
Journal of Singularities
Volume 27 (2024), 68-88

received: 18 September 2023
in revised form: 28 March 2024

DOI: 10.5427/jsing.2024.27d

ON THE NASH POINTS OF SUBANALYTIC SETS

ANDRÉ BELOTTO DA SILVA, OCTAVE CURMI, AND GUILLAUME ROND

Abstract. Based on a recently developed rank theorem for Eisenstein power series, we provide
new proofs of the following two results of W. Pawłucki:
I) The non-regular locus of a complex or real analytic map is an analytic set.
II) The set of semianalytic or Nash points of a subanalytic set X is a subanalytic set, whose
complement has codimension two in X.

Algebra is the offer made by the devil to the mathematician. The
devil says: “I will give you this powerful machine, it will answer
any question you like. All you need to do is give me your soul:
give up geometry and you will have this marvellous machine."

Sir Michael Atiyah, (Collected works. Vol. 6.
Oxford Science Publications, 2004).

1. Introduction

We provide new proofs of two fundamental results of analytic and subanalytic geometry due
to Pawłucki [Pa90, Pa92]:
I) the non-regular (in the sense of Gabrielov) locus of a complex or real-analytic map Φ : M −→ N
is a proper analytic subset of M , see Theorem 1.1,
II) the set of semianalytic or Nash points of a subanalytic set X is a subanalytic set, whose
complement has dimension ⩽ dim(X) − 2, see Theorem 1.2.

This last result answers a question asked by H. Hironaka and S. Łojasiewicz independently
[FG85]. In spite of being considered as fundamental results of subanalytic geometry, their original
proofs are considered to be very hard, as noted by Łojasiewicz: “Sans doute, parmi les faits
établis en géométrie sous-analytique le théorème de Pawłucki [result II] est le plus difficile à
prouver (la démonstration compte environ soixante dix pages!)", [Ło93, Page 1591]. The goal of
this paper is to provide short alternative proofs of these results. We develop, furthermore, new
algebraic methods to subanalytic geometry, notably related to Eisenstein power series, which we
expect to be of independent interest. These methods should be useful in order to extend some of
our results in the case of p-adic subanalytic sets, cf. [DvdD88].

Let K = C or R and denote by K{x1, . . . , xn} the sub-ring of formal power series which are
convergent, that is, K-analytic. Given a ring homomorphism:

φ : K{x} −→ K{u}

where x = (x1, . . . , xn) and u = (u1, . . . , um), we say that φ is a morphism convergent power
series if φ(f) = f(φ(x)) for every f ∈ K{x}. We denote by φ̂ its extension to the ring of formal
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power series and we define:

(1)

the Generic rank: r(φ) := rankFrac(K{u})(Jac(φ)),

the Formal rank: rF (φ) := dim
(

KJxK
Ker(φ̂)

)
,

and the analytic rank: rA(φ) := dim
(

K{x}
Ker(φ)

)
,

of φ, where Jac(φ) stands for the matrix [∂uiφ(xj)]i,j . The morphism φ is said to be regular (in
the sense of Gabrielov) if r(φ) = rF (φ). We recall that Gabrielov’s rank Theorem [Ga71, To90,
BCR21] states that:

r(φ) = rF (φ) =⇒ r(φ) = rF (φ) = rA(φ).
Consider a K-analytic map Φ : M −→ N between K-analytic manifolds M and N . Given a ∈ M ,
we denote by Φa the germ of the morphism at a point a ∈ M , and by Φ∗

a : OΦ(a) −→ Oa the
associated morphism of local rings, where Oa stands for the ring of analytic function germs at a.
For each a ∈ M , we set ra(Φ) := r(Φ∗

a) and rF
a (Φ) := rF (Φ∗

a). Consider:
R(Φ, M) = {a ∈ M ; ra(Φ) = rF

a (Φ)},

which is called the set of regular (in the sense of Gabrielov) points of Φ. We start by proving a
new proof of the following result:

Theorem 1.1 (Pawłucki Theorem I, [Pa92]). Let Φ : M 7−→ N be an analytic map between
connected manifolds. Then M ∖ R(Φ, M) is a proper analytic subset of M .

The proof is given in §4. The idea is to combine the uniformization Theorem (see e.g.
[BM88, Theorem 0.1]) with a new commutative algebra result, that is, the rank Theorem for W-
temperate families [BCR22, Theorem 1.1] applied to Eisenstein power series, see §§3.1. Eisenstein
power series have been systematically employed in the study of families of singularities, see e.g.
[Za79, Hi79, PP21], going back at least to works of Zariski [Za79, pg. 502], and they play a
crucial role in our paper.

Let us now specialize our presentation to K = R, and we refer to §§2.2 and §§2.4 for all the
details of the following discussion. Let X ⊂ M be a subanalytic set. Given a point a ∈ M , we
denote by Xa the germ set of X at a. We say that an equidimensional subanalytic set X is a
Nash set at a ∈ M (which might not belong to X) if there exists a germ Ya of semi-analytic set
at a such that Xa ⊂ Ya and dim(Xa) = dim(Ya). More generally, a subanalytic set X ⊂ M of
dimension d is Nash at a point a ∈ M , if X is a union of equidimensional Nash sets Σ(k), where
k = 0, . . . , d. We consider the sets:

N (X) := {a ∈ M | Xa is the germ of a Nash set}
SA(X) := {a ∈ M | Xa is the germ of a semianalytic set}.

It is trivially true that M ∖X ⊂ SA(X) ⊂ N (X). But in general, SA(X) ̸= N (X), see example
2.18 below. Now, by combining Theorem 1.1 with the uniformization Theorem, and following an
argument from [BM87], we provide a new proof of the following result:

Theorem 1.2 (Pawłucki Theorem II, [Pa90]). Let X be a subanalytic set of a real analytic
manifold M . Then

i) The sets N (X) and SA(X) are subanalytic.
ii) dim(M ∖ N (X)) ⩽ dim(M ∖ SA(X)) ⩽ dim(X) − 2.

In particular, if dim(X) ⩽ 1, then N (X) = SA(X) = M .
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Remark 1.3. The case of dim(X) ⩽ 1 was originally proved by Łojasiewicz [Ło65] and an
alternative proof is given in [BM88, Theorem 6.1].

The proof is given in §5. The original proof of Theorem 1.2 given in [Pa90] is an intricate
construction between geometrical, algebraic, and analytic arguments, which we do not fully
understand. Pawłucki then deduces Theorem 1.1 from Theorem 1.2 in [Pa92]. Our proof of these
results relies heavily on algebraic arguments, namely on [BCR22, Theorem 1.1] and the use of
Eisenstein power series, see §3.1 instead of geometric and analytic arguments as in [Pa90]. Our
use of geometric techniques is essentially reduced to the extension Lemma 6.1 together with the
use of the Uniformization Theorem of Hironaka [Hi73]; the former has been inspired from the
work of Pawłucki [Pa90, Lemme 6.3], while the later is not used in [Pa90, Pa92].

1.1. Idea of the proofs. The proof of Theorem 1.1 follows from essentially four steps.
(1) Since the result is essentially local, we may suppose that M = Ω ⊂ Km is an open set.

By an argument from Milman [Mi78], see Lemma 2.14, we may suppose that K = R.
The proof is now structured around the following claim: for every closed subanalytic
set X ⊂ Ω, the intersection X ∩ R(Φ, Ω) is subanalytic in Ω; the Theorem follows by
combining the claim with Proposition 4.1. We prove the claim inductively in terms of
the dimension of X, which we may suppose to be closed and equidimensional.

(2) By (a variant of) Hironaka’s uniformization Theorem 2.11, there exists a proper and
surjective analytic mapping φ : Λ → X. We then consider the family of morphism:

Ψ : Λ × (Rm, 0) −→ (Rn, 0)
(a′, u) 7−→ Φ(φ(a′) + u) − Φ(φ(a′)).

Note that for every a′ ∈ Λ, the morphism Ψ(a′, u) is a mapping of germs (Rm, 0) to
(Rn, 0). The family Ψ is an example of the special families of germs which we call
admissible, see Definition 3.4.

(3) In Section 3, we prove a version of Gabrielov’s rank Theorem for admissible families of
germs, see Theorem 3.7. In essence, the result provides a local version of the following
result: either φ(Λ) ⊂ Ω ∖ R(Φ, Ω), or there exists a analytic proper set Z ⊂ Λ such that
φ(Λ ∖ Z) ⊂ R(Φ, Ω). In both cases, we conclude that the claim holds true by induction,
finishing the proof of Theorem 1.1.

