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Abstract. Given a null-cobordant oriented framed link L in a closed oriented 3–manifold

M , we study the condition for the existence of a generic smooth map of M to the plane that

has L as an oriented framed regular fiber such that the singular point set is unlinked with L.
As an application, we give a singularity theoretical proof to the theorem, originally proved

by Hector, Peralta-Salas and Miyoshi, about the realization of a link in an open oriented

3–manifold as a regular fiber of a submersion to the plane.

1. Introduction

Let M be a smooth closed oriented 3–dimensional manifold and f : M → R2 a smooth map.
If y ∈ f(M) ⊂ R2 is a regular value, then f−1(y) is an oriented link in M and is naturally framed.
Furthermore, if f is generic enough, then the singular point set S(f) of f is an unoriented link
in M r f−1(y). In our previous paper [19], for an oriented framed link L in M , we characterized
those unoriented links in M r L which arise as the singular point set of a generic map that has
L as an oriented framed regular fiber. Such a characterization was given in terms of a relative
Stiefel–Whitney class, or an obstruction to extending the trivialization of TM |L induced by the
framing over the whole manifold M .

In this paper, we first study the obstruction class more in detail, and give a more practical
characterization in terms of Z2 linking numbers. We also clarify the components of L which
have non-trivial Z2 linking numbers with the singular point set. Then, as an application of such
studies, we consider submersions of open oriented 3–manifolds to R2 that realize given oriented
framed links as regular fibers. The idea is to consider a generic map f whose singular point set
S(f) is unlinked with a given oriented framed regular fiber and to delete a neighborhood of the
singular point set S(f) for obtaining a submersion. In this way, we get a singularity theoretical
proof to the characterization theorem, originally due to Hector and Peralta-Salas [9] and Miyoshi
[14], of those oriented (framed) links in R3 that arise as regular fibers of submersions. Recall
that their proofs used the h-principle for submersions due to Phillips [16]. Instead, in this paper,
we arrange the singular point set by using Levine’s cusp elimination techniques [12] (see also
[18, 19]) in a controlled way and push it to infinity, so that we get a submersion.

The paper is organized as follows. In §2, we recall several definitions and terminologies
together with our main theorem in [19], which describes the characterization of singular point
sets as unoriented links in terms of a certain obstruction class. In §3, we study the obstruction
class more in detail, especially for closed oriented 3–manifolds M with H∗(M ;Z) ∼= H∗(S

3;Z).
In such a case, we can identify the obstruction class in terms of Z2 linking numbers. Then, we can
describe the condition for the obstruction class to vanish in terms of Z2 linking numbers. Finally
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in §4, we apply these results to submersions of open oriented 3–manifolds to R2. We will see that
our singularity theoretical proof works well for punctured 3–manifolds, i.e. open 3–manifolds of
the form M◦ = MrD3 obtained from a closed 3–manifold M by removing a small closed 3–disk
D3 in M . For a general open oriented 3–manifold, we need to use an “absolute version” of the
h-principle due to Phillips. Recall that the original proof due to Hector and Peralta-Salas [9] or
Miyoshi [14] used the “relative version”, stronger than the “absolute version”, of the h-principle
[7].

Throughout the paper, manifolds and maps are differentiable of class C∞ unless otherwise
indicated. All (co)homology groups are with Z2–coefficients unless otherwise indicated. The
symbol “∼=” means an appropriate isomorphism between algebraic objects or a diffeomorphism
between smooth manifolds.

2. Preliminaries

Let M (resp. N) be a closed 3–dimensional manifold (resp. a possibly noncompact surface)
and consider a map f : M → N . We denote by S(f) the set of singular points of f . A point
in S(f) is a fold singularity (or a cusp singularity) of f if the map germ of f at that point is
modeled on the map germ (x, y, z) 7→ (x, y2 ± z2) (resp. (x, y, z) 7→ (x, y3 + xy − z2)) at the
origin. We say that a fold singularity is definite (resp. indefinite) if it is modeled on the map
germ (x, y, z) 7→ (x, y2 + z2) (resp. (x, y, z) 7→ (x, y2 − z2)). We say that f is excellent if S(f)
consists only of fold and cusp singularities. It is known that the set of excellent maps is always
open and dense in the mapping space C∞(M,N) endowed with the Whitney C∞ topology (for
example, see [6, 21]). If f is an excellent map, then S(f) is an (unoriented) link in M , i.e. a
finite disjoint union of smoothly embedded circles.

