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IRREDUCIBLE HOLONOMY GROUPS AND RICCATI FOLIATIONS IN
HIGHER COMPLEX DIMENSION

V. LEON, M. MARTELO, AND B. SCARDUA

ABSTRACT. We study groups of germs of complex diffeomorphisms having a property called
irreducibility. The notion is motivated by a similar property of the fundamental group of
the complement of an irreducible hypersurface in the complex projective space. Natural
examples of such groups of germ maps are given by holonomy groups and monodromy groups
of integrable systems (foliations) under certain conditions on the singular or ramification set.
The case of complex dimension one is studied in [15] where finiteness is proved for irreducible
groups under certain arithmetic hypothesis on the linear part. In dimension n > 2 the picture
changes since linear groups are not always abelian in dimension two or bigger. Nevertheless,
we still obtain a finiteness result under some conditions in the linear part of the group, for
instance if the linear part is abelian. Examples are given illustrating the role of our hypotheses.
Applications are given to the framework of holomorphic foliations and analytic deformations
of rational fibrations by Riccati foliations.

1. INTRODUCTION

In [15] we introduced the notion of irreducible group of germs of diffeomorphisms in dimension
1. In that work we give conditions under which such a group is finite and prove some applications
of this to the problem of existence of holomorphic first integrals for codimension one foliations.
In this work we investigate the extension of this to the case of any dimension. We make the
following definition:

Definition 1.1. A group G is irreducible if it admits a finite set of generators ¢1,...,g,+1 such
that:

(a) g1o---0gu41 =eq
(b) g; and g; are conjugate in G for all 4, j.

We shall refer to {g1,...,g,+1} as a basic set of generators. The above definition does not
exclude the possibility that g; = g;. An irreducible abelian group is finite cyclic: indeed, since
the group is abelian we have g; = g;, for all ¢, . Therefore the group is generated by an element
g1 such that ¢¥ ™! = eq.

We shall denote by Diff(C™,0) the group of germs of complex diffeomorphisms fixing the
origin 0 € C™. In this work we shall focus on irreducible subgroups G C Diff(C",0). It is
important to point out that conditions (a) and (b) in Definition 1.1 are independent and therefore
not equivalent (cf. Proposition 5.1). Every cyclic subgroup of finite order G C Diff(C",0) is
irreducible. A first question would be whether finite subgroups of Diff(C™, 0) are also irreducible.
A second, more challenging, question is whether irreducible subgroups of Diff(C™,0) are always
finite. The above questions have negative response even in the linear case (group of matrices)
(cf. Proposition 5.1).
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1.1. Irreducible groups of germs of complex diffeomorphisms. From now on we shall
consider N ={0,1,2,...} and N* = {1,2,...}. Our basic result is the following;:

Theorem 1.1. Let G C Diff(C",0) be an irreducible group having a basic set of generators
{f1,-.., fu41} with the same linear part Df;(0) = A € GL(n,C). Assume that the eigenvalues
of A are A,..., A, such that ); is a root of the unit of order p®/, where p is prime and s; € N.
Then G is finite cyclic. Indeed, G is analytically conjugate to a cyclic group generated by a
diagonal matrix of the form A = diag(&:,...,&,) where &; is a root of the unit of order p™.

We point out that Theorem 1.1 holds with an analogous statement for the case of groups of
formal diffeomorphisms. Indeed, the proofs are based on some normal forms for the resonant
case and on the Taylor series expansion, so the proofs apply ipsis litteris to the formal case.

The linear part of a group G C Diff(C™,0) is the subgroup of GL(n,C) of the linear maps
Df(0) where f € G and the coordinates are the canonical affine coordinates (z1,..., z,) € C".

Corollary 1.1. Let G C Diff(C",0) be an irreducible group with abelian linear part, having
any (not necessarily basic) set of generators g1, ¢gs,...,gps € G such that gy o--- 0 g, =1Id for
some prime number p and some s € N. Then G is finite cyclic of order p’ for some £ < s.

1.2. Holonomy of holomorphic foliations. As for an application of the preceding results to
the framework of foliations we have:

Theorem 1.2. Let F be a codimension n holomorphic foliation with singularities on a complex
manifold M"2. Assume that there is a leaf Ly € F which is homeomorphic to P? \ C' where
C C P? is an irreducible algebraic curve of degree p* for some prime number p and some s € N.
Assume that the linear holonomy of Lg is abelian. Then the holonomy group of the leaf Lg is a
finite cyclic analytically linearizable group.

1.3. A stability result for groups of germs of complex diffeomorphisms. Next we state

a sort of Reeb stability theorem ([4]) for groups of germs of complex diffeomorphisms. Given a

subgroup G C Diff(C™,0) with a finite set of generators f1, ..., f., by an analytic deformation of

G we shall mean a family {G;}iep of subgroups Gy C Diff(C™, 0), parametrized by t € D C C,

where each G is generated by maps f;, € Diff(C",0), depending analytically on ¢, of the form
o0

fie=F+> ajJ.ct’c where each a; ; is holomorphic with a zero of order > 2 at the origin (i.e.,
k=1

the linear part of a;; at the origin is zero) for all j, k.

Then we can state the following stability theorem for groups of germs of complex diffeomor-
phisms:

Theorem 1.3. Let G C Diff(C", 0) be a cyclic finite subgroup of order p* for some prime number
p and s € N. Given an analytic deformation {Gt}iep of G we have the following equivalences:

(1) Gy is irreducible for all ¢ close to 0.
(2) Gy is finite cyclic for all ¢ close to 0.

Furthermore, if G is trivial then any analytic deformation {G:} of G by irreducible groups G
is such that Gy is trivial for all ¢ close to 0.

1.4. Applications to Riccati foliations. Theorems 1.2 and 1.3 apply to the study of Riccati
foliations in a general setting (cf. § 4). Let us give a brief description of the notion of Riccati
foliation we deal with in this paper. More details are found in § 4. We shall consider a com-
plex manifold M admitting a locally trivial holomorphic fibration 7: M — B, onto a complex
manifold B, with fiber F. A singular holomorphic foliation F on M will be called a Riccati
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foliation on M if (i) codimF = dimF and (ii) there is a set ¢ C B, analytic of codimension
> 1, such that 7=1(o) is invariant (a union of F-invariant fibers), and the restriction of F to
M \ 7=Y(0) is a foliation transverse to the fibre bundle F’N[\Wl(g): M \ 7=1(o) in the classical
sense of Ehresmann (see for instance [4] Chapter V). In particular we have sing(F) C 7 (o).
Most relevant is the fact, well-known for foliations transverse to fibre bundles, that (iii) in case
the fundamental group of B\ o is finitely generated, F|yp\ r-1(s) is conjugate to the suspension
of a subgroup of holomorphic diffeomorphisms G C Diff(F'), given by a (so called holonomy or
monodromy) homomorphism ¢: 71 (B \ o) — Diff(F).