(4) In order to prove Theorem 3.7, we are led to a commutative algebra presentation of
Ψ. Denote by L the algebraic closure of Frac(O(Λ)) (note that previously we need
to reduce to the case where O(Λ) is a UFD) and we re-interpret Ψ as a morphism
Ψ∗

L : LJxK → LJuK between rings of formal power series over L, where x are coordinates
of (Rn, 0) and u are coordinates of (Rm, 0). We now use commutative algebra: the proof
of Theorem 3.7 is reduced to Proposition 5.1, whose proof demands a non-trivial linear
algebra argument (Lemma 6.1) inspired by Pawłucki’s [Pa90, Lemme 6.3], and the rank
Theorem for Eisenstein power series which we proved in our previous work [BCR22,
Theorem 1.1]. The intuition behind Eisenstein power series is provided in Section 3.

The proof of Theorem 1.2 is done in three steps:
(1) First, using ideas of Bierstone and Milman [BM87], see Lemmas 5.2 and 5.3, we show

that we only need to prove the theorem for N (X). Furthermore, following standard
subanalytic arguments, we reduce to the case where X is closed and equidimensional.

(2) We apply (a variant of) Hironaka’s uniformization theorem 2.11 to obtain a proper
generically immersive analytic map Ψ : M −→ X, where M is an analytic manifold of
dimension dim(X). In this situation we have

X ∖ N (X) = Ψ(M ∖ Reg(Ψ)),

see Lemma 2.17, so X ∖ N (X) is subanalytic by Theorem 1.1.
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(3) The inequality on the dimension of N (X) comes from the following argument. The set
of points where Ψ has maximal rank is included in R(Φ). So we consider the analytic
set E on which the rank of Ψ is not maximal. We have that the codimension of E is at
least one in M . Then we prove that R(Ψ) ∩ E contains an open subset of E. Therefore
Ψ(E ∖ R(M)) has codimension at least 2.

1.2. Acknowledgements. We would like to thank Edward Bierstone for bringing the topic of
this paper to our attention and for useful discussions. This work was supported by the CNRS
project IEA00496 PLES. The first author is supported by the project “Plan d’investissements
France 2030", IDEX UP ANR-18-IDEX-0001. The second author thanks the grant NKFIH KKP
126683.
We also thank the referee for their remarks that help to improve the presentation.

2. Preliminaries in analytic and subanalytic geometry

2.1. Analytic set and spaces. Let K = R or C and fix an analytic manifold M .

Definition 2.1 (Real-analytic set). A subset X of M is analytic if each point of M admits a
neighborhood U and an analytic function f ∈ O(U) such that:

X ∩ U = {a ∈ U ; f(a) = 0}.

We say that X is an analytic set generated by global sections in O(M) if we can take U = M .

Definition 2.2 (cf. [GuRo65, Ch. V, Def 6]). A (coherent) K-analytic space is a locally ringed
space (X, OX), where:

(1) X is a Hausdorff topological space and OX is a coherent sheaf of functions,
(2) at each point a of X there is a neighborhood U such that (U, OX |U ) is isomorphic to a

ringed space (Y, OY ) where Y is an analytic subset of an open set V ⊂ Kn and OY is its
sheaf of analytic functions. That is, there exist K-analytic functions (f1, . . . , fd) ∈ O(V )
such that:

Y = {a ∈ V ; fk(a) = 0, k = 1 . . . , d} and OY = OV /(f1, . . . , fd).
A subspace of (X, OX) is an analytic space (Z, OZ) such that Z ⊂ X and the inclusion i : Z −→ X
is an injection that is, an injective map such that i∗ : OX −→ OZ is surjective.

If K = R, then it is not true that every R-analytic set X admits the structure of a R-analytic
space, as illustrated by examples of Cartan, see e.g. [Na66, Ch. V, §3]. In contrast, if K = C,
then every C-analytic set X admits the structure of C-analytic space, essentially by a theorem
of Oka, see e.g. [Ho88, Ch. VII, Th 7.1.5]. We refer to [GuRo65, page 155] for a definition of
irreducible complex analytic subspace X ⊂ M , and we recall that if X is irreducible then it is
not the union of two proper complex analytic sets Y, Z ⊂ M , that is, if X = Y ∪ Z then either
Y = X or Z = X.

Remark 2.3. Note that if X ⊂ Ω ⊂ Cn is an irreducible complex analytic set generated by
global sections in a connected open set Ω, then the ring O(X) is an integral domain.

2.2. Semianalytic and Subanalytic sets. We follow the presentation of [BM88]. Fix a real
analytic manifold M .

Definition 2.4 (Semianalytic set). A subset X of M is semianalytic if each point of M admits
a neighborhood U and analytic functions fi ∈ O(U) and gi,j ∈ O(U) for i = 1, . . . , p and j = 1,
. . . , q such that:

X ∩ U =
p⋃

i=1
{a ∈ U ; fi(a) = 0, gi,j(a) > 0, 1, . . . , q}.
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Definition 2.5 (Subanalytic set). A subset X of M is subanalytic if each point of M admits a
neighborhood U such that X ∩ U is the projection of a relatively compact semi-analytic set.

The following is an important general example of subanalytic set:

Example 2.6. Let φ : N −→ M be a proper analytic map. The image X = φ(N) is a subanalytic
set of M . Indeed, note that the graph Γ(φ) ⊂ M × N is a closed analytic set and that the set X
is the projection of Γ(φ) onto M , that is, the image of Γ(φ) by the projection π : M × N −→ M .
It is now enough to remark that since φ is proper, given a relatively compact set U ⊂ M , the
intersection π−1(U) ∩ Γ(φ) is relatively compact.

Definition 2.7. A subset X of Rn is finitely subanalytic if its image under the map

πn : x ∈ Rn 7−→

(
x1√

1 + ∥x∥2
, . . . ,

xn√
1 + ∥x∥2

)
∈ Rn

is subanalytic.

Remark 2.8. Because πn is a semialgebraic diffeomorphism, every finitely subanalytic subset of
Rn is subanalytic, but the converse is not true in general: for instance

X = {(t, sin(t)) | t ∈ R}
is subanalytic but not finitely subanalytic.

Let X be a subanalytic set. We say that X is smooth (of dimension d) at a point a ∈ X
if there exists a neighborhood U of a where X ∩ U is an analytic sub-manifold (of dimension
d). The dimension of X is defined as the highest dimension of its smooth points, c.f. [BM88,
Remark 3.5]. Given a subanalytic (respectively, semianalytic) set X and a number k ∈ N, the set
of all smooth points of X of dimension k, which we denote by X(k), is subanalytic [Ta81], [BM88,
Theorem 7.2] (respectively, semianalytic [BM88, Remark 7.3]). The set of pure dimension k of X

is the set Σ(k) = X(k) ∩ X, which is subanalytic. If there exists d ∈ N such that X = Σ(d), we
say that X has pure dimension d. Note that X = ∪d

k=0Σ(k), where d is the dimension of X.

Example 2.9. Let M = R3 endowed with coordinate system (x, y, z), and consider the Whitney
umbrella X = {x2 − zy2 = 0} ⊂ R3. Then:

Σ(2) = {x2 − zy2 = 0 and z ⩾ 0}, Σ(1) = {x = y = 0, and z ⩽ 0}.

Note that their intersection is non-empty.

We now recall a classical result about subanalytic sets due to Hironaka [Hi73]; we follow the
presentation of [BM88, Theorem 0.1]:

Theorem 2.10 (Uniformization Theorem I). Let X ⊂ M be a closed subanalytic set of dimension
d. There exists an analytic manifold N of dimension d and a proper analytic map φ : N −→ M
such that φ(N) = X.

In what follows, we use the following variant of the above result:

Theorem 2.11 (Uniformization Theorem II). Let X ⊂ M be a closed subanalytic set of dimension
d. There exists d + 1 analytic manifolds Nk, where k = 0, . . . , d, where the dimension of Nk is
equal to k, and d + 1 proper and generically immersive analytic maps πk : Nk −→ M such that
πk(Nk) = Σ(k).

Proof. It is enough to prove the result when X is an equidimensional subanalytic set, that is,
when X = Σ(d). Let φ : N −→ M be the proper analytic map given by Theorem 2.10 such
that φ(N) = X. We note that N = ∪ι∈INι where each Nι is a connected manifold and I is an
index set. Denote by φι := φ|Nι : Nι −→ M . Note that the generic rank of φ is constant along
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connected components of N , and denote by rι the generic rank associated to each φι. Let J ⊂ I
be the subindex set of ι ∈ I such that rι = d; since φ(N) = X is of dimension d, we conclude
that J ̸= ∅ and that rι < d for every ι ∈ I ∖ J . We consider the manifold Nd = ∪ι∈JNι and the
associated proper analytic morphism φd : Nd −→ M , which we claim to satisfy all properties of
the Theorem.