Let f : M → N be a map. For a regular value y ∈ f(M) ⊂ N , we call L = f−1(y) a regular
fiber, which is a link in M r S(f). Note that L is naturally framed : its framing is given as the
pull-back of the trivial normal framing of the point y in N . Furthermore, when M and N are
oriented, L is naturally oriented.

In the following, we fix an orientation for R2 once and for all. For excellent maps of closed
oriented 3–manifolds into R2, we have the following (for details, see [17, Proposition 5.1] and
[19]).

Lemma 2.1. Let L be an oriented framed link in a closed oriented 3–manifold M . Then, it is
realized as an oriented framed regular fiber of an excellent map f : M → R2 if and only if it is
framed null-cobordant: i.e. there exists a compact oriented normally framed surface V embedded
in M whose framed boundary coincides with L.

Remark 2.2. Let L be an oriented link in a closed oriented 3–manifold M . Then, we can
easily show that it bounds a compact oriented surface in M if and only if L represents zero in
H1(M ;Z). This can be proved by considering a certain map M r L → S1. In particular, if
H1(M ;Z) = 0, then every oriented link bounds a compact oriented surface embedded in M .

Remark 2.3. It is known that every link in the 3–sphere is realized as a regular fiber of a
restriction to S3 of a certain polynomial map R4 → R2 (see [1]). Furthermore, in [4], for a given
link in the 3–sphere, the authors give an explicit algorithm to construct a quasi-holomorphic
polynomial C2 → C whose restriction to the unit sphere S3 has the link as a regular fiber.

Now, let L be an oriented framed link in a closed oriented 3–manifold. If L is realized as a
framed regular fiber of an excellent map f : M → R2, then S(f) is a link in M r L. Thus, it is
natural to ask the following.
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Question 2.4. Which links in M rL appear as the singular point set S(f) of an excellent map
f : M → R2 such that f−1(y) coincides with L as oriented framed links for some regular value
y ∈ R2 ?

In order to answer to the above question, let us prepare some notations and terminologies.
For an (unoriented) link J in M r L, we denote by [J ]2 ∈ H1(M r L) the Z2–homology class
represented by J . Let N(L) be a small tubular neighborhood of L in M disjoint from J . Since
L is a framed link, we have a natural trivialization of TM |N(L). The obstruction to extending
it over M is the relative Stiefel–Whitney class (see [10]), denoted by w2(M,L), which is an
element of the Z2–cohomology group H2(M,N(L)) ∼= H2(M,L). Note that by excision and
Poincaré–Lefschetz duality, we have

H2(M,N(L)) ∼= H2(M r IntN(L), ∂N(L)) ∼= H1(M r IntN(L)) ∼= H1(M r L).

The following characterization, which answers to Question 2.4, has been proved in [19]. Recall
that the proof was singularity theoretical in the sense that we used a result of Thom [20] about
the homology class represented by the singular locus, and a cusp elimination result by Levine
[12] for arranging the singular locus of an excellent map.

Theorem 2.5. Let L be an oriented null-cobordant framed link in a closed oriented 3–manifold
M , and J an unoriented link in M r L. Then, there exist an excellent map f : M → R2 and
a regular value y ∈ R2 such that f−1(y) coincides with L as oriented framed links and that
S(f) = J if and only if [J ]2 ∈ H1(M r L) is Poincaré dual to w2(M,L) ∈ H2(M,L).

3. Case of integral homology 3–spheres

In this section, we mainly consider closed oriented 3–manifolds M with

H∗(M ;Z) ∼= H∗(S
3;Z)

and replace the condition described by the obstruction class w2(M,L) in Theorem 2.5 with that
of Z2 linking numbers.

First, let M be an arbitrary closed oriented 3–manifold and L an oriented framed link in M .
For the inclusion j : (M, ∅) → (M,L), the induced homomorphism j∗ : H2(M,L) → H2(M)
sends w2(M,L) to the second Stiefel–Whitney class w2(M) of M , which vanishes. By the
cohomology exact sequence

H1(L)
δ−−−−−→H2(M,L)

j∗−−−−−→H2(M),

we have that w2(M,L) = δ(α) for some α ∈ H1(L), although such an α may not be unique. In
fact, such a class can be explicitly given as follows.