In view of (iii) our notion of Riccati foliation is quite general. Indeed, in our framework,
a Riccati foliation on a fibered space m: M — B, with fiber ', may be seen as an exten-
sion, holomorphic with singularities, of a foliation given by a suspension of a group of complex
diffeomorphisms G C Diff(F’), obtained as a representation 71(B \ o) — Diff(F'), where o is a

codimension > 1 analytic subset of B. This idea is reinforced by the following. When M = P xP,
_ a(r)y2+b((r))y+8(r)
p(x

if, it is transverse to a generic vertical line P, = {z,} x P C P x P. This fact, widely used
by Paul Painlevé in his memoire ([14]), has been extended in a natural way in [16]. Indeed, in
[16] the notion of Riccati foliation adopted is pretty much the same we use here, by considering
suitable (natural) fibrations. We shall resume this discussion in §4 (cf. Remark 4.2).

As a sample of how our results apply in this framework we give:

Theorem 1.4. Let F be the foliation by levels of a rational function R: P x P* — P™. Assume
that the codimension one component o1 C o of the ramification set ¢ C P of R is empty or
irreducible (not necessarily smooth nor normal crossing type) of degree p* for some prime number
p and some s € N. Let now {F; }+ep be an analytic deformation of F = Fy by Riccati foliations
on P x P leaving invariant the basis P x {0} (for some point 0 € P"). Then the global
holonomy of F; is finite cyclic for each t close to 0. In particular, the leaves of F; are closed in
(P™\ o1(t)) x P, i.e., im(F;) C o1(t) x P™, for all ¢ close to 0. If R is the second projection
P™ x P* — P™ then F; is analytically conjugate to F in (P™ \ o(t)) x P".

Roughly speaking, the ramification set of F is the set ¢ C P of base points x € P for which
the fiber {} x P™ is not transverse to F. In the above statement o(t) denotes the ramification
set of F;.

We refer to §4 for the details and further recent references on Riccati foliations. In Remark 4.2
one finds how our results compare and contrast with other work on the topology of Riccati
foliations.

Acknowledgment We are grateful to the reviewers of the original version for their suggestions
and comments, which helped us improving the paper.

a holomorphic foliation with singularities, is of Riccati type % , if and only

2. DIMENSION n

According to Definition 1.1 we have:

Definition 2.1 (irreducible group). A subgroup G C Diff(C",0) is irreducible if it admits a
finite basic set of generators fi, fa,..., fu+1 € G such that:

(a) fiofao o fypr =1d
(b) fi and f; are conjugate in G for all ¢, j.

In order to prove Theorem 1.1 we will make use of the Taylor expansion. Given f € Diff(C",0),
since f(0) =0, for all Z € C™ close to 0 we have:

f(Z):Df(())-Z+%f”(0)-Z2+~--+I%f(P)(0)-ZP+-~-
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where
P f o (oPif - orf
® (). zP = - = e
02 = 550 =57 (51) O = L O,
1,-.Kp= p
here Z = (21,...,2,) and 5 Zk = 7 82,21)_“ e We shall need the following expression for
°1 2 P

the n-th derivative of the function composition of maps:

Lemma 2.1. For any ¢ : C* — C, ¢ : C* — C™ holomorphic and m € N, m > 3 we have that

Im(poy) = 9Te() Wk, Oy O™ 1y,
(1) 0z, -+ 0zpy . Zk _, 9%y, Oz, Oz, +Z 3zk 0z, ~3z,«1+
m—1 n
P e(¢)
+ Z Z Zy, B, ()
P=2 ki,....kp=1 rp

where v, is the k;-th coordinate of ¢ and RkTp is a polynomial expression as a function of the

derivatives of ¥ from order 1 to order m — 1 and has no terms containing only derivatives of
order 1.

Proof. Applying

8Z to ¢ o1, we have

) Oy,
8zrl Z 8zk 0z,

applying % we have

Plpot)) & ) O, Oy, Oy,
8zr2azrl Z 8zk23zk1 0z, 02p, Z azk 0

ot 2y O%p,
applying % we have
83 ((P o 1/1) _ i 8350(’(/)) 8'(/%3 8wk72 a¢k1 Z 831% +
02y 02ry 02p, T 0213 021, 02, O2py Ozp, O0Zp, 8zk 02y 02ry 02y,
n zn: Yy, Oy, O, Oy, Oy, Oy,
it 8zk28zk1 02p,02ry 02y, 02r,02p, 0%y, 02r,02p, Oz,
then

Py, 0w, | OPby, Oy, . Py, Oy,
02, 02py Ozp, 027302, 020y 027,02y, 2y
Thus Ry, (-) is a polynomial expression as a function of the derivatives of 1 from order 1 and
2 and has no terms containing only derivatives of order 1.

Ry, (1) =

Let us assume that equation (1) is satisfied for m by showing that it is valid for m + 1. By
the hypothesis of induction (1) is valid. Applying 5 to (1) we have
nt1
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O Npov) g O ) W | Dy, Opl) O

0%ppyyq = 02y e 02y, ., Ozr, i, 0zr, Oz, O0Zp,yq - O2ry

+
k=1

n

_ () Pk, Ok, O, - O o() Mok, OPWky Oy

6Zk7'r‘m aZf'wwrlazf'm 8Z7"m71 8Z"“l 6Zk7'r‘m 8Z7”m 8Z'fm+1az7"m71 8Z7“1

R O O TR S SR il () LU PR

0Zk,.,, Oz, O0zr,_, 0zr,, 1102, 6Zkrp+1 0zr,, 11

E1yeeskm=1 P=2 ki,....kpi1=1
m—1 n n
bl O[Rx ?o(y) 0 om
+ Z Z () Z Yy Yry
p=2 k1,....kp=1 92k, 8‘2%“ ki ka=1 82k282k1 Ozryy iy Ozry, - D2y

Notice that erp is a polynomial expression as a function of the derivatives of ¥ from order 1
to order m — 1 and has no terms containing only derivatives of order 1. Thus by the chain rule

we have that M

7‘mr}»l

is is a polynomial expression as a function of the derivatives of ¥ from

or w(d))
0Z

evidence in the above expression we conclude. ([

order 1 to order m and has no terms containing only derivatives of order 1. Putting

The very first case in Theorem 1.1 is the following:

Proposition 2.1. Let G C Diff(C",0) be an irreducible group such that G has a generator
tangent to identity. Then G = {Id}.

Proof. Since G is an irreducible group that has a generator tangent to identity there exists a
finite set of generators f(1), f(2),---, f(u41) € G such that

(a) f @wofiyo---ofur =1d

(b) fuy and f(;) are conjugate in G for all i, j.