Indeed, we start by noting that X ∖ φd(Nd) is a subanalytic set of dimension smaller than d
and, therefore, the closure of φd(Nd) is equal to X. Since φ is proper and continuous, we conclude
that φd(Nd) = X. It is now enough to prove that the mapping is generically immersive. This
easily follows from the fact that φ is generically of the same rank as the dimension of Nd. □

We finish this section with a sufficient condition for a subanalytic to be analytic:

Lemma 2.12 ([Pa92, Lemma 3]). Let X ⊂ M be a subanalytic set which is a union of countably
many analytic subsets. Then X is an analytic set.

Proof. We claim that if X is a subanalytic set contained in a union of countably many analytic
subsets (Yk)k∈N, then it is locally contained in a union of a finite number of the analytic sets
(Yk)k∈N. Note that the lemma easily follows from the claim. Since X = ∪ Σ(k), where Σ(k)

is a subanalytic equidimensional set, it is enough to prove the claim in the case that X is an
equidimensional set. By the uniformization Theorem 2.11 there exists a proper analytic map
φ : N −→ M such that φ(N) = X and φ is generically of rank d = dim(X); the later condition
implies that φ−1(X) is subanalytic set of N whose interior is dense in N . Let us fix a ∈ X; since
φ is proper, the fiber φ−1(a) has a finite number of connected components T1, . . . , Tr; denote by
U1, . . . , Ur connected open neighborhoods of the Tk. Now, given an analytic subset Y ⊂ M , its
pre-image Z = φ−1(Y ) is analytic in N . It follows that for each k = 1, . . . , r, either Z ∩ Uk = Uk,
or Z ∩ Uk is a closed set with empty interior in Uk. Since X is contained in countable many
analytic sets, and the union of countable many closed sets with empty interior has empty interior
by Baire’s Theorem, we conclude that for each k = 1, . . . , r, there is an analytic set Yk ⊂ X such
that φ−1(Yk) ∩ Uk = Uk. We conclude easily. □

2.3. Regular locus of analytic maps. Let K = R or C. Consider an analytic map
Φ : Ω ⊂ Km −→ Kn where Ω is an open set. The set of regular points of Φ is given by:

R(Φ, Ω) = {a ∈ Ω; ra(Φ) = rF
a (Φ)}.

We recall that Gabrielov’s rank Theorem [Ga71, BCR21] states that:

r(Φa) = rF (Φa) =⇒ r(Φa) = rF (Φa) = rA(Φa).
In particular, the set R(Φ, Ω) is open. As a matter of fact it also contains a non-empty analytic-
Zariski set:

Lemma 2.13. Let Φ : Ω ⊂ Km −→ Kn be an analytic map. Then the set
R(Φ, Ω) := {a ∈ Ω | Φa is regular }

contains a set of the form Ω∖Z where Z is a proper analytic set of Ω generated by global equations
in O(Ω).

Proof. It is enough to prove the Lemma in the case that Ω is connected. Let r be the generic
rank of Φ and denote by Z the set of points a ∈ Ω where the rank of Φ is smaller than r. Note
that F is a proper analytic subset generated by global equations in O(Ω); indeed, it is the zero
set of the r-minors of the Jacobian of Φ. It is now enough to note that Φ is regular at every point
of Ω ∖ Z by the constant rank Theorem. □

We now recall a result that relates the regular locus of complex and real analytic morphisms
due to Milman [Mi78], but which we state as in [Pa92]:
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Lemma 2.14 ([Pa92, Lemma 4]). Let Φ : Ω ⊂ Cm −→ Cn be a complex analytic map and denote
by ΦR its real-analytic counterpart. Then R(Φ, Ω) = R(ΦR, Ω).

Proof. The inclusion R(Φ, Ω) ⊂ R(ΦR, Ω) is immediate. In order to prove the other inclusion,
suppose that ΦR is regular at a and denote by r = ra(ΦR). Since ΦR is the real-analytic
counterpart of Φ, r = 2s where s = ra(Φ). The result is now immediate from Theorem 2 of
[Mi78]. □

2.4. The Nash and the Semianalytic locus. Given a subanalytic set X ⊂ M and a point
a ∈ M , we will denote by Xa the germ set of X at a.

Definition 2.15 (Nash points). Let X ⊂ M be a subanalytic set of pure dimension d. We
say that X is a Nash set at a ∈ M (which might not belong to X) if there exists a germ Ya of
semi-analytic set at a such that Xa ⊂ Ya and dim(Xa) = dim(Ya). More generally, a subanalytic
set X ⊂ M of dimension d is Nash at a point a ∈ M , if Σ(k)

a is Nash for each k = 0, . . . , d. We
consider the set:

N (X) := {a ∈ M | Xa is the germ of a Nash set}
We say that X is a Nash set if it is Nash at every point, that is, if N (X) = M .

It is clear that every semi-analytic set is Nash subanalytic. A more general example is given
by the following Lemma:

Lemma 2.16. Let φ : N −→ M be a proper and regular analytic map, that is, at every point
a ∈ N , ra(φ) = rF

a (φ) = rA
a (φ). Suppose that X = φ(N) is equidimensional of dimension d.

Then X is Nash subanalytic.

Proof. Indeed, fix a point b ∈ X. Consider a relatively compact neighborhood V of b, and
note that φ−1(V ) = U is a relatively compact open set of N . Now, for each point a ∈ U , it
follows from the regularity of the mapping that there exists an open neighborhood U ′ of a and
a semi-analytic set Y ′ ⊂ M of dimension at most d such that φ(U ′) ⊂ Y ′. From the relative
compactness of U , it follows that there exists a semi-analytic set Y of dimension at most d (given
as the union of a finite number of sets Y ′) such that φ(U) ⊂ Y , finishing the proof. □

Indeed, we may generalize the above idea to provide a description of the Nash locus in terms
of the regular points of a morphism:

Lemma 2.17. Let φ : N −→ M be a proper generically immersive analytic morphism such that
φ(N) = X is a closed equidimensional set. Then

X ∖ N (X) = φ(N ∖ R(φ, N)).

Proof. First, let us show that X ∖ N (X) ⊂ φ(N ∖ R(φ, N)) by proving the associated inclusion
of their complements. Fix a point b ∈ X ∖ φ(N ∖ R(φ, N)). This means that φ is regular on
the pre-image of φ−1(b). Since being regular is an open property, there exists a neighborhood
U of φ−1(b) such that φ|U is everywhere regular. Moreover, since φ is proper and continuous,
there exists a neighborhood V of b such that φ−1(V ) ⊂ U . By Lemma 2.16 applied to X ∩ V ,
we conclude that b ∈ N (X) as desired.

Now, let us prove that φ(N ∖ R(φ, N)) ⊂ X ∖ N (X) by proving the associated inclusion
of their complements. Fix a point b ∈ N (X) and let Yb be the germ of a semi-analytic set of
dimension d which contains Xb; let V be a subanalytic and relatively compact neighborhood of b
where Yb admits a representative Y defined in V such that X ∩ V ⊂ Y . Let U = φ−1(V ), which
is a relatively compact neighborhood of φ−1(b). It follows that φ(U) ⊂ Y , which implies that
φ is regular at every point a ∈ U ; in particular, at every point a ∈ φ−1(b). We conclude that
b /∈ φ(N ∖ R(φ, N)), finishing the proof. □
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We now consider the following set:
SA(X) := {a ∈ M | Xa is the germ of a semianalytic set}.

It is trivially true that M ∖ X ⊂ SA(X) and SA(X) ⊂ N (X). But in general, SA(X) ̸= N (X)
as is illustrated by the following examples:

Example 2.18.
i) Consider a subanalytic two dimensional set S in R3 such that the germ at the origin

S0 is not semianalytic (for instance, the image of a compact set through the Osgood
mapping [Os1916] provides such a surface). We consider X := R3 ∖ S; X is subanalytic
of pure dimension 3, thus it is Nash subanalytic since X ⊂ R3. But the germ X0 is not
semianalytic. Note that 0 /∈ X.

ii) We may modify the example as follows: we set
X :=

[
R4 ∖ (R3 × {0})

]
∪ (S × {0}).

Then X is equidimensional of dimension 4, and N (X) = R4, but X0 is not semianalytic.
Note that 0 ∈ X.

Remark 2.19. We recall that the closure of a semianalytic (respectively, a subanalytic) set is
semianalytic (respectively, subanalytic) set of the same dimension. It follows that N (X) = N (X)
for every subanalytic set X ⊂ M . In contrast, we can only conclude from this argument that
SA(X) ⊂ SA(X), c.f. example 2.18(i).