Set L = L1∪L2∪· · ·∪Lµ, where Ls are the components of L, s = 1, 2, . . . , µ. It is known that
the tangent bundle TM of a closed oriented 3–manifold M is always trivial. Once a trivialization
τ of TM is fixed, we can compare it with the specific trivialization of TM |Ls

associated with
the framing given for each component Ls of the framed link L. (We consider the trivialization
given by the ordered vector fields v1, v2 and v3, where v1 is tangent to Ls consistent with the
orientation, and v2, v3 are consistent with the framing.) This defines a well-defined element as
in π1(SO(3)) ∼= Z2 for each s. Then, we have proved the following in [19].

Lemma 3.1. Let α ∈ H1(L) be the unique cohomology class such that the Kronecker product
〈α, [Ls]2〉 ∈ Z2 coincides with as for each component Ls of L. Then, we have δ(α) = w2(M,L).

Note that the trivialization τ of TM may not be unique. The set of homotopy classes of
such trivializations is in one-to-one correspondence with the homotopy set [M,SO(3)]. If we
consider the set of homotopy classes of trivializations on the 2–skeleton of M , then each such
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trivialization up to homotopy defines a spin structure on M , and the set of spin structures is in
one-to-one correspondence with H1(M) (see [13]).

By the cohomology exact sequence,

(3.1) H1(M)
i∗−−−−−→H1(L)

δ−−−−−→H2(M,L)
j∗−−−−−→H2(M),

we see that for an arbitrary element β ∈ Im i∗, we could choose α + β instead of α, where
i : L → M is the inclusion map. The observation in the previous paragraph shows that this
corresponds to choosing another trivialization which is “twisted along β”.

The following proposition has also been proved in [19].

Lemma 3.2. Let L be an oriented framed link which bounds a compact oriented surface V con-
sistent with the framing. Let α ∈ H1(L) be an element such that δ(α) = w2(M,L). Then, we
have

〈w2(M,L), [V, ∂V ]2〉 = 〈δ(α), [V, ∂V ]2〉
= 〈α, [L]2〉
≡ ]L (mod 2),

where 〈· , ·〉 is the Kronecker product, [V, ∂V ]2 ∈ H2(M,L) is the fundamental class of V in
Z2–coefficients, and ]L denotes the number of components of L.

Note that the above lemma is applicable for an arbitrary null-cobordant framed link L and
that the value 〈α, [L]2〉 ∈ Z2 does not depend on a particular choice of α. Furthermore, if L has
an odd number of components, then the obstruction w2(M,L) never vanishes.

Let us now consider the case of a local knot component. Suppose that the oriented framed
link L contains a component Ls that lies in the interior of a closed 3–disk D embedded in M .
Set U = IntD, which is an open set of M diffeomorphic to R3. In the following, let us identify
U with R3. In this case, up to homotopy, we may assume that the trivialization τ of TM over
U is given by the standard one of TR3.

Let π : R3 → H be the orthogonal projection onto a generic hyperplane H ∼= R2 in the
sense that π|Ls is an immersion with normal crossings. Recall that the first vector field defining
the trivialization TM |Ls associated with the framing on Ls is tangent to Ls consistent with the
orientation. Since π|Ls

is an immersion, we may assume that at each point x of Ls the remaining
two vector fields give a 2–framing that is a basis for a 2–plane Nx ⊂ TxR

3 transverse to TxLs
containing the direction H⊥ perpendicular to H. Then, we count the number of times modulo
2 the 2–framing rotates in Nx with respect to a fixed positive direction of H⊥ while x goes once
around Ls. This number is denoted by tv(Ls), which is an element in Z2. Then, we have proved
the following in [19].

Lemma 3.3. Let α ∈ H1(L) be an arbitrary element such that δ(α) = w2(M,L). Then, we have

〈α, [Ls]2〉 ≡ tv(Ls) + c(Ls) + 1 (mod 2),

where c(Ls) denotes the number of crossings of the immersion π|Ls
: Ls → H with normal

crossings.

From now on, we will consider integral homology 3–spheres for M in this section. Let us start
with the following.

Definition 3.4. For an oriented link L in a closed oriented 3–manifold M with H1(M ;Z) = 0,
we always have a Seifert surface, i.e. a compact oriented surface V embedded in M such that
∂V = L. Such a Seifert surface is not unique; however, it is known that the induced framing on
L is uniquely determined (for example, see [9, §3.6.1]). In the following, such a framing is said
to be preferred.
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negative

positive

Figure 1. Seifert algorithm for positive and negative crossings

Then, for oriented links with preferred framings in the 3–sphere S3, we have the following.
In the following, we fix an orientation for S3 once and for all.