(¢c) Dfy(0) =1Id for some 7.
(

From (b) given f(;) € G there is h € G, such that f;) o h(Z) = ho f,y(Z). Now from (c) we
have

D fy(0)Dh(0) = Dh(0)D f,y(0) = Dh(0)Id = Dh(0).
Hence D f(;(0) = Id for all i and consequently for all g € G, Dg(0) = Id. Note that if
9(Z)=Z + P(Z) + h.o.t € G then
g™ (Z)=gogo---0g(Z)=Z+mPy(Z) + hot.
Now for simplicity consider f = f;) and g = f;), we will show that
ompO) _ amg(0)
0zp,, -+ 02p,  Ozp, -+ 0%,

Indeed, we will prove for each coordinate of f and g using induction. Now from (b) there
is h € G, such that foh(Z) = hog(Z). We consider f, : C* — C the s-coordinate of f and
hs : C* — C the s-coordinate of h. Then f; o h = h, o g applying % on both sides we have

1

dfs(h) Oy  — g) Ogi
Z Oz, 0zp, Z 8zk 0z,

k=1

=0 forallmeN, m > 2.

applying % on both sides we have
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z”: 02 fs(h) Ohy, Oy, +z":8fs(h) Phy
02k, 02k, 02y, 02y, 0z 02,020,

D RO
Mt 82k202k1 0%y, 02p, sz Gzrﬁzrl

= Dg(0) = Dh(0) = Id, we have that
) = Oforallk‘;ésandafs()—l,
. g};’: (0) =0 for all k& # r and ah (0) =1,
(0) = 0 for all k # r and a9'(0):1.

ki1,k2=1 k=1

92 £,5(0) n 9?hs(0)  0%hs(0) n 9294(0)
02py 02, 0270020, 0270020, 027,07y,

thus

62f8(0) - 8295(0)
027, 02r, 027,02,

Now using Taylor theorem we have that

J)(Z)=Z+ Py(Z) +hot., forall 1 <i<v+1.

SO

SN2 = Z+ (v +1)Pa(2) + heot.

From (a) we have that P»(0) = 0. Then
O?f(0)  0%g,(0)
02,,0z,, 02,0z,

Now suppose the statement below is satisfied for 3 < I < m. We will be showing that it is
valid for m. Then

=0.

o'f(0) _ 9'9(0)

= =0.
O0zp, -+ 0zp,  Ozp -+ 0zp,

As fsoh = hs;og we have

0" (fsoh) — 9M(hsog)
0z, - 02p, Oz, - 02,

From Lemma 2.1 we have

n

. n m m—1 n D
5 O fo(h) O, Oy, JrZafs(h) O L T 3 9" fs(h) Ry, ()

Kook =1 0Z,,, Oz, Ozry  {= Om Oz, - Oz, P=2 ki,....kp=1 0Zk,,
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S 0"he(9) Ogk, 0ok N~ Ohsl9)  OMgr N~ N~ 9Phi(g)
DD VRN Sl b D Dy sk ey k) DED DI skt UM OF
m k=1 Pp=2 k1,...,kp=1 v
As R’% is a polynomial expression as a function of the derivatives of f, (respectively h) from
order 1 to order m — 1 and has no terms containing only derivatives of order 1, by the induction
hypothesis when Z = 0 we have that R, (-) = 0. Now as Df(0) = Dg(0) = Dh(0) = Id, we
have that

0™ f5(0) . d™hs(0)  0™h,(0) . 0™ gs(0)

0zp, - 02py 0%y, 02, Oz, -0z, Oz -+ 0z,

then
"™ f5(0) _ 0™ gs(0)

Ozp +++0zpy  Ozp -+ 0zp

Now using Taylor development we have that
Jy(Z)=Z 4+ Pu(Z)+ hot., forall1 <i<v+1
SO
FETNZ) = Z+ (v +1)Pu(Z) + hot.
From (a) we have that P,,(0) = 0. Then

"™ f5(0) _ 9™ gs(0)

= =0 for all m € N.
0z, -+ 02p, 0z, »++ 02, oratm

Consequently
f)(Z) =2, forall 1 <i<wv+1.
therefore G = {Id}. .

Now let us investigate what happens when the linear part of the diffeomorphism is different
from the identity. We will now show the case where all the diffeomorphisms have the same linear
part, for this we will use the definition of resonance ([10] and [2]):

Definition 2.2. A multiplicative resonance between non zero complex numbers Aq,..., A, is an
identity of form

As = A" A
where s € {1,...,n}, my,...,mp, e Nand my +--- +m,, > 2.
The vector M = (mq,...,m,) € N is called the order of resonance. For simplicity we can
say that X\, is resonant and that A = X" ... \™n,

We are interested in matrices that have resonant eigenvalues and their relation with polyno-
mial functions:

Definition 2.3. If A, is a resonant eigenvalue with order of resonance (ms,...,m,) we call
Zlnl Z:Ln’" .es
a resonant monomial. Here e; = (1,...,0),...,e, = (0,...,1) defines the canonical basis of C".

With these definitions we have:
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Theorem 2.1 (Poincaré-Dulac normal form [2], [10]). Let f € Diff(C™,0) be a germ of complex
diffeomorphism. If Df(0) is diagonalizable then f is formally conjugate to a formal series
F=df (0) + P, + ..., where the Pj are complex polynomial made only of resonant monomials
of f. In particular if df (0) has no resonances then f is formally linearizable.

Now we can finish our proof:

Proof of Theorem 1.1. In short, there exists a finite set of generators f(1), fi2),-- -, fo41) € G
such that

(a) f(l) o f(g) ©...0 f(,/+1) =1Id.

(b) fe) and f(;) are conjugate in G for all i, j.

(c) All maps f(; have the same linear part, D f;(0) = A, for all i.
If A =1d by Proposition 2.1 G = {Id} is a finite group. Suppose that A # Id from (a) we have
that A¥*! = Id. An easy computation with Jordan blocks shows that A is diagonalizable. Let
us then assume that A is already in diagonal form with eigenvalues A1,...,A,. Then /\;-’Jr1 =1
and the eigenvalues of A are in resonance. Now by Theorem 2.1 we can write f(;1) in the normal

form, that is, there is ¢ € ﬁi?f((C", 0) such that
(2) wofayo v U (2) = fuy(Z) = Mizis s Anzn) + Po(Z) + Py(Z) + - -
where P, (Z) contains only resonant monomials with complex coefficients.

Now we take G = poGo 1. Thus G is isomorphic to G and satisfies all properties of G.