3. Eisenstein power series and families of morphisms

3.1. Eisenstein power series. The main goal of this section is provide a version of Gabrielov
rank Theorem for special families of germs Ψ : Λ × (Km, 0) → (Kn, 0) which we call admissible
(see Definition 3.4 below). In essence, we want to show that if Ψ is regular (in the sense of
Gabrielov) at one point a of a connected parameter space Λ, then Ψ is actually regular outside of
a proper analytic subset Z ⊂ Λ; see Theorem 3.7 for the precise statement.

To achieve this objective, we are led to work with families of formal power series. It is further
useful to work locally, and to restrict our study to the case that Λ = D ⊂ Cn is a closed polydisc.
We denote by O = O(D) the ring of analytic functions defined in a neighborhood of D, and note
that it is an UFD by [Da74], so its fraction field is well-defined. A family of formal power series
germs with respect to coordinates u = (u1, . . . , um) and parametrized by D is now given by:

F (a, u) =
∑

γ∈Nm∖0
Fγ(a) uγ1

1 · · · uγm
m ∈ OJuK

where each Fγ(a) is an analytic function defined for points a in a neighborhood of D. In
particular, for each a0 ∈ D, the element F (a0, u) is a formal power series in CJuK. In our results,
nevertheless, we cannot expect to obtain families such as these one’s, defined over the entire
D. This observation is technically captured by the fact that in commutative algebra it is not
necessarily possible to work with power series with coefficients in a ring (such as O), but rather
with power series with coefficients in a field which is, ideally, algebraically closed. So, we will
consider the algebraic closure K of the field of fractions Frac(O). In order to build an intuition,
let us first consider a family of formal power series germs over Frac(O), which is now given by:

F (a, u) =
∑

γ∈Nm∖0
Fγ(a) uγ1

1 · · · uγm
m ∈ Frac(O)JuK

where Fγ(a) = Pγ/Qγ , and each of these functions is defined in a neighborhood of D. Denote by
Zγ the zero locus of Qγ . Note that each a0 ∈ D ∖ ∪Zγ , the element F (a0, u) is a formal power
series in CJuK; but ∪Zγ is too big for our purposes, since it is a countable union of analytic sets.
In order to address this issue, we need to work with a sub-family of KJuK where each element
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provides a family of formal germs over D ∖ Z, for some unspecified analytic set Z ⊂ D. This is
the goal behind the definition of Eisenstein power series.

When f ∈ O ∖ {0}, Of denotes the localization of O with respect to the multiplicative family
{1, f, f2, . . .}, and it is the ring of analytic functions defined in a neighborhood of D ∖ {f = 0}.
Note that a family of formal germs with respect to Of Ju1, . . . , umK (which is a subring of
KJu1, . . . , umK) will be defined over D ∖ {f = 0}. Now, an element of K represents an algebraic
(multivalued) function in a neighborhood of D. For f ∈ O ∖ {0} and c ∈ K, we consider the ring
of formal power series Of Jx1, . . . , xnK[c]. Its elements can be written as

g0(x) + g1(x)c + · · · + gℓ(x)cℓ

for some ℓ ∈ N, where the gi are formal power series with coefficients in Of . We have the
following lemma:

Lemma 3.1. When f runs over O ∖ {0} and c runs over K, the family
(Of Jx1, . . . , xnK[c])f,c

is filtered family of rings.

Proof. Indeed, let us consider f , f ′ ∈ O ∖ {0} and c, c′ ∈ K. First we have that Of and Of ′ are
subrings of Off ′ . Now, let us denote by K(D) the fraction field of O. Since K(D) is a characteristic
zero field, by the primitive element Theorem, there is e ∈ K such that K(D)[e] = K(D)[c, c′].
Let g ∈ O ∖ {0} such that c, c′ ∈ Og[e]. Then Of [c] and Of ′ [c′] are subrings of Off ′g[e], so
Of Jx1, . . . , xnK[c] and Of ′Jx1, . . . , xnK[c′] are subrings of Off ′gJx1, . . . , xnK[e]. This proves the
lemma. □

We are now ready to define Eisenstein series:

Definition 3.2. The ring of Eisenstein series over O is the filtered limit of this family of rings:⋃
c∈K

⋃
f∈O∖{0}

Of Jx1, . . . , xnK[c]

and is denoted by K{{x1, . . . , xn}}.

Now let us consider a ring homomorphism:
φ : K{{x}} −→ K{{u}}

where x = (x1, . . . , xn) and u = (u1, . . . , um). We say that φ is a morphism of Eisenstein power
series if φ(f) = f(φ(x)) for every f ∈ K{{x}}. We denote by φ̂ its extension to the ring of formal
power series and we define:

(2)

the Generic rank: r(φ) := rankFrac(K{{u}})(Jac(φ)),

the Formal rank: rF (φ) := dim
(

KJxK
Ker(φ̂)

)
,

and the temperate rank: rW(φ) := dim
(

K{{x}}
Ker(φ)

)
,

of φ, where Jac(φ) stands for the matrix [∂uiφ(xj)]i,j . It follows from [BCR22, Th. 1.1 and Prop.
4.9] that:

Theorem 3.3 (Eisenstein power series rank Theorem). Let φ : K{{x}} −→ K{{u}} be a morphism
of rings of Eisenstein power series. Then

r(φ) = rF (φ) =⇒ r(φ) = rF (φ) = rW(φ).
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3.2. Families of morphisms.

Definition 3.4. Consider two analytic maps Φ : Ω ⊂ Km −→ Kn and φ : Λ ⊂ Kl −→ Ω, where
Ω is a connected open set and one of the following holds:

(1) Λ = Ω and φ is the identity;
(2) Λ is a connected open set and φ is an analytic map;
(3) Λ ⊂ Ω is an analytic subspace of Ω such that O(Λ) is an integral domain, and φ is its

inclusion.
An admissible family of analytic germs (associated to Φ and φ) is the analytic map

Ψ : Λ × (Km, 0) −→ (Kn, 0)
given by Ψ(a, u) = Φ(φ(a) + u) − Φ(φ(a)). We denote by Ψa : (Km, 0) −→ (Kn, 0) the associated
germ at a; in particular Ψa = Φa − Φ(φ(a)).

Lemma 3.5. Given an admissible family of analytic germs:
(1) The generic rank is constant along Λ, that is,

∀a, b ∈ Λ, r(Ψa) = r(Ψb).
(2) The map a ∈ Λ 7−→ rA(Ψ∗

a) ∈ N is upper semi-continuous for the Euclidean topology.
(3) The ring of global sections O(Λ) is an integral domain.

Proof. Condition (1) and (3) are straightforward. In order to prove (2), let f1, . . . , fs be
generators of Ker(Φ∗

φ(a)) and U be an open neighborhood of φ(a) such that the fi are well-defined
on U . Let V be a connected neighborhood of a contained in φ−1(U). Since Φ is analytic, apart
from shrinking U and V , we have that fi ◦ Φ ◦ φb ≡ 0, for all b ∈ V . We conclude easily. □

Now fix an admissible family of analytic map germs
Ψ : Λ × (Km, 0) −→ (Kn, 0).

and let L denote the fractions field of the ring O(Λ) of analytic functions on Λ. Note that Ψ
induces a morphism of power series rings:

Ψ∗
L : LJxK −→ LJuK

where x = (x1, . . . , xn), u = (u1, . . . , um) and

Ψ∗
L(xi) =

∑
γ∈Nm∖0

Fi,γuγ , Fi,γ = 1
γ!

∂|γ|

∂wγ
(xi ◦ Φ) ◦ φ ∈ O(Λ).

where w = (w1, . . . , wm) are globally defined coordinate systems over Ω. Note that Fi,0 = 0 for
every i = 1, . . . , n, which guarantees that Ψ∗

L is well-defined.
Now let r = r(Ψ∗

L). Thus any (r + 1) × (r + 1) minor of the Jacobian matrix of Φ∗
L is zero,

therefore r(Ψa) ⩽ r for every a ∈ Λ. On the other hand, there is a r × r minor of the Jacobian
matrix of Φ∗

L, denoted by M , that is not identically zero. So, for a generic a ∈ Λ, we have
M(a) ̸= 0 and r(Ψa) = r. Therefore, by Lemma 3.5(1), we have that:

r(Ψ∗
L) = r(Ψa), ∀a ∈ Λ.

We now turn to the problem of relating the formal rank of Ψ at a point a ∈ Λ with the formal
rank of Ψ∗

L:

Proposition 3.6. Let Ψ : Λ× (Km, 0) −→ (Kn, 0) be an admissible family of analytic map germs.
If there is a ∈ Λ such that r(Ψa) = rF (Ψa), then:
(3) r(Ψ∗

L) = rF (Ψ∗
L).

In particular, the set
R(Ψ, Λ) := {a ∈ Λ | Ψa is regular }
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is either empty or contains a set of the form Λ ∖ W where W is a countable union of proper
analytic subsets of Λ generated by global equations in O(Λ).