Proposition 3.5. Let L = L1 ∪ L2 ∪ · · · ∪ Lµ be an oriented link in S3, on which a preferred
framing is given. Then w2(S3, L) = 0 if and only if for each s with 1 ≤ s ≤ µ, we have∑

t 6=s

lk(Ls, Lt) ≡ 1 (mod 2),

where lk denotes the linking number.

Proof. First, note that by the exact sequence (3.1) with M = S3, we see that δ is injective and
that α ∈ H1(L) with δ(α) = w2(S3, L) is uniquely determined. Therefore, w2(S3, L) = 0 if and
only if 〈α, [Ls]2〉 = 0 for all s.

Now, we may assume that L is contained in U ⊂ S3 as above, and let us consider the generic
projection π|L : L→ H. By the so-called Seifert algorithm, we can construct a compact oriented
surface V ⊂ S3 with ∂V = L (see Fig. 1). Then, by construction, we see that when π(x) goes once
around π(Ls), each time it goes through a positive (resp. negative) crossing point, it contributes
+1/2 (resp. −1/2) to tv(Ls). Since the number of crossing points of π(Ls) and π(Lt) is even for
each t 6= s, and π(x) goes through each self-crossing point of π(Ls) twice, we have

tv(Ls) ≡
1

2

∑
t 6=s

c̃(Ls, Lt) + c̃(Ls) (mod 2)

for each s, where c̃(Ls, Lt) is the sum of the signs of crossing points of π(Ls) and π(Lt), and
c̃(Ls) is the sum of the signs of self-crossing points of π(Ls). Then, since c̃(Ls) ≡ c(Ls) (mod 2),
by Lemma 3.3, we have

〈α, [Ls]2〉 ≡
1

2

∑
t6=s

c̃(Ls, Lt) + 1 (mod 2)

≡
∑
t6=s

lk(Ls, Lt) + 1 (mod 2),

by the definition of linking numbers. Hence, the result follows. �
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Remark 3.6. The condition that appears in the statement of Proposition 3.5 is very similar
to that in [9, Theorem 3.6.11]. In fact, in §4 we will prove the theorem obtained in [9] as an
application of our Proposition 3.5.

In fact, we have the following more general result.

Proposition 3.7. Let M be a closed connected oriented 3–manifold with

H1(M ;Z) = 0

and L = L1 ∪ L2 ∪ · · · ∪ Lµ be an oriented link in M , on which a preferred framing is given.
Then, w2(M,L) = 0 if and only if for each s with 1 ≤ s ≤ µ, we have

(3.2)
∑
t6=s

lk(Ls, Lt) ≡ 1 (mod 2).

Proof. Since H1(M ;Z) = 0, there exists a Seifert surface V for L, which is a compact oriented
surface embedded in M with ∂V = L. By definition, this is consistent with the framing of L. Set

V ′ = V r IntN(L) and L̃s = V ′∩N(Ls) for each s, where N(L) is a small tubular neighborhood
of L in M , N(Ls) is the component of N(L) containing Ls, ∂N(L) intersects V transversely,

and V ∩N(L) is a collar neighborhood of ∂V in V . Note that L̃s is a knot parallel to Ls, and

we orient L̃s consistently with Ls. Then, the oriented link L̂s = LrLs is Z–homologous to −L̃s
in M r Ls, where −L̃s denotes L̃s with the opposite orientation.

Now, suppose w2(M,L) = 0. In this case, the given framing of L extends over M . Let us
suppose that a Seifert surface Vs for Ls is consistent with the given framing of Ls for some s.
Then, by Lemma 3.2 applied to Ls, w2(M,Ls) ∈ H2(M,Ls) does not vanish, as we obviously
have ]Ls = 1. This implies that as ∈ Z2 as appears in Lemma 3.1 does not vanish. This
contradicts our assumption that the framing of L extends over M . Therefore, an arbitrary
Seifert surface Vs for Ls is not consistent with the given framing of Ls for each s. Since V is

consistent with the framing of Ls, the linking number of Ls and L̃s must be an odd integer.

Since −L̃s is Z–homologous to L̂s in M r Ls, we have the congruence (3.2).
Conversely, suppose (3.2) holds for each s. Then, by the above argument we see that as = 0

for each s. Hence, by Lemma 3.1, we have w2(M,L) = 0. This completes the proof. �

In fact, the above argument implies the following.

