane X ∩R3
x to the origin.

The values (9) do not depend on the coefficients βj in the equation of X.

Lemma 2. In the conditions of Theorem 3, the (m+ 2)-dimensional volume of the intersection
X ∩W is equal to Ω

cosα(X) where α(X) is the angle between R3
x and the normal vector of X.

Proof of lemma. For any y ∈ Rmy , the preimage of y under the canonical projection W → Rmy
is empty if ψ(y) > ε2; if ψ(y) < ε2 then it is a spherical layer in R3

x between the spheres of radii

R = 1 +
√
ε2 − ψ(y) and r = 1−

√
ε2 − ψ(y). Let X̃ be the hyperplane in R3+m containing the

subspace Rmy and such that the 2-planes X ∩ R3
x and X̃ ∩ R3

x are parallel to one another. The

orthogonal projection of X∩W to X̃ consists of points (x, y) such that ψ(y) ≤ ε2, and x belongs
to a section of the above-described spherical layer (depending on y) by a 2-plane (depending also
onX). IfX is indeed sufficiently close to a vertical hyperplane containing Rmy , then for any y with

ψ(y) < ε2 this plane section of the layer is an annulus. The area of this annulus does not depend
on the choice of this cutting 2-plane: if the distance of this plane from the origin in R3

x is equal

to h < r, then this area is equal to π
(√

R2 − h2
2 −
√
r2 − h2

2
)

= π(R2 − r2) = 4π
√
ε2 − ψ(y).

So, the (m+ 2)-dimensional volume of the projection of X ∩W to X̃ is equal to

4π

∫
ψ(y)≤ε2

√
ε2 − ψ(y)dy,

which does not depend on X and hence is equal to the constant Ω. Further, the orthogonal
projection of planes multiplies the volumes by the cosine of the angle between the normals of
these planes. �

Proof of Theorem 3. Let X0 be the plane parallel to X and passing through the origin in
R3+m. Both values of the volume function at the point X0 are obviously equal to one another
and hence to C

2 . For any λ ∈ [0,dist(X0, X)] denote by X(λ) the plane obtained from X0 by the
parallel shift towards X by the distance λ. The derivatives of the volume functions VW (X(λ))
over the parameter λ are then equal to ± the volume from Lemma 2. So, when we come to X,
these volumes grow/decrease by

Ω

cosα(X)
× dist(X0, X).

Consider the right triangle in R3+m whose vertices are the origin and its projections to the
planes X and X ∩R3

x. Its angle at the origin is equal to α(X), the leg at this vertex is equal to
dist(X0, X), and the hypotenuse is exactly the fraction in (9). �

Remark 4. We see that a locally algebraically integrable body in RN (that is, a body having non-
trivial lacunas) does not need to be algebraic itself: in fact, only finite smoothness is demanded
on the function ψ(y1, . . . , ym) participating in the construction of our examples.
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