The proof of this Proposition is based on an extension result, namely Lemma 6.1 below, whose
proof is strongly inspired by an argument of Pawłucki cf. [Pa90, Lemme 6.3]. We postpone the
proof to §6. Condition (3) is the deepest statement of the above Proposition which, together
with Theorem 3.3, allows us to prove the following crucial technical result:

Theorem 3.7. Let Ψ : Λ × (Km, 0) −→ (Kn, 0) be an admissible family of analytic germs where
Λ is a connected open set of Kl (that is, we consider cases (1) and (2) of Definition 3.4). Then
either R(Ψ, Λ) = ∅ or, for every a ∈ Λ, there exists an open neighborhood U ′ ⊂ Λ and a proper
analytic set Z ⊂ U ′ such that R(Ψ, U ′) ⊃ Ua ∖ Z.

Proof. Let L denote the fraction field of O(Λ). Note that Ψ yields a morphism Ψ∗
L : LJxK −→ LJuK

and that r(Ψ∗
L) = r(Ψa) for any a ∈ Λ. Now, suppose that; R(Ψ, Λ) ̸= ∅ so that Proposition 3.6

yields:
r(Ψ∗

L) = rF (Ψ∗
L).

We now first prove the Lemma in the case that K = C. Let a ∈ Λ be fixed and consider a
sufficiently small closed polydisc D′ ⊂ Λ centered at a. Let O(D′) denote the ring of analytic
functions defined in a neighborhood of D′; note that this ring is a UFD by [Da74]. Let K denote
the algebraic closure of the fraction field of O(D′). We note that the restriction of Ψ to D′, yields
a temperate morphism Ψ∗

K : K{{x}} −→ K{{u}}. It is clear that r(Ψ∗
K) = r(Ψ∗

L), and since the
restriction from Λ to D′ yields an injective morphism from O(Λ) into O(D′), we conclude that:

r(Ψ∗
K) = rF (Ψ∗

K).

so that we may apply Theorem 3.3 in order to get

r(Ψ∗
K) = rW(Ψ∗

K) =: r.

Now, up to a K-linear change of coordinates, applying [BCR22, Prop. 2.8 vi)], the morphism
K{{x1, . . . , xr}} −→ K{{x}}

/
Ker(Ψ∗

K) is finite, which means that there are non-zero Weierstrass
polynomials

Qi(x1, . . . , xr, xr+i) ∈ K{{x1, . . . , xr}}[xr+i] for i = 1, . . . , n − r,

such that Ψ∗
K(Qi) ≡ 0. By the definition of K{{x}} and the primitive element theorem, there

exists f ∈ O(D′) and c ∈ K of degree d such that Qi ∈ O(D′)f JxK[c], that is

Qi =
d−1∑
j=0

Qi,jc
j , Qi,j ∈ O(D′)f JxK.

Note that Ψ∗
K(c) = c and {1, c, . . . , cd−1} are linearly independent over O(D′). Hence, up to

replacing Qi by Qi,0, which is monic, we can choose the Qi in O(D′)f JxK. Let U ′ ⊂ D′ be any
open neighborhood of a. We set Z = {b ∈ U ′; f(b) = 0}. Note that Qi yields a power series
Qi,b ∈ CJxK at each b ∈ U ′ ∖ Z and that Ψ∗

b(Qi,b) ≡ 0, for every i = 1, . . . , n − r. We conclude
that r(Ψ∗

b) = rF (Ψ∗
b) for every b ∈ U ′ ∖ Z as we wanted to prove.

Now let us consider the case that K = R. Denote by ΛC a complex open neighborhood of Λ
such that ΛC ∩ Rl = Λ, over which Ψ admits an holomorphic extension:

ΨC : ΛC × (Cm, 0) −→ (Cn, 0).

By the first part of the proof, for each a ∈ ΛC, there exists a neighborhood U ′C and a complex
analytic set ZC ⊂ U ′C such that R(Ψ, U ′C) ⊃ U ′C ∖ ZC. We fix a point a ∈ Λ and we consider
the neighborhood U ′ = U ′C ∩ Rl and the intersection Z := ZC ∩ U ′. It is enough to note that Z
is a proper real-analytic subset of U ′. □
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4. Proof of Theorem 1.1

We start by a well-known result, which follows from the geometrical statement of Proposition
3.6:

Proposition 4.1 (cf. [Pa92, Prop. 1]). Let Φ : Ω ⊂ Km −→ Kn be an analytic map where Ω is
open. Then Ω ∖ R(Φ, Ω) is a union of countably many analytic subsets.

Proof. Let us first argue the case that K = C, in which case every complex analytic set is a complex
analytic space. By Proposition 3.6 applied to each connected component of Ω, X := Ω ∖ R(Φ, Ω)
is included in the union of countably many analytic subsets

⋃∞
i=0 Yi of Ω. We may assume that

the Yi are irreducible (in Ω) by replacing each Yi by its irreducible components, and we change
the family {Yi}i according to the following rule:

(R) For a given i0, if there is countably many irreducible analytic subspaces Yi0,k of Ω of
dimension < dim(Yi0) such that X ∩ Yi0 ⊂

⋃∞
k=0 Yi0,k, we replace the family {Yi}i∈N by

{Yi}i ̸=i0 ∪ {Yi0,k}k∈N.
By repeating this rule countably many times, we can assume that the family {Yi}i∈N is minimal
with respect to (R) and contains X. Now assume by contradiction that X ̸=

⋃
i∈N Yi. This

means that there is i0 ∈ N such that Yi0 ̸⊂ X but Yi0 ∩ X ̸= ∅. By Proposition 3.6 applied to Yi0

(cf. Remark 2.3 and Definition 3.4(3)) we have that Yi0 ∩ X is included in a countable number
of proper analytic subsets {Yi0,k}k∈N of Yi0 that are of dimension < dim(Yi0). Since Yi0 is an
analytic subspace of Ω, we conclude that each Yi0,k is analytic subspace of Ω, which contradicts
the minimality of the family {Yi}i∈N in respect to (R).

If K = R, the result follows from considering a complexification of Φ, and noting that the set
of regular points is non-empty by Lemma 2.13. □

We are now ready to prove the following local version of Theorem 1.1, which immediately
implies it:

Theorem 4.2 (Pawłucki Theorem I [Pa92]). Let Φ : Ω ⊂ Km 7−→ Kn be an analytic map where
Ω is open. Then Ω ∖ R(Φ, Ω) is a proper analytic subset of Ω.

Proof. By Lemma 2.14 and Corollary 4.1, it is enough to consider the case where K = R.
Furthermore, from Lemma 2.12 and Proposition 4.1, it is enough to show that R(Φ, Ω) is a
subanalytic set of Ω. Note that being subanalytic is a local property, so we may suppose that Ω
is a subanalytic open set.

We claim that for every closed subanalytic set X ⊂ Ω, the intersection X ∩ R(Φ, Ω) is
subanalytic in Ω. The result then follows from the Claim applied to X = Ω. We prove the claim
by induction on the dimension of X.

When dim(X) = 0, the result immediate. Assume the Claim is proved for d − 1 ⩾ 0 and let
X be a subanalytic subset of Ω of dimension d. Consider its equidimensional part Σ(d) and let
E = X ∖ Σ(d), which is a closed subanalytic set of dimension < d. By induction E ∩ R(Φ, Ω)
is a subanalytic subset of Ω. It is, therefore, enough to prove the claim when X = Σ(d) is an
equidimensional set.

By Corollary 2.11, there exists a proper and generically immersive analytic morphism
φ : Λ −→ X such that φ(Λ) = X. Now fix a point a ∈ Λ and a connected open neighborhood Λ′

of a. We consider the family of admissible morphism:
Ψ : Λ′ × (Rm, 0) −→ (Rn, 0)

(a′, u) 7−→ Φ(φ(a′) + u) − Φ(φ(a′))

By Theorem 3.7, apart from shrinking Λ′, we conclude that either φ(Λ′) ⊂ Ω ∖ R(Φ, Ω) or
there exists a analytic proper set Z ′ ⊂ Λ′ such that φ(Λ′ ∖ Z ′) ⊂ R(Φ, Ω). Note that, since
a ∈ N was arbitrary and both of these properties are open, they hold globally over each different
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connected component of N . We conclude that there exist two closed subanalytic subsets Y and
Z of X, such that: Y is of dimension d and Y ⊂ Ω ∖ R(Φ, Ω); and Z is of dimension < d and
X ∖ (Y ∪ Z) ⊂ R(Φ, Ω). The result now follows from induction applied over Z. □

5. Proof of Theorem 5

We start by proving the following corollary of the uniformization Theorem 2.11 and Theorem 1.1.