Proposition 3.8. Let M be a closed connected oriented 3–manifold with

H1(M ;Z) = 0

and L = L1 ∪L2 ∪ · · · ∪Lµ be an oriented link in M , on which a preferred framing is given. For
each s with 1 ≤ s ≤ µ, define as ∈ Z2 by

as =
∑
t6=s

lk(Ls, Lt) + 1 (mod 2).

Let α ∈ H1(L) be the unique cohomology class such that 〈α, [Ls]2〉 = as for all s. Then, we have
δ(α) = w2(M,L).

When H1(M ;Z) = 0, we have H1(M) = 0 = H2(M), and hence the exact sequence (3.1)
implies that we have the isomorphism δ : H1(L)→ H2(M,L). We easily see that its composition
with the isomorphism H2(M,L) → H1(M r L) corresponds to the Alexander duality whose
inverse isomorphism is given by taking Z2 linking numbers. This observation together with
Theorem 2.5 leads to the following, which answers to Question 2.4 for oriented framed links in
integral homology 3–spheres.
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Theorem 3.9. Let M be a closed connected oriented 3–manifold with

H1(M ;Z) = 0,

L = L1 ∪ L2 ∪ · · · ∪ Lµ be an oriented link in M , and J be an unoriented link in M r L. Then,
there exists an excellent map f : M → R2 such that L = f−1(y) for a regular value y ∈ R2 and
J = S(f) if and only if for each s with 1 ≤ s ≤ µ, the Z2 linking number of J with Ls coincides
with ∑

t 6=s

lk(Ls, Lt) + 1 (mod 2).

Proof. By the above observations, we see that [J ]2 ∈ H1(M r L) is Poincaré dual to

w2(M,L) ∈ H2(M,L)

if and only if it satisfies the condition on Z2 linking numbers in the theorem. Thus, the result
follows from Theorem 2.5. �

Let us observe the following.

Lemma 3.10. If the congruence (3.2) holds, then the number of components of L must be even.

Proof. Consider the sum of all linking numbers

µ∑
s=1

∑
t 6=s

lk(Ls, Lt) ∈ Z

over all s and t with s 6= t. Since lk(Ls, Lt) = lk(Lt, Ls), the above sum must be even. On the
other hand, the congruence (3.2) implies that the above sum has the same parity as the number
of components of L. Thus the result follows. �

The above lemma together with Theorem 3.9 implies that for an integral homology 3–sphere
M and an excellent map f : M → R2, if L = f−1(y) has an odd number of components for a
regular value y ∈ R2, then S(f) has a non-trivial linking number with a component of L.

In order to get a more general result, let us introduce the following definition.

Definition 3.11. Let M be a closed connected oriented 3–manifold and L, L′ be non-empty
disjoint closed sets in M . We say that L and L′ are not linked if there exists an embedded
2–sphere in M r (L ∪ L′) which separates M into two components in such a way that one of
them contains L and the other contains L′. If such a 2–sphere does not exist, then we say that
L and L′ are linked.

Lemma 3.12. Let M be a closed connected oriented 3–manifold containing an embedded 2–sphere
S which separates M into two components M1 and M2, where M1 and M2 are the closures of
the connected components of M r S. If a framed link L is contained in IntM1 and is framed
null-cobordant in M , then it is also framed null-cobordant in IntM1.

Proof. Let V be a compact oriented normally framed surface in M which bounds L and is
consistent with the framing of L. We may assume that V and S intersect each other transversely.
Then, V ∩S consists of a finite number of simple closed curves in the 2–sphere S. By considering
V ∩M1, adding 2–disks bounded by the simple closed curves in S, and by slightly translating the
2–disks in a parallel manner using the inner-most argument, we get a compact oriented surface
embedded in IntM1. This gives a desired framed null-cobordism for L in IntM1. �

We have the following as a result of Lemma 3.12.
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Proposition 3.13. Let M be a closed connected oriented 3–manifold and f : M → R2 a smooth
map. For a regular value y ∈ R2, if L = f−1(y) is non-empty and has an odd number of
connected components, then L is necessarily linked with S(f).