Thus we consider G as GG, then we can write the generators as

2=z + Y alhz29 +hot,. Az + Y. aVpZ9 + hot.

|Q|=k+1 |Ql=k+1
For j =1,...,v+ 1, and f; have the nonlinear part contains only resonant monomials with
complex coefficients. Moreover if g € G then exists ¢ € Z such that
X0 -0
, » 0 X - 0
Dg(0) = Dp(0)A"(Dp(0))" = 0 0
0 0 - )\

The idea is to show by a formal algorithm that G is formally linearizable. For this, suppose
that G has no terms of order k, we will prove that the same is true for the terms of order k + 1.
First, note that given f, g € Diffx1(C™,0) N G we have

f(Z2)=|aiz + Z aLQZQ + h.ot., ... anzy + Z amQZQ + h.o.t.
|QI=k+1 |Q|=k+1

and

9(Z)= bz + Y. b@Z%+hot,. . bpzm+ > bngZ9+hot. |,
|QI=k+1 QI=k+1

where Q = (q1,...,q,) € N* with |Q| = k+ 1, a, = A" and b, = AL for all r = 1,...,n and
some m,l € N. So we have
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fog(Z) = |aibiz1i + Z [a1b1,q + a1,QBQ} Z9 + hot.,...,
|Ql=k+1

Apbpzn + Z [anbn,Q + an)QBQ] 7% + h.o.t.
Ql=k+1
where B? = b{' ... b3, We will study two cases:

Claim 2.1. Let @ € N™ be a order of resonance for some A, |Q| =k + 1. Then aﬁ% =0.

Proof of the claim. As @ € N™ is a order of resonance for \., we have that A% = X\.. Then
B% = (\9)! = b,.. Now we define the following application

“rQ - G — C

a
a1z + Z al,QZQ + h.ot.,...,anz, + Z an,QZQ + h.o.t. —> nQ
QI=k-+1 Ql=k+1 ar

which defines a morphism between (G, o) and (C, +), indeed

arbrg +argB?  ab.g+anqb
(,OT,Q(ng) _ O T,Qa ; r,Q _ O T,Qa ; QY _ (an(f) +SOT,Q(9)

Now for i # j from (b) we have h € G such that
fioh=hof;

applying the morphism we have

erq(fioh) = erq(ho fj)
er(fi) + era(h) = erq(h) + erq(f))

@r,Q(fi) = (PT,Q(fj)
ROREC)

r,Q _ ar,Q
Ar Ar
o5y =l
Lets denote a, g = ai}é) =...= ai”gl). Now from (a) we have

@T,Q(fl ofao...0f 1) = ‘PT',Q(Id) =0

eor(fi) +orq(fe) +. .-+ @r(fo41) =0

1) (2) (v+1)
a a a
r,Q r,Q r,Q
oo+ ——=0
N, + . + + X,
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Therefore a,,g = 0. O

Claim 2.2. If @ is not the order of resonance of any A, |@Q| = k + 1 then a&% = a(% =0.

T
Proof of the claim. Note that f; is written in its normal form, then af_,% = 0. Now we define

the following application g : G — Aff(C)™,

Yo | a1z + Z aLQZQ + h.ot., ..., a,2, + Z an,QZQ + hot. | =
|QI=k+1 |Ql=k+1

a1z + a1,Q AnZn + an,Q
1Q Sy 1Q

where A? = af* - .- which defines a morphism from (G, o) into (Aff(C)",0). Indeed,

arbiz1 +a1bi,g + al,QBQ anbnzn + anbp,g + amQBQ
Yo(fog) = 1350 o
on the other hand
b +b bnzn + by
o < 121 1,Q> +a1g an ( z ,Q) +ano
BQ BQ
Yolf)ovals) = o -

arbiz1 +a1b1 g + alyQBQ anbnzn + anbn,g + an’QBQ
AQBQ e AQBQ

= YPo(foyg)
Denote by G the image of G by 1g. Therefore G is an product affine group generated by
the transformations gg), gg), e ,98+1), pairwise conjugate in G, where

A1z1 + agi) Anzn + ag)
g(%(Z) = ( 9 2 = (931(31)7---791'Q,n(zn))'

S VA VY T
Denote by A? = A{... A% and G@ is an affine group generated by the transformations
ggT, .. »91%1,7«» pairwise conjugate in Gf?, where

AW + a)
Q _ r,Q
gi,T‘(w) - )\Q .

We now apply the following lemma whose proof is found in [5] (page 222):

Lemma 2.2. Let n be a [-th root of the unit, [ > 1, 81, 52,..., 841 € C and T" an affine group
generated by the transformations h;(z) =nz+ 8;, ¢ = 1,2,...,r+ 1. Then the h;’s are pairwise
conjugate in I' if and only if either [ has two distinct prime divisors or [ = ¢", for some prime ¢
and some m € N* and 81 =2 = ... = Br11.
A\ o®
Taking n = —=, | = p1+=-+n r=p and f; = —2 (i=1,...,v+1) by Lemma 2.2 we have

@ AQ
pS1T T = g™ ¢ prime, m € N* and
1) (v+1)
bro _  _ %0

1@ 1@
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Therefore ¢ =p, m=s1+ ...+ s, and

O

This produces a convergent algorithm in the Krull topology. This already shows that G is
formally linearizable. Since there is a set of generators all with the same linear part A which is
a finite order matrix, this implies that G is cyclic generated by A. The proof of Theorem 1.1 is
now complete. O

Proof of Corollary 1.1. Since the linear part of G is abelian, given a basic set of generators
f;j of G in the definition of irreducible group, all the maps f; have the same linear part, say
A € GL(n,C). In particular A satisfies A¥T! = Id. On the other hand, there is a set of generators
G1s---59ps With g1 0--- 0 gps = Id. This implies that AP" = Id. Since p is prime this implies
that the order of A is p” for some r € {0,...,s} and therefore A satisfies the hypothesis of
Theorem 1.1. The group G is therefore finite and cyclic. O

The hypothesis that the eigenvalues of the linear part are roots of the unit of order power of
a same prime number cannot be dropped, as shown in the following examples.

Example 2.1. Let G C Diff(C2,0) be the subgroup generated by the maps

11(Z) = 2(Z) = f3(Z) = fa(Z) = (=21, A22), f5(Z) = (=21 + 23, Az2)

and fg(Z) = (=21 + A222, Az2) where A3 = 1 so that A2 + X\ + 1 = 0. Note that the generators
have the same linear part with eigenvalues roots of order 2 and 3. We claim that G is irreducible
and not finite (not linearizable). The first condition is satisfied

fiofaofsofiofsofe(Z) = fiofaofsofyofs(—21+A23, Az)
= f1 o f2 o f3 o f4(21 — AQZg + /\223,/\222)

= fiofao fyo fa(z1, 22) = (21,\020) = Z

To check the second condition take g1(Z) = fi o f5 0 f1(Z) = (21 + A\222, 2) then g; € G and
note that

frog1(Z) = fi(z1 + A3, 22) = (—21 — A?23, Az)
grofs(Z) = gi(—21 + 23, Az2) = (=21 + 25 + A2(\223), Az2) = (—21 + (1 4+ N\)z3, Azo)
Since A2 + A +1 =0 we have 1 + XA = —\? therefore f; 0 g1 = g1 o f5.
Take g2(Z) = f50 f2(Z) = (21 + A23, 22) then g, € G and note that

fi092(Z) = fi(z1 + AZS,ZQ) = (-2 — Azg,)\@)
g20 f6(Z) = g2 (—21 + )\2z§7 )\zg) = (-2 + )\223 + )\()\225), Az9) = (—z1 + ()\2 + 1)z§7 Az2)