Proposition 5.1. Let X be a subanalytic set of a real analytic manifold M . Then
i) The set N (X) is subanalytic.

ii) dim(M ∖ N (X)) ⩽ dim(X) − 2.
In particular, if dim(X) ⩽ 1, then N (X) = M .

Proof. By remark 2.19, we may suppose without loss of generality that X is a closed subanalytic
set. First consider the equidimensional case X = Σ(d). Denote by φ : N −→ M the proper
generically immersive analytic morphism given by Corollary 2.11, where N is of dimension d and
φ(N) = X. In particular r(φ) = d. By Theorem 4.2, N ∖ R(φ, N) is a proper analytic subset of
N . It follows from Lemma 2.17 that X ∖ N (X) is a subanalytic set of codimension at least 1. It
remains to prove that it has codimension 2.

Denote by F the set of points in N where φ does not have maximal rank. Note that F
is analytic (it is given by the zero locus of the Jacobean ideal of φ) so, apart from applying
resolution of singularities, we may suppose that F is a simple normal crossing divisor in N . Now,
note that N ∖F ⊂ R(φ, N) since φ|N∖F is a local submersion. It follows that N ∖R(φ, N) ⊂ F .
So, it is enough to prove that the image φ(E ∖ R(φ, N)) has dimension at most d − 2 for
every irreducible (in particular connected) component E ⊂ F . Fix such an E and consider the
morphism φE = φ|E : E −→ M . Let r denote the generic rank of φE and note that r ⩽ d − 1
since E has dimension d − 1. If r < d − 1, then φ(E) is a subanalytic set of dimension at most
d − 2 and the result is clear. So we may suppose that r = d − 1.

Fix a point a ∈ E and consider a local coordinate system (u, v) = (u, v1, . . . , vd−1) of N
centered at a and defined in an open neighborhood U of a, such that E ∩ U = (u = 0). From
the rank condition over φE , and the inverse function Theorem, there exists a coordinate system
(x, y, z) = (x1, . . . , xd−1, y, zd+1, . . . , zn) centered at φ(a) = b such that:

φ∗(xi) = vi, i = 1, . . . , d − 1.

Now, apart from an analytic change of coordinates in the target and a permutation of y and the
zk, we may further suppose that there exists a positive integer a such that:

φ∗(y) = uagd(u, v)
φ∗(zk) = uagk(u, v), k = d + 1, . . . , n

where gd(0, v) ̸≡ 0. In particular, the set of points of E ∩ U where gd(0, v) ̸= 0 is an open dense
set E′ of E ∩ U . We claim that at every point of E′, φ is a regular mapping; this claim implies
that (E ∖ R(φ, N)) ∩ E ∩ U is a proper analytic set of E and, therefore, φ(E ∖ R(φ, N)) has
dimension at most d − 2. We turn to the proof of the Claim: suppose that a is a point in E′.
Apart from shrinking U and making a change of coordinates in the source and target, we may
further suppose that:

φ∗(y) = ua,

and we consider the following functions defined in the target:

Pk(x, y, z) =
a∏

i=1
(zk − ygk(x, ξiy1/a)), k = d + 1, . . . , n
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where ξ is a primitive a-root of unity. By construction, it is clear that Pk ◦ φ|U ≡ 0 for every
k = d + 1, . . . , d. We conclude that ra(φ) = rA

a (φ) = d proving the claim and finishing the proof
of the Theorem in the case of an equidimensional subanalytic set X.

We now consider a general closed subanalytic set X. Consider the morphisms from
Corollary 2.11: φk : Nk −→ M , for k = 0, . . . , d − 1. From the previous argument applied
to each set Σ(k), we conclude that M ∖ N (Σ(k)) is a subanalytic set of dimension at most k − 2.
It follows from the definition of N (X) that:

N (X) = ∩d
k=0N (Σ(k))

which is a subanalytic set. Furthermore, its complement is equal to the union of the complements
of N (Σ(k)), and therefore is a subanalytic set of dimension at most d − 2, finishing the proof. □

We are now ready to complete the proof of Theorem 1.2, following an argument from [BM87].
We start with two lemmas (see also [FG86] for the study of the relations between SA(X) and
N (X) in general):

Lemma 5.2. Let X be a subanalytic set of dimension d. Then
SA(X) = SA(X ∖ X(d)) ∩ SA(X(d)).

Proof. Note that SA(X ∖ X(d)) ∩ SA(X(d)) ⊂ SA(X) is trivial. In order to prove the other
inclusion, let a ∈ SA(X); in particular Xa is a semi-analytic germ. Let U be a sufficiently small
neighborhood of a where Xa is realizable by X ∩ U , which is semi-analytic. We recall that if Y is
semi-analytic, then Y (d) is a semi-analytic set, see e.g. [BM88, Remark 7.3], so we conclude that
X(d) ∩ U is semi-analytic and a ∈ SA(X(d)). Since (X ∖ X(d)) ∩ U = X ∩ U ∖ (X(d) ∩ U), we
conclude easily. □

Lemma 5.3 (c.f. [BM87, p. 200]). Let X be a closed subanalytic set of equidimension d. Then:
SA(X(d)) = SA(X ∖ X(d)) ∩ N (X(d)).

Proof. Clearly we have SA(X(d)) ⊂ N (X(d)). Moreover, if a ∈ SA(X(d)), then X
(d)
a is semi-

analytic, so its closure, which is Xa, is semianalytic and Xa ∖ X
(d)
a is semianalytic. Thus

SA(X(d)) ⊂ SA(Y ) ∩ N (X(d)).
In order to prove the other inclusion, let a ∈ SA(Y ) ∩ N (X(d)) where Y = X ∖ X(d). Since

the result is local, apart from replacing M by a sufficiently small neighborhood of a, we may
suppose that Y is semianalytic and that there exists a closed analytic set Z of dimension d such
that X(d) ⊂ Z; we conclude that X ⊂ Z. Let Sing(Z) denote the singular points of Z. It follows
that X ∖ (Y ∪ Sing(Z)) is open and closed in Z ∖ (Y ∪ Sing(Z)) and, thus, X ∖ (Y ∪ Sing(Z)) is
semi-analytic. Since the closure of this set is equal to X, we conclude that X is semianalytic,
and we conclude by Lemma 5.2. □

Proof of Theorem 1.2. Because of Proposition 5.1, it only remains to show that SA(X) is a
subanalytic set whose complement is of dimension at most d − 2. We prove this result by
induction on the dimension of X; the case that d = 0 being trivial. So, fix a subanalytic set X of
dimension d and consider the set Y = X ∖ X(d), which is a subanalytic set of dimension at most
d − 1. By Lemmas 5.2 and 5.3 we get:

SA(X) = SA(Y ) ∩ SA(X(d)) = SA(Y ) ∩ SA(X(d) ∖ X(d)) ∩ N (X(d)).

By induction applied to Y and X(d) ∖X(d), and by Proposition 5.1 applied to X(d), we conclude
that SA(X) is a subanalytic set whose complement has dimension smaller or equal to d − 2. □

We finish this section by proving the following corollary:

Corollary 5.4. Let X ⊂ Rn be a finitely subanalytic set. Then N (X) and SA(X) are finitely
subanalytic.
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Proof. Let us denote by π the map

x ∈ Rn 7−→

(
x1√

1 + ∥x∥2
, . . . ,

xn√
1 + ∥x∥2

)
∈ Rn.

By hypothesis the image Y = π(X) is a subanalytic set. By Theorem 1.2, N (Y ) is subanalytic.
Furthermore, since π is a semialgebraic diffeomorphism, we conclude that

π(N (X)) = N (Y ) ∩ π(Rn)

is subanalytic, which proves that N (X) is finitely subanalytic.
The proof that SA(X) is finitely subanalytic is identical. □

6. Proof of Proposition 3.6

6.1. Extension Lemma. The goal of this subsection is to prove the following:

Lemma 6.1 (Extension Lemma). Let Ψ : Λ × (Km, 0) −→ (Kn, 0) be an admissible family of
analytic map germs (see Definition 3.4) and let L be the field of fractions of O(Λ). Let (x, y) be a
coordinate system of (Kn, 0) where y is a distinguished variable. Let U be an open and connected
subset of Λ and suppose that there exists a polynomial in y

f(x, y) = yd + a1(a, x)yd−1 + · · · + ad(a, x)

such that
i) ai(a, x) ∈ O(U)JxK, i = 1, . . . , d;

ii) ai(·, 0) ≡ 0 on U , i = 1, . . . , d;
iii) for all a ∈ U , f(a, x, y) is a generator of Ker(Ψ̂∗

a).
Let us write ai(a, x) =

∑
β∈Nn−1 ai,β(a)xβ. Then, for every i and β, there is a proper global

analytic subset Zi,β ⊊ Λ such that ai,β extends on Λ ∖ Zi,β as an analytic function ai,β ∈ L.
Moreover if we set

f := yd +
∑

β∈Nn−1

a1,β(a)xβyd−1 + · · · +
∑

β∈Nn−1

ad,β(a)xβ ∈ LJxK[y]

then f(x, y) ∈ Ker(Ψ∗
L).