Proof. Suppose that there exists a 2–sphere S that separates L and S(f). Let M1 and M2 be
the closures of the two components of M r S such that L ⊂ IntM1 and S(f) ⊂ IntM2. Since
L is framed null-cobordant in M , it is also framed null-cobordant in IntM1 by Lemma 3.12.
Therefore, there exists a compact oriented normally framed surface in IntM1 that bounds L. Let

M̂1 be the closed oriented 3–manifold obtained by attaching a 3–disk to M1 along the boundary
S. Then, since f |M1

is a submersion and π2(SO(3)) vanishes, we see that the trivialization of

TM̂1|L extends to M̂1, and hence w2(M̂1, L) vanishes. Then, by Lemma 3.2 applied to L ⊂ M̂1,
this leads to a contradiction, since ]L is odd by our assumption. Therefore, L and S(f) are
necessarily linked. This completes the proof. �

Note that the above proposition holds not only for excellent maps, but also for smooth maps.
In the case of integral homology 3–spheres, by Theorem 3.9 we have the following.

Proposition 3.14. Let M be a closed connected oriented 3–manifold with

H1(M ;Z) = 0

and L = L1∪L2∪· · ·∪Lµ be an oriented link in M . For an arbitrary excellent map f : M → R2

such that L = f−1(y) for a regular value y ∈ R2, S(f) necessarily links with each component Ls
of L with

(3.3)
∑
t6=s

lk(Ls, Lt) ≡ 0 (mod 2).

Compare the above proposition with [19, Problem 5.1]. For example, if the congruence (3.3)
holds for all s, then for an excellent map f : M → R2 such that f−1(y) = L for a regular value
y ∈ R2, each component of L links with at least one component of S(f).

We do not know if the results in this section for M with H1(M ;Z) = 0 also hold for M with
H1(M) = 0 in Z2–coefficients.

Remark 3.15. In fact, Proposition 3.14 holds not only for excellent maps, but also for smooth
maps, which can be proved as follows. Suppose that there exists a smooth map g : M → R2 such
that L = g−1(y) for a regular value y ∈ R2 and that S(g) does not link with Ls. Then, we can
approximate g by an excellent map f such that S(f) ⊂ N(S(g)) and f |MrN(S(g)) = g|MrN(S(g))

for a sufficiently small neighborhood N(S(g)) of S(g). Then, such an f leads to a contradiction.

4. Submersions of open 3–manifolds to R2

In this section, as an application of our results in [19] and in the previous sections of the
present paper, we consider submersions of open orientable 3–manifolds to R2.

First, let us recall the following fundamental theorem for submersions of R3 to R2 obtained
in [9].

Theorem 4.1 (Hector and Peralta-Salas, 2012). Let L = L1∪L2∪ · · ·∪Lµ ⊂ R3 be an oriented
link in R3. Then, there exists a submersion f : R3 → R2 such that f−1(y) = L for some y ∈ R2

if and only if for each s with 1 ≤ s ≤ µ, we have∑
t 6=s

lk(Ls, Lt) ≡ 1 (mod 2).

Recall that in [9], the authors used the h-principle for submersions [7, 16] for the proof. Here,
we give a new proof to the above theorem using our singularity theoretical techniques.
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Proof of Theorem 4.1. Let L be an oriented link in R3 which satisfies the condition about the
linking numbers as in the theorem. By identifying the interior of an embedded 3–disk D in S3

with R3, we may assume that L ⊂ IntD ⊂ S3. Then, by Proposition 3.5, we have w2(S3, L) = 0
with respect to the preferred framing on L. Therefore, for an arbitrary non-empty link J in
S3 r D, there exists an excellent map g : S3 → R2 and a regular value y ∈ R2 such that
L = g−1(y) and J = S(g). By restricting g to R3 = IntD, we get a submersion f : R3 → R2

which has L as a regular fiber.
Conversely, suppose that we have a submersion f : R3 → R2 and a regular value y ∈ R2

such that f−1(y) = L. Then, we can find an embedded 3–disk D ⊂ R3 whose interior contains
L. Note that f |D : D → R2 is a submersion which has L as a regular fiber. By embedding D
into S3, we can extend f |D to a smooth map g1 : S3 → R2. Here, f(∂D) misses y ∈ R2, and
since the second homotopy group of R2 r {y} is trivial, f |∂D is null-homotopic inside R2 r {y}.
Therefore, we can arrange the smooth map g1 in such a way that g1 has y ∈ R2 as a regular value
and that g−11 (y) = L ⊂ IntD. Then, by slightly perturbing g1 on a neighborhood of S3 r IntD,
we get an excellent map g2 : S3 → R2 such that y ∈ R2 is a regular value, that g−12 (y) = L, and
that S(g2) is contained in S3 r IntD. In particular, S(g2) is Z2 null-homologous in S3 rL, and
hence we have w2(S3, L) = 0. Then, by Proposition 3.5, we get the result. �

Remark 4.2. More generally, instead of R3, the above theorem holds also for an arbitrary open
3–manifold of the form M r D3 for a closed connected orientable 3–dimensional manifold M
with H1(M ;Z) = 0, where D3 is a small closed 3–disk embedded in M .