Since A2 + X + 1 =0 we have 1 + A2 = —\ therefore f; 0 ga = ga 0 fs.
Take g3(Z2) = f2 o f(Z) = (21 + (A — A\?)23, 23) then g3 € G and note that

f5093(Z) = f5 (z1 + (A= )\2)25,2'2) =(—z1+ ()\2 —)\)zg—l—z%,)\zz) = (=2 +(\ =2+ 1)z§,)\zg)

930f6(Z) = g3 (—z1 + X235, Az2) = (—21+ 2725 — (N2 = X)(N23), Az2) = (=21 +(A*—A+1)z3, Azy)
therefore f5 0 g3 = g30 fg.
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Consequently the f; are pairwise conjugate in the group G. Note that also
GUZ) = (21 +nN\223,20) # Z
for all n € N*. Therefore GG it is not finite. Finally, we observe that G is not abelian and in

particular, it is not analytically linearizable: indeed, if ¢ linearizes G, then go fiog~! = fi. On
the other hand go fs50g9~ ! = f1, so

fs=g " oficg=hi
which is a contradiction.
Example 2.2. Consider G C Diff(C?,0) the subgroup generated by the maps
f1(Z) = ... = f1(Z) = (iz21, M%), 11(Z) = (i21, Az + 27) and fia(Z) = (iz1, A2a + A°2])

where A? = 1 so that A> + A + 1 = 0. Note that the generators have the same linear part with
eigenvalues roots of order 4 and 3. G is irreducible and not finite (not linearizable).

Example 2.3. Consider G C Diff(C?,0) the subgroup generated by the maps
fl(Z) =...= f34(Z) = (—Zl, )\22), f35(Z) = (—Zl —+ Z:Q))7 )\22) and ng(Z) = (—Zl —+ )\32’3, )\22)

where \? = 1 so that A% + A% +1 = 0. Note that the generators have the same linear part with
eigenvalues roots of order 4 and 9. G is irreducible and not finite (not linearizable).

3. APPLICATIONS
As a first application we prove

Proof of Theorem 1.2. By hypothesis the linear part of the holonomy group
Hol(Ly) — Diff(C",0)

is abelian. By Deligne’s theorem the fundamental group m1(Lg) is irreducible. Indeed, it is
generated by a small simple loop v around C' and its conjugagy homotopy classes v;,5 € J.
Choose a linear embedding ¢: P! — P? in general position with respect to C. This means that
£(P') meets C transversely and only at nonsingular points. In particular the intersection £(P1)NC
is a set of v+ 1 = p® points say {p1,...,p,+1}. Given a base point pg € £=1(P?\ {p1,...,pvs1})
by Lefechetz hyperplane section theorem, there is a surjective morphism

T (T B2\ {p1,- . pur1}) po) = m(B?\ C).

Thus we may take the small loop v = 71 contained in a small disc in £(P!) centered at p; and the
other homotopy classes as given by small loops 7; contained in small discs in £(P') and centered
at the points p;,j = 2,...,v + 1. In particular, m(Lo) is irreducible with a set of generators
(1], .-, [Yw+1] as in Definition 1.1. The corresponding holonomy maps f},,; € Hol(F, Lo) are
such that fi,,),.. ., [y, is a set of generators for holonomy group as an irreducible subgroup
of Diff(C™,0). By hypothesis this group has an abelian linear part. Since v + 1 = p® by
Theorem 1.1 this holonomy group is finite.

O

Proof of Theorem 1.5. If G, is finite and cyclic then it is irreducible. Thus we shall prove that
(1) implies (2). Assume that G; is irreducible for all ¢ close to 0. By hypothesis G; is generated
by the maps f;; above. If G is trivial then clearly any map f;. is tangent to the identity. In
this case, by Theorem 1.1 the group G is also trivial. Assume now that s > 0. Since G = G|
is cyclic of order p®, any set of non-trivial generators {f;,j = 1,...,r} is of the form f; = f™
for some n; € {1,...,p° — 1}, where f is a generator of G as a cyclic group. Thus we have
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7:(0) = (f'(0))" and therefore the linear part of the group G; satisfies the conditions of
Theorem 1.1. By this same theorem the group Gy is finite cyclic. (I

Definition 3.1. Given a map germ f € Diff(C™,0) and a hypersurface germ H C C" through
the origin 0 € C™ we say that H is f-invariant at order k € N if:

(1) f(H) C H.
(2) We have fk‘H:Id.

We shall also say that H is infinitesimally f-invariant at order k € N if:
(1) the tangent space To(H) C Cf is invariant by the derivative f’(0), i.e.,
f1(0) - To(H) = To(H) C Cg.
(2) We have fk"H =Id.
Clearly, if H is f-invariant at order k then it is f-infinitesimally invariant at order k.

Corollary 3.1. Let G C Diff(C™,0) be an irreducible group, p € N a prime number. Assume
that there are analytic hypersurface germs H, ..., H, C C" meeting transversely at the origin
such that each Hj is infinitesimally invariant at order p® by each element of G. Then G is a
finite group.

Proof. Up to a change of coordinates we may assume that H; : {z; =0}, j =1,...,n. Thus, G
admits a finite set of generators f1, fo,..., fu+1 € G such that:

(a) fiofoo o fpr =1d.
(b) fi and f; are conjugate in G for all ¢, j.

By hypothesis for each i, j we have f(0) - To(H;) C To(H;). This implies that
(c) For each j =1,...,n we have
[i(Z)=T;Z + Pjo(Z)+ --- + Pjp,(Z) + - - -

where P, is homogeneous of degree k > 2 and

MNi 0 - 0
0 Ap o 0
T = D50 = 0 - .0
0 0 - A

Also by hypothesis we have fjpsi |HV =1d, for all j =1,...,v+ 1. This implies

(d) )\i =1 foreach j € {l,...,v+1} and each i € {1,...,n}.
From (b) we have that for ¢ # j there exists g € G such that
Jicg=gof;
hence we obtain
D fi(0)Dg(0) = Dg(0)D f;(0).
Since the generators f; have a diagonal linear part in the chosen coordinates, the same holds
for any element of G. Hence Dg(0) is a diagonal matrix. Then D f;(0) = Df;(0) for all 4, j and

their eigenvalues can be listed as Aq,..., A, where A; is a p-th root of the unit, with p prime
and s; € N. Therefore by Theorem 1.1 G is a finite group. (]
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4. RICCATI FOLIATIONS

Let us state the exact notion of Riccati foliation we consider. Let 7: E — B be a holomorphic
fiber space with fiber F'. A holomorphic foliation F on E with singular set sing(F) C E is a
Riccati foliation if there is a subset ¢ C B such that:

(1) 7=%(0) C E is a union of invariant fibers.
(2) ]-'|E\7T,1(U) is transverse to the fibers of the fiber space m

in the sense of Ehresmann ([4] Chapter V).