The proof of this result is strongly inspired by the proof of [Pa90, Lemme 6.3], and is based
on Chevalley’s Lemma:

Proposition 6.2 (Chevalley’s Lemma). [Ch43, Lemma 7] Let k be a field. Let φ : kJxK −→ kJuK
be a morphism of formal power series rings. Then there exists a function λ : N −→ N such that

∀k ∈ N, φ−1((u)λ(k)) ⊂ (x)k + Ker(φ).

The smallest function satisfying this property is called the Chevalley’s function of φ, and is
denoted by λφ.

We start by fixing the notations and by proving a corollary of Chevalley’s Lemma. Let
k be a field and φ : kJxK −→ kJuK be a morphism of formal power series rings. We set
x′ := (x1, . . . , xn−1). Let us consider the images of the xi by φ:

φi =
∑

α∈Nm

φi,αuα

where the φi,α ∈ k. Let

(4) F (x) := xd
n + A1(x′)xd−1

n + · · · + Ad(x′)
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where the Ai are universal power series

(5) Ai :=
∑

β∈Nn−1

Ai,βx′β

and the Ai,β are new indeterminates. Then we can expand

F (φ1, . . . , φm) =
∑

γ∈Nm

Fγuγ

where
Fγ =

∑
i,β

Mγ,i,βAi,β + Bγ

with Mγ,i,β and Bγ polynomials in the φj,α.
Let R be a ring. Then the system of linear equations

(S∞) ∀γ ∈ Nm, Fγ(Ai,β) = 0

has a solution (ai,β) ∈ RN if and only if Ker(φ) contains a non-zero Weierstrass polynomial

(6) f = xd
n + a1(x′)xd−1

n + · · · + ad(x′), where ai(x′) =
∑

β∈Nn−1

ai,βx′β .

Let us consider the systems of linear equations
(Sk) ∀γ ∈ Nm, |γ| < k, Fγ(Ai,β) = 0
where k runs over N. We have

Corollary 6.3 (Approximation). Let k be a field. Assume that f , given as in (6), is a generator
of Ker(φ). Then (ai,β) is the unique solution of (S∞) in kN. Moreover, there is a function
µ : N −→ N such that, for all k ∈ N, all solutions (ãi,β) ∈ kN of (Sµ(k)) satisfies

∀β ∈ Nn, |β| ⩽ k =⇒ ãi,β = ai,β .

Proof. Let (ãi,β) be a solution of (S∞). Then

f̃ := xd
n +

∑
β∈Nn−1

ã1,βxβxd−1
n + · · · +

∑
β∈Nn−1

ãd,βxβ ∈ Ker(φ).

Since f is a generator of Ker(φ), there is g ∈ kJxK such that f̃ = fg. Since f and f̃ are Weierstrass
polynomials, by the uniqueness of the decomposition of a series as a product of a Weierstrass
polynomials with a unit, we have that g = 1 and f̃ = f . This shows that (ai,β) is the unique
solution of (S∞). Next, for k ∈ N we set

µ(k) = λ
(
(d + 1)d(k + d + 1)

)
where λ is given in Proposition 6.2. Consider a solution (ãi,β) ∈ kN of (Sµ(k)). Set

f̃ := xd
n + ã1(x′)xd−1

n + · · · + ãd(x′), where ãi :=
∑

β∈Nn−1

ãi,βxβ , i = 1, . . . , d.

Since φ(f̃) ∈ (u)µ(k), by Proposition 6.2, f̃ ∈ (x)(d+1)d(k+d+1) + Ker(φ). Therefore

f̃ = fg +
d∑

i=1
(ãi − ai)xd−i

n

for some g, where
d∑

i=1
(ãi − ai)xd−i

n ∈ Ker(φ) + (x)(d+1)d(k+d+1).
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Thus we can write

(7)
d∑

i=1
(ãi − ai)xd−i

n = fh + ε

where ε ∈ (x)(d+1)d(k+d+1). We denote by ν the monomial valuation defined by

ν

(∑
α∈Nn

gαxα

)
:= min{(d + 1)(α1 + · · · + αn−1) + αn | gα ̸= 0}.

For a power series g, we denote by in(g) its initial term in respect to this monomial valuation.
We remark that, for any g, (d + 1) ord(g) ⩾ ν(g) ⩾ ord(g).
Note that in(f) = xd

n. But, in (7), we see that the initial term of the left hand side is not divisible
by xd

n. Therefore ν
(∑d

i=1(ãi − ai)xd−i
n

)
⩾ ν(ε). Therefore

(d + 1) ord
(

d∑
i=1

(ãi − ai)xd−i
n

)
⩾ ord(ε).

Thus, there is a i0 such that

ord((ãi0 − ai0)xd−i0
n ) ⩾ (d + 1)d−1(k + d + 1).

In particular ãi0 − ai0 ∈ (x)(d+1)d−1(k+d+1)−(d−i0) ⊂ (x)k+1. On the other hand we have that∑
i ̸=i0

(ãi − ai)xd−i
n ∈ Ker(φ) + (x)(d+1)d−1(k+d+1). The result is proved by induction on the

number of terms in the sum. □

We are now ready to turn to the proof of the main result of this subsection:

Proof of the Extension Lemma 6.1. We consider, for each a ∈ U , the following system of linear
equations

(S∞(a)) ∀γ ∈ Nm, Fγ(a)(Ai,β) = 0

where F, Ai are as in equations (4) and (5), respectively. Set Ψk = πk ◦ Ψ where πk : Kn −→ K
is the projection onto the k-entry, and note that all of its derivatives ∂|γ|

∂uγ Ψk(·, 0) are globally
defined morphisms over Λ. Now consider:

F (Ψ∗
1,a, . . . , Ψ∗

n,a) =
∑

γ∈Nm

Fγ(a) uγ

where a ∈ Λ, and

Fγ(a) =
d∑

i=1

∑
β∈Nn−1, β⩽γ

Mγ,i,β(a)Ai,β + Bγ(a)

with Mγ,i,β(a) and Bγ(a) polynomials in the derivatives of Ψ∗
a. In particular, note that Mγ,i,β(a)

and Bγ(a) belong to O(Λ).
As before, for any k ∈ N, we consider the finite system of linear equations:

(Sk(a)) ∀γ ∈ Nm, |γ| < k, Fγ(a)(Ai,β) = 0.

Let sk denote the number of indexes γ such that |γ| < k. The system (Sk(a)) can be written as

M (k)(a) · A(k) + B(k)(a) = 0
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where M (k)(a) is the (sk × dsk)-matrix with entries Mγ,i,β(a), A(k) is the (dsk × 1)-column with
entries Ai,β , and B(k)(a) is the (sk × 1)-column with entries Bγ(a). We denote by M

(k)
i,β (a) the

column of M (k)(a) corresponding to Ai,β , that is:

M (k)(a) · A(k) =
d∑

i=1

∑
|β|<k

M
(k)
i,β (a)Ai,β

Let us fix i0 ∈ {1, . . . , d} and β0 ∈ Nn−1 and let us prove that there exists ai0,β0 ∈ L whose
restriction to U is equal to ai0,β0 . For every k ∈ N with k > |β0|, let us denote by t

(k)
0 (a) the

dimension of the K-vector space T
(k)
0 (a) generated by the M

(k)
i,β (a) for (i, β) ̸= (i0, β0). There is

an analytic proper subset D(k) of Λ such that for every a ∈ Λ ∖ D
(k)
0 , t

(k)
0 (a) is maximal; denote

by t
(k)
0 this maximal value.

We now fix a ∈ U ∖
⋃

k>|β| D
(k)
0 and consider µa the Chevalley function of Corollary 6.3

associated to f(a, x). We now fix k = |β0| + 1 and we set ℓ = µa(k). To simplify the notation,
set t

(ℓ)
0 = t0, and consider K-linearly independent vectors M

(ℓ)
i1,β1

(a), M
(ℓ)
i2,β2

(a), . . . , M
(ℓ)
it0 ,βt0

(a)
which generate T

(ℓ)
0 (a).

Claim 6.4. There exists a neighborhood U ′ of a such that M
(ℓ)
i0,β0

(b) does not belong to the vector
space generated by T

(ℓ)
0 (b) for every b ∈ U ′.