In the case of a link with an odd number of components, we have the following.

Remark 4.3. Let f : R3 → R2 be a smooth map, and suppose that y ∈ R2 is a regular
value such that L = f−1(y) is compact and has an odd number of components. Then, by
Proposition 3.13 together with an argument similar to the above, we see that the singular point
set S(f) necessarily links with L (see also the paragraph just after [15, Theorem 10]): in other
words, we can find no 2–sphere embedded in R3 that separates L and S(f). This implies, in
particular, that such an f can never be a submersion.

In fact, we have the following.

Proposition 4.4. Let M be a closed connected orientable 3–manifold with

H1(M ;Z) = 0

and set M◦ = MrD3. Let L = L1∪L2∪· · ·∪Lµ ⊂M◦ be an oriented link such that f−1(y) = L
for some excellent map f : M◦ → R2 and a regular value y ∈ R2. Then, each component Ls of
L with

(4.1)
∑
t 6=s

lk(Ls, Lt) ≡ 0 (mod 2)

links with at least one component of S(f). In particular, such an f can never be a submersion.

Compare the above proposition with [19, Problem 5.1]. See also [2, 3, 5, 11] for related
physical results.

Proof of Proposition 4.4. First note that each component of S(f) is diffeomorphic to a circle or
a real line. Furthermore, S(f) is a closed submanifold of M◦ which may have infinitely many
connected components.

Let Vs be a Seifert surface for Ls in M , where Ls satisfies (4.1). We may assume that Ls ⊂M◦
and that S(f) intersects Vs transversely at finitely many points. We have only to show that there
are an odd number of intersection points.



UNLINKING SINGULAR LOCI FROM REGULAR FIBERS 101

Let D̃ be a 3–disk in M such that Int D̃ ⊃ D3, L∩ D̃ = ∅, Vs∩ D̃ = ∅, and that ∂D̃ intersects
S(f) transversely at finitely many points. Then, by an argument similar to that in the proof of
Theorem 4.1, we can construct an excellent map g : M → R2 such that g|MrInt D̃ = f |MrInt D̃

and that g−1(y) = L. By our assumption (4.1), we have that Ls has a non-trivial Z2 linking
number with S(g) by Theorem 3.9. Therefore, S(g) intersects Vs transversely at an odd number
of points. By construction of g, this implies that S(f) also intersects Vs transversely at an odd
number of points. This completes the proof. �

Remark 4.5. In fact, the above proposition holds not only for excellent maps, but also for
smooth maps if we replace the statement “Ls links with at least one component of S(f)” by “Ls
links with S(f)”. This can be proved by an argument similar to that in Remark 3.15.

The following is a special case of a theorem proved by Miyoshi [14], who used a relative version
of the h-principle for submersions [7]. Here, we use our singularity theoretical arguments in order
to prove the theorem for punctured 3–manifolds.

Theorem 4.6. Let M be a closed orientable 3–manifold and L a compact oriented framed link in
M◦ = M rD3. Then, there exists a submersion f : M◦ → R2 such that f−1(y) coincides with
L as oriented framed links for some y ∈ R2 if and only if L bounds a proper normally framed
surface in M◦ and the trivialization of TM◦|L induced by the framing of L extends over M◦.

Proof. If there exists a submersion f as in the theorem, then the inverse image by f of the
half line [y1,∞)× {y2} ⊂ R2 is a proper normally framed surface in M◦ that bounds L, where
y = (y1, y2). Furthermore, since f is a submersion, we can pull-back the natural trivialization of
TR2 to M◦ by f in such a way that the pull-back naturally extends the trivialization of TM◦|L
induced by the framing of L.