B\r-1(0) E\7 (o) = B\o

In particular, we have:

(3) dim F = dim F' + dim B and dim F = dim B;
(4) sing(F) C 7 1(0).

The set 0 C B is called ramification set of F. Since the restriction ]:}E\rl(o) is a foliation
transverse to the fibers of the fiber space 7: E\ 7~ 1(¢) — B\ ¢ in the ordinary Ehresmann
sense, it is completely described by its global holonomy ([4] Chapter V). This is a lifting paths
homomorphism ¢: 71 (B\ o) — Aut(F). The very basic example is given by the compactification
of the foliation F on P! x P! given in affine coordinates (z,y) € C x C by a Riccati differential
dy _ a(@)y?+b@)y+e(z)
de p(z)
fiber space structure is given by the product and the projection m(x,y) = x. Using this notion
a Riccati foliation on P™ x P™ is a codimension n holomorphic foliation with singularities, such
that for some analytic codimension > one subset ¢ C P™, the foliation is transverse to the
vertical fibers {x} x P", « € P™\ ¢ while o X P" is a union of invariant fibers. A Riccati foliation
will be called a Bernoulli foliation if there is an invariant horizontal fiber P™ x {q}, for some
q P

We investigate the connection between the geometry of the ramification set with the dynamics
of a given Riccati foliation. We first we make a basic remark: if the ramification set is empty
(or, more generally if it has codimension > 2) then 7 (P™ \ o) = {0}. This implies that all
leaves are compact diffeomorphic to P™ and the foliation is equivalent to the second projection
P x P™ — P, (z,y) — y. Thus we shall assume that o C P" is nonempty of codimension one.

equation where the coefficients a, b, ¢, p are polynomials. In this case the

4.1. Case n =m = 1. Let us begin with the dimension two case. More precisely we consider the
case where F is a Riccati foliation in P! x P!, assuming that F has an irreducible ramification
set o C P'. This implies that o is a single point and we may assume that in affine coordinates
(z,y) the ramification point is the point x = oo,y = 0. Then we may write F as given by a
polynomial differential equation % = a(x)y?® + b(x)y + c(z). The global holonomy of F is given
by an homomorphism ¢: m(P! \ o) — Aut(P!). Since o is a single point we have P! \ ¢ = C is
simply-connected and therefore the global holonomy is trivial. By the classification of foliations
transverse to fibrations ([4] Chapter V) there is a fibered biholomorphic map ®: C x P* — Cx P!
that takes the foliation JF into the foliation H given by the horizontal fibers C x {y},y € PL.

Lemma 4.1. A holomorphic diffeomorphism ®: CxP! — CxP! preserving the vertical fibration

writes in affine coordinates (z,y) € C? C CxP! as ®(z,y) = (A:c + B, %) where a, b, ¢, d

are entire functions satisfying ad —bc=1,0# A, B € C.

Proof of Lemma 4.1. Picard’s theorem and the fact that ® preserves the fibration = = const
show that it is of the form ®(x,y) = (f(z), g(z,y)) where f(x) = Az + B is an affine map.
Finally, for each fixed z € C the map P! 3 y +— g(x,y) € P! is a diffeomorphism so it must write

as g(z,y) = % for some entire functions a, b, ¢, d satisfying ad — bc = 1. O
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In particular we conclude that the leaves of F are diffeomorphic with C (including the one
contained in the invariant fiber {(0,00)} x P!, and F admits a holomorphic first integral

g:CxP' - P!

a(z)y+b(x)

of the above form g(z,y) = FOERIOR

4.2. Case m = 2,n = 1. Assume now that F is a codimension one Riccati foliation in P? x P!.
If the codimension one component o, C o of the ramification set ¢ C P? is irreducible, smooth
or with (double ordinary) normal crossings, then the fundamental group 7y (P?\ o) is finite cyclic
of order deg(o) (Zariski-Fulton-Deligne). In this case the global holonomy of F is a finite cyclic
subgroup of Aut(P!) which corresponds to one of the following possibilities:

(1) A cyclic subgroup generated by a map of the form z — £z where £ is a root of the unit

of order k < dego.
(2) The group generated by the inversion f(z) = L.

z
Assume that we are in case (1) above. This gives a function z + z¥ in the fiber P! which
admits a holonomy extension to (P? \ ¢) x P! — P! which is constant along the leaves of F in
(P?\ o) x PL. This shows that F admits a holomorphic first integral ¢: (P?\ o) x P! — P
Assume now that we are in case (2). In this case we can take the holonomy invariant function
2+ (In2)? and extend it to a Liouvillian first integral ¢ for F in P2\ o.
For a different framework we shall need the remark below:

Remark 4.1. Tt is well-known that the group of automorphisms Aut(P™) is the projectivization
of the linear group GL(n + 1,C) of non-singular linear maps of C"*! and therefore isomorphic
to PSL(n,C).

Next we consider another situation:

Theorem 4.1. Let F be a Bernoulli foliation on P? x P!. Assume that the ramification set
o C P? is irreducible (not necessarily smooth nor normal crossing type) of degree p® for some
prime number p and some s € N. Then the global holonomy of F is finite cyclic. In particular,
the leaves of F are closed in (P? \ o) x P!, ie., im(F) C o x PL. Moreover, F admits a
holomorphic first integral ¢: (P?\ o) x P! — P1L.

Proof. The global holonomy identifies with a subgroup H C Aut(P!). Since o C P? is irreducible,
H is irreducible. Since deg(o) = p® and o is irreducible it follows from the same ideas in the proof
of Theorem 1.2 that H admits a basic set of generators of the form {f1,..., fo4+1} C Aut(P!)
with v + 1 = p*. By hypothesis F has an invariant horizontal fiber say P? x {q}. This implies
that H has a fixed point at {q}. We denote by H(q) C Diff(C!,0) the subgroup induced by
the germs at ¢ of maps h € H (we may identify ¢ = 0). This group is irreducible and has a
basic set of generators consisting of the germs f;, at ¢ of the maps f;,7 =1,...,v +1 = p°.
By Theorem 1.1 for dimension n = 1 this implies that H(q) is finite. In particular H(q) is
abelian and each map f;, has finite order. By the identity principle the maps f; commute and
have finite order. This implies that H is finite cyclic analytically conjugate in P! to the cyclic
group generated by z — e€>™/kz for some k € N*. As above we can extend the function 2* as a
holomorphic first integral ¢: (P?\ o) x P! — P! for F.