Proof. Indeed, from the definition of T
(ℓ)
0 (a) the equality M (ℓ)(a) · A(ℓ) + B(ℓ)(a) = 0 can be

re-written as:

Ai0,β0M
(ℓ)
i0,β0

(a) +
t0∑

j=1
(Aij ,βj

+ Lj)M (ℓ)
ij ,βj

(a) + B(ℓ)(a) = 0.

where the Lj are K-linear combinations of the terms Ai,β with (i, β) ̸= (ij , βj) for j = 0, . . . , t0.
We recall that, by Corollary 6.3, there exists a unique entry ai0,β0 = Ai0,β0 for which the above
system admits a solution. It is now immediate that M

(ℓ)
i0,β0

(a) /∈ T
(ℓ)
0 (a) (otherwise, for each

choice of Ai0,β0 , it would be possible to compensate the terms Ai,β with (i, β) ̸= (i0, β0) in order
to get a different solution). We conclude easily from the analyticity of the vectors M

(ℓ)
i,β . □

Now, by analyticity of the entries M
(ℓ)
i,β , there is a proper analytic subset E0 of Λ such that,

for every b ∈ Λ∖E0, the vectors M
(ℓ)
ij ,βj

(b), for 0 ⩽ j ⩽ t0, are K-linearly independent. Moreover,
since t0 = maxc{t

(ℓ)
0 (c)}, these vectors form a basis of the vector space generated by all the

M
(ℓ)
i,β (b). Therefore, for a given (i, β) ̸= (ij , βj) for j = 0, . . . , t0 and for a given b ∈ Λ ∖ E0, the

equation
∑t0

j=0 M
(ℓ)
ij ,βj

(b)Xj = Mi,β(b) has a unique solution X = (X0, . . . , Xt0) ∈ K. Let us
denote by M0(b) the sℓ × (t0 + 1)-matrix with columns M

(ℓ)
ij ,βj

(b) for j = 0, . . . , t0. By Cramer’s
Rule, the Xi have the form gi(b)/∆0(b) where gi(b) is a minor of a matrix whose entries are some
of the entries of the M

(ℓ)
ij ,βj

(b) and of Mi,β(b), and ∆0(b) is the determinant of a (t0 + 1)-square
sub-matrix N0(b) of M0(b). Therefore, there is a proper analytic subset E1 of Λ, such that for
every b′ ∈ Λ ∖ E1, ∆0(b′) ̸= 0. In particular the system (Sℓ(b)), for b ∈ Λ ∖ (E0 ∪ E1), can be
rewritten as

t0∑
j=0

M
(ℓ)
ij ,βj

(b)(Aij ,βj
+ Lij ,βj

(b)) + B(ℓ)(b) = 0

where the Lij ,βj
(b) are linear forms in the Ai,β for (i, β) ̸= (ij , βj) for j = 0, . . . , t0, with

analytic coefficients. We claim that Li0,β0(b) ≡ 0. Indeed, by Claim 6.4, note that for every
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c ∈ U ′ ∖
⋃

k>|β| D
(k)
0 we have that M

(ℓ)
i0,β0

(c) does not belong to the t0-vector space T
(ℓ)
0 (c),

implying that Li0,β0(c) is equal to zero in an open set; by analyticity Li0,β0 ≡ 0. In particular
the system (Sℓ(b)), for b ∈ Λ ∖ (E0 ∪ E1), can be rewritten as:

M
(ℓ)
i0,β0

(b)Ai0,β0 +
t0∑

j=1
M

(ℓ)
ij ,βj

(b)(Aij ,βj + Lij ,βj (b)) + B(ℓ)(b) = 0.

It now follows from Cramer’s rule that there exists a solution ai0,β0(b) of the truncated system
which can be expressed as a division Q0(b)/∆0(b), where Q0(b) depends on the entries of M

(ℓ)
ij ,βj

(b)
for j = 1, . . . , t0} and B(ℓ)(b). We now remark that Claim 6.4 implies that ai0,β0(b) = ai0,β0(b)
for every b ∈ U ′ ∖ (D0 ∪ Z0), which implies that they are equal over U ∖ Z0. We conclude that
ai0,β0 can be extended as a holomorphic function on Λ ∖ Z0 that belongs to L. Since the choice
of (i0, β0) was arbitrary, this proves the Lemma. □

6.2. Proof of Proposition 3.6. Let Φ : Ω −→ Kn and φ : Λ −→ Ω be the two morphisms from
the definition of admissible family 3.4, and recall that Ψ(a, u) = Φ(φ(a) + u) − Φ(φ(a)). Let
a ∈ R(Ψ, Λ) and set r := r(Ψa) = rF (Ψa); in particular, r = r(Φφ(a)) = rF (Φφ(a)). It follows
from Gabrielov’s rank Theorem (or the rank Theorem 3.3) that rA(Φφ(a)) = r.

Apart from a translation in x, we may suppose that Φ(φ(a)) = 0. Let (Z, 0) be the germ
of analytic set defined by Ker(Φ∗

φ(a)) and note that r = dim(Z, 0). Apart from a linear change
of coordinates in x, we may assume that the projection π : (Z, 0) −→ (Kr, 0) on the first r
coordinates is finite. In particular, each function xi, for i > r, is finite over the ring of convergent
power series K{x1, . . . , xr}. That is, by the Weierstrass preparation theorem, there exist non-zero
Weierstrass polynomials

Pi(x1, . . . , xr, xr+i) ∈ K{x1, . . . , xr}[xr+i], for i = 1, . . . , n − r,

belonging to Ker(Φ∗
φ(a)). By replacing each Pi by one of its irreducible factors we may assume

that the Pi are irreducible Weierstrass polynomials at 0.
We claim that, apart from changing the choice of point a ∈ R(Ψ, Λ) and re-centering the

coordinate system x accordingly, there exists a neighborhood U of a such that Pi are well-defined
and irreducible at every point in Φ(φ(U)). Indeed, let V be an open neighborhood of 0 in Kn

on which the Pi are well-defined, and U be an open connected neighborhood of a such that
Φ(φ(U)) ⊂ V . Apart from shrinking U and V , we may suppose that Pi ∈ Ker(Φ∗

φ(b)) for every
b ∈ U ; in particular, U ⊂ R(Ψ, Λ). Now, recall that being not irreducible is an open property for
the Euclidean topology, thus the property of being irreducible is a closed property. If one of Pi

is not irreducible at a point Φ(φ(b)), for some b ∈ U , we may replace a by b, Pi by one of its
irreducible factors at this point, and we shrink U and V accordingly. Since the degree of the Pi

is a positive integer, this process should end in a finite number of steps, proving the claim.
Fix s = 1, . . . , n − r, set x(s) = (x1, . . . , xr, xr+s), Φ(s) := (Φ1, . . . , Φr, Φr+s), and denote by

Ψ(s) = (Ψ1, . . . , Ψr, Ψr+s) the family associated to Φ(s) and φ. Note that U ⊂ R(Ψ(s), Λ) by
construction. Moreover Ker(Ψ(s)

a

∗
) is generated by Ps since Ps is irreducible and Ker(Ψ(s)

a

∗
) is a

height one prime ideal of K{x(s)}. We set:

fs(b, x(s)) := Pi

(
Φ(s)(φ(b)) + x(s)

)
for every b ∈ U , which can be written as:

fs(b, x(s)) = yd + a1(b, x′)yd−1 + · + ad(b, x′)
where y = xr+s and x′ = (x1, . . . , xr).

First, note that ai(b, x′) ∈ O(U)Jx′K since Φ ◦ φ is an analytic map defined on U and Pi

is well-defined in Φ(φ(U)). Second, note that fs(b, x(s)) ∈ Ker(Ψ(s)
b

∗
) for every b ∈ U since
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Ψ(s)
b

∗
(fi) = Ps ◦Φ(s)

φ(b) ≡ 0, and that fs(b, x(s)) generates Ker(Ψ(s)
b

∗
) since Pi is irreducible. Third,

note that fi(b, 0, y) = yk(b)U(b, y) for some 1 ⩽ k(b) ⩽ d and U(b, y) is a monic polynomial
in y coprime with y. By Hensel Lemma (see [Gro67, 18.5.13]), this implies that fi(b, x′, y) is
the product of two monic polynomials of degree k(b) and d − k(b) respectively. From the fact
that Pi is irreducible and k(b) > 0 at every point b ∈ U , we conclude that k(b) = d, that is,
fs(b, 0, y) = yd. These three observations show that fs satisfies all hypothesis of Lemma 6.1,
so that it can be extended as a power series fs(x(s)) of LJxK, where L is the fraction field of
O(Λ), such that Ψ∗

L(fs) = 0. We conclude that rF (Ψ∗
L) ⩽ r, and since r(Ψ∗

L) = r, we get that
r(Ψ) = rF (Ψ∗

L), finishing the proof.
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