Conversely, suppose that L bounds a proper normally framed surface V in M◦ and the

trivialization of TM◦|L induced by the framing of L extends over M◦. Let D̃ be a small 3–disk

neighborhood of D3 whose interior contains D3 such that D̃ ⊂ M r N(L) for a small tubular

neighborhood N(L) of L in M . Then, we may assume that V intersects ∂D̃ transversely along

finitely many embedded oriented circles. Note that then V ∩ ∂D̃ bounds a compact oriented

surface V ′ in D̃. Then, by replacing V ∩ D̃ by V ′, we see that L is framed null-cobordant
in M . Furthermore, by our assumption, the trivialization of TM◦|L induced by the framing
of L extends over M◦. Since π2(SO(3)) vanishes, this implies that it also extends over M .
Therefore, we have that the obstruction w2(M,L) vanishes. Hence, by Theorem 2.5, there exists
an excellent map f : M → R2 and a regular value y ∈ R2 such that f−1(y) coincides with L as
oriented framed links and that S(f) is contained in IntD3. Then, f restricted to M◦ = M rD3

is a desired submersion. �

In fact, if we use the “absolute version” of the h-principle [16] in order to treat the end of
an open 3–manifold, we can prove the following. Note again that the following theorem was
originally proved by Miyoshi [14] by using a “relative version” of the h-principle [7].

Theorem 4.7. Let M be an open orientable 3–manifold and L a compact oriented framed link in
M . Then, there exists a submersion f : M → R2 such that f−1(y) coincides with L as oriented
framed links for some y ∈ R2 if and only if L bounds a proper normally framed surface in M
and the trivialization of TM |L induced by the framing of L extends over M .

Proof. Necessity can be proved by the same argument as in the proof of Theorem 4.6.
Conversely, suppose that there exists a proper normally framed surface V in M that bounds L

as described in the theorem. Let Q be a compact 3–dimensional submanifold of M with boundary
such that IntQ ⊃ L and that ∂Q intersects V transversely along finitely many embedded circles.
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Let us first construct a smooth map g1 : M → R2 as follows. Let h : V → [0,∞) be a smooth
function such that h−1(0) = ∂V = L and that h is non-singular near ∂V . Let N(V ) ∼= V × I
be a tubular neighborhood of V in M , where I = [−1, 1] and the I–factor is consistent with the
normal orientation of V . Then, we define g1 on N(V ) by

N(V ) ∼= V × I h×idI−−−−−→[0,∞)× I ⊂ R2,

where idI is the identity map of I. We can extend g1|N(V ) to N(V ) ∪N(L) in such a way that
g1|N(L) is a submersion, that the origin 0 is a regular value, and that the framed regular fiber

g−11 (0) coincides with L. Then, since R2r g1(N(V )∪N(L)) is contractible, we can extend g1 to
the whole manifold M in such a way that 0 is still a regular value and that the framed regular
fiber g−11 (0) coincides with L.

Set Q′ = Q r IntN(L), which is a compact 3–manifold with boundary ∂Q ∪ ∂N(L). Note
that g1(Q′) ⊂ R2 r IntD, where D is a small 2–disk neighborhood of the origin.

By our assumption, the framing on L extends over M . Using such a framing, we can construct
a bundle epimorphism T (M r IntQ) → T (R2 r IntD) covering g1|MrIntQ. Then, by the h-
principle for submersions, g1 is homotopic to a smooth map g2 : M → R2 such that

(1) g2 is a submersion over M r IntQ,
(2) g2 = g1 over N(L),
(3) g2(M r IntN(L)) ⊂ R2 r IntD.

Then, we can approximate g2 by an excellent map g3 that enjoys the same properties as g2
described above. Then, S(g3) is a closed subset of Q, which is compact. Therefore, S(g3) is
an unoriented link in Q r IntN(L). Furthermore, as we started with a framing that extends
over M , the obstruction to extending the framing on ∂(Q r IntN(L)) induced by g3 to the
whole Q vanishes. This implies that the Z2–homology class represented by S(g3) vanishes in Q.
Then, by our techniques developed in [19] using Levine’s cusp eliminations (see [12, 18]), we can
homotope g3 to an excellent map g4 that satisfies the properties described above such that S(g4)
is unlinked from L: more precisely, there exists an embedded 3–disk B ⊂ IntQrN(L) such
that IntB ⊃ S(g4). Then, for an appropriate embedded arc A ⊂ M r N(L) that “connects”
B to infinity, we see that M is diffeomorphic to M r (A ∪ B) by a diffeomorphism that is the
identity on N(L) (for example, see [14]). Then, the restriction of g4 to M r (A ∪ B) gives the
desired submersion. This completes the proof. �

Remark 4.8. It is known that there exist open 3–manifolds that cannot be embedded in compact
3–manifolds [8].

We finish this paper by posing an open problem.

Problem 4.9. Is there a polynomial map R3 → R2 that is a submersion and has a compact
regular fiber as in Theorem 4.1?

Compare the above problem with Remark 2.3.
One can find some relevant open problems in [9, §4] as well.
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