Now we proceed. Given a leaf L of F not contained in 7=1(0) we claim that the closure
L C P2 x P! is contained in 77 !(o). Indeed, given a generic point p € P?\ o the fiber

F,:=7""(p) = {p} x P*

is transverse to F. Let us prove that the intersection L N F}, is a discrete set. Given two points
21, 29 € F,NL we choose a path v C L joining 21 to 22 and project this path into a path vo C P?\o
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(recall that 7—1(o) is invariant). The path vy is closed based at p. The corresponding global
holonomy map h, to 7o is such that h.,(z1) = 22. Since the global holonomy group H is finite
and cyclic this implies that #(F, N L) < |H| < oo. This already shows that lim(F) C 7~1(o).

In the above theorem the ramification set is irreducible but we make no hypothesis on the
type of singularities it may have. The price we pay is to assume that there is a non-vertical
invariant algebraic hypersurface. This condition is natural in the following situation. Let R be
a rational function R: P™ x P™* — P". We shall define the ramification set of R (with respect to
the vertical fibration) as the set o C P™ of points p for which the fiber {p} x P™ is not transverse
to F (this means that there is some point g € P" for which the leaf of F through (p,q) is not
transverse to the fiber {p} x P™). In general o is an algebraic subset of codimension > 1 in the
projective plane P™.

Let us consider an analytic family of Riccati foliations in P! x P! given in affine coordinates
by the 1-forms w; = (1 + tp(x))dy — t(a(z)y* + b(x)y)dz where p(z),a(z),b(x) are polynomials.
If 7, denotes the foliation on P! x P! induced by w; then Fy : wy = dy is the horizontal fibration,
given by the second coordinate projection. The ramification set of Fy is irreducible empty, while
for t # 0 the ramification set of F; is given by p(x) = —1/t and possibly the point at the infinity
x = oco. This set is not irreducible for many choices of the coefficients a, b, p. In general F; is
not analytically equivalent to a trivial foliation in P! x P!. Thus, an irreducible ramification set
can deform into a reducible ramification set during a deformation by Riccati foliations.

Taking this into account we can state:

Theorem 4.2. Let F be the foliation by level surfaces of a rational function R: P? x P" — P™.
Assume that codimension one component of the ramification set ¢ C P2 of R is empty or
irreducible (not necessarily smooth nor normal crossing type) of degree p* for some prime number
p and some s € N. Let now {F; }+ep be an analytic deformation of F = Fy by Riccati foliations
on P2 x P" with irreducible ramification set o(t) C P2. Assume that there is some level (R = ¢) of
R which is invariant by each foliation F;. Then the global holonomy of F; is finite cyclic for each
t close to 0. In particular, the leaves of F; are closed in (P?\ o (t)) x P", i.e., im(F;) C o(t) x P",
for all ¢ close to 0. If R is the second projection P? x P® — P then F; is analytically conjugate
to F in (P2 \ o(t)) x P".

Proof. First we consider the case where o(F) has codimension > 2. We denote by
PP x P — P™

the first coordinate projection. Given a leaf L € F the restriction P1|L: L - P"\o(F)isa
covering map. The fundamental group m (P™ \ o(F)) is trivial because codim o(F) > 2 in P™.
This implies that P; ’ ;, is a holomorphic diffeomorphism from L to By := P™\ o(F). By Hartogs’
extension theorem, applied to the inverse (P |L)*17 again using the fact that codim o(F) > 2,
we can extend P1|L to a holomorphic diffeomorphism between L and P™. Moreover, by this
extension we conclude that indeed o(F) = 0. Thus the function R has levels that correspond to
the horizontal fibration, i.e., it depends only on the second coordinate. If we take R as a primitive
rational function then we may assume that R(z,y) = y in coordinates (z,y) € P™ x P". Now we
assume that o(F) # 0 is irreducible of degree p*. Given ¢ close enough to 0, by hypothesis the
ramification set o(t) of the Riccati foliation F; is still irreducible and therefore has degree p®.
Indeed, {o(t)}+cp defines an analytic family of irreducible algebraic curves in P2. In particular,
the fundamental groups 71 (P2 \ o(t)) are the same. This implies that the holonomy group
Hol(F, L..) of the common leaf contained in L. C R, is an analytic deformation of the holonomy
group of Fy = F. Let us be more precise. Given a non-invariant fiber F,, : {zo} x P™ and the
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common invariant level R, : (R = c) there is a finite intersection set R. N Fypy, = {y1, ..., Yr}-
Denote by H; the global holonomy group of F; given by the representation Hy C Aut(Fy,).
Given the point y; € F,, we consider the holonomy group Hy,, := Hol(F, Ly, ) of the leaf
Ly, of F; passing through y; and calculated with respect to the transverse section contained
in the fiber Fy,. By hypothesis R, is invariant by F; so that L;,, C R.. By Theorem 1.3 each
group H;,, is finite cyclic of uniformly bounded order for ¢ close to 0. Given ¢ ~ 0 and a global
holonomy map f € H; we have that f(R. N F,,) = ReN Fyy = {y1,...,9:}. Thus f™(y1) = y1.
This implies that ™" € H; ,, and since this group is cyclic finite of uniformly bounded order, this
shows that each map f € H; has a uniformly bounded finite order. Indeed, since each holonomy
map in H;,, comes from a global holonomy map in H; this shows that each global holonomy
group H, is finite cyclic of a uniformly bounded order. The limit set part is proved as before.
Assume now that R is the second coordinate projection (for instance if o(F) has codimension
> 2). Then the global holonomy group Hy is trivial. By Theorem 1.3 the holonomy groups H; ,,
are trivial. Also note that » =1 i.e, R, N Fy, consists of a single point. Similarly to above we
then conclude that H; is trivial for each ¢ ~ 0. This shows that the foliation F; is equivalent to
Fo in P2\ o(t) x P". O

4.3. Case m > 2,n > 2. Now we study Riccati foliations in P™ x P®,m >, n > 2 under some
hypothesis on the ramification set o C P,

Proof of Theorem 1.4. The proof is pretty much the same given for the other cases m =2,n = 1.
For using the irreducibility of o1 C P™ it is enough to apply Lefshetz hyperplane section theorem
together with Deligne’s theorem for m = 2. All the rest goes as in Theorem 4.2. [l

Remark 4.2 (Riccati foliations: other notions and recent works in their topology). The notion
of Riccati foliation goes back to the Riccati differential equation % = a(z)y? + b(z)y + c(z) in
the classical literature. It is for sure one of the most interesting ordinary differential equations
of first order. It appears in different areas as differential geometry and physics. One of its
main aspects is the relation with the theory of conformal mapping in complex geometry. It was
probably Paul Painlevé who first looked at these equations in the framework of foliations ([14]).

Indeed, in his pioneering works, Painlevé considered complex differential equations of the form
% = MW, where a, b, ¢, p are complex polynomials. The introduction of projective
coordinates in P x P allows us to consider a corresponding Riccati foliation F in the rational
manifold P x P, where the fibre bundle structure is given by the first coordinate projection
PxP — P, (z,y) — x. Well, in this case the corresponding global holonomy group G(F) is
a (finitely generated) group of Moebius maps. Usually the global topology of the foliation F
is studied through the study of the dynamics of the Moebius maps group G(F). This is the
case of works in existence of invariant measures, topology of limits sets, and others. Recent nice
references for this are the works of Nicolas Hussenot. For instance, in [8] the author studies the
dynamics of Riccati foliations of the Painlevé form above, addressing basically two questions:(a)
What is the asymptotic behavior of the holonomy map along a generic Brownian path in the
leaves? (b) How are the analytic continuations of holonomy germs of the foliation along a generic
Brownian path in a transversal? This is a quite interesting work, but quite transverse to our
approach. Indeed, this is placed in complex dimension two. Some of the ideas relative to question
(b) above have been further developed in [1]. As for question (a) one finds a recent study in [9].

In a different line of investigation, we find the work of H. Zoladek ([18]) where the author
introduced a new method of investigation of periodic solutions of planar holomorphic polyno-
mial differential equations with trigonometric coefficients. This method is based on analysis of
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geometry of leaves of certain holomorphic foliations in the rational manifold P x P, with a special
focus on the case of Riccati equations.

Another line of study is followed by the authors in [13]. This line is more related to the
complex and algebraic geometry, exploring therefore the connections between the existence of
suitable differential forms (or more generally, certain connections and morphisms on an algebraic
manifold) and the existence and classification of Riccati foliations in this manifold. It is indeed
much more than this but, though placed in complex dimension > 3, we are in the codimension one
case. In this line of investigation, usually the transverse structure plays an important role. More
precisely, the fact that a Riccati foliation is a model for transversely homogeneous transverse
structure in the complex case, is used in a very effective way. For this we shall refer to [17] and
[12]. In this last, one finds a notion of Riccati foliation over an algebraic projective manifold,
which is slightly different from ours. We refer to the original paper [12] for the precise notion.

There are also inspiring works with more precise description of the geometry of Kleinian
groups in any dimension, suggesting possible applications to the framework of Riccati foliations.
For instance we mention the very complete book [3]. As for a simple notion and construction of
Riccati foliation in P x P2, of dimension one, we refer to [16].

The above is a non-exhaustive list since there are many works not mentioned, and some with
hidden information on Riccati foliations, as [11], where the author proves that the any finitely
generated group of Moebius maps is the global holonomy of some Riccati foliation in P x P.

Our results are therefore new, for arbitrary codimension > 1, and we highlight the novelty
that we transfer information from the geometry of the ramification set of the Riccati foliation,
indeed from the complement of that hypersurface, to the geometry and classification of the
foliation.

5. SOME EXAMPLES AND COMMENTS

Let us address the questions mentioned in the Introduction. We summarize our conclusions
as follows:

Proposition 5.1. Regarding irreducible groups of germs we have:

(1) Conditions (a) and (b) in Definition 2.1 are not equivalent.

(2) A finite abelian subgroup G C Diff(C™, 0) is not necessarily irreducible.
(3) An irreducible subgroup G C Diff(C™,0) is not necessarily finite.

(4) A finite irreducible subgroup G C Diff(C™, 0) is not necessarily cyclic.

Proof. We start with (1). We look at the linear case. Let

=(61) ()

and G =< A, B >C GL(2,C). Let us now see that A and B are conjugate in G, since

s (4 8)(38)-(4 1)e0
(384 )[4 D)-(4 (D)

Therefore G satisfies (b) but not (a).
Now we consider

and
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) 100 i 100 ) 1 0 0
A=(o0o 10, B={010]|, C=| 0 1 0
10 1 01 1 -1 -1 1

and G =< A, B,C >C GL(3,C). Note that G satisfies (a). Let us see that it does not satisfy
(b). Indeed, since the generators of G are upper triangular matrices then any element of G must
be an upper triangular matrix. Then it is not difficult to see that there is no conjugation in G
between A and B.

Now we show (2). Put

and consider G =< A, B >C GL(2,C). Note that
A* = B? = (AB)? = (BA)?> = (BA?)? = 1d.
Also AB? = A, ABA = B, BAB = A%, BA?B = A? and BA®B = A. Thus G is finite:

a={(0 ) (0 %) (T E) (0 ) (R ) (h )
(%) (03

But G is not irreducible because A and B are not conjugate since A and B have different
orders (A* =1Id and B? = Id).

The group G above is not abelian. We may ask then what happens in the abelian case. Again
the answer is negative: let A € C be such that A =1 for some n € N n > 4 and let

A:<8_02> and Bz(é?\)
G =< A,B >C GL(2,C)

then G is abelian and finite but not irreducible (A* = Id = B", n # 4). Note that G is finite
abelian, not generated by a single element, and it is not irreducible.

) and C:(3
8

_1 _
H_BlA_< 2 }) and T_OlA_<

) >
3 _1 _1 -
1 2 2

Then H,T € G, HBH ' = A, TCT ! = Aand T"'HB(T-'H)~! = C. Thus, the group:

We take

Let us now show (3). Put

(10 (=
1=y %) o=

Note that A2 = B? = C? = 1d, now take

N|—
I= DN
N—

(SIS

| ®lw
D[ =

G=<A,B,B,C,C,A >

is irreducible and not cyclic. Now we will verify that the group G is not finite. Indeed, we
take
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1 1 — 92 5 _1
BC:<32 1>'<3 1):<_83 72>~
4 2 8 2 16 4

Now we will study the signal of entries in the matrix BC' without importing its values. So we
can represent the matrix (BC)?:

Bep_(t ) () o) e Y (-
- + - + (—+H)+(=+-=-) =)+ H-+) - 4+ )
Thus each entries in the matrix increases in module. Therefore, there is no n € N such that
(BC)™ =1d.

[ SIS

Finally, we address (4). Let

1 -1 _
A=((1) _01>, B=< 32 }) and H:B—lA:< &2 _})
4 2 4 2

Note that A2 = B2 =1d, HBH ! = A and H 'AH = B. Now consider the 4 x 4 matrices
formed by 2 x 2 diagonal blocks. We denote by D4 4 the matrix with diagonal blocks A. Now
consider

G =< DA,A,DA,B,DB,B7DB,A >C GL(4, (C)

We have that Dy 4 -Da,p-Dpp-Dpa = Da2p2 ap24 = Id. The generators are conjugates
2 to 2 in the groups, without loss of generality we verify that D4 4 is conjugates to D 4 p in the
groups. Indeed, take

T=D,'s -Daa=Da-r1ap1a= Diqy €G-
Then
T-Dasg T = DId,H "Dap- DI_le = DIdAA‘Id,HBH—l =Daa.
This ends the proof. (Il
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